Date of Award

Spring 2017

Project Type


Program or Major


Degree Name

Doctor of Philosophy

First Advisor

Charles J Farrugia

Second Advisor

Roy Torbert

Third Advisor

Terry Forbes


Asymmetries in plasma density and the presence of a guide field significantly alter the structure of the ion diffusion region (IDR) in symmetric, collisionless reconnection. These features have been shown by numerical simulations under moderate density asymmetries (~10), and theoretical analyses. However, very few studies have addressed these issues with in-situ observations, particularly at high magnetic latitudes. By the structure of the IDR we refer to features such as the non-colocation of the X-line and stagnation line, the distortion of the Hall magnetic and electric fields, outflow speed, outflow density etc. We have compiled a collection of Cluster crossings of the high-latitude magnetopause poleward of the cusp under northward interplanetary magnetic field in the years 2001−2008. We identified 18 events that fulfilled the criteria that was used as plausible evidence for an IDR crossing. A wide range of guide fields (6 to 74%) and very high density asymmetries (over three orders of magnitude) were present in this event list. The total DC electric field ranged from 10 mV/m-72 mV/m. We compared theoretical predictions for ion outflow speed and density against measured values for events with least magnetic shear and found good agreement. Peak values of both measured quantities agreed better than the average values. The separation between the X and S-lines were measured for two events. The separation was in the order of ~2 ion inertial lengths.

We presented a detailed analysis of a current sheet crossing hallmarked by a density asymmetry of 2 orders of magnitude (~140) [Muzamil et al., 2014, JGR]. This event was measured by the Polar spacecraft, also at high latitudes poleward of the cusp. Data agreed well with simulation results, especially the observation of density cavities together with isolated electric fields in the normal direction at both separatrices. This has not been observed in previous observational studies. Effect of the guide field on both sides of the X-line was examined using two events with jet reversals and similar guide fields. A sunward-tailward asymmetry in the Hall magnetic field structure was observed due to the guide field in the two outflow regions. The Hall field was weakened and changed polarity in the vicinity of the X-line due to an electron velocity shear layer. Using three other crossings with high guide fields, we measured a 40-60% enhancement in the Hall magnetic field showing consistency with simulations. We then presented a case study of large episodic magnetic field depressions in the magnetosheath boundary layer region near the magnetic separatrix. We identified specific characteristics and compared them to possible generating mechanisms. The most plausible one was kinetic Alfvén waves. Thus, we have provided observational evidence for the structure of the IDR in poleward of the cusp under several different asymmetric conditions and guide fields.