Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US


As soil moisture increases, slope stability decreases. Remotely sensed soil moisture data can provide routine updates of slope conditions necessary for landslide predictions. For regional scale landslide investigations, only remote-sensing methods have the spatial and temporal resolution required to map hazard increases. Here, a dynamic physically-based slope stability model that requires soil moisture is applied using remote-sensing products from multiple Earth observing platforms. The resulting landslide susceptibility maps using the advanced microwave scanning radiometer (AMSR-E) surface soil moisture are compared to those created using variable infiltration capacity (VIC-3L) modeled soil moisture at Cleveland Corral landslide area in California, US. Despite snow cover influences on AMSR-E surface soil moisture estimates, a good relationship between the downscaled AMSR-E's surface soil moisture and the VIC-3L modeled soil moisture is evident. The AMSR-E soil moisture mean (0.17 cm3/cm3) and standard deviation (0.02 cm3/cm3) are very close to the mean (0.21 cm3/cm3) and standard deviation (0.09 cm3/cm3) estimated by VIC-3L model. Qualitative results show that the location and extent of landslide prone regions are quite similar. Under the maximum saturation scenario, 0.42% and 0.49% of the study area were highly susceptible using AMSR-E and VIC-3L model soil moisture, respectively.


Earth Systems Research Center

Publication Date


Journal Title

Remote Sensing of Environment



Digital Object Identifier (DOI)

Document Type



© 2010 Elsevier Inc. All rights reserved.