Honors Theses and Capstones

Date of Award

Spring 2015

Project Type

Senior Honors Thesis

College or School



Mechanical Engineering

Program or Major

Mechanical Engineering

Degree Name

Bachelor of Science

First Advisor

Martin Wosnik

Second Advisor

Ivaylo Nedyalkov

Third Advisor

John Turner


The interaction between wind turbines in a large wind farm needs to be better understood to reduce array losses and improve energy production. A numerical test bed for an array of offshore wind turbines was developed in the open-source computational fluid dynamics (CFD) framework OpenFOAM. It provides a computational tool which can be used in combination with physical model turbine array studies in the Flow Physics Facility (FPF) at UNH as well as other test facilities.

Turbines were modeled as actuator disks with turbulence sources to reduce computational cost. Both k-ϵ and k-ω SST turbulence models were utilized to capture the flow in the near-wall, wake, and free stream regions.

Experimental studies were performed in the FPF to validate the numerical results and to provide realistic initial and boundary conditions, for example turbulent boundary layer inlet velocity profiles. Mesh refinement and boundary condition studies were performed. Numerical simulations were executed on a custom-built server, designed to be the head node of a future CFD cluster. The entire project was built on open-source software to facilitate replication and expansion. The numerical model provides building blocks for simulations of large wind turbine arrays, computational resources permitting.

The numerical model currently replicates a three by one array of wind turbines in the FPF, and provides detailed insight into the array fluid dynamics.