Creative Commons License

Creative Commons Attribution-Noncommercial 3.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 License


Two lamprey glycroprotein hormone receptors (lGpH-R I and II) highly similar with gnathostome GpH-Rs were cloned from sea lamprey testes and thyroid, respectively. Vertebrate glycoprotein protein receptors have a large extracellular domain (ED) containing a leu rich domain (LRD) linked to a rhodopsin-like transmembrane domain (TMD) through a highly divergent linker region (signal specificity domain, SSD or 'hinge' region) and a third major segment, the intracellular domain. To determine the potential roles of the different domains in the activation of the receptor following ligand-receptor binding, functional assays were performed on lGpH-R I/rat luteinizing hormone (LH)-R domain swapped chimeric receptors. These results show that the functional roles of the lamprey glycoprotein-receptor I (lGpH-R I) domains are conserved compared with its Gnathostome homologs. The ability of different glycoprotein hormones to activate chimeric lamprey/rat receptors suggests that the selectivity of the GpH-Rs in respect to their ligands is not controlled exclusively by a single domain but is the result of specific interactions between domains. We hypothesize that these interactions were refined during millions of years of co-evolution of the receptors with their cognate ligands under particular intramolecular, intermolecular and physiological constraints.

Publication Date


Journal Title

Integrative and Comparative Biology


Oxford University Press

Digital Object Identifier (DOI)


Scientific Contribution Number


Document Type



© The Author(s) 2010. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Included in

Biology Commons