https://dx.doi.org/10.1051/swsc/2018025">
 

Title

An operational solar wind prediction system transitioning fundamental science to operations

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

We present in this paper an operational solar wind prediction system. The system is an outcome of the collaborative efforts between scientists in research communities and forecasters at Space Environment Prediction Center (SEPC) in China. This system is mainly composed of three modules: (1) a photospheric magnetic field extrapolation module, along with the Wang-Sheeley-Arge (WSA) empirical method, to obtain the background solar wind speed and the magnetic field strength on the source surface; (2) a modified Hakamada-Akasofu-Fry (HAF) kinematic module for simulating the propagation of solar wind structures in the interplanetary space; and (3) a coronal mass ejection (CME) detection module, which derives CME parameters using the ice-cream cone model based on coronagraph images. By bridging the gap between fundamental science and operational requirements, our system is finally capable of predicting solar wind conditions near Earth, especially the arrival times of the co-rotating interaction regions (CIRs) and CMEs. Our test against historical solar wind data from 2007 to 2016 shows that the hit rate (HR) of the high-speed enhancements (HSEs) is 0.60 and the false alarm rate (FAR) is 0.30. The mean error (ME) and the mean absolute error (MAE) of the maximum speed for the same period are −73.9 km s−1 and 101.2 km s−1, respectively. Meanwhile, the ME and MAE of the arrival time of the maximum speed are 0.15 days and 1.27 days, respectively. There are 25 CMEs simulated and the MAE of the arrival time is 18.0 h.

Publication Date

8-24-2018

Journal Title

Journal of Space Weather and Space Climate

Publisher

EDP Sciences

Digital Object Identifier (DOI)

https://dx.doi.org/10.1051/swsc/2018025

Document Type

Article

Comments

This is an article published by EDP Sciences in Journal of Space Weather and Space Climate in 2018, available online: https://dx.doi.org/10.1051/swsc/2018025

This document is currently not available here.

Share

COinS