Increasing the Existence of Very Shallow-water LIDAR Measurements Using the Red-channel Waveforms
Abstract
Mapping shallow-water bathymetry with acoustic techniques is complicated and expensive. The environmental parameters in shallow-water (<2 m) areas become more variable and greatly impact the depth extraction from the survey measurements. Current airborne light detection and ranging (LIDAR) bathymetry surveying in shallow-water depths uses green-channel waveforms to measure the waterdepth. Unfortunately, due to difficulties in distinguishing between the surface and bottom return of thewater column, the timing of the bottom return is often ambiguous. Furthermore, the water often becomes optically "dirty" due to turbulence at these shallow depths. Therefore, it is common to find coastal areas that lack any measured depths. This paper presents a novel approach for measuring water depths in these shallow coastal waters with airborne LIDAR. Observations of the red-channel waveforms show that the waveforms are divided into two groups, namely: (1) waveforms in deep waters (>2 m) whose shape is invariant with respect to the water depth and (2) waveforms in shallow-water depths that show a change in shape as a function of the depth in the water column. The data for this study are from the US Geological Survey LIDAR surveys of Lake Tahoe, CA, and Lake Michigan, using a SHOALS-400LIDAR system
Department
Center for Coastal and Ocean Mapping
Publication Date
5-2007
Volume
45, Issue 5
Journal Title
IEEE Transactions on Geoscience and Remote Sensing
Pages
1217-1223
Publisher Place
Washington DC, USA
Publisher
IEEE
Digital Object Identifier (DOI)
10.1109/TGRS.2007.894584
Document Type
Journal Article
Recommended Citation
S. Pe’eri and W. Philpot, "Increasing the existence of very shallow-water LIDAR measurements using the red-channel Waveforms," IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 5, pp. 1217–1223, May 2007.