https://dx.doi.org/10.3847/2041-8213/ad132d">
 

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Abstract

The Imaging X-ray Polarimetry Explorer measured with high significance the X-ray polarization of the brightest Z-source, Sco X-1, resulting in the nominal 2–8 keV energy band in a polarization degree of 1.0% ± 0.2% and a polarization angle of 8° ± 6° at a 90% confidence level. This observation was strictly simultaneous with observations performed by NICER, NuSTAR, and Insight-HXMT, which allowed for a precise characterization of its broadband spectrum from soft to hard X-rays. The source has been observed mainly in its soft state, with short periods of flaring. We also observed low-frequency quasiperiodic oscillations. From a spectropolarimetric analysis, we associate a polarization to the accretion disk at <3.2% at 90% confidence level, compatible with expectations for an electron scattering dominated optically thick atmosphere at the Sco X-1 inclination of ∼44° for the higher-energy Comptonized component, we obtain a polarization of 1.3% ± 0.4%, in agreement with expectations for a slab of Thomson optical depth of ∼7 and an electron temperature of ∼3 keV. A polarization rotation with respect to previous observations by OSO-8 and PolarLight, and also with respect to the radio-jet position angle, is observed. This result may indicate a variation of the polarization with the source state that can be related to relativistic precession or a change in the corona geometry with the accretion flow.

Department

Space Science Center

Publication Date

1-1-2024

Journal Title

The Astrophysical Journal Letters

Publisher

American Astronomical Society

Digital Object Identifier (DOI)

https://dx.doi.org/10.3847/2041-8213/ad132d

Document Type

Article

Rights

© 2024. The Author(s).

Comments

This is an open access article published by American Astronomical Society in The Astrophysical Journal Letters in 2024, available online: https://dx.doi.org/10.3847/2041-8213/ad132d

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.