Fluorescence detection for the XLI analytical ultracentrifuge


Analytical ultracentrifugation (AUC) provides first-principle hydrodynamic and thermodynamic information concerning the size, shape and interactions of macromolecules. The fundamental measurement needed in AUC is the macromolecular concentration as a function of radial position and time. Currently, the Beckman Coulter XLI analytical ultracentrifuge may be equipped with absorbance and refractive detectors, which provide complementary concentration determinations. For detecting trace quantities of materials, fluorescence detection offers unique advantages over either absorbance or interference detection. A prototype fluorescence detector for the XLI analytical ultracentrifuge has been developed and its characteristics determined. An Ar+ laser provides a continuous 488-nm excitation beam. Radial resolution is achieved by scanning the focused beam along a radial axis. Detection of the fluorescence signal uses a co-axial, front-face optical configuration to reduce inaccuracies in the concentration caused by inner filter effects. A high-speed A/D data acquisition system allows the fluorescence intensity to be monitored continuously and at a sufficiently high angular resolution so that at any radial position the intensities from all of the samples may be acquired at each revolution. The fluorescence detector is capable of detecting concentrations as low as 300 pM for fluorescein-like labels. The radial resolution of the fluorescence detector is comparable to that of the absorbance system. Both sedimentation velocity and sedimentation equilibrium measurements may be made with the fluorescence detector. Results are presented comparing data acquired using the fluorescence with those acquired using the absorbance detector.


Molecular, Cellular and Biomedical Sciences

Publication Date


Journal Title

Biophysical Chemistry



Digital Object Identifier (DOI)

Document Type