Date of Award

Spring 2015

Project Type


Program or Major

Computer Science

Degree Name

Master of Science

First Advisor

Phil Hatcher

Second Advisor

Michel Charpentier

Third Advisor

Wheeler Ruml


Concurrent programs are notoriously difficult to develop due to the non-deterministic nature of thread scheduling. It is desirable to have a programming language to make such development easier. Tscript comprises such a system. Tscript is an extension of JavaScript that provides multithreading support along with intent specification. These intents allow a programmer to specify how parts of the program interact in a multithreaded context. However, enforcing intents requires run-time memory checks which can be inefficient. This thesis implements an optimization in the Tscript compiler that seeks to improve this inefficiency through static analysis. Our approach utilizes both type inference and dataflow analysis to eliminate unnecessary run-time checks.