5-1-1998

Influence of vertical transport on free tropospheric aerosols over the central USA in springtime

R. Talbot
University of New Hampshire, robert.talbot@unh.edu

Jack E. Dibb
University of New Hampshire, jack.dibb@unh.edu

M Loomis
University of New Hampshire - Main Campus

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub
Part of the Atmospheric Sciences Commons

Recommended Citation

This Article is brought to you for free and open access by the Earth Sciences at University of New Hampshire Scholars’ Repository. It has been accepted for inclusion in Earth Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Influence of vertical transport on free tropospheric aerosols over the central USA in springtime

Rights
© 1998 by the Chinese Geophysical Society

This article is available at University of New Hampshire Scholars' Repository: https://scholars.unh.edu/earthsci_facpub/130
Influence of vertical transport on free tropospheric aerosols over the central USA in springtime

R. W. Talbot, J. E. Dibb, and M. B. Loomis
Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire

Abstract. Measurements of the atmospheric aerosol chemical composition during the Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) indicate substantial vertical transport of boundary layer aerosol to the free troposphere over the south-central United States during springtime. Mixing ratios of water-soluble aerosol Ca$^{2+}$ at 6 - 12 km altitude exhibited a median mixing ratio of 20 pptv, with 15% of the measurements > 100 pptv and a maximum of 1235 pptv. In air parcels with enhanced Ca$^{2+}$, the ratios K$^+$/Ca$^{2+}$, Mg$^{2+}$/Ca$^{2+}$, and Na$^+$/Ca$^{2+}$ in the bulk aerosol were distinctly characteristic of those in limestone and/or cement. Significantly enhanced mixing ratios of aerosol SO$_4^{2-}$, NO$_3^-$, and NH$_4^+$ were also concomitant with the elevated Ca$^{2+}$, suggesting transport of both crustal and anthropogenic aerosols to the upper troposphere. The mass concentration of water-soluble aerosol material was in the range 0.1 - 6 µg m$^{-3}$ STP, and estimated crustal dust levels were 7 - 160 µg m$^{-3}$ STP.

Introduction

Transport of boundary layer chemical constituents to the free troposphere occurs in association with deep convective systems. Over the central and southwestern United States during spring and summertime this process is important for determining the vertical distribution of many trace gases including O$_3$, CO, NO$_x$ (NO + NO$_2$), and hydrocarbons [Dickerson et al., 1987; Luke et al., 1992; Ridley et al., 1994; Ridley et al., 1996]. Since the lifetime of NO$_x$ in the upper troposphere is much longer than at lower altitudes, transport of reactive species by convective systems could have important implications for photochemical production of O$_3$ and partitioning of HO$_x$ (HO + HO$_2$) and reactive nitrogen (NO + NO$_2$ + PAN +HNO$_3$ + ...) aloft.

Dust storms also occur in springtime over the central and southwestern United States. Indeed, wind-generated soil material is the dominant form of primary continental particles [Gillette, 1980]. The size distribution of soil-derived particles in the troposphere is bimodal, with large particles exhibiting a mode around 50 µm and small ones in the 1 - 10 µm range [Patterson and Gillette, 1977]. Measurements of aerosol composition as a function of altitude over the southwestern United States indicate that calcium is a good tracer for soil material in the troposphere [Gillette and Bililford, 1971]. We have adopted this same tracer convention here to facilitate the interpretation of aerosol data obtained on aircraft flights conducted in March-April 1996 over the central United States during the SUBsonic aircraft: Contrail and Cloud Effects Special Study (SUCCESS).

Methods

SUCCESS was conducted in March-April 1996 with the primary study area located over the Department of Energy's Clouds and Radiation Testbed (CART) site located in northern Oklahoma and southern Kansas. A series of 12 flights were focused on studying cirrus cloud formation and their radiative properties plus the potential influence on these processes by subsonic aircraft emissions. Three flights also took place over the eastern Pacific Ocean off the California coast. Our atmospheric aerosol sampling system was flown on the NASA Ames DC-8 research aircraft platform which was based in Salina, Kansas, during the experiment.

Aerosol samples were collected with 10-15 minute time resolution on Zefluor Teflon filters for determination of water-soluble ions (Cl$^-$, NO$_3^-$, SO$_4^{2-}$, C$_2$O$_4^{2-}$, Na$^+$, K$^+$, NH$_4^+$, Ca$^{2+}$, and Mg$^{2+}$) and on glass fiber filters for measurement of 7Be and 210Pb activities. We used a tandem inlet assembly consisting of curved leading nozzles housed in shrouds to provide isoaxial, isokinetic sampling [Dibb et al., 1996].

The handling procedure for the Teflon filters involved: (1) packing the filter cassettes at the University of New Hampshire in micro-clean bags, (2) exposure of the filters for various sampling intervals, (3) purging of the clean bags with ultra zero air as the filters were sealed in them immediately after sampling, (4) immediate freezing of collected samples to -30° C, and (5) overnight shipment of frozen samples to the University of New Hampshire for chemical analysis within 48 hours of collection. Details of the sampling and analytical procedures have been described previously [Talbot et al., 1992; Dibb et al., 1996].

Results

The vertical distribution of aerosol Ca$^{2+}$ is shown in Figure 1 for all 14 flights conducted over the central United States. In the 6 - 12 km altitude range the median Ca$^{2+}$ mixing ratio was 20 pptv, with a mean and one standard deviation of 63 ± 145 pptv (n = 200). There was a significant number of observations with Ca$^{2+}$ enhanced over this median value; above 6 km altitude 15% of the data exhibited Ca$^{2+}$ mixing ratios of > 100 pptv. Mixing ratios of aerosol Ca$^{2+}$ above 100 pptv were coincident with significantly enhanced levels of CO and NO. A median mixing ratio for Ca$^{2+}$ of 20 pptv is identical to the values observed on SUCCESS flights flown over the eastern Pacific both before and after the primary flight series over the central United States. This value is also very similar to data we obtained over this same area of the eastern Pacific during the NASA Global Tropospheric Experiment PEM-West A & B flight series in 1991 and 1994 (median Ca$^{2+}$ = 24 pptv). Together these data indicate that 20 pptv is a representative mixing ratio of Ca$^{2+}$ in the westerly flow of aged air parcels entering North America from over the eastern Pacific.

The three largest mixing ratios of Ca$^{2+}$ above 6 km altitude were observed in the 11-12 km range. One of these, 460 pptv Ca$^{2+}$, was measured in a region influenced by stratospheric inputs (11.8 km altitude) where the coincident concentration of 7Be was 10,000 fCi m$^{-2}$ STP. The vertical temperature profile as measured along the DC-8 flight track with the microwave temperature profiler indicated that we flew 1 - 1.5 km above the thermal tropopause. It is likely that the enhanced Ca$^{2+}$ was due to vertical transport of boundary layer air to the upper troposphere. On numerous occasions during
SUCCESS we sampled stratospheric air and never observed evidence for a source of aerosol Ca2+.

Overall, when the mixing ratio of Ca2+ was greater than 100 pptv there were also significant amounts of SO\textsubscript{4}2-, NO\textsubscript{3}-, and NH\textsubscript{4}+ present in the aerosol. This group of data (n = 25) exhibited median (mean ± one standard deviation) values in pptv of 140 (164 ± 87) for SO\textsubscript{4}2-, 134 (163 ± 145) for NO\textsubscript{3}-, and 167 (268 ± 262) for NH\textsubscript{4}+. These values are about a factor of 4 larger than the median mixing ratios observed at 6 - 12 km altitude when Ca2+ was <100 pptv: 35 pptv SO\textsubscript{4}2-, 40 pptv NO\textsubscript{3}-, and 70 pptv NH\textsubscript{4}+. There was little correlation between NO\textsubscript{3}- and Ca2+ (r2 < 0.3) which indicates that NO\textsubscript{3}- was not associated with soil dust as it has been found to be in the boundary layer [Wolff, 1983; Talbot et al., 1988].

The best correlation between these three aerosol species and Ca2+ was with SO\textsubscript{4}2- for mixing ratios of Ca2+ >50 pptv (Fig. 2). The most significant outlier point in this correlation occurred at the largest mixing ratio of Ca2+ observed during SUCCESS, 1235 pptv. This particular sample was collected at 11.2 km altitude during flight 4 where the DC-8 was profiling through cirrus clouds. The ice particle number density (diameter >4 μm) was as large as 120 cm-3 [Twohy and Gandrud, this issue]. Since the DC-8 was in ice (cirrus) for approximately 80% of the time covering the aerosol sampling interval, it is likely that we actually sampled ice particles in this instance. These data are consistent with the observation during SUCCESS that ice particles in the middle and upper troposphere commonly contained primarily Ca2+ and SO\textsubscript{4}2- [Chen et al., this issue; Rogers et al., this issue]. A few other episodes of enhanced aerosol Ca2+ on other flights also showed positive correlation with the number density of ice particles. More often, however, the enhanced mixing ratios of Ca2+ were observed in clear air.

On a couple of flights we observed positive correlation between mixing ratios of aerosol Ca2+ and NO (Fig. 3). In particular, flights 6 and 9 showed this relationship. The correlation between Ca2+ and NO is probably related to the transport of boundary layer air enriched in these species to the upper troposphere. It is highly unlikely that such large mixing ratios of NO would persist in long-range transported air parcels. About 50% of the enhanced Ca2+ values on these flights were observed in air parcels with ice particle number densities as larger as 400 cm-3, but the rest occurred in apparently clear air. These same air parcels also exhibited positive correlation between the mixing ratio of Ca2+ and CO, similar to that shown for Ca2+ and NO.

Discussion

The theme of the data observed during SUCCESS suggests a picture of substantial vertical transport of boundary layer air to the
middle and upper troposphere over the central United States during springtime. Indeed, the mixing ratios of aerosol Ca$^{2+}$ in the upper troposphere were among the largest that we have ever measured, but they were consistent with those observed (300 - 600 pptv) in an Asian dust outbreak over the western Pacific during PEM-West B [Talbot et al., 1997]. The unique facet of the SUCCESS data is the extent of the aerosol vertical transport, up to 12 km altitude. In general, long-range transport of crustal aerosols (e.g., Asian and Saharan dusts) has been observed to occur at altitudes of 2-5 km [Prospero and Carlson, 1972; Talbot et al., 1986; Merrill et al., 1989; Perry et al., 1997; Dibb et al., 1997].

Table 1. Free Tropospheric (≥ 6 km) Aerosol Composition Summary Over the Central USA in Springtime

<table>
<thead>
<tr>
<th>Air Mass</th>
<th>NO$_3^-$</th>
<th>SO$_4^{2-}$</th>
<th>NH$_4^+$</th>
<th>K$^+$</th>
<th>Ca$^{2+}$</th>
<th>Mg$^{2+}$</th>
<th>Anion/Cation (NO$_3^-$+SO$_4^{2-}$)</th>
<th>NH$_4^+$/Cation (NO$_3^-$+SO$_4^{2-}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stratospheric</td>
<td>±3.0</td>
<td>±3.9</td>
<td>±3.3</td>
<td>±0.70</td>
<td>±1.3</td>
<td>±0.65</td>
<td>±2.1</td>
<td>±0.72</td>
</tr>
<tr>
<td>(n=43)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eastern Pacific</td>
<td>±0.59</td>
<td>±2.3</td>
<td>±1.8</td>
<td>±0.27</td>
<td>±2.6</td>
<td>±0.39</td>
<td>±1.6</td>
<td>±0.38</td>
</tr>
<tr>
<td>(n=21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-US</td>
<td>±4.9</td>
<td>±2.3</td>
<td>±5.7</td>
<td>±0.51</td>
<td>±0.89</td>
<td>±0.60</td>
<td>±6.5</td>
<td>±0.90</td>
</tr>
<tr>
<td>No Convection</td>
<td>(n=113)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid-US</td>
<td>±6.2</td>
<td>±8.3</td>
<td>±11.1</td>
<td>±0.62</td>
<td>±22.0</td>
<td>±2.5</td>
<td>±0.15</td>
<td>±0.26</td>
</tr>
<tr>
<td>Convective</td>
<td>(n=25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stated values are mean ± one standard deviation in nanoequivalents m$^{-3}$ STP. Ratio values are means of ratio calculated for each sample. n represents the number of data points in each air mass type.
progressed through the CART region periodically during the SUCCESS study period, and some of these were related to severe storm outbreaks. Storm activity due to MCC's tends to be intensified in the south-central and southwestern United States during springtime [Velasco and Fritsch, 1987; Stensrud, 1996]. Satellite images obtained during SUCCESS indicated that cloud top temperatures in the CART region were typical of the upper troposphere (i.e., 9 - 12 km cloud tops). Some of these were undoubtedly non-precipitating, and boundary layer aerosols may have been transported successfully in convective outflows to the upper troposphere after suspension by strong downdrafts in MCC's or frontal passage activity [Pye, 1987]. Whatever the specific transport mechanism was, it occurred routinely as enhanced Ca^{2+}, SO_{4}^{2-}, NO_{3}^{-}, and NH_{4}^{+} was observed at altitudes above 6 km on nearly every flight during the April-May study period. During PEM-West A we sampled convective outflow from continental and marine storm systems and found efficient removal of aerosols compared to insoluble gases such as CO, DMS, PAN, and hydrocarbons [Dibb et al., 1996; Newell et al., 1996; Talbot et al., 1996]. However, these storm systems were predominately associated with wet convective activity. In the spring of 1996 the central United States experienced a modest drought (i.e., precipitation<50% of the climatological average from January to May), so the environmental conditions favored suspension of crustal materials due to storm activity. We believe that it is unlikely that the crustal aerosol observed in the upper troposphere was related to long-range transport due to the high mixing ratios of dust, NO, CO, and SO_{2} aerosol.

Conclusion
The data presented in this paper indicates that boundary layer aerosols have a significant influence on the chemical composition and mixing ratios of aerosol associated water-soluble species in the middle and upper troposphere over the south-central United States in springtime. Our observations suggest vertical transport of anthropogenic and crustal material in association with storm systems passing through this region. Additional measurements are needed to assess whether this phenomenon was related specifically to the region's drought during 1996 or if it is a common occurrence in spring and summertime. If it is persistent, this vertical transport of aerosol materials could have an impact on cloud and contrail formation over the central United States. It also may have implications for direct (scattering by dust) and indirect (scattering by clouds) radiative effects over continental areas.

Acknowledgments. The NO measurements were provided by the research group at NCAR (in Boulder, CO) under the direction of B. Ridley. This research was supported by NASA Atmospheric Effects on Aviation project under grant number NAG 2-1027 to the University of New Hampshire.

References
Ridley, B. A., J. G. Waiega, J. E. Dye, and F. E. Grahek, Distribution of NO, NO_{x}, NO, and O_{3} to 12 km altitude during the summer monsoon season over New Mexico, J. Geophys. Res., 59, 25,19-25,534, 1994.
Stensrud, D. J., Effects of persistent, midlatitude mesoscale regions of convection on the large-scale environment during the warm season, J. Atmos. Sci., 53, 3503-3527, 1996.

(Received June 25, 1997; revised December 19, 1997; accepted December 23, 1997.)