https://dx.doi.org/10.1029/2010WR009959">
 

Abstract

Little is known about the impact of surface transient storage (STS) zones on reach‐scale transport and the fate of dissolved nutrients in streams. Exchange with these locations may influence the rates of nutrient cycling often observed in whole‐stream tracer experiments, particularly because they are sites of organic matter collection and lower flow velocities than those observed in the thalweg. We performed a conservative stream tracer experiment (slug of dissolved NaCl) in the Ipswich River in northeastern Massachusetts and collected solute tracer data both in the thalweg and adjacent STS zones at three locations in a fifth‐order reach. Tracer time series observed in STS zones are an aggregate of residence time distributions (RTDs) of the upstream transport to that point (RTDTHAL) and that of the temporary storage within these zones (RTDSTS). Here we demonstrate the separation of these two RTDs to determine the RTDSTS specifically. Total residence times for these individual STS zones range from 4.5 to 7.5 h, suggesting that these zones have the potential to host important biogeochemical transformations in stream systems. All of the RTDSTS show substantial deviations from the ideal prescribed by the two‐state (mobile/immobile) mass transfer equations. The deviations indicate a model mismatch and that parameter estimation based on the mass transfer equations will yield misleading values.

Publication Date

5-11-2011

Journal Title

Water Resources Research

Publisher

American Geophysical Union (AGU)

Digital Object Identifier (DOI)

https://dx.doi.org/10.1029/2010WR009959

Document Type

Article

Rights

Copyright 2011 by the American Geophysical Union. This is an article published by AGU in Water Resources Research in 2011, available online: https://dx.doi.org/10.1029/2010WR009959

Share

COinS