https://dx.doi.org/10.3847/2041-8213/ad5a6f">
 

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

We report Bayesian inference of the mass, radius, and hot X-ray emitting region properties—using data from the Neutron Star Interior Composition ExploreR (NICER)—for the brightest rotation-powered millisecond X-ray pulsar, PSR J0437−4715. Our modeling is conditional on informative tight priors on mass, distance, and binary inclination obtained from radio pulsar timing using the Parkes Pulsar Timing Array (PPTA Reardon et al.), and we use NICER background models to constrain the nonsource background, cross-checking with data from XMM-Newton. We assume two distinct hot emitting regions and various parameterized hot region geometries that are defined in terms of overlapping circles while simplified, these capture many of the possibilities suggested by detailed modeling of return current heating. For the preferred model identified by our analysis, we infer a mass of M = 1.418 ± 0.037 M ⊙ (largely informed by the PPTA mass prior) and an equatorial radius of R = 11.36 − 0.63 + 0.95 km, each reported as the posterior credible interval bounded by the 16% and 84% quantiles. This radius favors softer dense matter equations of state and is highly consistent with constraints derived from gravitational wave measurements of neutron star binary mergers. The hot regions are inferred to be nonantipodal and hence inconsistent with a pure centered dipole magnetic field.

Department

Physics

Publication Date

8-1-2024

Journal Title

The Astrophysical Journal Letters

Publisher

American Astronomical Society

Digital Object Identifier (DOI)

https://dx.doi.org/10.3847/2041-8213/ad5a6f

Document Type

Article

Rights

© 2024. The Author(s).

Comments

This is an open access article published by American Astronomical Society in The Astrophysical Journal Letters in 2024, available online: https://dx.doi.org/10.3847/2041-8213/ad5a6f

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.