Jackson Estuarine Laboratory


The variation in suspended sediment and water properties in the flood-water front traversing the tidal flat


The initial flooding waters from twenty-four consecutive tides were examined for changes in water properties as the flood-front traversed the intertidal zone. The flood-front water temperature depended on the time of flooding as well as the sun’s insolation. On warm sunny days, the water temperature at the leading edge of the tide successively increased as the water flooded the tidal flat. In contrast, during cloudy days, and early morning and evening samplings, the flood-front water decreased during flooding. Flood-front water temperatures on warm days exceeded 34°C, some 15°C higher than the water observed in the deeper tidal channels.

Flood-front salinities increased progressively across the intertidal zone regardless of local weather conditions, and were primarily controlled by mixing of surface waters with interstitial waters during the flooding process. Particulate matter concentrations were dependent on the interaction between small amplitude waves and varying intertidal bottom slope. Extreme variability in the particulate matter concentration across the tidal flat was in part caused by alternate resuspension and settling of fecal pellets composed of silty-clay aggregates which partly form the bottom sediment of the test area. The texture of the suspended particulate matter coarsens near shore, where wave resuspension became more effective on a steeper portion of the intertidal zone.

Publication Date


Journal Title


Digital Object Identifier (DOI)

Document Type



Copyright © 1969, Springer Nature