Combining angular and spatial information from multibeam backscatter data for improved unsupervised acoustic seabed segmentation

Alexandre C. Schimel
University of New Hampshire, Durham

Yuri Rzhanov
University of New Hampshire, Durham, Yuri.Rzhanov@unh.edu

Luciano E. Fonseca
University of New Hampshire, Durham, luciano@ccom.unh.edu

M Mayer
University of New Hampshire, Durham

Dirk Immenga
University of Waikato, Hamilton, New Zealand Aotearoa

Follow this and additional works at: https://scholars.unh.edu/ccom

Part of the Oceanography and Atmospheric Sciences and Meteorology Commons

Recommended Citation
Schimel, Alexandre C.; Rzhanov, Yuri; Fonseca, Luciano E.; Mayer, M; and Immenga, Dirk, "Combining angular and spatial information from multibeam backscatter data for improved unsupervised acoustic seabed segmentation" (2013). Marine Geological and Biological Habitat Mapping (GEOHAB), 669.
https://scholars.unh.edu/ccom/669

This Conference Proceeding is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Combining angular and spatial information from multibeam backscatter data for improved unsupervised acoustic seabed segmentation
Combining Angular and Spatial Information from Multibeam Backscatter Data for Improved Unsupervised Acoustic Seabed Segmentation

SCHIMEL Alexandre ¹,², RZHANOV Yuri ³,
FONSECA Luciano ³,⁴, MAYER Larry ³, and IMMENGA Dirk ²

¹ School of Life & Environmental Sciences, Deakin University, Australia
² Department of Earth & Ocean Sciences, University of Waikato, Hamilton, New Zealand
³ Center for Coastal and Ocean Mapping, University of New Hampshire, USA
⁴ Faculty of Engineering at Gama, University of Brasilia, Brazil
Introduction: Geocoder

A backscatter-data processing software by CCOM-JHC, UNH.
Introduction: Geocoder

A backscatter-data processing software by CCOM-JHC, UNH.
Introduction: main issue

The codependence of backscatter with seabed-type and angle of acquisition
Solution #1: Image-based methodologies
Solution #1: Image-based methodologies

Mosaic segmentation possibilities:

- Manual or Automatic

- Variables:
 - Pixel amplitude
 - Statistics within neighborhood of pixels
 - Textures
 - Power spectra features
 - …

- Algorithms:
 - k-means clustering
 - Decision trees
 - Neural networks
 - …
Solution #2: Angular-Response-based methodologies
Solution #2: Angular-Response-based methodologies
Solution #2: Angular-Response-based methodologies

Diagram:
- BS level (dB) vs. Grazing angle (deg)
- Starboard ARC and Port ARC

Image:
- Geocoder window with coordinates and survey data
- Geographic map with colored sections and annotations
Solution #2: Angular-Response-based methodologies
Image-based vs AR-based methodologies

Image-based approach:
To empirically **compensate for angular variation**, so that remaining variations are approximately only due to **change in seabed-type**.

+ Full use of data spatial information
- Discard angular information

AR-based approach:
To attempt avoiding **variation in seabed-type**, so that remaining variations are approximately only due to **change with angle**.

+ Full use of data angular information
- Discard data spatial information
Geocoder improvements:
Geocoder improvements:

- Themes
- 2D histograms
Geocoder improvements:
A possible combined approach

New Plymouth

Wellington

Tapuae Marine Reserve

North Mohana Sugar Loaf Islands Marine Protected Area

Mataora (Sand Patch)

New Plymouth

Port Taranaki

Omata
A possible combined approach

Raw backscatter data
A possible combined approach

Mosaic (AVG flat, 300 pings)
A possible combined approach

Mosaic segmentation through aggregation (level 2)
A possible combined approach

Mosaic segmentation through aggregation (level 3)
A possible combined approach

Mosaic segmentation through aggregation (level 6)
A possible combined approach

Mosaic segmentation through aggregation (level 7)
A possible combined approach

Estimating the **homogeneity** of a given segment
A possible combined approach

Estimating the **homogeneity** of a given segment
A possible combined approach

Estimating the **homogeneity** of a given segment
A possible combined approach

Estimating the **similarity**
between two segments
A possible combined approach

Estimating the **similarity** between two segments
A possible combined approach

Procedure:

Mosaic
A possible combined approach

Procedure:

Mosaic

S2 aggregation

S3
A possible combined approach

Procedure:

Mosaic

aggregation

S2

identify heterogeneous segments in S3 & split them using S2

HOM threshold

S3

aggregation

S3'

km

1.0

0.5

0.0
A possible combined approach

Procedure:

Mosaic

aggregation

S2

identification

HOM threshold

S3

threshold

S3'

splitting

MAP

aggregation

identify heterogeneous segments in S3 & split them using S2
A possible combined approach

Procedure:

- **Mosaic**
 - Aggregation
 - **HOM threshold**
 - Identify heterogeneous segments in S3 and split them using S2

- **S2**
- **S3**

- **MAP**
 - Similarity matrix
 - Measure similarity between neighboring segments

- **S3’**
A possible combined approach

Procedure:

- **Mosaic**
 - **aggregate**

- **S2**
 - **identify heterogeneous segments in S3** & split them using S2
 - **HOM threshold**

- **S3**
 - **aggregate**

- **Similarity matrix**
 - measure similarity between neighboring segments
 - find most similar pair of segments & aggregate them

- **MAP**

Center for Coastal & Ocean Mapping

Joint Hydrographic Center

Deakin University
A possible combined approach

Procedure:

1. **Mosaic**
 - **HOM threshold**
 - **aggregation**

2. **S2**
 - **aggregation**

3. **S3**
 - **identify heterogeneous segments in S3 & split them using S2**

4. **S3'**

5. **Similarity matrix**
 - **measure similarity between neighboring segments**
 - **find most similar pair of segments & aggregate them**

6. **SIM threshold**
A possible combined approach

Procedure:

Mosaic

- **HOM threshold**
- **aggregation**

S2

- **identify heterogeneous segments in S3 & split them using S2**
- **aggregation**

S3

Similarity matrix

- **measure similarity between neighboring segments**
- **find most similar pair of segments & aggregate them**

MAP

S3’

- **FINAL MAP**

SIM threshold

Note: The diagram and text are related to the procedure of combining an approach, likely involving geographical or spatial data analysis, with key steps such as identification, aggregation, and similarity measurement.
A possible combined approach

Result:

- HOM threshold: 0.5
- SIM threshold: 0.5
A possible combined approach

Result:

- HOM threshold: 0.5
- SIM threshold: 0.5
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).

- HOM threshold: 0.6
- SIM threshold: 0.3
Application to the common dataset

Kongsberg EM2040 data over West Taputeranga (Area 3) + HMNZS Wellington wreck (Area 2).

- HOM threshold: 0.6
- SIM threshold: 0.3
Conclusion

“A possible approach”. Work still **in progress**. Other research in development.

- ...

Looking forward to exploit **frequency information** as well...
Acknowledgments

• The **Foundation for Research, Science and Technology** (Technology in Industry Fellowship, contract number METO0602).

• The **George Mason Charitable Trust**.

• **NOAA Grants** No. NA10NOS4000073 and NA0NOS4001153.

• **Professor Terry Healy** of the University of Waikato department of Earth and Ocean Sciences.