Date of Award

Winter 2011

Project Type


Program or Major


Degree Name

Doctor of Philosophy

First Advisor

Amitava Bhattacharjee


Parker's model [Parker, Astrophys. J., 174, 499 (1972)] is one of the most discussed mechanisms for coronal heating and has generated much debate. We have recently obtained new scaling results for a 2D version of this problem suggesting that the heating rate becomes independent of resistivity in a statistical steady state [Ng and Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Our numerical work has now been extended to 3D using high resolution MHD numerical simulations. Random photospheric footpoint motion is applied for a time much longer than the correlation time of the motion to obtain converged average coronal heating rates. Simulations are done for different values of the Lundquist number to determine scaling. In the high-Lundquist number limit (S > 1000), the coronal heating rate obtained is consistent with a trend that is independent of the Lundquist number, as predicted by previous analysis and 2D simulations. We will present scaling analysis showing that when the dissipation time is comparable or larger than the correlation time of the random footpoint motion, the heating rate tends to become independent of Lundquist number, and that the magnetic energy production is also reduced significantly. We also present a comprehensive reprogramming of our simulation code to run on NVidia graphics processing units using the Compute Unified Device Architecture (CUDA) and report code performance on several large scale heterogenous machines.