6-20-1994

Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada

Jack E. Dibb
University of New Hampshire, jack.dibb@unh.edu

David Meeker
University of New Hampshire - Main Campus

R C. Finkel
Lawrence Livermore National Laboratory

J Southon
Lawrence Livermore National Laboratory

Marc W. Caffee
Lawrence Livermore National Laboratory

See next page for additional authors

Follow this and additional works at: https://scholars.unh.edu/earthsci_facpub

Part of the [Atmospheric Sciences Commons](https://scholars.unh.edu/earthsci_facpub)

Recommended Citation

This Article is brought to you for free and open access by the Earth Sciences at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Earth Sciences Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.
Estimation of stratospheric input to the Arctic troposphere: 7Be and 10Be in aerosols at Alert, Canada

Jack E. Dibb and L. David Meeker
Glacier Research Group, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham

Robert C. Finkel, John R. Southon, and Marc W. Caffee
Lawrence Livermore National Laboratory, Livermore, California

Leonard A. Barrie
Atmospheric Environment Service, Downsview, Ontario, Canada

Abstract. Concentrations of 7Be and 210Pb in 2 years of weekly high-volume aerosol samples collected at Alert, Northwest Territories, Canada, showed pronounced seasonal variations. We observed a broad winter peak in 210Pb concentration and a spring peak in 7Be. These peaks were similar in magnitude and duration to previously reported results for a number of stations in the Arctic Basin. Beryllium 10 concentrations (determined only during the first year of this study) were well correlated with those of 7Be; the atom ratio 10Be/7Be was nearly constant at 2.2 throughout the year. This relatively high value of 10Be/7Be indicates that the stratosphere must constitute an important source of both Be isotopes in the Arctic troposphere throughout the year. A simple mixing model based on the small seasonal variations of 10Be/7Be indicates an approximately twofold increase of stratospheric influence in the free troposphere in late summer. The spring maxima in concentrations of both Be isotopes at the surface apparently reflect vertical mixing in rather than stratospheric injections into the troposphere. We have merged the results of the Be-based mixing model with weekly O_3 soundings to assess Arctic stratospheric impact on the surface O_3 budget at Alert. The resulting estimates indicate that stratospheric inputs can account for a maximum of 10-15% of the O_3 at the surface in spring and for less during the rest of the year. These estimates are most uncertain during the winter. The combination of Be isotopic measurements and O_3 vertical profiles could allow quantification of the contributions of O_3 from the Arctic stratosphere and lower latitude regions to the O_3 budget in the Arctic troposphere. Although at present the lack of a quantitative understanding of the temporal variation of O_3 lifetime in the Arctic troposphere precludes making definitive calculations, qualitative examples of the power of this approach are given.

Introduction

The chemistry and dynamics of the Arctic atmosphere have received a great deal of attention following the discovery of Arctic haze about 15 years ago [Barrie, 1986]. Arctic haze, which occurs every year in the winter-spring season, consists of visible haze layers associated with high levels of pollution-derived aerosols. In an effort to understand the origin of this annual pollution event, a number of surface-based monitoring stations were established and a series of airborne measurement campaigns have been conducted. The winter atmosphere has been characterized through missions flown in late winter 1983, 1986, 1989, and 1992 under the auspices of the NOAA Arctic Gas and Aerosol Sampling Program (AGASP). Summer conditions have been studied as part of NASA's Global Tropospheric Experiment, which mounted two combined airborne and ground-based campaigns, Arctic Boundary Layer Experiment (ABLE) 3A in 1988 and ABLE 3B in 1990. Recently, the potential for large-scale, anthropogenically induced depletion of stratospheric ozone has been investigated in two NASA Airborne Arctic Stratosphere Experiment campaigns: January-February 1989 and through the winter of 1991-1992.

These studies have shown that Arctic haze is a basin-wide pollution event which is caused by low-level transport from midlatitudes to the Arctic. The reduced efficiency of pollution removal processes during the Arctic winter and spring and a maximum in meridional transport into the Arctic basin during the same season allow pollution concentrations in the lower troposphere to grow quite high (see the following special issues on Arctic haze: Geophysical Research Letters, 11 (5) 1984; Atmospheric Environment, 19 (12) 1985; and Journal of Atmospheric Chemistry, 9 1989). In the summertime, measurements at the surface indicate very "clean" air in the Arctic boundary layer. In contrast, airborne measurements between 2 and 6 km reveal enhanced concentrations of several trace species, with stratospherically derived air apparently an important source of O_3, NOy, 7Be, and perhaps SO_4^{2-} and 210Pb in the Arctic troposphere [Browell et al., 1992, 1994; Dibb et al., 1992a;
Gregory et al., 1992; Sandholm et al., 1992; Talbot et al., 1992; Wofsy et al., 1992; Anderson et al., 1994; Bachmeier et al., 1994). It is somewhat surprising that similar stratospheric influences on the free troposphere have not been shown to be significant during the winter-spring season as well, since measurements and modeling clearly show pronounced stratospheric subsidence in the winter Arctic vortex [e.g., Schoebeli et al., 1992; Toon et al., 1992; Tuck et al., 1992]. Episodic intrusions of stratospheric air into the winter Arctic troposphere have been documented [e.g., Shapiro et al., 1984; Raatz et al., 1985] and it was suggested that the O3 transported downward in such events could constitute an important term in the winter tropospheric O3 budget [Oltmans et al., 1989].

Here we use time series of near-surface concentrations of three natural radionuclides at Alert, Canada (82.5°N, 62.3°W), to examine the origins of tropospheric air in the Arctic Basin. Temporal variations of 7Be and 210Pb from late September, 1990 through September 1992 follow those previously reported from all other low-altitude Arctic sites where these two radionuclides have been measured [Feely et al., 1988; Larsen and Sanderson, 1990]. We thus feel that Alert is representative of a large region of the western Arctic. The greatly different sources of these two radionuclides (decay of 222Rn emitted from continental surfaces for 210Pb and cosmic-ray-induced spallation in the upper troposphere and stratosphere for 7Be) suggest that these radionuclides might serve as tracers of continental versus upper tropospheric or stratospheric air masses, respectively. The use of 10Be in atmospheric studies is a recent development, as its measurement at low concentrations was made possible only by recent improvements in accelerator mass spectrometric techniques. Raisbeck et al. [1981] demonstrated the potential of 10Be in such studies but analyzed only a small number of aerosol samples. Brown et al. [1989] and Monaghan et al. [1986] extended this work to investigate global properties of the atmosphere through analysis of precipitation samples. Wahlen and coworkers (M. Wahlen, personal communication, 1990) have measured aerosol filters collected on high-altitude flights. A simple model based on the pioneering work of Raisbeck et al. [1981] is used to quantify the temporal pattern of stratospheric influence on the concentrations of the Be isotopes in surface air at Alert. Results from this Be-based model are then used to estimate the impact of stratospherically derived air on the surface ozone budget throughout the year.

Methods

Sampling

Weekly high-volume aerosol samples from the routine monitoring program at Alert are collected on 20 x 25 cm² Whatman 41 filters. These filters have been shown to be less than 100% efficient for the submicron-size aerosols carrying 210Pb and both Be isotopes [Lockhart et al. 1963; Turekian et al., 1989]. Concentrations reported later in this paper may thus be 10-20% low, but ratios will not be affected. The site, experimental protocols, and other routine measurements have been described previously [Barrie and Hoff, 1985]. The subsamples for radionuclide determinations (1/8 of each filter) contained the particulates from 1600-2000 m³ STP of air. At intervals of 4 weeks, the filters (plus a monthly blank) were mailed to Toronto for subsampling and archiving, and radionuclide aliquots were forwarded to the University of New Hampshire for determination of 7Be and 210Pb concentrations.

7Be and 210Pb Analyses

Upon receipt at the University of New Hampshire, filter strips were pressed into 4-mL polyethylene vials for nondestructive gamma spectrometry. The counting system consists of a germanium well detector coupled to a 4-kilobyte computer-interfaced multichannel analyzer. Lead 210 and 7Be activities were determined from the areas of the 46.5- and 478.6-keV photopeaks, respectively. Calibration of the counting system was accomplished by frequent recounting of a blank filter strip spiked with certified 210Pb and 7Be standard solution that had been similarly pressed into a vial. Beryllium 7 activities were corrected (to the midpoint of each sampling interval) for decay between sampling and counting. This time period was generally near 45 days for the oldest filter in each group but occasionally approached 60 days. Despite this interval between sampling and analysis, 7Be activities were high enough in all samples that uncertainty due to counting statistics was <5% for 10-hour counting times.

10Be Analyses

After gamma counting, the filters were sent to Lawrence Livermore National Laboratory (LLNL), where they were leached, in the presence of Be carrier, with 50% HNO3. Several releaching experiments demonstrated that the leaches were >95% effective. The leached Be was purified using ion-exchange chromatography, and BeO was prepared by igniting the purified ion-exchange fraction. Beryllium 10 concentrations were determined using the LLNL Center for Accelerator Mass Spectrometry (CAMs) accelerator mass spectrometer [Davis et al., 1990]. In addition to the samples from Alert, six samples collected in the lower stratosphere during AGASP 3 [Dibb et al., 1992a] and eight samples collected in the upper troposphere and lower stratosphere over the Pacific ocean during the Pacific Exploratory Mission (PEM) WEST A (J.E. Dibb, R.W. Talbot, K.I. Klemm, G.L. Gregory, H.B. Singh, J.D. Bradshaw, and S.T. Sandholm, Asian influences over the western North Pacific during the fall season: Inferences from lead 210, soluble ionic species, and ozone, submitted to Journal of Geophysical Research, 1994) (hereinafter referred to as Dibb et al., submitted manuscript, 1994) were analyzed for 10Be as part of this investigation. The overall uncertainty in the 10Be measurements for the Alert samples is approximately 5%; for the very small volumes of air sampled during the airborne campaigns, the uncertainty can reach 100%. Additional uncertainty in the determination of air volumes sampled will have an impact on the absolute concentrations of both Be isotopes but not their ratio.

Results

Beryllium 7 and 210Pb concentrations in surface-level air at Alert experienced large seasonal variations that were quite similar in the 2 years we studied (Figure 1). Lead 210 concentrations during the June-September minimum were tenfold lower than during the broad maximum, which occurred from November through March. Peak 210Pb concentrations occurred in January and February both years, and were more than 15 times higher than concentrations in summer. Beryllium 7 concentrations were also lowest during the June-September period, with a recovery beginning in October that closely paralleled that of 210Pb. However, peak 7Be concentrations occurred a bit later in the year than peak 210Pb concentrations, that is, in March-April 1991, while in 1992 the annual 7Be peak
Beryllium 10 concentrations at Alert during the first year of sampling closely followed those of \(^{7}\text{Be}\) (Figure 2). Our measured \(^{10}\text{Be}\) concentrations, a few times \(10^4\) atoms m\(^{-3}\) STP, compare well with the few other tropospheric measurements available [Raisbeck et al., 1981; S. Harder, personal communication, 1994]. The \(^{10}\text{Be} / ^{7}\text{Be}\) ratio measured at Alert averaged \(2.2 \pm 0.3\) but varied seasonally, reaching maximum values near 3.0 in July-August, with fall-winter minima closer to 2.0. Concentrations of \(^{10}\text{Be}\) but not \(^{7}\text{Be}\) in the atmosphere can be locally enhanced by resuspension of surface soils. We estimated the potential contribution of resuspended \(^{10}\text{Be}\) at Alert through the year from Al concentrations measured by neutron activation analysis of separate strips of each weekly filter, assuming that Al constitutes 7\% (by mass) of dust [Mason, 1966; Bowen, 1979] and that dust contains \(5 \times 10^6\) atoms \(^{10}\text{Be}\) g\(^{-1}\) [Pavich et al., 1984]. The ratio (estimated resuspended \(^{10}\text{Be} / \text{measured} \, ^{10}\text{Be}\)) was generally \(< 0.05\) (mean, 0.04 \pm 0.08, median, 0.01). Eight samples with values of >0.05, including four ranging from 0.25 to 0.36, elevate the mean and cause the large standard deviation. All of the samples in which the estimated contribution of resuspended \(^{10}\text{Be}\) exceeded 25\% were collected in September and October, when the \(^{10}\text{Be} / ^{7}\text{Be}\) ratio was relatively low (Figure 2). This observation suggests that resuspended \(^{10}\text{Be}\) is even less important than we have estimated, so no corrections for resuspended \(^{10}\text{Be}\) were applied to the present data.

Beryllium concentrations in high-altitude Arctic air and lower latitude air are presented in Table 1. Concentrations of both Be isotopes at the base of the Arctic stratosphere during AGASP 3 were threefold lower than those at 10.7 km in 1978, but the average \(^{10}\text{Be} / ^{7}\text{Be}\) ratio (5.1 \pm 1.0) was nearly the same (Table 1). Concentrations increase markedly with altitude in the Arctic stratosphere (at least up to 19 km), particularly for \(^{7}\text{Be}\). The \(^{10}\text{Be} / ^{7}\text{Be}\) ratio decreases significantly with height above the tropopause at high northern latitudes (Table 1). Raisbeck et al. [1981] suggested that the apparent \(^{10}\text{Be} / ^{7}\text{Be}\) gradient in the lower stratosphere was due to descent (and concurrent mixing) from higher-production (higher altitude) regions at rates slow enough for decay to significantly decrease \(^{7}\text{Be}\) concentrations. If this conceptual model is valid, detailed \(^{10}\text{Be} / ^{7}\text{Be}\) profiles could yield refined understanding of stratospheric stratification and mixing. Our new data for the Arctic cover only a very small altitude region just above the tropopause, but they do suggest that the high \(^{10}\text{Be} / ^{7}\text{Be}\) ratio in the earlier sample from 10.7 km was not anomalous.

Discussion

The seasonal variations of \(^{7}\text{Be}\) and \(^{210}\text{Pb}\) concentrations at Alert are strikingly similar to previously reported observations at a number of sites in the Arctic Basin, particularly Barrow, Alaska...
Figure 2. (top) Beryllium 10 concentrations in samples collected the first year of this study compared to 7Be concentrations; (bottom) 10Be/7Be ratios in the same samples. Average uncertainties in 10Be measurement are 5%. We point out that this data set differs slightly from that presented earlier [Dibb et al., 1992c]. Analysis of new aliquots from four filters that we originally reported had anomalously high 10Be/7Be ratios has confirmed that accelerator mass spectrometry targets had been mislabeled (i.e., the 10Be values were not registered to the correct samples). We offer apologies for any confusion.

The source of seasonal 7Be variations is not, a priori, so obvious. At both Alert and Barrow, the 7Be and 210Pb variations are broadly similar (Table 2). As we have noted, at Alert the annual 7Be peak in March-April clearly follows the 210Pb peak in January-February. This distinction is not so apparent at Barrow; 7Be does peak in March-April, but 210Pb is roughly constant from December through March or April.

It is tempting to ascribe the spring peak in 7Be at all of the Arctic sites (Table 2) to increased stratosphere-troposphere exchange and/or increased vertical (downward) mixing of upper tropospheric air. However, 7Be concentrations begin increasing in October or November with 210Pb, and it seems reasonably well established that the 210Pb increase reflects tropospheric transport and lower removal rates. Feeley et al. [1988] have examined 7Be aerosol data from a large network of sites and noted a pronounced decrease in concentration along a transect from the continental United States into the Arctic. This led them to suggest that most 7Be enters the Arctic troposphere by horizontal advection from lower latitudes. However, the recent research suggesting a strong stratospheric influence on the chemistry of the Arctic troposphere, noted above, suggests that this hypothesis is less than completely satisfactory. The concurrent 10Be and 7Be

(Table 2). Rahn and McCaffrey [1980] proposed a simple transport and aging model that qualitatively explained the elevated levels of 210Pb and the anthropogenic component of Arctic haze reaching Barrow in late winter-spring. Very briefly, this model invokes relatively frequent meridional surges of midlatitude tropospheric air (predominantly originating over Europe) into the Arctic during the winter. Low scavenging rates in the Arctic Basin due to reduced precipitation in winter result in elevated concentrations of 210Pb and SO42- from decay of 222Rn and oxidation of SO2, respectively, which are transported from industrialized continental source regions by the meridional surges. Modeling of 222Rn and 210Pb tropospheric distributions using a three-dimensional chemical tracer model based on climatologic meteorology from the NASA Goddard Institute for Space Sciences general circulation model also reproduces the very high 210Pb concentrations seen at Barrow but not at Alert during winter [Balkanski et al., 1993]. In the Balkanski et al. model, the plume of elevated 210Pb concentrations originates over Siberia rather than over Europe, but both modeling efforts agree that winter-spring elevated 210Pb concentrations in the western Arctic Basin are the result of long-range lower tropospheric transport from Eurasia.
Table 1. Beryllium 10 and 7Be Concentrations in Stratospheric Air

<table>
<thead>
<tr>
<th>Latitude</th>
<th>Altitude, km</th>
<th>Concentration, 10^4 atoms m⁻³ STP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arctic Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July 1978</td>
<td>65</td>
<td>19.2</td>
</tr>
<tr>
<td>July 1978</td>
<td>65</td>
<td>16.8</td>
</tr>
<tr>
<td>July 1978</td>
<td>65</td>
<td>13.7</td>
</tr>
<tr>
<td>July 1978</td>
<td>65</td>
<td>10.7</td>
</tr>
<tr>
<td>March 16, 1989</td>
<td>68-72</td>
<td>8.1</td>
</tr>
<tr>
<td>March 18, 1989</td>
<td>71-74</td>
<td>8.2</td>
</tr>
<tr>
<td>March 21, 1989</td>
<td>68-75</td>
<td>8.9</td>
</tr>
<tr>
<td>March 23, 1989</td>
<td>71-72</td>
<td>8.3</td>
</tr>
<tr>
<td>March 29, 1989</td>
<td>68-82</td>
<td>8.1</td>
</tr>
<tr>
<td>March 30, 1989</td>
<td>68-75</td>
<td>9.1</td>
</tr>
<tr>
<td>Lower Latitudes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>September 16, 1991</td>
<td>56</td>
<td>10.7</td>
</tr>
<tr>
<td>September 17, 1991</td>
<td>47</td>
<td>10.7</td>
</tr>
<tr>
<td>September 18, 1991</td>
<td>41</td>
<td>10.7</td>
</tr>
<tr>
<td>September 18, 1991</td>
<td>38</td>
<td>10.8</td>
</tr>
<tr>
<td>October 21, 1991</td>
<td>36</td>
<td>10.7</td>
</tr>
<tr>
<td>October 21, 1991</td>
<td>32</td>
<td>9.8</td>
</tr>
<tr>
<td>October 21, 1991</td>
<td>30</td>
<td>9.8</td>
</tr>
<tr>
<td>October 21, 1991</td>
<td>30</td>
<td>9.8</td>
</tr>
<tr>
<td>July, 1978</td>
<td>9</td>
<td>16.8</td>
</tr>
</tbody>
</table>

All 1991 samples are from PEM WEST A (Dibb et al., submitted manuscript, 1994), all 1989 samples are from AGASP 3 [Dibb et al., 1992a], and all 1978 samples are from Raisbeck et al. [1981].

measurements on aerosols collected at Alert provide new insight into this question.

General Model for Be Isotopes in the Arctic Troposphere

Following Raisbeck et al. [1981], we suggest that the tropospheric concentrations of the Be isotopes are described by

\[
dC_{10}/dt = -\lambda_T C_{10} + (Q_{10} + P_{10})
\]

(1)

\[
dC_7/dt = -(\lambda_T + \lambda_7)C_7 + (Q_7 + P_7)
\]

(2)

where \(\lambda_T\) is removal by scavenging and deposition (assumed to be first order and the same for both isotopes), \(\lambda_7\) is the decay constant of 7Be, \(Q\) is Be injected from the stratosphere, and \(P\) is Be produced in the troposphere. For convenience we define

\[
Q_{10} = Sr Q_7
\]

(3)

\[
P_{10} = Pr P_7
\]

(4)

where \(Sr\) is the \(^{10}\text{Be}/^{7}\text{Be}\) ratio in the stratospheric source, and \(Pr\) is the \(^{10}\text{Be}/^{7}\text{Be}\) production ratio. With the initial condition, \(C_{10} = C_7 = 0\) at \(t = 0\), (1) and (2) yield the general solution for \(^{10}\text{Be}/^{7}\text{Be}\) given by Raisbeck et al. [1981]:

\[
C_{10} = \frac{(PrP_7 + SrQ_7)(\lambda_T + \lambda_7)(1 - e^{-\lambda_T t})}{(P_7 + Q_7)\lambda_T (1 - e^{-(\lambda_T + \lambda_7)t})}
\]

(5)

Rearranging (5) gives the more useful form:

\[
Q_7 = \frac{R(\lambda_T/(\lambda_T + \lambda_7))(1 - e^{-(\lambda_T + \lambda_7)t}) - Pr(1 - e^{-\lambda_T t})}{(P_7 + Q_7)\lambda_T (1 - e^{-(\lambda_T + \lambda_7)t})}
\]

(6)

We assume that the value of \(R\) measured at Alert is representative of the free troposphere (since removal processes do not fractionate the two Be isotopes). As a first approximation, the small variation of \(R\) about its mean of 2.2 (Figure 2) suggests that the tropospheric budgets of both Be isotopes were nearly in equilibrium throughout the year of our measurements. The steady state value of \(Q_7/P_7\) can be evaluated by letting \(t\) go to infinity in (6), but we also require estimates of \(Sr, Pr, \) and \(\lambda_T\).

Air from just above the tropopause appears to be the most likely source of stratospheric injections into the troposphere. The polar front tends to separate the Arctic troposphere from lower latitudes, suggesting that injections of Arctic stratospheric air into the Arctic troposphere will dominate over meridional advection of stratospheric air injected into the troposphere south of the polar front. Thus the mean value, \(S\), of the \(^{10}\text{Be}/^{7}\text{Be}\) ratio in the six AGASP filters (Table 1), provides an estimate for \(Sr\).

Atmospheric \(^{10}\text{Be}\) and \(^{7}\text{Be}\) production rates are difficult to estimate, because most of the measured cross sections are for proton-induced reactions, while production in the atmosphere is dominated by neutron-induced reactions. Measurements in the beam stop at LAMPF gave a \(^{10}\text{Be}/^{7}\text{Be}\) production ratio induced by neutrons on oxygen of 0.6 for a particle spectrum similar to Table 2.

Table 2. Monthly Average Concentrations of \(^{7}\text{Be}\) and \(^{210}\text{Pb}\) in the Arctic Basin

<table>
<thead>
<tr>
<th></th>
<th>Alert</th>
<th>Barrow</th>
<th>Nord</th>
<th>Thule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>61</td>
<td>63</td>
<td>82</td>
<td>125</td>
</tr>
<tr>
<td>Feb.</td>
<td>67</td>
<td>64</td>
<td>78</td>
<td>130</td>
</tr>
<tr>
<td>March</td>
<td>90</td>
<td>77</td>
<td>98</td>
<td>153</td>
</tr>
<tr>
<td>April</td>
<td>92</td>
<td>80</td>
<td>110</td>
<td>126</td>
</tr>
<tr>
<td>May</td>
<td>51</td>
<td>57</td>
<td>64</td>
<td>87</td>
</tr>
<tr>
<td>June</td>
<td>26</td>
<td>27</td>
<td>44</td>
<td>57</td>
</tr>
<tr>
<td>July</td>
<td>25</td>
<td>26</td>
<td>42</td>
<td>58</td>
</tr>
<tr>
<td>Aug.</td>
<td>19</td>
<td>18</td>
<td>35</td>
<td>51</td>
</tr>
<tr>
<td>Sept.</td>
<td>34</td>
<td>26</td>
<td>48</td>
<td>59</td>
</tr>
<tr>
<td>Oct.</td>
<td>38</td>
<td>39</td>
<td>66</td>
<td>84</td>
</tr>
<tr>
<td>Nov.</td>
<td>56</td>
<td>57</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td>Dec.</td>
<td>60</td>
<td>49</td>
<td>139</td>
<td>110</td>
</tr>
<tr>
<td>Lead 210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan.</td>
<td>36.1</td>
<td>22.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feb.</td>
<td>32.8</td>
<td>20.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>March</td>
<td>24.7</td>
<td>23.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>April</td>
<td>18.7</td>
<td>19.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>8.1</td>
<td>8.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>1.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>2.0</td>
<td>2.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug.</td>
<td>1.8</td>
<td>1.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sept.</td>
<td>3.7</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct.</td>
<td>6.8</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov.</td>
<td>19.1</td>
<td>13.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec.</td>
<td>25.4</td>
<td>21.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1 \(fCi = 245.9\) atoms of \(^7\text{Be}\) or \(37,569\) atoms of \(^{210}\text{Pb}\).

*Data are from Feely et al. [1988].

*Additional, more recent data are from Larsen and Sanderson [1990].
that in the atmosphere [Klein et al., 1988]. Data for proton reactions on nitrogen gave $^{10}\text{Be}/^{7}\text{Be}$ production ratios of 0.1-0.18, depending on the energy [Raisbeck and Yiou, 1974]. There are no published neutron cross sections for nitrogen, but recent measurements of cross sections for $^{14}\text{N} + \alpha n$ suggest that the $^{10}\text{Be}/^{7}\text{Be}$ production ratio may be as high as 1.2-1.3 (M. Imamura, personal communication, 1993). We believe that a $^{10}\text{Be}/^{7}\text{Be}$ production ratio as high as 1.2 is difficult to reconcile with measured values of $^{10}\text{Be}/^{7}\text{Be}$ in the environment that are less than 1.2, since this ratio can increase with time only through decay of ^{7}Be and/or resuspension of ^{10}Be into the atmosphere. We measured a $^{10}\text{Be}/^{7}\text{Be}$ ratio of <1.0 in four of eight samples collected in the upper troposphere/lower stratosphere over the North Pacific in 1991, albeit with large uncertainties (Table 1). In addition, Brown et al. [1989] found a $^{10}\text{Be}/^{7}\text{Be}$ ratio of <1.2 in about 20% of 68 precipitation samples collected in Illinois, including three samples for which the ratio was <0.7. We use a $^{10}\text{Be}/^{7}\text{Be}$ atmospheric production ratio of 0.6 ± 0.1 in the calculations in this paper.

Rather than assuming a value for λ_P, we calculate steady state values of Q_7/P_7 as a function of aerosol mean lifetime T_P ($T_P = 1/\lambda_P$). As the aerosol lifetime increases, decay of ^{7}Be becomes significant and causes R to increase. However, if aerosol lifetimes are less than about 200 days, stratospheric contributions are required to maintain R at 2.2 (Figures 3a and 3b). Previous estimates of ^{7}Be residence time in the troposphere converge on 30-40 days [Shapiro and Forbes-Resha, 1976, and references therein], suggesting that a 200-day lifetime is implausibly long. It thus appears that frequent injections of stratospheric air are required to maintain the $^{10}\text{Be}/^{7}\text{Be}$ near 2.2 in the troposphere. We note that the aerosol lifetime required to maintain the $^{10}\text{Be}/^{7}\text{Be}$ ratio at 2.2 when $Q = 0$ decreases if λ_P increases; for $\lambda_P = 0.8, 1.0, and 1.2$, the necessary lifetimes would be 135, 92, and 64 days, respectively. Even for $\lambda_P = 1.2$, these aerosol lifetimes seem too long. However, it is apparent that if λ_P is shown to be greater than 0.6, the stratospheric influence estimated in all calculations presented below will have to be reduced.

Application of the Model to the Alert Results

If the residence time of ^{10}Be-bearing aerosol in the Arctic troposphere were between 30 and 40 days and if R were truly constant at 2.2, then Q_7/P_7 would fall in the range 0.24-0.29 (Figure 3). This is in very good agreement with the global average of 0.26 calculated from a three-dimensional global climate model [Brost et al., 1991]. However, the measured values of R at Alert showed an apparent seasonal pattern, increasing from about 2.0 in fall and winter to about 3.0 in July and August (Figure 2). We have averaged the observations from Alert by month to estimate changes in stratospheric injections of ^{10}Be through the year. For constant aerosol lifetime, the higher R values in midsummer relative to those in winter indicate a twofold increase in the stratospheric fraction of tropospheric ^{10}Be (Figure 4a).

The earlier discussion of ^{210}Pb concentrations and the Arctic haze phenomenon indicates that there is also pronounced seasonality of aerosol scavenging in the Arctic troposphere, with maximum lifetimes in winter and minima in summer. Inclusion of an idealized seasonal pattern of aerosol lifetime consistent with this scenario accentuates the winter to summer increase in the stratospheric influence on tropospheric ^{10}Be (Figure 4b).

These calculations all use the equilibrium form of (6), since we were uncertain how to prescribe a time history of complete ^{10}Be washout which would allow including the time-dependent terms. However, equilibrium values of Q_7/P_7 are approached rapidly from higher values, suggesting that our approach yields conservative estimates of stratospheric influence. Regardless of the details, the higher values of R during midsummer indicate increased injections of stratospheric ^{10}Be into the troposphere during the period when surface concentrations of both isotopes were at their lowest (Figure 2). Similarly, the spring peak in ^{10}Be concentrations at Alert occurs when the $^{10}\text{Be}/^{7}\text{Be}$ ratio suggests that stratospheric influence is just beginning to increase from the smallest fraction observed during the year (Figures 2 and 4). These findings reflect the various factors that determine ^{10}Be concentrations at ground level [e.g., Feely et al., 1988; Dibb et al., 1992b]. At Alert the spring concentration peak of both Be isotopes appears to reflect increased vertical mixing of free tropospheric air down to the surface [e.g., Putins, 1970]. During the summer, enhanced aerosol scavenging in the pervasive stratus deck over the Arctic basin results in low concentrations of aerosol-associated species in the boundary layer despite higher concentrations aloft [e.g., Talbot et al., 1992].

The concentration of stratospherically derived ^{10}Be reaching the surface at Alert can be estimated from

\[S_{7,S} = \left(\frac{Q_7}{Q_7 + P_7}\right)C_{7,s}, \]

(7)

where the subscript S refers to surface observations. Values of $Q_7/(Q_7 + P_7)$ for all three aerosol lifetime scenarios explored in Figure 4 were multiplied by monthly average ^{10}Be concentrations. A peak in stratospheric ^{10}Be reaching the surface is clearly evident in March-April (Figure 5), but this peak largely reflects vertical mixing in the troposphere rather than stratospheric injections into the troposphere which peak in July-August (Figure 4). It should be noted that (7) and the observed ^{10}Be concentrations at Alert would predict a spring maximum in stratospheric ^{10}Be at the surface even if R was held constant at the mean value of 2.2 (fixing Q_7/P_7 in the 0.24-0.29 range). In fact, the relative amplitude of the peak would increase, as summertime estimates would be even lower than those in Figure 5.

It should be noted that all of the conclusions regarding seasonality of stratospheric injections into the stratosphere and stratospheric ^{10}Be reaching the surface remain valid even if λ_P is >0.6. The magnitude of stratospheric influence will be reduced but not eliminated even if λ_P is as high as 1.2 (which we feel is probably too high, as outlined above).

Ozone at Alert and the Impact of Stratospheric Ozone

The estimated concentrations of stratospheric ^{10}Be at Alert also yield preliminary estimates of the volume fraction of stratospheric air F_{Sa} at the surface:

\[F_{Sa} = S_{7,S}/SS, \]

(8)

(Figure 5). We assume that the Arctic stratospheric source (SS) has a constant ^{10}Be concentration equal to the mean of the six AGASP samples (32.7 x 10^4 atoms m$^{-3}$ STP) (Table 1). We have multiplied the Be-based estimates of stratospheric air fraction by the monthly mean O$_3$ concentration just above the tropopause as determined from weekly soundings at Alert and we have compare the results of this calculation to observed surface O$_3$ concentrations (Figure 6).

The Be-derived estimates of stratospheric air reaching the surface will be relevant to O$_3$ only if the tropospheric lifetime of O$_3$ injected from the stratosphere is comparable to that of the Be-
bearing aerosols. Jacob et al. [1992] calculated a mean summertime lifetime of 46 days for O\textsubscript{3} in the Arctic troposphere, which is similar to the aerosol lifetimes assumed in the calculations behind Figures 4 and 5. Our estimates of stratospheric O\textsubscript{3} accounting for 10-15 % of the total at the surface during spring may thus be reasonable (Figure 6). During the dark Arctic winter, O\textsubscript{3} lifetimes are likely to be longer, suggesting that our estimated stratospheric contributions of <1 part per billion by volume (ppbv) are too low, but the lifetime of O\textsubscript{3} would have to be very long for the Arctic stratospheric contribution to exceed the 4 ppbv estimated in the spring. On the other hand, meridional transport of tropospheric air masses from midlatitudes into the Arctic increases in the winter. Larger volumes of stratospheric air with low (<5) 10Be/7Be ratios (see midlatitude samples in Table 1) would be required to maintain R at 2.2 (Figure 3b), which might further increase the stratospheric fraction of O\textsubscript{3} at Alert during the winter. However, transfer of stratospheric air into the midlatitude troposphere is frequent in spring [e.g., Staley, 1982; Dutkiewicz and Husain, 1985] but may not be so common in winter when rapid transport into the Arctic occurs.

On an annual basis it appears that O\textsubscript{3} injected into the Arctic troposphere from the overlying stratosphere can account for only a small fraction of the total seen at Alert (and this fraction will be
Two years of sampling at Alert have demonstrated that 7Be and 210Pb concentrations in surface level air follow pronounced seasonal patterns that appear to have an impact on a wide region of the western Arctic and are quite predictable from year to year.

Conclusion

Figure 4. Values of Q_7/P_7 calculated from the monthly average value of 10Be/7Be at Alert. (a) Aerosol lifetime assumed to be constant at 30 or 40 days; (b) idealized seasonal pattern of aerosol lifetime assumed.

Figure 5. Estimates of the concentration of stratospheric 7Be reaching the surface at Alert. The right axis converts 7Be concentrations to the volume of stratospheric air required to deliver this much 7Be, assuming a constant concentration of 32.7×10^4 atoms m$^{-3}$ STP in the stratospheric source.

Figure 5. Estimates of the concentration of stratospheric 7Be reaching the surface at Alert. The right axis converts 7Be concentrations to the volume of stratospheric air required to deliver this much 7Be, assuming a constant concentration of 32.7×10^4 atoms m$^{-3}$ STP in the stratospheric source.
Similar findings have long been established for sulfate and other pollutants in the context of Arctic haze studies. This may indicate that the conclusions regarding stratospheric influence on surface air chemistry at Alert are applicable for the same large-scale region.

Concurrent 10Be measurements during the first year of this study indicate that stratospheric air plays an important role in the budgets of both Be isotopes in the Arctic troposphere throughout the year. Small seasonal variations of the 10Be/9Be ratio indicate a twofold increase in stratospheric injections of the Be isotopes into the Arctic troposphere during late summer. The spring peak in the concentrations of both Be isotopes at the surface at Alert does represent the maximum stratospheric influence on surface level air, but it reflects more vigorous downward mixing of free tropospheric air rather than increased stratosphere-troposphere exchange during this season.

A simple mixing model based on the Be isotopes also allows first-order estimates of the portion of surface O_3 at Alert that could have come from the Arctic stratosphere. The maximum stratospheric influence on surface O_3 is predicted for the spring, but it accounts for only 10-15% of the surface concentrations. Lack of information about O_3 lifetime during the Arctic winter makes estimates of stratospheric contributions during this season highly uncertain, but the estimates are so low that it is unlikely that such contributions could equal those in spring.

At present, the sparse data on spatial and temporal distributions of 10Be/9Be ratios in the stratosphere represent the major limitation to quantifying stratosphere-troposphere exchange with this isotope pair. Improving this data base would also provide insights into vertical and horizontal mixing within the stratosphere. We are currently exploring the feasibility of quantifying 10Be concentrations on some of the aerosol filters collected in the stratosphere during various high-altitude sampling programs in the 1960s.

Acknowledgments. We appreciate the efforts of J. Kovalick in overseeing the sampling at Alert and particularly for expediting the handling of the radionuclide portions of the filters. Special thanks are due to F. Karpenic and D. Tarsak for providing the O_3 profiles. We also thank J. Brown for preparing many of the samples for 10Be analysis and the staff of the LLNL CAMS for their assistance in the measurements. Frequent discussions with R. Talbot and P. Cell during the preparation of the manuscript are gratefully acknowledged. The comments of W. Graustein, D. Jacob, and an anonymous reviewer on an earlier draft greatly improved the present paper. The AMS measurements were performed under the auspices of the U.S. Department of Energy by the Lawrence Livermore National Laboratory under contract W-7405-Eng-48.

References
Brown, L., G.J. Stensland, J. Klein and R. Middleton, Atmospheric

(Rceived January 8, 1993; revised February 24, 1994; accepted March 14, 1994.)