https://dx.doi.org/10.1029/2019GL085498">
 

Abstract

During winter in the midlatitudes, photochemical oxidation is significantly slower than in summer and the main radical oxidants driving formation of secondary pollutants, such as fine particulate matter and ozone, remain uncertain, owing to a lack of observations in this season. Using airborne observations, we quantify the contribution of various oxidants on a regional basis during winter, enabling improved chemical descriptions of wintertime air pollution transformations. We show that 25–60% of NOx is converted to N2O5 via multiphase reactions between gas-phase nitrogen oxide reservoirs and aerosol particles, with ~93% reacting in the marine boundary layer to form >2.5 ppbv ClNO2. This results in >70% of the oxidizing capacity of polluted air during winter being controlled by multiphase reactions and emissions of volatile organic compounds, such as HCHO, rather than reaction with OH. These findings highlight the control local anthropogenic emissions have on the oxidizing capacity of the polluted wintertime atmosphere.

Department

Earth Systems Research Center

Publication Date

12-13-2019

Journal Title

Geophysical Research Letters

Publisher

AGU

Digital Object Identifier (DOI)

https://dx.doi.org/10.1029/2019GL085498

Document Type

Article

Comments

This is an author's manuscript of an article published by AGU in 2019 in Geophysical Research Letters, available online: https://dx.doi.org/10.1029/2019GL085498

Share

COinS