Genetic manipulation of polyamine metabolism in poplar II: effects on ethylene biosynthesis


Possible competition between polyamine and ethylene metabolisms was studied in two types of transgenic poplar (Populus nigra × maximowiczii) cells: (a) constitutively expressing a mouse ornithine decarboxylase (ODC, EC cDNA under the control of double 35S cauliflower mosaic virus (CaMV) promoter (cell line 2E), and (b) constitutively expressing a Datura S-adenosylmethionine decarboxylase (SAMDC, EC cDNA under the control of a single 35S CaMV promoter (line PS-18). The 2E cells contained significantly higher putrescine (Put) as well as spermidine (Spd) contents than the non-transgenic (NT) cells. The PS-18 cells contained three- to five-fold lower amounts of Put than the NT cells; their Spd content was either comparable to NT cells (at 3 d of culture) or it was higher than the NT cells (at 6 d of culture). The production of ethylene in the 2E cells was generally higher than in the NT cells throughout the 7-d culture period. Ethylene production in the PS-18 cells was comparable to NT cells. The cellular content of 1-aminocyclo-propane-1-carboxylic acid in the NT and 2E cells was quite similar, while it was slightly lower in the PS-18 cells. It is concluded that in poplar cells the cellular pool of S-adenosylmethionine is probably large enough to satisfy the demand for both polyamine and ethylene production and no competition between the two pathways is apparent.

Publication Date


Journal Title

Plant Physiology and Biochemistry



Digital Object Identifier (DOI)


Scientific Contribution Number


Document Type



Copyright © 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.