Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.
Abstract
We present the first X-ray polarimetric study of the dipping accreting neutron star 4U 1624−49 with the Imaging X-ray Polarimetry Explorer. We report a detection of polarization in the nondip time intervals with a confidence level of 99.99%. We find an average polarization degree (PD) of 3.1% ± 0.7% and a polarization angle of 81° ± 6° east of north in the 2–8 keV band. We report an upper limit on the PD of 22% during the X-ray dips with 95% confidence. The PD increases with energy, reaching from 3.0% ± 0.9% in the 4–6 keV band to 6% ± 2% in the 6–8 keV band. This indicates the polarization likely arises from Comptonization. The high PD observed is unlikely to be produced by Comptonization in the boundary layer or spreading layer alone. It can be produced by the addition of an extended geometrically thin slab corona covering part of the accretion disk, as assumed in previous models of dippers, and/or a reflection component from the accretion disk.
Department
Space Science Center
Publication Date
3-1-2024
Journal Title
The Astrophysical Journal
Publisher
American Astronomical Society
Digital Object Identifier (DOI)
Document Type
Article
Recommended Citation
M. Lynne Saade et al 2024 ApJ 963 133
Rights
© 2024. The Author(s).
Comments
This is an open access article published by American Astronomical Society in The Astrophysical Journal in 2024, available online: https://dx.doi.org/10.3847/1538-4357/ad235a