Spring 2003

Greenhouse gas emission consequences of large-scale changes in water management of China's rice paddies during 1980-2000

Changsheng Li
University of New Hampshire - Main Campus

Jianjun Qiu
Chinese Academy of Agricultural Science

Steve Frolking
University of New Hampshire - Main Campus, steve.frolking@unh.edu

Xiangming Xiao
University of New Hampshire - Main Campus

William A. Salas
University of New Hampshire - Main Campus

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub

Recommended Citation

GREENHOUSE GAS EMISSION CONSEQUENCES OF LARGE-SCALE CHANGES IN WATER MANAGEMENT OF CHINA’S RICE PADDIES DURING 1980-2000

Changsheng Li (1), Jianjun Qiu (2), Steve Frolking (1), Xiangming Xiao (1), William Salas (3), Berrien Moore III (1), Steve Boles (1), Yao Huang (4), and Ronald Sass (5)

(1) Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, (2) Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing (3) Applied Geosolutions, Durham, NH, (4) College of Resource and Environmental Sciences, Nanjing Agricultural University, (5) Dept. of Ecology and Evolutionary Biology, Rice University, Houston, TX. (steve.frolking@unh.edu / Fax: +1-603-862-0188)

In China, midseason paddy drainage, which reduces growing season methane fluxes and enhances growing season nitrous oxide fluxes, was first implemented in the early 1980s, and has gradually replaced continuous flooding in much of the paddy rice area. We constructed a prediction rice paddy methane and nitrous oxide emissions in China using the DNDC biogeochemical model. Results of continuous flooding and midseason drainage simulations for all paddy fields in China (about 30 million ha) were combined with regional scenarios for the timing of the transition from continuous flooding to predominantly mid-season drainage to generate estimates of total methane (CH$_4$) and nitrous oxide (N$_2$O) flux for 1980-2000. By shifting from continuous flooding to midseason drainage management, we estimate that total N$_2$O emissions from the rice paddies in China increased by about 0.17 Tg N$_2$O-N yr$^{-1}$ due to the stimulated nitrification and denitrification, while CH$_4$ emissions decreased by about 4.5 Tg CH$_4$-C yr$^{-1}$ due to increased soil aeration. Simulated net carbon loss in paddy soils was about 0.65 Tg C yr$^{-1}$ due to elevated decomposition. On a 100-year time frame, CH$_4$ has a global warming potential (GWP) 23 times that of CO$_2$, and N$_2$O has a GWP 296 times that of CO$_2$. The total GWP impact (2000 vs. 1980) of shifting to predominantly
mid-season paddy drainage was -0.138 Pg CO$_2$-equiv yr$^{-1}$ from methane, +0.077 Pg CO$_2$-equiv yr$^{-1}$ from nitrous oxide and +0.0024 Pg CO$_2$ yr$^{-1}$ from soil C loss, for a total GWP impact of -0.059 Pg CO$_2$-equiv yr$^{-1}$. The results imply that more than half of the GWP benefit of decreased CH$_4$ emissions was offset, primarily by increases in N$_2$O emissions, and to a small degree by soil C loss.