Abstract

Northern peatlands have accumulated a large amount of organic carbon (C) in their thick peat profile. Climate change and associated variations in soil environments are expected to have significant impacts on the C balance of these ecosystems, but the magnitude is still highly uncertain. Verifying and understanding the influences of changes in environmental factors on C gas fluxes in biogeochemical models are essential for forecasting feedbacks between C gas fluxes and climate change. In this study, we applied a biogeochemical model, DeNitrification-DeComposition (DNDC), to assess impacts of air temperature (TA) and water table (WT) on C gas fluxes in an Alaskan peatland. DNDC was validated against field measurements of net ecosystem exchange of CO2 (NEE) and CH4 fluxes under manipulated surface soil temperature and WT conditions in a moderate rich fen. The validation demonstrates that DNDC was able to capture the observed impacts of the manipulations in soil environments on C gas fluxes. To investigate responses of C gas fluxes to changes in TA and soil water condition, we conducted a series of simulations with varying TA and WT. The results demonstrate that (1) uptake rates of CO2 at the site were reduced by either too colder or warmer temperatures and generally increased with increasing soil moisture; (2) CH4 emissions showed an increasing trend as TAincreased or WT rose toward the peat surface; and (3) the site could shift from a net greenhouse gas (GHG) sink into a net GHG source under some warm and/or dry conditions. A sensitivity analysis evaluated the relative importance of TA and WT to C gas fluxes. The results indicate that both TA and WT played important roles in regulating NEE and CH4 emissions and that within the investigated ranges of the variations in TA and WT, changes in WT showed a greater impact than changes in TA on NEE, CH4 fluxes, and net C gas fluxes at the study fen.

Department

Earth Sciences, Earth Systems Research Center

Publication Date

7-2015

Journal Title

Journal of Geophysical Research Biogeosciences

Publisher

Wiley

Digital Object Identifier (DOI)

10.1002/2014JG002880

Document Type

Article

Rights

©2015. American Geophysical Union. All Rights Reserved.

Share

COinS