The redox behavior of heme in cystathionine β-synthase is pH dependent


Human cystathionine β-synthase (CBS) is a unique pyridoxal-5‘-phosphate-dependent enzyme in which heme is also present as a cofactor. Because the function of heme in this enzyme has yet to be elucidated, the study presented herein investigated possible relationships between the chemistry of the heme and the strong pH dependence of CBS activity. This study revealed, via study of a truncation variant, that the catalytic core of the enzyme governs the pH dependence of the activity. The heme moiety was found to play no discernible role in regulating CBS enzyme activity by sensing changes in pH, because the coordination sphere of the heme is not altered by changes in pH over a range of pH 6−9. Instead, pH was found to control the equilibrium amount of ferric and ferrous heme present after reaction of CBS with one-electron reducing agents. A variety of spectroscopic techniques, including resonance Raman, magnetic circular dichroism, and electron paramagnetic resonance, demonstrated that at pH 9 Fe(II) CBS is dominant while at pH 6 Fe(III) CBS is favored. At low pH, Fe(II) CBS forms transiently but reoxidizes by an apparent proton-gated electron-transfer mechanism. Regulation of CBS activity by the iron redox state has been proposed as the role of the heme moiety in this enzyme. Given that the redox behavior of the CBS heme appears to be controlled by pH, interplay of pH and oxidation state effects must occur if CBS activity is redox regulated.



Publication Date


Journal Title



American Chemical Society

Digital Object Identifier (DOI)


Document Type



Copyright © 2004 American Chemical Society