3-2009

Superconductor-insulator transitions in films patterned with a disordered nanohoneycomb hole array

H Q. Nguyen
Brown University

Shawna M. Hollen
University of New Hampshire - Main Campus

M D. Stewart Jr
Brown University

Aijun Yin
Brown University

J Shainline
Brown University

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/physics_facpub

Part of the Physics Commons

Recommended Citation

This Conference Proceeding is brought to you for free and open access by the Physics at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Physics Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Superconductor-insulator transitions in films patterned with a disordered nanohoneycomb hole array

Authors
Superconductor-insulator transitions in films patterned with a disordered nanohoneycomb hole array1 H.Q. NGUYEN, S.M. HOLLEN, M.D. STEWART, JR., AIJUN YIN, J.M. SHAINLIN, J.M. XU, J.M. VALLES, JR., Brown University — On both sides of the Superconductor-Insulator Transition (SIT), ultrathin Bi films patterned with an ordered array of holes exhibit magnetoresistance (MR) oscillations with a period set by the superconducting flux quantum[1]. This observation implies that the insulating phase consists of localized Cooper pairs. To probe further this localized Cooper pair phase we have investigated samples patterned with disordered hole arrays. We have found that disorder reduces the number of MR oscillations and weakens the magnetic field tuned SIT. We will present these results and discuss their implications for the Cooper pair insulating phase.

1This work was supported by the NSF through No. DMR-0203608 and No. DMR-0605797, by the AFRL, and by the ONR.

Hung Nguyen
Brown University

Date submitted: 21 Nov 2008