https://dx.doi.org/10.1029/1999JD901069">
 

Abstract

Using European Center for Medium‐Range Weather Forecasts (ECMWF) numerical operational analyses, sea ice extent records, and station pressure data, we investigate the influence of sea level pressure variability in the Amundsen Sea region on a West Antarctic (Siple Dome) glaciochemical record. Empirical orthogonal function analysis of the high‐resolution Siple Dome multivariate ice core chemical time series record (SDEOF1) documents lower tropospheric transport of sea‐salt aerosols to the site. During 1985–1994 the SDEOF1 record of high (low) aerosol transport corresponds to anomalously low (high) sea level pressure (SLP) in the Amundsen Sea region. Spatial correlation patterns between ECMWF monthly SLP fields and the annual SDEOF1 record suggest that a majority of sea‐salt aerosol is transported to Siple Dome during spring (September, October, and November). Analysis of zonal and meridional wind fields supports the SLP/SDEOF1 correlation and suggests the SDEOF1 record is sensitive to changes in regional circulation strength. No relationship is found between sea ice extent and the SDEOF1 record for the period 1973–1994. To investigate the SDEOF1 record prior to ECMWF coverage, a spring transpolar index (STPI) is created, using normalized SLP records from the New Zealand and South America/Antarctic Peninsula sectors, and is significantly correlated (at least 95% c.l.) with the SDEOF1 record on an annual (r = 0.32, p < 0.001) and interannual (3 years; r = 0.51, p < 0.001) basis. Dominant periodicities (3.3 and 7.1 years) in the annual SDEOF1 record (1890–1994 A.D.) suggest that a portion of the recorded interannual variability may be related tropical/extratropical ENSO teleconnections. Changes in the periodic structure of the full (850–1994 A.D.) Siple Dome record suggests a shift in SLP forcing during the Little Ice Age (∼1400–1900 A.D.) interval.

Department

Earth Systems Research Center

Publication Date

2-1-2000

Journal Title

Journal of Geophysical Research: Atmospheres

Publisher

American Geophysical Union (AGU)

Digital Object Identifier (DOI)

https://dx.doi.org/10.1029/1999JD901069

Document Type

Article

Rights

©2000. American Geophysical Union. All Rights Reserved.

Comments

This is an article published by AGU in Journal of Geophysical Research: Atmospheres in 2000, available online: https://dx.doi.org/10.1029/1999JD901069

Share

COinS