https://dx.doi.org/10.1002/2014GL062474">
 

Abstract

Methane expulsion from the world ocean floor is a broadly observed phenomenon known to be episodic. Yet the processes that modulate seepage remain elusive. In the Arctic offshore west Svalbard, for instance, seepage at 200–400 m water depth may be explained by ocean temperature‐controlled gas hydrate instabilities at the shelf break, but additional processes are required to explain seepage in permanently cold waters at depths >1000 m. We discuss the influence of tectonic stress on seepage evolution along the ~100 km long hydrate‐bearing Vestnesa Ridge in Fram Strait. High‐resolution P‐Cable 3‐D seismic data revealed fine‐scale (>10 m width) near‐vertical faults and fractures controlling seepage distribution. Gas chimneys record multiple seepage events coinciding with glacial intensification and active faulting. The faults document the influence of nearby tectonic stress fields in seepage evolution along this deepwater gas hydrate system for at least the last ~2.7 Ma.

Department

Earth Sciences

Publication Date

1-13-2015

Journal Title

Geophysical Research Letters

Publisher

American Geophysical Union (AGU)

Digital Object Identifier (DOI)

https://dx.doi.org/10.1002/2014GL062474

Document Type

Article

Rights

©2015. American Geophysical Union. All Rights Reserved.

Comments

This is an article published by AGU in Geophysical Research Letters in 2015, available online: https://dx.doi.org/10.1002/2014GL062474

Share

COinS