3-2009

High field magnetoresistance peak near the superconductor insulator transition in amorphous Bi films patterned with a nanohoneycomb array of holes

Shawna M. Hollen
University of New Hampshire - Main Campus

H Q. Nguyen
Brown University

M D. Stewart Jr
Brown University

J Shainline
Brown University

Aijun Yin
Brown University

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/physics_facpub

Part of the [Physics Commons](https://scholars.unh.edu/physics_facpub)

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Physics at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Physics Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Authors

This conference proceeding is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/physics_facpub/430
High field magnetoresistance peak near the superconductor insulator transition in amorphous Bi films patterned with a nanohoneycomb array of holes. S.M. HOLLEN, H.Q. NGUYEN, M.D. STEWART, JR., J.M. SHAINLINE, AIJUN YIN, J.M. XU, J.M. VALLES, JR., Brown University — The spectacular magnetoresistance (MR) peak that appears on the insulating side of the Superconductor-Insulator Transition (SIT) in In Oxide films [1] has received much attention. It has been taken as a sign that Cooper pairs persist into their insulating phase. We have observed a similar MR peak in ultrathin amorphous Bi films patterned with a disordered nanohoneycomb array of holes. This peak increases in magnitude with decreasing thickness and moves to lower field with decreasing temperature. Most importantly, it coexists with MR oscillations at lower fields that reveal the presence of Cooper pairs [2]. We will present our latest investigations of this peak and contrast our results with the behavior of unpatterned amorphous film systems.

1This work was supported by the NSF through No. DMR-0203608 and No. DMR-0605797, by the AFRL, and by the ONR.