263323 - Emergency Power Supplied Systems

Stephanie L. Weatherbee
University of New Hampshire, Durham, s.weatherbee@unh.edu

Follow this and additional works at: https://scholars.unh.edu/pdch_5_26

Recommended Citation
https://scholars.unh.edu/pdch_5_26/20

This Article is brought to you for free and open access by the Chapter 5 – Technical Construction and Renovation Standards at University of New Hampshire Scholars’ Repository. It has been accepted for inclusion in Division 26 – Electrical by an authorized administrator of University of New Hampshire Scholars’ Repository. For more information, please contact Scholarly.Communication@unh.edu.
SECTION 26 3323 - EMERGENCY POWER SUPPLIED SYSTEMS

PART 1 – GENERAL

1.1 Related Requirements Specified Elsewhere:

A. Chapter 5, Division 26, Section 260100.

B. See Chapter 5, Division 01, Section 017700.1.1.B.1.i Closeout Procedures - Project Record Documents for equipment list requirements for all equipment provided in this section.

1.2 A separate and independent system of light fixtures outlets, conduit, wiring and distribution panels, etc., provided in all buildings for a 208Y/120-volt emergency system powered by generator or storage batteries.

1.3 The emergency system shall include:

A. Emergency Lighting for all corridor, hallway and stairway that is required by code to support the evacuation and egress of a building during an emergency which results in the loss of normal power shall comply with the following:

1. Emergency lighting levels shall be sufficient to evacuate a building as required by code.

2. Emergency lighting can be combined with normal lighting if one of the following methods is used:
 a. Bodine ballasts in fluorescent fixtures.
 b. UL Listed, NEC/NFPA Compliant, Emergency Lighting Switching Controller
 c. DC power systems, small and high capacity inverter systems in standard and fast transfer versions. Both single and 3 phase to be used independently or with controls to be used in conjunction with generator systems. These systems should be considered as a means of supplying stored emergency power to serve multiple lighting units or a whole floor or building from 1 source.

3. Exit lights placed so that residents can be led to the most direct route to the exit.

4. Red is the University’s preferred color as a standard for Exit signs. In existing buildings, match the sign color, for example green should be used in any buildings when matching the existing green sign color.

5. LED exit signs shall be illuminated by light emitting diodes and wired in parallel per UL 924 such that if one diode fails, the rest of the sign will stay lit.
These units shall operate on power supplied from the emergency power system, Inverter, or batteries.

6. Stencil type signs are permitted.

7. Normal waterproof fixtures shall be used at each exterior egress door and shall be powered from the life safety system (Inverter/E-Gen, or batteries).

B. Buildings that are not required to have an Emergency Power Supplied System shall be equipped with inverter/battery powered exit signs and inverter/battery powered emergency lighting as directed by the University.

PART 2 - PRODUCTS

2.1 All systems listed below shall be submitted to the client for review and approval.

2.2 Exit Signs and Emergency Lights: (where permitted by the Owner)

A. UL 924 Listed

B. All exit and emergency signs shall be lit with LED technology

C. Units shall have dual voltage input (120-277V), low voltage disconnect, brownout circuit and overload/short circuit protection. All battery back-up units shall have a self-diagnostic feature.

D. Battery back-up is required anywhere there is not a verified Emergency Power Supplied System in place

2.3 Recommended manufacturers – all others must have written approval.

A. Cooper Sure-Lites* (Eaton)

B. Dual-Lite (Hubbell)

C. Millenium Series (Kenall)

2.4 Building Types:

A. Residence Halls and other High Abuse Areas: All exit signs, emergency lights and combination units must be high abuse/vandal-resistant rated. Preference is to have them be wall mounted rather than ceiling mounted.

B. Academic Areas: All installations must be from one of the recommended manufacturers listed above.
C. Wet areas: All exit signs, emergency lights and combination units must have a 3R NEMA rated enclosure

D. Exterior: All exit signs, emergency lights and combination units must have a 4X NEMA rated enclosure

E. Batteries: Batteries must be maintenance-free Nickel Cadmium or Lithium Ion. All others require prior written approval

2.5 Fluorescent Emergency Ballast: Bodine – Others will require prior written approval

A. For existing fluorescent light fixtures only:

1. Care shall be taken to make sure that these units are wired according to the manufacturer’s recommendations. Self-testing and diagnostics and status indication shall be integral to the unit. The emergency ballast should be fed from the same branch circuit as the AC ballast Or Owner approved equal.

2.6 Inverters - provide submittals for approval.

2.7 Emergency Lighting Transfer Switching Controller:

A. As of this 03-03 revision these units are UL Listed and approved for use by the State Electrical Inspector on the University Durham Campus. See Exhibit #1.

1. Entertainment networks:

 a. RHG-120.
 b. RHG-277.

2. NINE 24, Inc.

 a. BLTC-R-120.
 b. BLTC-R-277.
 c. BLTC-I-120.
 d. BLTC-I-277.
Exhibit#1

GENERAL NOTES

1. This wiring diagram is generic and should be used for general information only. ORI is a double pole relay with N.O. and N.C. contacts to prevent a cross connection between normal power and emergency power.

2. All controllers used in this application shall be UL listed and comply with NEC Article 700 Emergency Systems and NFPA 101 Section 5-8.

3. All listed controllers shall be wired per manufacturer’s recommendations and in compliance with the most current NEC.

END OF SECTION 26 3323