Date of Award

Spring 2009

Project Type


Program or Major

Earth and Environmental Science

Degree Name

Doctor of Philosophy

First Advisor

Barkley C Sive


This dissertation describes three research projects with the common objective of characterizing the influence of volatile organic compounds (VOCs) on air quality in New England using measurements made over multiple years (2002-2008) and from different sampling locations. The specific objectives include identifying sources (direct emission or secondary production), quantifying mixing ratios, and characterizing the chemical (i.e., oxidation, photolysis) and physical (i.e., transport, mixing) processes which regulate the distributions of VOCs in the troposphere over southeastern New Hampshire.

Chapters 2 and 3 discuss the seasonal and interannual variability of nonmethane hydrocarbons (NMHCs), selected halocarbons, and alkyl nitrates using measurements from canister samples collected at Thompson Farm in Durham, NH throughout January 2004-February 2008. Several anthropogenic and biogenic sources of NMHCs and halocarbons were identified based on correlations with tracer compounds and comparisons with source signatures. Additionally, evidence for the dry deposition of alkyl nitrates of night was observed which is a previously unaccounted for removal mechanism. Analysis of alkyl nitrate/parent hydrocarbon ratios, measurements made onboard the NOAA R/V Ronald H. Brown during the 2002 New England Air Quality Study, and canister samples collected throughout the Great Bay estuary in August 2003 are presented to assess the relative contributions of anthropogenic and marine sources of alkyl nitrates.

The research described in Chapter 4 used measurements of VOCs made at an inland (Thompson Farm) and an offshore (Appledore Island) site to identify evidence of chlorine initiated oxidation of VOCs, estimate chlorine atom (Cl) concentrations during two summers and for different transport sectors, and assess the potential influence of chlorine chemistry on the oxidative capacity of the troposphere over coastal New Hampshire. Comparable Cl concentrations were estimated using a novel technique based on the lifetime-variability relationship of NMHCs and using the traditional NMHC ratio method. Furthermore, the daytime loss of DMS and ethane in the marine sector of AI was reproduced when reaction with both OH and Cl were considered providing supporting evidence for Cl chemistry occurring in this region.