4-7-2016

Permanent draft genome sequence for Frankia sp. strain CeD, a nitrogen-fixing actinobacterium isolated from the root nodules of Casuarina equistifolia grown in Senegal

Mariama Ngom
University of New Hampshire, Durham

Rediet Oshone
University of New Hampshire, Durham

Sheldon G. Hurst IV
University of New Hampshire, Durham

Feseha Abebe-Akele
University of New Hampshire, Durham

Stephen D. Simpson
University of New Hampshire, Durham, Stephen.Simpson@unh.edu

See next page for additional authors

Follow this and additional works at: http://scholars.unh.edu/nhaes

Recommended Citation

This Article is brought to you for free and open access by the Research Institutes, Centers and Programs at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in New Hampshire Agricultural Experiment Station by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Permanent draft genome sequence for Frankia sp. strain CeD, a nitrogen-fixing actinobacterium isolated from the root nodules of Casuarina equistifolia grown in Senegal

Rights
Copyright © 2016 Ngom et al.

Comments
This is an article published by American Society for Microbiology in Genome Announcements in 2016, available online: https://dx.doi.org/10.1128/genomeA.00265-16

Authors
Mariama Ngom, Rediet Oshone, Sheldon G. Hurst IV, Feseha Abebe-Akele, Stephen D. Simpson, Krystalynne Morris, Mame Oureye Sy, Antony Champion, William Kelley Thomas, and Louis S. Tisa

This article is available at University of New Hampshire Scholars' Repository: http://scholars.unh.edu/nhaes/344
Members of the genus *Frankia* are soil-dwelling actinobacteria that are well known for their facultative lifestyle as a plant symbiont of dicotyledonous plants, termed actinorhizal plants (1–3). As ecologically important pioneer community plants, actinorhizal plants are found worldwide in a broad range of ecological and environmental conditions (4). The symbiosis allows actinorhizal plants to colonize harsh environmental terrains.

Based on molecular phylogenetic analysis, four major clusters within the genus are recognized (5–8) and genomes for representatives from each cluster have been sequenced (9–24). Cluster I contains two subclusters: One subcluster (cluster Ia) represents *Frankia* strains with the ability to infect a wider range of host plants including members of the Betulaceae and Myricaceae families, and the other subcluster (cluster Ib) contains strains limited to *Casuarina* and Allocasuarina host plants. Members of cluster II infect host plants of the subfamily Dryadoideae (Rosaceae), the families Coriariaceae and Datispaceae, and the genus *Ceanothus* (Rhamnaceae). Members of cluster III are the most promiscuous and are infective on *Eleagnaceae*, *Rhamnaceae*, *Myricaceae*, *Gymnostoma* (Casuarinaceae), and occasionally *Alnus*. The fourth *Frankia* lineage consists of the “atypical” strains which are unable to reinfect actinorhizal host plants or form ineffective root nodule structures that are unable to fix nitrogen.

Under tropic and subtropic conditions, fast growing and highly tolerant trees from the family *Casuarinaceae* have been used as windbreaks, dune stabilizers, fuel wood, and soil regeneration and these actinorhizal plants grow well under the harsh conditions including high salinity (25). *Frankia* sp. strain CeD was isolated from root nodules of *Casuarina equisetifolia* growing in Senegal and effectively reinfects its original host plant, *Casuarina* spp. (26). *Frankia* sp. strain CeD has been used extensively in infection studies and is well characterized for its host plant interactions (27).

The draft genome of *Frankia* sp. strain CeD was generated at the Hubbard Genome Center (University of New Hampshire, Durham, NH, USA) using Illumina technology (28) techniques. A standard Illumina shotgun library was constructed and sequenced using the Illumina HiSeq2000 platform, which generated 29,802,574 reads (260 bp insert size) totaling 4,381.0 Mbp. The Illumina sequence data were assembled using CLC Genomics Workbench (8.0.1) and AllPaths-LG (version r41043) (29). The final draft assembly for *Frankia* CeD consisted of 154 contigs in 120 scaffolds containing a total sequence of 5,004,600 bp with an N_{50} contig size of 73.6 kb and G+C content of 70.1%. This assembled draft resulted in 703× coverage of the genome.

The assembled *Frankia* sp. strain CeD genome was annotated via the Integrated Microbial Genomes (IMG) platform developed by the Joint Genome Institute, Walnut Creek, CA, USA (30, 31) and resulted in 3,847 candidate protein-encoding genes, 45 tRNA, and 2 rRNA regions.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession number JPGU00000000. The version described in this paper is version JPGU01000000.

ACKNOWLEDGMENTS

Partial funding was provided by the New Hampshire Agricultural Experiment Station. This work was also supported by the USDA National Institute of Food and Agriculture Hatch 022821 (L.S.T.), Agriculture and Food Research Initiative Grant 2015-67014-22849 from the USDA National Institute of Food and Agriculture (L.S.T.), and the College of Life Sciences and Agriculture at the University of New Hampshire–Durham. M.N. was supported by an ARTS (Allocation de Recherche pour une
Thèse au Sud) Ph.D. Grant. Funding was received from the RGB (Recherche pour le développement). Sequencing was performed on an Illumina HiSeq2500 purchased with NSF MRI grant DBI-1229361 to W.K.T.

Funding Information
This work, including the efforts of Mariama Ngom, was funded by Institut de Recherche pour le Développement (ARTS) (Allocation de Recherche pour une Thèse au Sud}). This work, including the efforts of W. Kelley Thomas, was funded by National Science Foundation (NSF) (DBI-1229361). This work, including the efforts of Louis S. Tisa, was funded by USDA | National Institute of Food and Agriculture (NIFA) (Hatch 022821 and 15-67014-22849). This work, including the efforts of W. Kelley Thomas, was funded by National Science Foundation (NSF) (DBI-1229361). This work, including the efforts of Louis S. Tisa, was funded by USDA | National Institute of Food and Agriculture (NIFA) (Hatch 022821 and 15-67014-22849).

References

