Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License


Electromagnetic ion cyclotron waves in the plasma depletion layer measured by Wind on three inbound passes of the magnetosheath near the stagnation streamline are modeled using theoretical results from Gnavi et al., J. Geophys. Res., 105, 20973, 2000. The kinetic dispersion relation in a plasma composed of electrons, protons, and alpha particles, is solved with each species modeled by a bi-Maxwellian distribution function with parameters taken from observations, where available, and from average values found in the literature. While one pass was under substantially high solar wind dynamic pressure (~ 6.4 nPa), the other two passes were under normal dynamic pressure at 1 AU (~ 2.2 nPa). The presence of electromagnetic ion cyclotron waves in the terrestrial plasma depletion layer under normal dynamic pressure is documented and analyzed for the first time. The power spectral density of the magnetic fluctuations transverse to the background field, using high resolution (~ 11 samples/s) data from the Magnetic Field Investigation, is obtained for the inner, middle and outer regions of the plasma depletion layer. The analysis of spectra and comparison with theory is extended to the normal dynamic pressure regime. The observations show that at the inner plasma depletion layer position the spectral power density weakens as the dynamic pressure decreases, and that the frequency range of emission shifts downward with diminishing pressure. Using bipolytropic laws for the anisotropic magnetosheath, we argue that the effect of a reduction of Pdyn is to lower Ap, thereby weakening the driver of EICWs leading to marginally bifurcated spectra and weaker EICW activity in the PDL under typical conditions. Qualitative and in some cases quantitative agreement between theory and data is very good.

Publication Date


Journal Title

Brazilian Journal of Physics



Document Type



This is an article published by Scielo in Brazilian Journal of Physics in 2004, available online: