Date of Award

Winter 2015

Project Type


Program or Major

Electrical and Computer Engineering

Degree Name

Master of Science

First Advisor

Qiaoyan Yu

Second Advisor

Michael J Carter

Third Advisor

W. Thomas Miller III


The Integrated Circuit (IC) design flow follows a global business model. A global business means that the processes in the IC design flow could be outsourced, and consequently security threats have been introduced. Security threats on hardware include side channel analysis, reverse engineering, information leakage, counterfeit chips, and hardware Trojans (HTs).This work mainly focuses on HT attacks, which execute a malicious operation on the system when a trigger condition is met. Networks-on-Chip (NoCs) are a popular communications infrastructure for many-core systems, which have proved to be a more scalable option over the traditional bus interface. However, the high scalability and modularity provided by NoCs have introduced new vulnerabilities in the design, leading to hardware Trojans capable of causing several Denial of Service (DoS) attacks on the network.

A 4x4 Mesh-topology NoC with a more robust router microarchitecture is presented with several innovations relative to the baseline. A collaborative dynamic permutation and flow unit (flit) integrity check method is proposed to thwart an attacker from maliciously modifying the flit content in the routers of a NoC. Our method complements other HT detection approaches for the NoC network interfaces. Moreover, we exploit the Physical Unclonable Function (PUF) structure and the traffic routing history to generate a unique key vector for each router to select one of the multiple permutation configurations. Simulation and Field Programmable Gate Array (FPGA) results are compared between the proposed NoC microarchitecture and four other existing solutions found in literature, and it was shown that the proposed method outperforms all of the existing security methods.