Diversity and abundance of earthworms across an agricultural land-use intensity gradient


Understanding how communities of important soil invertebrates vary with land use may lead to the development of more sustainable land-use strategies. We assessed the abundance and species composition of earthworm communities across six replicated long-term experimental ecosystems that span a gradient in agricultural land-use intensity. The experimental systems include a conventional row-crop agricultural system, two lower-intensity row-crop systems (no-till and tilled organic input), an early successional old-field system, a 40–60 years old coniferous forest plantation, and an old-growth deciduous forest system. Earthworm populations varied among systems; they were lowest in the most intensively managed row-crop system (107 m−2) and coniferous forest (160 m−2); intermediate in the old-field (273 m−2), no-till (328 m−2) and tilled organic (344 m−2) cropping systems; and highest in the old-growth deciduous forest system (701 m−2). Juvenile Aporrectodea species were the most common earthworms encountered in intensively managed systems; other species made up a larger proportion of the community in less intensively managed systems. Earthworm community biomass and species richness also varied and were lowest in the conventional row-crop system and greatest in the old-growth forest system. These results suggest that both land-use intensity and land-use type are strong drivers of the abundance and composition of earthworm communities in agricultural ecosystems.


Soil Biogeochemistry and Microbial Ecology

Publication Date


Journal Title

Soil and Tillage Research



Digital Object Identifier (DOI)

Document Type