Abstract

In-situ airborne measurements of trace gases, aerosol size distributions, chemistry and optical properties were conducted over Mexico and the Eastern North Pacific during MILAGRO and INTEX-B. Heterogeneous reactions between secondary aerosol precursor gases and mineral dust lead to sequestration of sulfur, nitrogen and chlorine in the supermicrometer particulate size range.

Simultaneous measurements of aerosol size distributions and weak-acid soluble calcium result in an estimate of 11 wt% of CaCO3 for Asian dust. During transport across the North Pacific, ∼5ĝ€ "30% of the CaCO3 is converted to CaSO4 or Ca(NO 3)2 with an additional ∼4% consumed through reactions with HCl. The 1996 to 2008 record from the Mauna Loa Observatory confirm these findings, indicating that, on average, 19% of the CaCO3 has reacted to form CaSO4 and 7% has reacted to form Ca(NO3) 2 and ∼2% has reacted with HCl. In the nitrogen-oxide rich boundary layer near Mexico City up to 30% of the CaCO3 has reacted to form Ca(NO3)2 while an additional 8% has reacted with HCl.

These heterogeneous reactions can result in a ∼3% increase in dust solubility which has an insignificant effect on their optical properties compared to their variability in-situ. However, competition between supermicrometer dust and submicrometer primary aerosol for condensing secondary aerosol species led to a 25% smaller number median diameter for the accumulation mode aerosol. A 10ĝ€"25% reduction of accumulation mode number median diameter results in a 30ĝ€"70% reduction in submicrometer light scattering at relative humidities in the 80ĝ€"95% range. At 80% RH submicrometer light scattering is only reduced ∼3% due to a higher mass fraction of hydrophobic refractory components in the dust-affected accumulation mode aerosol. Thus reducing the geometric mean diameter of the submicrometer aerosol has a much larger effect on aerosol optical properties than changes to the hygroscopic:hydrophobic mass fractions of the accumulation mode aerosol.

In the presence of dust, nitric acid concentrations are reduced to 85% to 60ĝ€"80% in the presence of dust. These observations support previous model studies which predict irreversible sequestration of reactive nitrogen species through heterogeneous reactions with mineral dust during long-range transport.

Department

Earth Sciences, Earth Systems Research Center

Publication Date

11-3-2009

Journal Title

Atmospheric Chemistry and Physics

Publisher

Copernicus Publications

Digital Object Identifier (DOI)

10.5194/acp-9-8283-2009

Document Type

Article

Rights

© Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License.

Share

COinS