Estimating Primary Forest Attributes and Rare Community Characteristics Using Unmanned Aerial Systems (UAS): An Enrichment of Conventional Forest Inventories.


The techniques for conducting forest inventories have been established over centuries of land management and conservation. In recent decades, however, compelling new tools and methodologies in remote sensing, computer vision, and data science have offered innovative pathways for enhancing the effectiveness and comprehension of these sampling designs. Now with the aid of Unmanned Aerial Systems (UAS) and advanced image processing techniques, we have never been closer to mapping forests at field-based inventory scales. Our research, conducted in New Hampshire on complex mixed-species forests, used natural color UAS imagery for estimating individual tree diameters (diameter at breast height (dbh)) as well as stand level estimates of Basal Area per Hectare (BA/ha), Quadratic Mean Diameter (QMD), Trees per Hectare (TPH), and a Stand Density Index (SDI) using digital photogrammetry. To strengthen our understanding of these forests, we also assessed the proficiency of the UAS to map the presence of large trees (i.e., >40 cm in diameter). We assessed the proficiency of UAS digital photogrammetry for identifying large trees in two ways: (1) using the UAS estimated dbh and the 40 cm size threshold and (2) using a random forest supervised classification and a combination of spectral, textural, and geometric features. Our UAS-based estimates of tree diameter reported an average error of 19.7% to 33.7%. At the stand level, BA/ha and QMD were overestimated by 42.18% and 62.09%, respectively, while TPH and SDI were underestimated by 45.58% and 3.34%. When considering only stands larger than 9 ha however, the overestimation of BA/ha at the stand level dropped to 14.629%. The overall classification of large trees, using the random forest supervised classification achieved an overall accuracy of 85%. The efficiency and effectiveness of these methods offer local land managers the opportunity to better understand their forested ecosystems. Future research into individual tree crown detection and delineation, especially for co-dominant or suppressed trees, will further support these efforts.


Natural Resources and the Environment

Publication Date


Journal Title

Remote Sensing



Digital Object Identifier (DOI)


Document Type



© 2021 by the authors