https://dx.doi.org/10.1016/j.aquaeng.2024.102413">
 

Creative Commons License

Creative Commons Attribution-NonCommercial 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

Abstract

Seaweed cultivation systems suitable for offshore and exposed locations have the potential to enable expansion of global seaweed production to levels capable of substantially supplementing or offsetting terrestrial agriculture. A demonstration scale, experimental seaweed cultivation system (farm) intended to withstand exposed ocean environments was designed, deployed, planted with kelp (a type of seaweed), monitored and decommissioned. Objectives for the field program included: [1] observation of the farm's behavior and survivability in exposed ocean conditions, [2] demonstration of novel farm system design features and component technologies, and [3] evaluation of farm operability. Novel design features included a lattice mooring system geometry, multi-shaft helical anchors, and the use of fiberglass rod as a replacement for rope anchor lines and kelp growth substrate in order to mitigate the risk of marine animal entanglement. New hardware was developed for transmitting tension loads to and from fiberglass rods, enabling their use in the farm. A numerical model was used in the design stage to simulate the farm in ocean conditions. Analysis results were used to specify farm components, evaluate sensitivities to installation precision, identify potential issues with component interaction, consider operational constraints and investigate the implications of single point failures. The farm was installed at a Gulf of Maine, USA site and planted with Saccharina latissima (sugar kelp) in November 2021 through January 2022 and monitored for one growth season. Kelp was sampled 3 times and met-ocean conditions were measured throughout the season. Kelp was harvested in May 2022 and the structure was removed June 2022. Recovered components were inspected for wear. The farm survived a series of storm events with significant wave heights greater than 2 m and at least one storm with a maximum wave height of 5.9 m. The farm system experienced only minor corrosion, wear and damage. Farm operations revealed the need for improved accessibility, tension control and anchor placement accuracy. Observations and tests revealed relatively poor kelp holdfast attachment to the fiberglass rope replacement. Nonetheless, demonstration results suggest that the experimental farming system design was suitable for use in exposed settings.

Department

School of Marine Science and Ocean Engineering; Mechanical Engineering

Publication Date

3-28-2024

Journal Title

Aquacultural Engineering

Publisher

Elsevier BV

Digital Object Identifier (DOI)

https://dx.doi.org/10.1016/j.aquaeng.2024.102413

Document Type

Article

Rights

© 2024 The Authors.

Comments

This is an open access article published by Elsevier BV in Aquacultural Engineering in 2024, available online: https://dx.doi.org/10.1016/j.aquaeng.2024.102413

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.