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ABSTRACT

Aspects of Localizing Quantum Information in Diffeomorphism-Invariant Theories

by

Adam M. Dukehart

University of New Hampshire, December 2023

Quantum Field Theory (QFT) is often formulated using local operators, i.e., operators de-

fined at points on a fixed background spacetime. However, General Relativity (GR) requires

that observables be fully diffeomorphism invariant. This includes invariance not only under

passive diffeomorphisms, which change the coordinate system but also active diffeomor-

phisms, which imply background independence and a dynamical metric. Localizing such

systems and observables in quantum gravity has been a long-standing problem. This disser-

tation makes progress on two facets of this problem. Part I shows that a typical quantum

information paradox using local operators cannot be embedded in a self-consistent, low-

energy prescription which makes it diffeomorphism invariant. Part II explores the energy

cost of localizing quantum information using the relational frameworks of the G-twirl and

the Z-model. Moreover, it is shown that these two frameworks are related since both can

be obtained via limits of positive-operator valued measurements. Part I is based on work

currently under review at the International Journal of Modern Physics D and Part II is based

on work published in Physical Review D.

ix



CHAPTER 1

Introduction

Quantum Field Theory (QFT) is one of the most well-tested frameworks in modern physics.

With many of its predictions having experimental support [1], QFT is regarded as a fun-

damental framework that governs experimentally accessible physical reality. Fields in QFT

implement and maintain the principle of locality for quantum dynamics and interactions [2].

The principle of locality1 states that physical interactions occur at a point in spacetime2,

i.e., the interacting objects must be co-located or “touching.” Thus, the introduction of

locality removes the notion of action at a distance. While this may be obvious if one consid-

ers interactions such as collisions or hard scattering, it may be less evident if one considers

long-range interactions such as electron-electron repulsion. In QFT, long-range interactions

are described as a set of local interactions with a mediator field3. For example, in electron-

electron repulsion, each electron locally interacts with the mediating electromagnetic field.

This was first observed classically by Faraday, later on, formalized classically by Maxwell,

and then formalized quantum mechanically by Dyson, Feynmann, Schwinger, and Tomonaga.

In QFT, physical interactions are generally described by polynomial terms in the La-

grangian, where the polynomials are formed from phase space variables at the same space-

time point, i.e., polynomials of local operators. Mathematically, local operators, written as

Ô, act on a set of L2-integrable test functions that have compact support on an open region

of spacetime, i.e., the set f(x) ∈ L2, where x ∈ U and U ⊂ R4. Since the test functions

1Referred to from now on as locality.
2This concept is also referred to as cluster decomposition, which states that the vacuum expectation values

of operators localized to bounded regions become factorized when the regions are sufficiently separated [3].
3It is important to note that there are subtleties here that will be discussed later on in this chapter.
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are of compact support, they vanish outside their region of support. When the region of

support is shrunk to a point p ∈ U , the test functions become Dirac delta functions. Thus,

local operators Ô(x), defined at a point x ∈ R4, act on the states of a rigged Hilbert space,

H, defined at the same point. In Lorentz invariant QFT, locality is further implemented by

imposing microcausality relations. Given two local operators defined at different spacetime

points, Ô1(x), Ô2(y) where x, y ∈ R4, their commutator is

[
Ô1(x), Ô2(y)

]
= 0 for (x− y)2 > 0, (1.1)

i.e., microcausality requires that two spacelike separated local operators commute. This

implies that the set of local operators defined at a point x acts trivially on the states in

a Hilbert space defined at a point y, for spacelike separated x, y. If non-local operators

were allowed, then the microcausality relations would break, i.e., the commutation in (1.1)

would not vanish, and the theory would allow for unobserved effects such as paradoxes [4]

and contain a necessary condition for superluminal communication [5]. It is important to

note that there exists a subset of operators that represent physical quantities, e.g., position,

momentum, spin, etc. These operators are Hermitian and are commonly referred to as

observables [6, 7].

There is an important distinction that now needs to be made. The locality conditions

above describe operator locality, not state locality. The microcausality relations in (1.1) are

an example of commuting subalgebras for a quantum theory. The existence of commuting

subalgebras and an appropriate UV regulator [8] allow for the factorization of the Hilbert

space into a tensor product of subsystem Hilbert spaces, e.g., the factorization of the Hilbert

space HAB is defined as HAB = HA⊗HB, where HA and HB are the Hilbert spaces de-

scribing subsystems A and B. This is the Hilbert space manifestation of locality. Such

factorizable Hilbert spaces are required for the construction of entangled states [9]. States

solely belonging to a subsystem Hilbert space are local, however entangled states, such as the

2



Bell state |ψ⟩AB = 1√
2

(|0⟩A ⊗ |1⟩B + |1⟩A ⊗ |1⟩B), belong to both subsystem Hilbert spaces

in a non-separable way [9]. This is an example of state non-locality since the information

within the state cannot be assigned to solely one subsystem Hilbert space. Thus, quantum

entanglement can be an example of state non-locality.

In contrast, operator non-locality is a feature of gauge theories—specifically theories that

describe long-range gauge fields such as electromagnetism and gravity. Since observables are

operators that represent physical quantities, and physical quantities are gauge invariant,

observables must be gauge invariant, i.e., observables must commute with the gauge con-

straints of the theory [10]. Not all operators are gauge invariant, but operators can be made

gauge invariant with the inclusion of a dressing function. However, particular dressings can

make the resultant operator non-local. For example, consider quantum electromagnetism,

a U(1) gauge theory. The two constraints of the theory are the momentum constraint

ϕ1(x) = Π0(x) = 0 and the Gauss Law constraint ϕ2(x) = ∂iΠ
i(x) = ψ†(x)ψ(x) = 0, where

Πµ(x) is the conjugate momentum to the vector potential and ψ(x) is some charged matter

field, a local operator. The charged matter field operator has a non-vanishing commutator

with both constraints, meaning it is not a gauge-invariant quantity. Thus, the field trans-

forms non-trivially under the U(1)-gauge transformation ψ(x) → eiqθ(x)ψ(x). To construct a

gauge-invariant operator, Dirac [11] introduced the dressing function

V (x) = eiq
∫
d4x′fµ(x,x′)Aµ(x′) (1.2)

where fµ(x, x′) satisfies ∂µf
µ(x, x′) = δ4(x−x′) but is otherwise arbitrary. The dressed oper-

ator, Ψ(x) = V (x)ψ(x), transforms trivially under the standard U(1)-gauge transformations,

Aµ(x) → A′
µ = Aµ(x) − ∂µθ(x), and (1.3a)

ψ(x) → ψ′(x) = e−iqθ(x)ψ(x), (1.3b)

3



where θ(x) is an arbitrary scalar function. To show the dressed operator Ψ(x) transforms

trivially under the U(1) gauge transformations, apply (1.3) to Ψ(x),

Ψ(x) → Ψ′(x) = e−iqθ(x)Ψ(x) = e−iqθ(x)ψ(x)eiq
∫
d4x′fµ(x,x′)(Aµ(x′)−∂µθ(x′))

= e−iqθ(x)Ψ(x)e−iq
∫
d4x′(∂µ(fµ(x,x′)θ(x′))−θ(x′)∂µfµ(x,x′))

= e−iqθ(x)Ψ(x)eiqθ(x) = Ψ(x)

(1.4)

Going between the second and third equality, the total derivative term vanishes since the

boundary is taken to be at infinity and the second term computes to θ(x) due to the condition

fµ(x, x′) must satisfy. When acting on the vacuum, the dressed operator Ψ(x) creates a

particle with charge q and electromagnetic field response with support over all space, i.e.,

the operator is non-local but the resultant state is gauge-invariant. While the particle field

operator is not an observable, the propagator ⟨0|Ψ†(x)Ψ(y) |0⟩ is an observable. Since the

U(1) gauge allows for opposing charges, the observable can be a local object—the non-local

aspects of the field operators can be screened and inaccessible to an observer.

Similar to QFT, General Relativity (GR) is another well-tested physical framework [12].

While GR is considered to be a classical approximation of the theory of quantum gravity,

many of its underlying principles are considered to be fundamental and are thought to be

underlying principles in the theory of quantum gravity, whatever it may be (see [13, 14]

for more details). Outside any theory of quantum gravity, quantum models that include

gravity4 must be able to handle principles from both QFT and GR. One such principle is

the principle of general covariance5, a key concept underlying gravitational physics. Gen-

eral covariance states that (A) everything is dynamic and (B) physics is the same in every

reference frame. Mathematically, observables and states in any generally covariant frame-

work are invariant under diffeomorphisms. Thus diffeomorphisms serve as the gauge group

of gravity, meaning any physical observable in a “quantum + gravity” framework must be

4Such models will be referred to from now on as “quantum + gravity.”
5Referred to from now on as general covariance.
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diffeomorphism invariant. However, difficulties arise when constructing local operators in

diffeomorphism-invariant theories. Diffeomorphisms move points around arbitrarily and, as

a result, the notion of locality cannot be defined since there is no “here” or “there.” This

means that the operators in such theories cannot have compact support, not only violating

locality by also microcausality. Therefore, there is tension6 between locality and general

covariance; operators that are local relative to a fixed background reference frame are not

gauge invariant and gauge-invariant operators are non-local.

While the full theory of quantum gravity has yet to be discovered, there has been recent

interest in utilizing quantum information theory to construct tests and determine properties

the full theory of quantum gravity must satisfy [16, 17]. However, quantum information

theory is not inherently diffeomorphism invariant and there are difficulties when coupling

to gravity. An implication is that quantum information theory tests of quantum gravity

may not be accurate since one must be careful when determining whether the results are

physical or pure gauge. Furthermore, key aspects of quantum information theory can be

incompatible with diffeomorphism invariance such as local observables, or entanglement.

The question—and the main focus of this dissertation—is how do diffeomorphism invariance

observables affect certain questions in quantum information theory?

1.1 Diffeomorphism-Invariant Operators in Quantum Paradoxes

As discussed above, one way to construct gauge-invariant operators in theories coupled to

electromagnetism is to act a dressing function on an operator that has a non-trivial gauge

transformation. A similar method, as demonstrated by Giddings and Donnelly [18], can be

used to construct diffeomorphism-invariant operators in theories coupled to gravity. In a

departure from Dirac’s electromagnetic dressing, which is constructed non-perturbatively,

Giddings and Donnelly use a first-order perturbation hµν , defined by gµν = ηµν + κhµν to

6There are some theories that require observable non-locality. For example, in AdS/CFT the non-locality
of bulk AdS observables allows them to be mapped to local CFT observables on the boundary [15].
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construct the dressing. This dressing has the following definition,

V µ(x) = κ

∫
d4x′fµνλ(x, x′)hνλ(x′) (1.5)

where f is symmetric in the last two indices and satisfies, 2∂ν′f
µνλ(x, x′) = δ4(x − x′)ηµν .

For a local operator Ô(x), the resultant observable, Ô(x) = Ô(x) + V µ(x)∂µÔ(x), while dif-

feomorphism invariant up to first order in the gravitational coupling, does not have compact

support due to the integral over all space. This behavior is similar to the behavior of the

electromagnetic dressing. However, unlike electromagnetism, gravity does not have opposite

gauge charges that can be used to construct local observables, i.e., there is no negative mass.

Theories coupled to electromagnetism are able to hide (or localize) quantum information

using a screening effect provided by edge-mode charges. For example, consider an electron

located within a spacetime region U . Due to the non-local nature of the gauge dressing, the

electron will generate an everywhere-permeating electromagnetic field response. This means

that an observer, located outside the U can detect and determine the state of the electron by

measuring the state of the electromagnetic field. Effectively, the quantum information of the

electron is currently non-local. The quantum information can be localized to U , hiding the

presence of the electron, by introducing charged edge modes to the boundary of U , whose

total charge is equal to but opposite of the electron’s charge. Since the edge modes are

observables, they must be dressed as well, and due to their opposing charge, the dressing

components perpendicular to the boundary will cancel with the dressing components of the

electron. Therefore, the quantum information of the electron won’t leak out of U since the

electromagnetic field components perpendicular to the boundary vanish outside U .

Since there are no opposite gauge charges in theories coupled to linearized gravity, such

theories are incapable of perfectly hiding quantum information in the same way as theories

coupled to electromagnetism. However, it is possible to choose a gravitational dressing that

is “insensitive” to the quantum information of a state, located within a spacetime region

6



U [18]. Consider a matter distribution with the state |ψ⟩ located within a spacetime region

U and an ϵ-extended region Uϵ such that U ⊂ Uϵ. One can then choose the gravitational split

dressing to dress the state. The split dressing is constructed from two additive components,

a “standard” dressing V µ
S (y), defined at y ∈ U , and a dressing that connects the point y

to another point x ∈ Rϵ, V
µ
L (x, y), such that V µ

L (x, y) = 0 for all x /∈ Uϵ. As a result, the

expectation value of the metric perturbation outside Uϵ depends only on the total Poincare

charges of the state. In other words, the only information an observer, located outside Uϵ

can ascertain from a measurement of the gravitational field is the total Poincare charge of

the matter inside U . Furthermore, two states |ψ1⟩ and |ψ2⟩ will be indistinguishable via mea-

surements outside Uϵ since such measurements are dependent on the total Poincare charge.

Therefore, the split dressing makes it difficult to fully determine the quantum information

located within U . Note that one can encode information within the Poincare charges of the

system, but not all information can be encoded in this manner.

Part I of this dissertation is based on the work found in [19]. Here, the focus is on investi-

gating the effects of gravity on quantum paradoxes. In particular, the effects diffeomorphism-

invariant operators have on the construction of the Frauchiger-Renner (FR) paradox. While

there is debate surrounding the validity of the FR paradox (cf. [20–23]), the paradox will be

used as a way to examine the subtle role of (quantum) gravity, in particular, local observ-

ables in perturbative paradoxical outcomes. The authors of the FR paradox argue, using a

set of reasonable assumptions in the framework of non-relativistic quantum mechanics, that

one can construct an experiment where two observers measure conflicting results, an out-

come contradictory to what is predicted by the theory. They then use these results to argue

non-relativistic quantum mechanics is not self-consistent. However, gravity is part of reality,

so from a fundamental perspective, the quantum theory that needs to be self-consistent is

the full theory of quantum gravity. Structurally, the physical Hilbert space and dynamics of

quantum gravity are heavily constrained by the requirement of diffeomorphism invariance,

(cf. [24]), which is typically not imposed in non-relativistic quantum mechanics. How-

7



ever, when using paradoxes to make claims about underlying fundamental theories, such as

quantum mechanics, it is necessary to at least ensure the paradoxical observables are gauge

invariant. In the gravitational case, this would mean introducing the gravitational field as a

dynamical object and imposing diffeomorphism invariance. While this may be difficult to do

non-perturbatively, one approach would be to match the field content of general relativity

and impose diffeomorphism invariance perturbatively to first-order in Newton’s constant G.

If such an approach can be made self-consistent and generate only small corrections to the

non-relativistic results, then ignoring gravity is justified. This part examines whether one can

build a “paradoxical” thought experiment that involves local observables while maintaining

gauge invariance to first order in G in a self-consistent manner (up to the paradoxical result

occurring at some time t). It is shown below that perturbative gauge invariance can’t be

self-consistently imposed if the experiment is to eventually generate a paradox—higher order

corrections in G and fundamental aspects of full quantum gravity become important. This is

surprising as it seems that a low-energy thought experiment is somehow sensitive to quantum

gravity. However, this is actually already a known occurrence in the gravitational literature

for precisely those thought experiments that incorporate paradoxes and quantum mechanics.

Classically, spacetimes that allow closed timelike curves (CTCs) may have low curvature yet

contain grandfather paradoxes. Quantum mechanically, these spacetimes lead to the break-

down of semi-classical gravity due to unstable energy-momentum tensor fluctuations [25] and

the necessity of the chronology protection conjecture [26], a statement about quantum grav-

ity. Similarly, the Almheiri-Marolf-Polchinski-Sully (AMPS) or infaller paradox in black hole

thermodynamics, which is built in spacetime regions with low curvature, generates extreme

gravitational responses (e.g. firewalls) [27] once quantum mechanics is taken into account.

Firewalls have also been argued to be one manifestation of a more generic paradox, due to

the violation of boundary unitary [15], that can occur in scattering experiments [28] with

local bulk operators. In all these scenarios, the existence of the paradox leads to a strong

gravitational and even quantum gravitational response—one cannot stay in the weak field

8



regime self-consistently and still assume there exists a quantum mechanical paradox.

1.2 Localizing Relational Quantum Information

Since diffeomorphisms move points around arbitrarily, any labeling of spacetime points has

no physical meaning in diffeomorphism-invariant theories. Moreover, as was mentioned ear-

lier, one way to work within the framework of diffeomorphism-invariant theories is to dress

operators to make them gauge invariant. While the dressed operators are gauge-invariant,

they are no longer local. However, local operators can be defined by working in a relational

framework. In a relational framework, local operators are defined relative to some reference

observable in such a way that the new operator is diffeomorphism invariant. An example

of a relational framework is the Z-model, developed by Giddings, Marolf, and Hartle [29].

In the Z-model, along with the preexisting operators Ô(x), four additional massless, free,

scalar auxiliary fields Zi, i = 0, 1, 2, 3 are also defined. If the state of the auxiliary field is

initially |ψZ⟩ in some spacetime region, then the spacetime coordinates can be defined as,

⟨ψZ | Ẑi |ψZ⟩ = λδiµx
µ. (1.6)

In other words, the spacetime coordinates of a region are proportional to the expectation

value of the auxiliary field in that region. While the states |ψZ⟩ spontaneously break dif-

feomorphism invariance, local operators may be defined relative to the expectation value in

(1.6). A local operator Ô(x), may be made relational by defining,

Ô0,ξ =

∫
d4xÔ(x)δ

(
Ẑi(x) − ξi

) ∣∣∣∣∣∂Ẑi(x)

∂xµ

∣∣∣∣∣ , (1.7)

where x represents some background coordinate system, not to be confused with the co-

ordinate system constructed from the expectation values of the auxiliary fields. The new

operator Ô0,ξ is diffeomorphism invariant under the coordinate change xµ → xµ
′
(xν). Fur-

thermore, this operator is local since the delta function will pick out a definite point, in the

9



classical limit. It is important to note that the construction in (1.7) cannot work in QFT

due to the delta function. However, one can use a coarse-graining of the delta function to

write a similar operator compatible with QFT (see [29] for more details).

Relational observables allow one to properly define quantum entanglement and thus non-

local quantum information. In the past, researchers have considered localizing pure states

in a “quantum + gravity” framework [30–33]. However, to the author’s knowledge, no

one has examined localizing the non-local quantum information in an entangled state in a

gravitational setting. To localize pure states, consider a massless particle trapped in a box

of length L. The energy of the trapped particle, in the rest frame of the box, is given by

E(L) = hc/L, neglecting dimensionless constants. As the box shrinks, L → 0, the energy

of the particle increases and eventually passes the energy necessary to form a black hole. In

other words, if R(E) = 2GE/c2 is the Schwarzschild radius associated with energy E, then

when L ≈ R(E(L)), a black hole will begin to form, rapid emission of Hawking radiation

occurs, and one is quickly pushed into the quantum gravity regime. This occurs around

the Planck length. The above argument demonstrates the breakdown of state locality in a

gravitational setting: distances below the Planck scale cannot be measured because the act

of doing so would disturb spacetime to the degree that would form black holes. In quantum

information theory, one can construct non-local quantum information using qubits. The non-

local information contained in a set of entangled qubits can be localized via an entanglement

extraction procedure [34,35].

Part II of this dissertation is based on the work in [36]. It examines the energy cost

required to fully localize non-local quantum information contained in bipartite entangled

Gaussian states. In this approach, the question of localization can be recast as one of entan-

glement extraction, where extracting the entanglement corresponds to localizing the system.

Hackl and Jonsson have recently made progress on calculating the minimum energy neces-

sary to extract such bipartite entanglement from Gaussian systems, which will provide the

tools necessary to derive the energetics for the quantum information localization process [35].

10



There is a complication, however. The entanglement extraction process relies on the exis-

tence of an external observer to set the energy scale and reference frame. In gravity, there are

no external observers and observables are expected to be diffeomorphism invariant. In order

to apply Hackl and Jonsson’s approach in a “quantum + gravity ” scenario, one must also

construct a system where the degrees of freedom are diffeomorphism-invariant and Gaussian.

If not, then one would not be sure whether the answers are gauge invariant and hence physi-

cal. However, constructing fully diffeomorphism-invariant degrees of freedom can be difficult

and so this work focuses on translationally invariant degrees of freedom, as a toy model.

Translational invariance is established in two ways, utilizing a relational framework. First,

one can apply a procedure known as G-twirling to a set of Gaussian states in the presence of

an external frame. By G-twirling over translations, the notion of absolute position in a sys-

tem is removed, leaving only relational and entangled positional degrees of freedom [37] (as

well as an irrelevant center-of-mass momentum degree of freedom). As demonstrated below,

the simplest version of G-twirling implies that the energy cost from entanglement extraction

vanishes. This is consistent with implementing the G-twirl as a simple transformation on

the Hilbert space. The underlying translation invariance and effect on the energy cost is

the toy model equivalent of the effect of diffeomorphism invariance and the vanishing of the

Hamiltonian on physical states in quantum gravity. In contrast, one can also implement an

external frame as a dynamical system, thereby also relationalizing the quantum states. In

this case, one can naturally recover a non-zero energy cost. To implement this frame, a U(1)

symmetry and corresponding gauge field are introduced and a simple Z-model is built for

relational observables in the language of Giddings, Marolf, and Hartle [29].
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Part I

Diffeomorphism Invariance and

Quantum Mechanical Paradoxes
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CHAPTER 2

The Frauchiger-Renner Thought Experiment

Thought experiments play a large role in quantum mechanics, both in popular treatments,

such as the famous Schrödinger’s cat, and in professional discourse. Quantum mechanics

is often counterintuitive to a classically trained intuition and thought experiments have

a long history of illuminating non-classical logical results and fallacies. One such line of

thought experiments is that of “Wigner’s Friend” [38] and various extensions, such as the

Frauchiger-Renner (FR) [39] experiment, which has recently generated interest [20,39,40]. In

the FR thought experiment, used as a prototypical example in this work, the authors argue

that under some fairly reasonable assumptions in the framework of non-relativistic quantum

mechanics, one can construct an experiment where two observers measure conflicting results.

They then use this result to argue that non-relativistic quantum mechanics is not self-

consistent.

While the FR thought experiment is a matter of debate among the quantum information

community, it is a useful tool to examine the subtle role of (quantum) gravity in such

constructions. This chapter discusses the details of the FR thought experiment and its

possible connections to (quantum) gravity.

2.1 The Assumptions of the FR Thought Experiment

The FR thought experiment [39] works in the framework of non-relativistic quantum me-

chanics and makes the following assumptions, labeled (Q), (C), and (S) in its original con-

struction:
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(Q) Every observer evolves under the rules of standard quantum mechanics on their local

Hilbert spaces. Within that framework, there is a process that allows observers to make

conclusive, classically stable measurements. Specifically, let a system S be in state |ψ⟩S

at time t0, and let there exist a family of Heisenberg measurement operators, {π̂x}x∈R

that allows one to measure an observable x by time t > t0. If ⟨ψ| π̂ξ |ψ⟩ = 1 for ξ as some

possible value of x, then one can make the definitive statement at time t that x = ξ.

The ability to make such definitive statements about the outcomes of measurements

will be referred to as with certainty. Furthermore, since the measurement is stable,

x = ξ for all time after t.

(C) Inferred knowledge is transferable between two observers. If observer A knows that

observer A′ has concluded that x = ξ at some time t and that A′ is reasoning using

the exact same theory as A, then A can conclusively state that x = ξ at time t.

(S) Contradictory logical statements cannot be true simultaneously. If A believes that

x = ξ at time t is true, then they cannot also believe that x ̸= ξ at time t is true.

With the above assumptions in hand, the thought experiment itself can now be explained in

detail.

2.2 The Experimental Setup of the FR Thought Experiment

The setup for the FR thought experiment is similar to constructions employed in Hardy’s

and Wigner’s Friend thought experiments. Consider four quantum observers, Alice, Bob,

Charlie, and Diane. Charlie and Diane are each locked away in different local, isolated

laboratories, while Alice and Bob are outside observing Charlie’s and Diane’s laboratories,

respectively, in separate isolated regions. The experiment proceeds as follows, in rounds

n = 0, 1, 2, . . .. The number on the right indicates the timing of the steps and it is assumed

that each step takes one unit of time:
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n : 00 Charlie measures the state of a quantum coin toss, |coin⟩ ≡ (|heads⟩+
√

2 |tails⟩)/
√

3,

in the {|heads⟩ , |tails⟩} basis, and records the result as r ∈ {heads, tails}. He then

sets the spin state S of a particle to |↓⟩S if the result is r = heads and to |→⟩S ≡

(|↑⟩S + |↓⟩S)/
√

2 if the result is r = tails. Charlie then sends the particle to Diane.

n : 10 Diane measures S with respect to the {|↑⟩S , |↓⟩S} basis and records the result as

z ∈ {−1
2
,+1

2
}.

n : 20 Alice measures Charlie’s laboratory with respect to a basis containing the state |ok⟩ ≡

(|h⟩−|t⟩)/
√

2, where the states {|h⟩ , |t⟩} are the possible states of Charlie’s laboratory

after he has obtained the result of the coin toss. If the result associated with the |ok⟩

state occurs Alice records w = ok otherwise she records w = fail.

n : 30 Bob measures Diane’s laboratory with respect to a basis containing the state |ok⟩ ≡

(|−1
2
⟩ − |1

2
⟩)/

√
2, where the states {|−1

2
⟩ , |1

2
⟩} are the possible states of Diane’s lab-

oratory after she has obtained the result of the spin measurement. If the outcome

associated with the |ok⟩ state occurs, Bob records w = ok, otherwise, he records

w = fail.

n : 40 If both Alice and Bob measure w = ok and w = ok, respectively, the experiment is

stopped, otherwise it continues to the next round.

2.3 The Paradox

Alice and Bob can construct an entangled qubit from the correlations between the measure-

ments of Charlie and Diane,

|ψ⟩AB =
|h⟩A ⊗ |−1

2
⟩
B

+ |t⟩A ⊗ |−1
2
⟩
B

+ |t⟩A ⊗ |+1
2
⟩
B√

3
, (2.1)

where the first qubit is associated with Alice and the second qubit is associated with Bob. Al-

ice and Bob can calculate the probability they will measure w = ok and w = ok, respectively,
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by acting the states |ok⟩ and |ok⟩ on |ψ⟩,

∣∣(⟨ok|B ⊗ ⟨ok|A
)
|ψ⟩AB

∣∣2 =
1

12
. (2.2)

Another analysis can be performed by examining the inferences that each observer—Alice,

Bob, Charlie, and Diane—can construct via assumptions (Q), (C), and (S). Examination

of (2.1) shows that if Diane measures z = −1/2, then Alice can only measure the state

(|h⟩ + |t⟩)/
√

2. Hence, from Alice’s perspective, if she measures w = ok, then she can infer

Diane has measured z = +1/2. From Diane’s perspective, if she measures z = +1/2, then

she can infer that Charlie has measured r = tails since there is no |h⟩A ⊗ |+1
2
⟩
B

component

in (2.1). From Charlie’s perspective, if he measures r = tails, then he can infer that Diane

will be in the (|−1
2
⟩ + |+1

2
⟩)/

√
2 state, implying that Bob will measure w = fail. Thus, if

Alice measures w = ok, then she knows with certainty that Diane knows that Charlie knows

that Bob measured w = fail, even though Bob and Alice will have a non-zero probability of

“agreement”. From this analysis Frauchiger and Renner have concluded that a contradiction

arises, yielding a paradox.

There are counterarguments to the logic of the FR thought experiment [41–43]. One

counterargument, proposed by [44], highlights the issues of using inferred information before

and after a measurement is performed. The inference—if Charlie is in the |t⟩ state then Bob

measures w = fail—only holds for the original qubit state in (2.1). However, Alice first mea-

sures (2.1) in the |ok⟩ bases, thus transforming (2.1), implying Charlie no longer has access

to the information required to make his inference. Therefore Charlie could never conclude

that Bob has measured w = fail, since the non-measured version of (2.1) does not exist

after Alice’s measurement. The rejoinder of Renner [45] is that no information dependent

on Alice’s measurement is used in Charlie’s logic and hence the paradox is logically sound.

This argument is of no concern, rather the focus is on the consequences of gauge invariance,

in particular diffeomorphism invariance, in the construction of the thought experiment.
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The FR thought experiment, as constructed, requires classically certain measurements,

local observers, and logical inferences to generate a paradox, as codified in assumptions (Q),

(C), and (S). Under assumption (Q) Alice and Bob are defined to be local observers with

separable Hilbert spaces. This is, however, in tension with general covariance (which should

be preserved in low energy quantum gravity as it is a symmetry of general relativity), as

constructing separable Hilbert spaces in generally covariant theories is non-trivial [29, 46].

In other words, the formulation is not a priori gauge invariant.

Any claim that asserts quantum mechanics is not self-consistent, based on non-gauge-

invariant observables, must be eyed with caution. Such a claim is equivalent to observers

who use different U(1) gauges to claim that electromagnetism is not self-consistent because

they each record different values for the vector potential. Certainly, it is possible that

there is a physical difference but the difference could be pure gauge. Remedying this in the

gravitational context means dressing any local observables so that they are gauge invariant

under diffeomorphisms. Only then can one explore the ramifications for quantum mechanics.

The key question is whether or not making the construction gauge invariant can be done

while remaining in a weak gravity regime. Before this is examined in more detail, the case

in electromagnetism is analyzed, which should be more familiar to readers.
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CHAPTER 3

QED Gauge-Invariant Observables and the FR Thought Experiment

Not all degrees of freedom within a theory are physical. Sometimes there exist degrees of

freedom that are defined with respect to a “reference frame” whose choice is arbitrary at

every instance in time [10]. Such degrees of freedom are known as gauge degrees of freedom

and are not physical; theories that contain these degrees of freedom are known as gauge

theories. Physical degrees of freedom, e.g. observables, are independent of reference frame

choice [10]. In other words, observables are invariant under transformations of the reference

frame, i.e., gauge transformations, whereas gauge degrees of freedom are susceptible to such

transformations.

In gauge theories, the dynamics of physical observables cannot be completely determined

by the equations of motion for all times t, since one could always make a gauge transformation

in the future given some set of initial conditions. This means that one set of initial conditions

is not enough to specify the trajectory of physical observables through time, since a gauge

transformation allows for two or more solutions to the equations of motion, given some set of

initial conditions, to exist simultaneously. Thus gauge theories contain arbitrary functions

of time within the general solution to the equations of motion [10].

The existence of such arbitrary functions of time in the equations of motion implies that

not all canonical variables are linearly independent [10]. There exist relationships between

the linearly dependent canonical variables that are referred to as constraints. Thus, gauge

systems contain a set of constraints that relate non-physical canonical variables1. Such

1The converse of this statement is not always true. Systems with constraints are not necessarily gauge
systems.

18



constraints can be used to construct gauge transformations and to define (even construct)

physical observables.

3.1 Gauge Constraints and Transformations

Following [10], in N -dimensional systems with gauge symmetries there exist a set of primary

constraints, functions ϕm(p, q) such that,

ϕm(p, q) = 0, (3.1)

where m = 1, . . . ,M , which do not arise from the equations of motion. The set of con-

straints in (3.1) define a constraint hypersurface in phase space, on which the solutions to

the equations of motion are unique and the canonical Hamiltonian is well defined. Since the

constraints vanish on the hypersurface the canonical Hamiltonian remains unchanged under

the replacement,

H → H ′ = H + umϕm, (3.2)

where the um are arbitrary functions of the configuration space coordinates and velocities

and ensure that the Legendre transformation is invertible.

A basic consistency requirement is that the primary constraints are constants in time

and thus have vanishing Poisson brackets with (3.2). The resulting equations of motion

are either independent of um, and thus only involve the canonical coordinates, or they may

impose restrictions on um. If the equations of motion, for ϕk /∈ {ϕm}Mm=1, where k =

M + 1, . . . ,M +K, are independent of um and the canonical coordinates are independent of

the other primary constraints, then the constraints, ϕk are considered secondary constraints.

Note that secondary constraints also vanish on the constraint hypersurface, however, their

defining feature is that they only hold when the equations of motion are satisfied.

Again consider the consistency requirement, that both the primary and secondary con-

straints are constants in time and thus have weakly vanishing Poisson brackets with (3.2).
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The resulting equations of motion impose restrictions on um. Using the equations of motion

for the constraints to find solutions for um, it follows that,

um ≈ Um + vaV m
a , (3.3)

where Um denotes particular solutions, V m
a denotes general solutions, and the coefficient

functions, va, are totally arbitrary. One can now construct a total Hamiltonian

HT = H + Umϕm + vaV m
a ϕm, (3.4)

defined everywhere in phase space.

A first-class constraint is any constraint that has a weakly vanishing Poisson bracket

with all other constraints, i.e., for some constraint ϕ

{ϕ, ϕj} ≈ 0, (3.5)

where j = 1, . . . ,M +K. The importance of the first-class constraints is fully realized in the

following statement, all first-class, primary constraints generate gauge transformations, i.e.,

δF = va{F, ϕa}, (3.6)

where δF is the gauge transformation of a canonical function F , and va is the difference be-

tween two choices of arbitrary functions at different times, related to the first-class, primary

constraints ϕ. It should be noted, as counterexamples to the Dirac conjecture have shown,

that only some first-class, secondary constraints generate gauge transformations. Any gauge

transformation allows one to determine the value of canonical functions F on different hy-

persurfaces in phase space, allowing for the construction of dressings that, when applied to

observables make them gauge-invariant.
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As an example, consider the Lagrangian density for QED,

L = −1

4
FµνF

µν + ψ̄
(
i/∂ −m

)
ψ − qψ̄ /Aψ. (3.7)

One can show that the temporal component of the canonical momentum for the vector

potential, Âµ(x), vanishes, thus defining the primary constraint hypersurface, i.e. ϕ1(p, q) =

π0
A = 0, for the theory. The replacement Hamiltonian density for this theory is,

H ′ = −1

2
πiAπi,A +

1

4
FijF

ij − πiψ(∂iψ) +mψ̄ψ

− iqπµψAµψ + π0
A(∂0A0) − A0(∂iπ

i
ψ),

(3.8)

where Roman indices sum over spatial quantities and Greek indices sum over spacetime

quantities. Note that the last three terms in (3.8) vanish on the constraint hypersurface. The

equations of motion for π0
A yield the secondary constraint, ϕ2(p, q) = ∂iπ

i
A−qψ†ψ = 0, which

is Gauss’ Law, written in differential form. Since the Poisson bracket between constraints

ϕ1 and ϕ2 weakly vanishes, both constraints are first-class.

The Poisson bracket between Aµ(x) and the first-class constraints generates the typical

gauge transformation of electrodynamics, i.e., Aµ(x) → Aµ(x) − ∂µθ(x), where θ(x) is arbi-

trary. Similarly the Poisson bracket between the local, electron field ψ(x) and the first-class

constraints generates the gauge transformations of ψ(x),

δψ(x) = iqθ(x)ψ(x). (3.9)

.

3.2 Gauge-Invariant Fields and Asymptotic Dependence

A gauge-invariant field can be constructed by promoting ψ(x) → Ψ(x) = eiqζ(x)ψ(x). A key

aspect is that ζ(x) does not have to have compact support. Following Dirac’s original analysis
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in [11], one could choose ζ(x) =
∫
d4x′fµ(x, x′)Aµ(x′). The new field, Ψ(x), is then gauge

invariant as long as ∂µf
µ(x, x′) = δ(4)(x−x′) is satisfied. The choice of fµ(x, x′), or dressing

of the local electron field, is arbitrary up to the condition on fµ(x, x′). Physically, this

corresponds to the fact that there are infinitely many gauge-invariant dressings of the local

field, all of which are equivalent up to solutions of the source-free Maxwell’s Equations [47].

Not only can ζ(x) be non-compact, but in certain cases it must be. Specifically, if

O is a local field with compact support that transforms non-trivially under U(1)-gauge

transformations, then the corresponding gauge invariant field O depends on the asymptotic

field configuration. To see this, expand O in a power series in q,

O = O + qO1 + q2O2 + .... (3.10)

Since O is gauge invariant, its Poisson bracket with the constraints vanishes. In particular,

consider the integrated Gauss’ Law constraint, ϕ2, on a hypersurface in Minkowski space

CG =

∫
d3x(∂µFµν − Jν)ξ

ν = 0 (3.11)

where Jµ is the current for some matter distribution and ξµ is the timelike normal to the

three-dimensional hypersurface. Without loss of generality, we can take ξµ = (1, 0, 0, 0).

Integrating by parts yields

CG =

∫
d3x(∂µ(Fµνξ

ν) − Jνξ
ν) = 0. (3.12)

The first term is just a boundary term while the second is the total charge Q = q. Therefore,

the constraint is CG = CS−Q where CS is a pure boundary term. Now consider the Poisson

bracket of CG with O. Since O is gauge-invariant, its Poisson bracket with CG must vanish,

i.e.,

{CG,O} = {CS, O} + q{CS, O1} − {Q,O} − q{Q,O1} + .... (3.13)
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is equal to zero.

Since O is compact, {CS, O} = 0. Moreover, Q is the generator of gauge transformations

and hence {Q,O} ̸= 0. Therefore the remaining term must be canceled by the q{CS, O1}

term, which implies that O1 must depend on the asymptotic electromagnetic field, i.e., the

dressed gauge-invariant field O always has non-compact support.

Gravitationally, a physical observer will transform non-trivially under at least one of

the transformations of the Poincare group—there is no ability, for example, to set the total

energy of a system to zero. The electromagnetic parallel is the total electric charge of the

observing system that is non-vanishing. The consequence of this assumption will now be

examined for the construction of the FR thought experiment, as a pedagogical introduction

to the gravitational case.

3.3 Consequences for the FR Thought Experiment

Consider the following as a possible implementation of a measurement system for Alice and

Bob that parallels the gravitational case and illuminates the difficulty. Assume messages and

information between observers, such as the particle of defined spin in n : 00 of the FR thought

experiment, are sent using polarized photons. Alice and Bob measure the polarization via

a QED system that correlates the polarization with an electron, i.e. a net charge being

present in their local detectors. This can be done as the scattering amplitude in QED is

dependent on both photon and electron polarizations [48]. The system is designed so that the

measurement results, ok, ok, correlate with the electron state |e⟩ while fail, fail, correlate

with the vacuum |0⟩.

The local field operator associated with the electron, ψ̂e(x), transforms non-trivially un-

der U(1)-gauge transformations, and hence a local excitation in Alice or Bob’s detector is not

gauge-invariant. To maintain gauge invariance, there can be a local excitation and an elec-

tromagnetic field extending to infinity. This is just Gauss’ Law applied to the measurement

system above. For a related derivation see [49].
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Now, consider Alice’s role in the original FR thought experiment. With certainty implies

that all measurements accessible to Alice are consistent with her inference that Bob measured

w = fail (while Bob actually measured w = ok) and the existence of a vacuum between them.

Her measurements of the electromagnetic field, at her position, must therefore be consistent

with Bob measuring w = fail and the rest of the assumptions of the experiment. By

superposition, the electric field can be split and measured by Alice as E⃗AA+E⃗AB, where E⃗AA

is the self-consistent electric field generated by Alice’s apparatus measuring w = ok and E⃗AB

is the electric field at Alice generated by Bob’s measurement. Since Alice’s measurements

must be consistent with her inference that Bob measured |fail⟩ and vacuum in between

them, E⃗AB = 0.

It is clear that there is an immediate problem when implementing the Gauss’ Law con-

straint on the electric fields. Since the measurements are stable, the measured electric fields

must be time-independent. Therefore, via Maxwell’s Equations, the electric field is curl-

free and the derivative of a potential Φ. Therefore the Gauss’ Law constraint reduces to

Poisson’s equation, ∇2Φ = ρ, where ρ is the charge density. By superposition, Alice can

definitively state that the potential due to Bob and its derivative vanish in her region, i.e.,

ΦBA = 0, ∇⃗ΦBA = 0. However, the unique solution to this is that the potential due to Bob

everywhere is, ΦB(r) = 0. Therefore if Bob measures ΦBB ̸= 0, the Gauss’ Law constraint

is violated. There is no way to even define the paradox in a gauge-invariant sense.

The escape from this conclusion, in the electromagnetic case, is simple: use detec-

tors/measurement devices that don’t carry a net U(1) charge. This is easy to do since

electromagnetism permits screening [11] due to the existence of both positive and nega-

tive charges. In this case, either outcome of Bob’s measurement would leave no electric

field imprint for Alice to measure, allowing the FR thought experiment to go through as it

was originally proposed. This leaves higher moments (e.g. electric or magnetic dipoles or

quadrupoles) that could still be detected by Alice, but one could in principle cancel those

as well, out to some finite order. At the monopole level, however, since there are no neg-
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ative masses available in general relativity to screen the gravitational field, there are no

measurement systems that are uncharged under the diffeomorphism group. Therefore the

key question is whether such a screening procedure can work for gravitationally charged

measurement devices. The next chapter examines this question in more detail.
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CHAPTER 4

Diffeomorphism-Invariant Observables and the FR Thought Experiment

Similar to the electromagnetic case, gravity also possesses a gauge symmetry: diffeomorphism

invariance. Local fields are not diffeomorphism-invariant. For example, let ϕ(x) be a local,

massive, scalar field. Under a diffeomorphism f : M → M, ϕ(x) transforms as,

ϕ(x) → (f∗ϕ)(x) = ϕ(f−1(x)). (4.1)

Under an infinitesimal transformation generated by a vector field ξµ(x), the diffeomorphism

takes the form, fµ(x) = xµ + κξµ and the variation of the transformed field is,

δϕ(x) = ϕ(f−1(x)) − ϕ(x)

= κξµ∂µϕ(x) +
1

2!
κ2ξµξν∂µ∂νϕ(x) +

1

3!
κ3ξµξνξσ∂µ∂ν∂σϕ(x) + O(κ4)

(4.2)

up to second order in κ =
√

32πG. Thus, local fields are not inherently diffeomorphism

invariant since the variation of the transformed field is non-vanishing. And, similar to the

electromagnetic case, one must construct diffeomorphism-invariant measurements to claim

that the theory can make physical predictions.

One can examine the full diffeomorphism invariance of general relativity but, since the

fields are weak in the FR thought experiment, it will suffice to consider diffeomorphism

invariance in linearized gravity, up to first order in Newton’s constant G. It is therefore

advantageous to work with perturbations around Minkowski space such that the metric is
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given by

gµν = ηµν + κhµν , (4.3)

where ηµν is the background Minkowksi metric and hµν is the metric perturbation.

Any field excitation that is diffeomorphism-invariant must have a vanishing variation

under diffeomorphisms, i.e., for a scalar field

δΦ(x) = 0 (4.4)

under a diffeomorphism. One may construct such an excitation from a dressing V µ(x) and

the local field excitation ϕ(x). Generally, the dressing V expanded to nth order in κ will

contain higher order derivatives, however, this work follows [50] and considers the following

construction, up to first-order in κ

Φ(x) = ϕ(x+ V (x)) = ϕ(x) + V µ(x)∂µϕ(x) + O(κ2). (4.5)

Combining the transformation laws from (4.2) and (4.4) implies that, at first order in κ, the

dressing must transform as

δV µ(x) = κξµ(x), (4.6)

under diffeomorphisms.

One can now determine the form of V µ(x) that allows local field excitations to be

diffeomorphism-invariant. Applying the logic from [11], let V µ(x) be a linear functional

of the metric perturbation over the spacetime volume. The dressing takes the form,

V µ(x) = κ

∫
d4x′fµνσ(x, x′)hνσ(x), (4.7)

where the tensor fµνσ(x, x′) is symmetric in the second and third indices. Enforcement of the

transformation law in (4.6) and the transformation laws for the metric perturbation imply
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that fµνσ(x, x′) must satisfy,

2∂ν′f
µνσ(x, x′) = δ4(x− x′)ηµσ. (4.8)

The function fµνσ(x, x′) determines the structure of the gravitational field that is created by

excitations of the ϕ field. There is freedom in the choice of fµνσ(x, x′), however, this freedom

does not allow for physically inequivalent dressings. For examples of the different choices for

fµνσ(x, x′) see [50].

4.1 Consequences for the FR Thought Experiment

As in the electromagnetic case, the question for the construction of the FR thought experi-

ment is whether there exists an f that has local support given some measurement apparatus.

In GR, there is also a dressing theorem [50], which states that if a matter distribution in a

compact region has non-vanishing Poincare charge, then the gravitational field depends on

the asymptotic metric, i.e., there are no local functions f such that V µ(x) and hence Φ̂(x),

the gauge-invariant operator, is of compact support. Therefore any measurement device that

stores information in, e.g., the energy eigenstate of a detector or the spin of a particle, would

generate a gravitational field that extends to infinity (with some falloff). In this situation,

the problem is the same as the charged electromagnetic case—there is no gauge-invariant

construction of the paradox since the field measured by Alice must be compatible with her

belief that Bob measures w = fail and this would violate at least one of the constraint

equations of GR.

The key question is then: can Bob make a measurement and store information in such

a way that, outside his local region, the gravitational field is indifferent to the results of the

measurement? In other words, is it possible to screen the gravitational field? Gravitational

screening has been investigated by a number of authors. Carlotto and Schoen proved that one

can construct classical solutions to the vacuum Einstein Equations that satisfy the constraint
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equations and have support only in conical regions [51]. This allowed them to build global

solutions by gluing; where two regions of non-trivial gravitational field are separated by

a region of flat space for an arbitrarily long time T . Similar vacuum solutions have been

found that are identical to the Schwarzschild-AdS spacetime outside a bounded region on a

spacelike slice but differ inside [52]. However, such solutions share a generic feature: they

are non-analytic somewhere in the spacetime and, as pointed out in [28], quantum gravity

theories that have unitarity can forbid non-analytic solutions. For the purposes of this work,

the relevant arena to examine this line of reasoning is in the perturbative regime, which has

been explored in [18] and which is paraphrased in Sec. 1.1 and summarized below.

Consider a neighborhood U containing a local state |ψ⟩ and an ϵ-extended neighborhood

Uϵ, such that U ⊂ Uϵ. One can construct, up to first order in κ, a split gravitational dressing

that shields information from observers outside of Uϵ. Specifically, outside Uϵ, the gravita-

tional field is only a function of the total Poincare charges of the fields inside U . Therefore

if two states |ψ1⟩ and |ψ2⟩ share the same Poincare charge, they are indistinguishable to an

outside observer, i.e.,

⟨ψ1| ĥµν |ψ1⟩ = ⟨ψ2| ĥµν |ψ2⟩ (4.9)

for all observers outside Uϵ.

Now ask if such a pair of states can contain information. The issue with charged fields

has already been shown in Ch. 3, so consider uncharged fields that contain information

strictly in the gravitational sector. Let the region U be Bob’s local measuring device. Assign

the states |ψ1⟩ , |ψ2⟩ to |ok⟩ , |fail⟩, and let the information stored in the classically stable

measuring device be stored in two differing energy-momentum tensors inside Bob’s region,

call them T nµν = ⟨ψn| T̂µν |ψn⟩ for n = 1, 2. This then also implies that inside Bob’s region,

the gravitational fields must also differ, i.e., inside Uϵ,

⟨ok| ĥµν |ok⟩ ≠ ⟨fail| ĥµν |fail⟩ . (4.10)
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Furthermore, since the information must be stable according to the assumptions in the

construction of the FR thought experiment, the time derivative ḣµν must vanish. As long as

such a situation is possible then there are no consequences for the FR thought experiment

and gravity, quantum or otherwise, can indeed be neglected.

4.2 Inconsistency of the Weak Field General Relativistic Approximation

The argument above is not self-consistent, however. In order for the linearized, weak-field

approximation to properly reflect gauge invariance, via imposition of the general relativistic

constraint equation, two things need to hold. First, the perturbations hµν that are solutions

to the quadratic action need to be small so that the full action is well approximated by the

quadratic action. Second, the derivatives of the perturbations also must remain small. If

they do not, then one cannot use the quadratic approximation to the general relativistic

action, and corresponding constraint equations, but instead must use a quantum-corrected

effective action that includes higher curvature terms. Note, that there are higher curvature

corrections that are still quadratic in hµν . As an example, consider the addition of a putative,

quantum gravity-induced, subdominant Weyl squared term to the Einstein-Hilbert action

Sgrav = −
∫ √

−gd4x M2
Pl

2
R +

α

2
W 2 (4.11)

where W 2 = WµνσρW
µνσρ and Wµνσρ is the Weyl tensor.

The quadratic action in the Newtonian gauge [53] is then

Squad =
α

4

∫
d4x

[
− ḧijḧij + ḣij∇⃗2ḣij − hij∇⃗4hij

+
M2

Pl

8

(
ḣijḣij + hij∇⃗2hij

)]
(4.12)

where hij are the usual spatial excitations of the metric. Similar expressions hold for the

scalar and vector sectors of hµν as well. Note the presence of terms that are quadratic in the
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field, yet have higher derivatives in both space and time. If derivatives of a putative quadratic

solution in GR (α → 0) become large compared to the Planck scale, then these additional

terms will contribute to the action and the GR approximation is then not self-consistent for

these solutions. Quadratic in field terms containing arbitrary higher derivatives exist as well,

e.g., via the insertion of a term in the Lagrangian with a d’Alembertian between the Weyl

tensors.

Now examine the localization procedure on gravitational states relevant for the FR

thought experiment, i.e., those defined in (4.10), in this context. First, since it is assumed

hµν is time-independent, any time derivatives can be ignored. Now consider the difference

∆hµν = ⟨ok| ĥµν |ok⟩ − ⟨fail| ĥµν |fail⟩ over the whole spacetime. The function ∆hµν is of

compact support, as it is non-zero inside Uϵ and identically zero outside, by construction.

Therefore, ∆hµν can be considered to be a non-analytic bump function. In the linearized ap-

proximation, superposition holds and thus ∆hµν is also a solution to the linearized constraint

equations. If one is to be able to neglect higher curvature terms then the nth derivative of

∆hµν must grow no faster than a polynomial in n. In other words, there exists some mass

scale M < MPl, such that ∂nhµν/∂x
n < Mn. If this is true, the higher curvature terms (with

generic O(1) coefficients) evaluated on the lowest order solutions remain subdominant to the

Einstein-Hilbert term. Only then can the general relativistic approximation and use of the

corresponding constraint equations remain valid.

However, since ∆hµν is a function of compact support and non-analytic, its derivatives

must violate precisely this condition! Real analytic functions, f(x), satisfy the following

property [54]: for each point x0 within the domain of f(x), there exists a neighborhood V of

x0 such that

|∂mf(x)| ≤ m!Cm, (4.13)

for all x ∈ V , where C ∈ R+ and m ∈ N. Non-analytic functions must have at least

one derivative, of order m, that violates (4.13). In fact, an infinite number of derivatives

violate this bound for ∆hµν , a bump function solution to the constraint equations. To see
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this, work by contradiction and assume that only a finite number of derivatives violate this

bound. Thus, there exists some number q such that all qth and higher derivatives of ∆hµν

are analytic. However, the derivative of a bump function is another bump function. Hence,

the qth and higher derivatives cannot be analytic. Therefore, there are an infinite number of

derivatives of ∆hµν that violate the bound (4.13).

The consequence of this argument is that one cannot state that a non-analytic solution to

linearized GR of compact support is an actual solution of quantum gravity. In other words,

there is no way to consistently implement a weak gravity, gauge invariant construction of

a paradox within the framework of general relativity, neglecting higher curvature quantum

gravity corrections.

4.3 Boundary Unitarity vs. Non-Analytic, Localized Solutions

The above argument is analogous to the path leading to the chronology protection conjecture

where a paradox even in low curvature regions leads unavoidably to quantum gravity. Of

course, this does not, by itself, lead to any conclusion on whether or not the construction

is possible in quantum gravity. One has to invoke additional assumptions about quantum

gravity to make progress. The work below examines how the principle of boundary unitarity,

a proposed property of holographic quantum gravity, sheds light on this latter question.

The FR thought experiment generates a paradox by isolating two observers, allowing

each to make measurements with certainty, stably record the results, and then meet. It has

been shown that whether one can formulate this procedure in a gauge-invariant manner is

sensitive to the behavior of higher curvature terms and is hence a question for quantum

gravity. It is illuminating to ask whether there are any other resolutions to paradoxes in

gravitational physics that involve diffeomorphism invariance, non-analytic behavior, and

unitary evolution. Marolf [15] has examined the consequences of diffeomorphism invariance,

which yields a property of quantum gravity known as boundary unitarity. This property has

been proposed as a solution to the infaller paradox of black hole physics [28].
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Consider the classical, diffeomorphism-invariant, general relativistic Hamiltonian

H =

∫
Σ

NµC
µ +H∂ (4.14)

where Nµ are the lapse and shift, Cµ are the constraints, and H∂ is the boundary Hamil-

tonian. At asymptotic times (4.14) generates time translations via Hamilton’s equations.

Let O be an element of the boundary algebra A∂—the algebra of diffeomorphism-invariant

observables that exist on the past/future null infinities. Since A∂ is closed under the Poisson

bracket, the Poisson bracket of O with the constraints vanishes. Hence, the evolution of

diffeomorphism-invariant observables on the past/future null boundary is governed by the

boundary Hamiltonian

∂O
∂t

= {H,O} = {H∂,O}. (4.15)

As pointed out in [28], (4.15) admits solutions that are non-analytic in time, which through

simple propagation would also lead to non-analytic in space solutions. Therefore, one cannot

classically forbid non-analytic solutions.

Can the same be said for quantum gravity? Assuming the quantum gravitational Hamil-

tonian—whatever it may be—is diffeomorphism-invariant, mirroring the structure of (4.14),

and the constraint algebra is closed under the commutator, then the evolution of boundary

observables is given by

∂Ô
∂t

=
1

iℏ
[Ĥ∂, Ô]. (4.16)

Thus, given the above requirements, the evolution of boundary observables is governed by

the boundary Hamiltonian of the theory.

The two evolution equations, (4.15) and (4.16), are similar. However there is a key

difference—while the classical evolution equation admits solutions that are non-analytic in

time, the quantum evolution equation does not. Indeed, the Hamiltonian would be an

element of A∂, as would be the commutator of the Hamiltonian with any other observable.

Thus, (4.16) would be an element of A∂ as well. This implies that the boundary algebra
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associated with quantum gravity is closed under unitary evolution. In particular, quantum

mechanically, the solution to (4.16) for an observable Ô is

Ô(t) = eiĤ∂tÔ(0)e−iĤ∂t. (4.17)

Assuming that Ĥ∂ is self-adjoint and Ô is bounded, (4.17) is an analytic function in time.

The inner product of (4.17) with eigenstates of Ĥ∂ has the capacity to be analytic in time,

however, there are infinite terms in the inner product, which could hide non-analytic behav-

ior. A remedy is to assume Ĥ∂ is bounded from below and then apply an energy cut-off as

an upper bound.

Boundary unitarity forbids non-analytic behavior in time, while the FR thought exper-

iment yields non-analytic behavior on a spatial slice. One can, of course, translate the

non-analytic, spacelike solutions of compact support to the boundary by considering one of

the localized, weak field solutions necessary for the FR thought experiment and allowing

it to propagate outwards. Since the excitation is localized, upon arrival at the boundary,

or in some suitable asymptotic region, it would constitute new information and generate

non-analytic behavior in time. The gravitational degrees of freedom would be static and

consistent with the background spacetime up until some time t, then, upon arrival of the ex-

citation, suddenly change, i.e., behave non-analytically, which would be forbidden by bound-

ary unitarity. Hence, if boundary unitarity holds for quantum gravity, the local excitations

necessary for the FR paradox to even be stated would be forbidden.
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Part II

Energy Cost of Localizing Relational

Quantum Information
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CHAPTER 5

Gaussian States with External Partitions

Gaussian states provide a versatile analytical tool in many areas of physics (cf. [55]). They

get their name from the Gauss function f(x) = e−x
2
, most notably used in many areas of

probability and statistics. In quantum physics, Gaussian states are often associated with

the ground state of the Harmonic oscillator, making them an excellent tool for analyzing

quantum systems.

When constructing Gaussian states, the standard approach assumes the ability to estab-

lish the usual pi, qi basis of an N particle phase space, where i runs from 1 to N . As such, it

implicitly uses an external partition—the division of the overall phase space into subspaces

associated with each particle and the labeling of position and momentum as measured by

some external measurement system. In the language of quantum reference frames, such an

external partition is called a “perfect” quantum reference frame [56]. In such a frame each

single particle Hilbert space is spanned by some continuous set of kets |g⟩ that are completely

distinguishable. In this case, the typical choice is the position basis kets |x⟩, with distin-

guishability implemented as ⟨x|x′⟩ = δ(x′ − x) (or equivalently the momentum basis kets).

This distinguishability is then reflected in the classical p, q phase space in some associated

classical reference frame.

With such a frame, for a system with N particle degrees of freedom, there exists the

classical phase space V ≃ R2N , consisting of the p’s and q’s from above, and its dual

V ∗ ≃ R2N . The system can be quantized by promoting the 2N phase space coordinates to

operators representing observables. These operators can be put in an operator-valued vector
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ξ̂a = (q̂1, q̂2, ..., q̂N , p̂1, p̂2, ..., p̂N). A Gaussian state |ψ⟩, whether it is bosonic or fermionic, is

completely described by its one-point function1,

za = ⟨ψ| ξ̂a |ψ⟩ (5.1)

and its two-point function

Cab
2 = ⟨ψ| (ξ̂ − z)a(ξ̂ − z)b |ψ⟩ . (5.2)

The two-point correlation function can be decomposed into a symmetric piece Gab and an

antisymmetric piece Ωab via

Cab
2 =

1

2

(
Gab + iΩab

)
. (5.3)

All other n-point functions vanish for n > 2. In the case where the one-point function

vanishes—as is when dealing with fermions—all n-point functions vanish for odd n while the

even n-point functions can be determined via Wick’s Theorem [57].

5.1 Bosonic vs. Fermionic Degrees of Freedom

For bosonic and fermionic degrees of freedom, the roles and behavior of Gab and Ωab differ.

Bosonic degrees of freedom are characterized by the commutation relations

[
x̂i, p̂j

]
= iℏδij Î, (5.4)[

x̂i, x̂j
]

= [p̂i, p̂j] = 0. (5.5)

The antisymmetric piece of the two-point function, Ωab, can be isolated via

⟨ψ| ξ̂aξ̂b − ξ̂bξ̂a |ψ⟩ = iΩab (5.6)

1For fermions za = 0.
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and by expressing ξ̂a in terms of the phase space operators it is clear that Ωab is simply the

symplectic form inherited from the classical Poisson brackets after quantization. In other

words, for bosons

Ωab =

 0 −iI

iI 0

 (5.7)

and is not state-dependent. On the other hand,

⟨ψ| ξ̂aξ̂b + ξ̂bξ̂a |ψ⟩ = Gab (5.8)

shows that Gab is a state-dependent quantity for bosons. This dependence is one-to-one, i.e.,

any bosonic Gaussian state can be uniquely specified (up to a phase) by Gab.

Conversely, for fermionic degrees of freedom the (anti)-commutation relations are

{x̂i, x̂j} = {p̂i, p̂j} = ℏδij Î, (5.9)

{x̂i, p̂j} = 0. (5.10)

For fermionic degrees of freedom, the roles and behavior of Gab and Ωab are reversed, but

determined in the same manner as their bosonic counterparts. The symmetric Gab can be

isolated via (5.8). Given the (anti)-commuting nature of fermions, it is clear that Gab is

the symmetric, positive-definite, bilinear form inherited from the classical (anti)-commuting

Poisson brackets after quantization. This implies that Gab takes the form,

Gab =

 I 0

0 I

 (5.11)

and is state-independent. The antisymmetric form Ωab is determined via (5.6), however for

fermions Ωab is now a state-dependent quantity and is in one-to-one correspondence with

each Gaussian state up to a phase.
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5.2 Combined Kähler Structure

While this work will concentrate primarily on fermions, it is useful to do so in a notation that

allows for both bosonic and fermionic analysis. This can be accomplished by unifying the

mathematical description of bosonic and fermionic Gaussian states via Kähler structures. A

Kähler space is a real vector space that is equipped with the following linear operators:

• Metric, a symmetric, positive-definite, bilinear form Gab, with inverse G−1
ab such that

GacG−1
cb = δab ,

• Symplectic form, an antisymmetric, non-degenerate form Ωab, with inverse Ω−1
ab such

that ΩacΩ−1
cb = δab ,

• Complex structure, denoted Jab , satisfies the property Jac J
c
b = −δab .

The triple of these three operators (G,Ω, J) is referred to as a Kähler structure. The three

operators are related via,

Jab = −GacΩ−1
cb = ΩacG−1

cb . (5.12)

It is apparent that bosonic and fermionic Gaussian states have two of the three required

linear operators for a Kähler structure, particularly a metric Gab and a symplectic form Ωab.

However, this is not enough to imply that Gab and Ωab are compatible Kähler structures. It

is required that Jab , defined by Gab and Ωab via (5.12), satisfies the condition J2 = −I for

Gab and Ωab to be compatible Kähler structures.

Bosonic Gaussian states have an associated metric Gab that is state-dependent and a

symplectic form Ωab that is state-independent. Assuming both Gab and Ωab are Kähler

compatible, the complex structure Jab , that relates Gab and Ωab, is therefore a unique state-

dependent quantity. Similarly, fermionic Gaussian states have a metric Gab that is state-

independent and a symplectic form Ωab that is state-dependent. Again, assuming Gab and Ωab

are Kähler compatible, the complex structure that relates the two is also state-dependent in

a similar way. Thus, for both bosonic and fermionic Gaussian states, the complex structure
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Jab is uniquely determined by the state, up to a phase. Additionally, Jab can be used as an

ideal label for either bosonic or fermionic Gaussian states.

Moreover, Jab can be used to explicitly define an operator that annihilates a specified

Gaussian state. Given the Kähler structure, every Gaussian state |ψ⟩ solves the equation

1

2
(δab + iJab ) (ξ − z)b |ψ⟩ = 0, (5.13)

such that |ψ⟩ generates the unique Jab used to define the operator.

5.3 Annihilation and Creation Operators

While Gaussian states can be described using sets of phase space operators q̂i, p̂i it is also con-

venient to describe Gaussian states using the Fock basis construction and annihilation/cre-

ation operators.

As is familiar from introductory quantum mechanics, a Hilbert space representation of the

algebra of observables in the Fock basis can be defined by a set of annihilation and creation

operators âi, â
†
i , where i = 1 . . . N for a system with N particles, respectively. For a system

of bosonic particles, the canonical commutation relations are imposed on the annihilation

and creation operators,

[
âi, â

†
j

]
= δij Î, (5.14)

[âi, âj] =
[
â†i , â

†
j

]
= 0. (5.15)

For a system of fermionic particles, (anti)-commutation relations are imposed on the anni-

hilation and creation operators,

{
âi, â

†
j

}
= δij Î, (5.16)

{âi, âj} =
{
â†i , â

†
j

}
= 0. (5.17)
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For both bosons and fermions the vacuum state |0, . . . , 0⟩ is the state annihilated by for all

âi where i = 1, . . . , N ,

âi |0, . . . , 0⟩ = 0. (5.18)

Orthonormal basis states are given by |n1, . . . , nN⟩ where ni ∈ N for bosonic systems and

ni ∈ {0, 1} for fermionic systems. The action of the annihilation and creation operators on

these states satisfies,

âi |n1, . . . , nN⟩ =
√
ni |n1, . . . , ni − 1, . . . , nN⟩ , (5.19)

â†i |n1, . . . , nN⟩ =
√
ni + 1 |n1, . . . , ni + 1, . . . , nN⟩ (5.20)

and they can be obtained from the vacuum state via

|n1, . . . , nN⟩ =
N∏
i=1

(
(â†i )

ni

√
ni!

)
|0, . . . , 0⟩ . (5.21)

To relate the annihilation and creation operators to the operator-valued vector ξ̂a one

needs to define vectors via ∈ V ∗
C in a complex vector space V ∗

C such that, for a ξ̂a in some

basis,

âi = viaξ̂
a, (5.22)

â†i = v∗iaξ̂
a. (5.23)

Given the relation between Gab,Ωab and ξ̂a from (5.8) and (5.6), respectively, it is easy to

see that the ξ̂a associated with bosonic systems inherits the commutation relations and the

(anti)-commutation relations for fermionic systems. Along with the algebras for bosonic and

fermionic annihilation and creation operators, this implies that there are conditions that the
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vectors via must satisfy. For bosons, the via must satisfy,

Ωabviavjb = 0, (5.24)

Ωabv∗iavjb = iδij. (5.25)

And similarly for fermions the via must satisfy,

Gabviavjb = 0, (5.26)

Gabv∗iavjb = δij (5.27)

Using these conditions a set of vectors uaj , dual to via, can be constructed to define a basis

transformation between the Fock basis (â1, â
†
1, . . . , âN , â

†
N) and ξ̂a. The vectors uai are defined

by

uai = iΩabv∗ib (5.28)

for bosons and

uai = Gabv∗ib (5.29)

for fermions. Given a set of uai the transformation between the Fock basis and ξ̂a is

ξ̂a = za +
N∑
i=1

(
uai âi + uai â

†
i

)
, (5.30)

with za = 0 for fermions. This work will move back and forth between the x̂, p̂ and â, â†

bases via

â =

√
ω

2

(
x̂+

i

ω
p̂

)
. (5.31)

In the following discussions—results are, of course, basis independent.
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5.4 Example Construction for a Fermionic Gaussian State

As a simple example, consider the ground state, |0⟩, of the fermionic harmonic oscillator

Ĥ = iωx̂p̂ = ω(â†â − ââ†)/2. For ease of calculation, work in the Fock basis so that the

operator-valued vector is ξ̂a = (â, â†). The Hamiltonian can be written using ξ̂a in the

following manner, Ĥ = 1
2
habξ̂

aξ̂b. It follows that the Hamiltonian matrix hab and the metric

Gab for the system take the form,

hab =

 0 iω

−iω 0

 , and Gab =

0 1

1 0

 , (5.32)

respectively. The state-dependent symplectic form associated with the ground state of the

fermionic harmonic oscillator is

Ωab =

0 −i

i 0

 . (5.33)

Thus the linear complex structure is,

Jab = ΩacG−1
cb =

−i 0

0 i

 . (5.34)

It is easy to see that J2 = −I, implying that Gab and Ωab are Kähler compatible. Given the

form of the complex structure Jab the operator from (5.13) takes on the form

1

2
(δab + iJab )ξ̂b |0⟩ =

â
0

 |0⟩ = 0. (5.35)

Since (5.35) annihilates the ground state of the fermionic harmonic oscillator, the ground

state is a Gaussian state. By similar means, one can also show that the first excited state of
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the fermionic harmonic oscillator, |1⟩, with associated linear complex structure,

Jab =

 i 0

0 −i

 , (5.36)

is also a Gaussian state.

5.5 Squeezing, Displacement, and General Transformations of Gaussian States

A general one-particle Gaussian state2 can be constructed by acting the squeezing operator

Ŝ(r) = exp
[
r
(
ââ− â†â†

)]
(5.37)

and the displacement operator

D̂(α) = exp
[
â†γ − γ∗â

]
. (5.38)

on either the fermonic ground state |0⟩ or first excited state |1⟩. The squeezing operator Ŝ

is parameterized by a squeezing parameter r ∈ R, where r → ∞ indicates a highly localized

state3. Due to the Grassmann properties of fermionic states, the squeezing operator preserves

both the ground and first excited state, i.e., Ŝ(r) |0⟩ = |0⟩ and Ŝ(r) |1⟩ = |1⟩, respectively,

for all values of the squeezing parameters r. The squeezing operator is unitary, satisfying

Ŝ(r)Ŝ†(r) = Ŝ†(r)Ŝ(r) = Î. The displacement operator D̂ is parameterized by the variable γ,

the amount of phase space displacement. For bosons γ is a complex number and for fermions

γ is Grassmannian. The action of the displacement operator on, specifically, the fermionic

ground state or the first excited state produces a coherent state4, i.e., D̂(γ) |0⟩ = |γ⟩ or

2The most general Gaussian state can be constructed via the action of the squeezing and displacement
operators on a thermal state, that is inherently Gaussian.

3Generally, the squeezing operator is a function of a complex parameter ζ = reiϕ, where ϕ is an arbitrary
phase. For simplicity, ϕ = 0 has been assumed.

4A coherent state can be constructed by acting the displacement operator on the bosonic ground state
as well.
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D̂(γ) |1⟩ = |γ′⟩ for all values of the displacement parameter γ [58]. Here, the unprimed

coherent state is an eigenstate of the annihilation operator while the primed coherent state

is an eigenstate of the creation operator. Like the squeezing operator, the displacement

operator is also unitary, satisfying D̂(γ)D̂†(γ) = D̂†(γ)D̂(γ) = Î.

Given a Gaussian state, parameterized by its complex structure |J⟩, the action of the

squeezing and displacement operators on the state, i.e., D̂(γ)Ŝ(r) |J⟩ = |J ′⟩, produces a new

Gaussian state |J ′⟩5. To see this, begin by defining the unitary operator,

Û(r, γ) = D̂(γ)Ŝ(r), (5.39)

The action of (5.39)) on ξ̂a results in,

Û †(r, γ)ξ̂aÛ(r, γ) = Ra
b ξ̂
b + za, (5.40)

where Ra
b is the matrix representation of the squeezing transformation Ŝ(r) and za is the

matrix representation of the displacement transformation D̂(γ) [59]. Let |J ′⟩ = Û(r, γ) |J⟩

be a state generated by the action of the unitary operator (5.39) on a Gaussian state |J⟩

with associated complex structure J = ΩG−1. From (5.40) it follows that the metric and

symplectic form associated with the state |J ′⟩ are given by, G′ = RGR⊤ and Ω′ = RΩR⊤,

respectively. It follows that the complex structure associated with |J ′⟩ is J ′ = Ω′G′−1 =

RΩR⊤(R−1)⊤G−1R−1 = RJR−1, where R−1 is the inverse transformation associated with

R. For |J ′⟩ to be a Gaussian state, the associated complex structure must satisfy J ′2 = −I.

Since J ′ = RJR−1 it is easy to see that J ′2 = RJR−1RJR−1 = RJ2R−1. Thus, since |J⟩

is Gaussian, J2 = −I, and since RR−1 = I by the definition of unitarity, it follows that

J ′2 = −I, meaning |J ′⟩ is a Gaussian state. Generally, unitary transformations composed of

the squeezing and displacement operators will map any bosonic or fermionic Gaussian state

to another bosonic or fermionic Gaussian state, respectively [59].

5Such states can be either bosonic or fermionic.
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5.6 Localized States as Squeezed Gaussian States

In the position basis of a rigged Hilbert space, eigenkets of the position operator, or states

|x0⟩ such that x̂ |x0⟩ = x0 |x0⟩, can be represented as δ-functions: ⟨x|x0⟩ = δ(x − x0). A

δ function is a limit of a sequence of normalized, narrowing Gaussian functions. Reducing

the width of a Gaussian function is, however, simply squeezing the state. Hence completely

localized δ-function states are equivalently Gaussian squeezed states in the infinitely squeezed

limit. As discussed previously, Gaussian states can be constructed via the action of the

squeezing operator (5.37) and displacement operator (5.38) on the Fock vacuum, i.e., |J⟩ =

D̂(γ)Ŝ(r) |0⟩. The position basis equivalence of such states to Gaussian functions centered

around some x0 and the equivalency between the position eigenkets |x′⟩ and |J⟩ in the

minimal uncertainty, infinitely squeezed limit is given in detail in equations 18-47 of [60].

The necessary result presented here is,

|χx′⟩ =
(ω
π

)1/4
exp [−ix′p̂] exp

[
−1

2

(
â†
)2] |0⟩ , (5.41)

where ℏ = m = 1. The state |χx′⟩ is the Gaussian state that, in the infinitely squeezed

limit, becomes a position eigenstate. Since the momentum basis of a rigged Hilbert space

shares the same properties as its position basis counterpart, the eigenkets of the momentum

basis can be written as shifted, squeezed Gaussian states, as shown in equation 48 of [60],

presented below.

|ρp′⟩ =

(
1

πω

)1/4

exp [ip′x̂] exp

[
1

2

(
â†
)2] |0⟩ . (5.42)

An important consequence of the Gaussian description of the position basis is the struc-

ture of the inner product between eigenkets |χx⟩ and |χx′⟩. Given the Gaussian description

of these eigenkets in (5.41), the inner product may be written as,

⟨χx|χx′⟩ =
(ω
π

)1/2
⟨ψ| exp [−i(x′ − x)p̂] |ψ⟩ , (5.43)
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where the state |ψ⟩ = exp
[
−
(
â†
)2
/2
]
|0⟩. It is clear the inner product can be simplified by

inserting a resolution of identity,

⟨χx|χx′⟩ =
(ω
π

)1/2 ∫
dp e−i(x

′−x)p ⟨ψ|p⟩ ⟨p|ψ⟩ . (5.44)

To determine the projection of |ψ⟩ onto the momentum basis states, it is easiest to write

the momentum eigenkets as functions of the annihilation/creation operators acting on the

Fock vacuum. The resulting state has the same form as (5.42), i.e., |p⟩ → |ρp⟩. It is a

straightforward calculation to show that ⟨ρp|ψ⟩ = (1/πω)1/2 exp[−p2/4ω]. Substituting this

into (5.44) the inner product has the expected structure,

⟨χx|χx′⟩ =
1

b
√
π
e−(x−x′)2/(2b)2 , (5.45)

where b = (1/2ω)1/2 is the width of the distribution. The inner product is a Gaussian

in the difference of positions. In the limit where the width of the distribution becomes

infinitesimally small, i.e., b→ 0, the completely localized structure of the position eigenkets

is recovered.
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CHAPTER 6

Entanglement Extraction

Entanglement is considered to be a key, physical resource in the realm of quantum infor-

mation. It can be manipulated and transformed in various ways for a multitude of appli-

cations [61, 62]. Using local operations and classical communication (LOCC), two parties,

who share an entangled state, can enact a protocol that changes the state while keeping the

overall amount of entanglementi.e., the entanglement entropy, or any other entanglement

measure—the same over the course of the protocol. An example of entanglement manip-

ulation can be seen in its exploitation to communicate quantum information over large

distances—as is the case in quantum teleportation [63]. Another example is entanglement

distillation, wherein two parties that share a large number m of copies of an entangled state,

use LOCC to create as many n copies of a maximally entangled state, such as a Bell state.

While these cases are classic examples of entanglement transformations a case that is of

particular interest is when entanglement is transferred between different subsystems. The

transfer of entanglement between subsystems is known as entanglement extraction and will

be useful in the context of localizing quantum information.

The goal of entanglement extraction is to transfer entanglement between two systems.

Particularly, entanglement between states in one system is transferred onto initially, un-

entangled states in another. However, the extraction protocol must be chosen with care

since no new entanglement should be introduced into the total system. If new entanglement

was introduced, then the entanglement contained in one system would not necessarily be

transferred to the other, rather, both systems could become entangled and the total amount
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of entanglement within the total system would increase. Thus, extraction protocols must

utilize LOCC since it does not generate new entanglement within the system, a necessary

requirement to show that entanglement is transferred between the subsystems.

Suppose Alice and Bob, denoted by A and B respectively, have access to a shared system

with Hilbert space HAB = HA⊗HB. This shared system, considered to be the source

system, is physical, contains at least one copy of some entangled state |ψ⟩AB, and cannot

be modified in any way. That is, Alice and Bob are not allowed to perform operations that

solely act on any state in the source system. Alice and Bob also have access to local ancillary

subsystems with Hilbert spaces HA′ and HB′ , where the subscripts denote the association

with Alice’s and Bob’s subsystems, respectively. The ancilla subsystems are considered to

be the target subsystems where the entanglement extracted from the source system will be

stored. Initially, the target systems are not entangled. The composite Hilbert space that

describes the total target system is HA′B′ = HA′ ⊗HB′ and the total Hilbert space for the

source + target systems is given by

HAA′BB′ = HAB ⊗HA′B′ . (6.1)

Since no new entanglement should be introduced into the source or target system, Alice

and Bob can only use LOCC to manipulate the total system. Note that, by enacting LOCC

on the total system, Alice and Bob are still following the previous rule stating they are not

allowed to directly manipulate the source system. By using a LOCC protocol, described

in more detail below, Alice and Bob attempt to distill as many m high-fidelity copies of

some Bell state as possible. The states created in the target Hilbert space are entangled

states shared between the two target subsystems. Concurrently, the LOCC process indi-

rectly transforms the entanglement found in the source system, leaving the source system in

some state |ϕ⟩AB. Since no new entanglement has been generated during this process, the

entanglement needed to generate high-fidelity copies of the Bell state must come from the
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source system. This implies that the final state of the source system has a lower entangle-

ment entropy compared to the initial state. In the work below, it is the case that the source

system becomes completely unentangled.

An interesting and useful consequence of the entanglement extraction procedure is its

energy cost. Let ĤAB represent the Hamiltonian of the source system and assume that the

local operations carried out on the target subsystems are done with no energy cost. It follows

that the source + target system Hamiltonian is thus, Ĥ = ĤAB ⊗ ÎA′B′ . Since the source

system, and by extension its Hamiltonian, cannot be modified, the Hamiltonian Ĥ is the

Hamiltonian before and after the extraction procedure. The difference in energy expectation

values before and after extraction is,

∆E = ⟨ψ|AB Ĥ |ψ⟩AB − ⟨ϕ|AB Ĥ |ϕ⟩AB . (6.2)

Thus, as long as the states before and after extraction produce different energy expectation

values, there will be a change in the energy of the system as a result of the extraction

protocol. This change is discussed in more detail below.

6.1 The Entanglement Extraction Protocol

As mentioned above, the entanglement extraction process requires a source system S that

contains entangled states and two target subsystems that are initially unentangled. While

the location of these systems is generally unimportant, target subsystems are chosen to be

located at spatial infinity. The source system is composed of Alice’s and Bob’s localized

subsystems A and B, with associated Hilbert spaces HA and HB, respectively. Similarly,

the two target subsystems 1 and 2 have associated Hilbert spaces H1 and H2, respectively.

Since the source system is composed of local subsystem Hilbert spaces, the composite Hilbert

space is factorizable, i.e., HS = HA⊗HB, and similarly for the composite Hilbert space of

the target subsystems after the extraction of entanglement from the source system to the
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target subsystems has occurred, i.e., HF = H1⊗H2. Factorizability allows one to define

entanglement on the composite Hilbert spaces.

Suppose the source system contains a set of entangled states and the target subsystems

each contain one state1. Initially, the total system is in the product state,

ρ̂I = ρ̂1 ⊗ ρ̂2 ⊗ |Ψ⟩S ⟨Ψ|S , (6.3)

where |Ψ⟩S is the initial, entangled state of the source system and ρ̂1, ρ̂2 are the initial

density matrices of the two target subsystems. Entanglement is extracted by “swapping”

the unentangled modes of the target subsystem with the entangled modes of the source

system. Once the swapping procedure is complete the source subsystems A and B are

unentangled and the target subsystems 1 and 2 are now entangled.

Entanglement is extracted from the source system by a set of “swap” operations—two

unitary operations Û1 and Û2 that map one target mode to one mode inside the source

system [35]. For example, the target modes, (â1, â
†
1) and (â2, â

†
2), are swapped with one

mode inside the source system, (âA, â
†
A) and (âB, â

†
B), using the following relations,

Û †
1 â1Û1 = âA, Û †

1 âAÛ1 = â1,

Û †
1 â

†
1Û1 = â†A, Û †

1 â
†
AÛ1 = â†1,

(6.4)

while Û2 swaps (â2, â
†
2) and (âB, â

†
B). Note that these types of unitary operations always ex-

ist due to bit symmetry [64]. After the swap operations, the two target subsystems become

entangled. The entanglement content of the state depends on the type of source and target

subsystems, their couplings, and resources such as energy available to implement the extrac-

tion. To ensure the entanglement of the two target modes was preexisting in the system and

not created by the swap operations, the source modes are restricted so they either commute

or anti-commute depending on whether the source system is a set of bosons or fermions, re-

1Such states can be either bosonic or fermionic.
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spectively. For example, suppose the source system is a set of entangled fermions. It follows

that the restrictions on the fermionic modes are,

[âA, âB]+ = [âA, â
†
B]+ = [â†A, âB]+ = [â†A, â

†
B]+ = 0. (6.5)

The conditions like those in (6.5) ensure that the entanglement of the two target modes was

not created by the swap operations between the target and source modes [65].

An initial configuration can be chosen such that the source system is a product state

between the two modes and the rest of the system

|Ψ⟩S = |ψ⟩AB ⊗ |ϕ⟩R , (6.6)

where |ψ⟩AB is the initial entangled state comprised of states localized to Hilbert space HA

and HB, and |ϕ⟩R is the ground state for the rest of the system. When the target modes

and source modes are swapped the total system is placed in the state

ρ̂F = |ψ⟩ ⟨ψ|12 ⊗ ρ̂A ⊗ ρ̂B ⊗ |ϕ⟩ ⟨ϕ|R , (6.7)

where |ψ⟩12 is the final, entangled state of the two target systems and ρ̂A and ρ̂B are the final

states of Alice’s and Bob’s subsystems which compose the source system. Notice that the

rest of the source system is unaffected by the extraction process and remains in the ground

state |ϕ⟩R.

Hackl and Jonsson assume that the initial source system S possesses entanglement in its

ground state. Hence after any entanglement extraction the states ρ̂A and ρ̂B must be in a

higher energy state. It follows that the energy expectation value has increased due to the

extraction process—this is the cost [35].
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6.2 The Energy Cost of Entanglement Extraction

The energy cost of entanglement extraction is given by the difference between the expectation

value of the source system’s Hamiltonian before and after the extraction, i.e.,

∆E = Tr
(
ρ̂A ⊗ ρ̂B ⊗ |ϕ⟩ ⟨ϕ|R Ĥ − |Ψ⟩ ⟨Ψ|S Ĥ

)
. (6.8)

The Hamiltonian Ĥ of the source system may be coupling different modes of the system,

however for the calculation of the energy cost, only the parts acting on the modes in A,B

are relevant. Therefore, the energy cost of entanglement extraction is solely determined by

ĤAB acting on only the A,B modes2 i.e.,

∆E = Tr
(
ρ̂A ⊗ ρ̂BĤAB

)
− Tr

(
|ψ⟩ ⟨ψ|AB ĤAB

)
. (6.9)

If one wishes to minimize the extraction energy cost then two requirements need to be

fulfilled. First, one must choose the source modes to be partner modes, i.e., âB = âĀ and

â†B = â†
Ā

. Such a choice maximizes the extracted entanglement. If non-partner modes are

chosen, then the mixed-state entanglement between the target modes is never larger than

between the mode and its partner. Second, the final partner modes of the source system,

due to the swapping process, will be in the ground states of the single-mode restrictions ĤA

and ĤB of Ĥ onto the individual partner modes. For bosonic and fermionic modes, these

states are Gaussian. For more details see [35], particularly the discussion in Section 3.2.

For every mode in a given multi-particle Gaussian state system, there exists a mode that

2The values of Ĥ and ĤAB acting on various states may be related of course. For example, if one
started from a fully diffeomorphism invariant theory then all physical states would satisfy the Hamiltonian
constraint and the energy cost would vanish. In this case, it is unclear how to define the entanglement
as there is no natural, local partition into subsystems. In contrast, this work starts with a non-relational
system and rewrites it relationally. There is still a reflection of the diffeomorphism invariant behavior when
analyzing entanglement extraction under the G-twirl (for details see Chapter 7), as twirling over translations
in a situation where translation invariance enforces the equality of the before and after Hamiltonians also
destroys the possibility of entanglement extraction. For related work that does treat translation invariance
in the language of quantum reference frames and constrained systems, see [66]
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shares all of the first mode’s entanglement [35]. This implies that one can always find partner

modes within multi-particle Gaussian systems. Thus, as long as the entanglement extraction

protocol can be performed, one can always choose partner modes to minimize the energy

cost of entanglement extraction. If one does not choose partner modes, the energy cost of

entanglement extraction is not necessarily minimized. In the work below, the partner modes

are not explicitly chosen for the entanglement extraction protocol. Thus, the calculated

energy cost is not necessarily minimized. Since this work merely seeks to demonstrate when

there is an energy cost to this process for various relational approaches, minimizing the

energy cost is beyond the scope of this work. Whether or not that cost is minimized is left

for future research.
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CHAPTER 7

Quantum Reference Frames and the G-Twirl

Reference frames are one of the most fundamental concepts in physics. Relativity defines

reference frames as abstract mathematical coordinate systems, whose properties such as

origin, orientation, scale, etc. are set by physical measurements made by an observer, relative

to the observer’s dynamics. This implies that reference frames are physical objects and can

thus be quantized. The quantum mechanical counterpart to the classical reference frame is

often referred to as a quantum reference frame [67, 68]. Just like classical reference frames,

quantum reference frames are implicit in the definition of quantum states. For example,

spin states are defined with respect to a frame with a specified orientation, often referred to

as the lab frame. Thus, two labs with different orientations will define physically different

spin-up states.

Quantum states, defined with respect to one quantum reference frame, may be written in

terms of quantum states defined with respect to a different quantum reference frame, acted

on by a reference frame transformation. Similar to their classical counterparts, quantum

reference frame transformations are operator representations of group elements that map

points between different coordinate systems. However, a unique property of quantum refer-

ence frame transformations is the ability to change a quantum superposition into quantum

entanglement and visa versa. That is to say, a quantum superposition state in one frame

can appear as an entangled state in another [68]. This implies the existence of an abso-

lute quantum reference frame, antithetical to principles of relativity, particularly general

covariance.
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To be compatible with general covariance and, by extension, diffeomorphism invariance,

quantum states must be defined in a relational framework. However, as is demonstrated

below, if the Hilbert space of a quantum state, defined with respect to some external frame

is repartitioned into a center-of-mass/relational partition, the dependence on the external

frame, gets placed into the center-of-mass degrees of freedom. Thus the state is still frame-

dependent. For a quantum state to be frame-independent, as is required by diffeomorphism

invariance, frame-dependent degrees of freedom need to be removed. This can be done by

group averaging the quantum state over all possible diffeomorphism, otherwise known as a

G-twirl. Since the diffeomorphism group is infinite, this work has chosen to use translations

as a toy model.

7.1 Entanglement Generation in a Relational Basis

Given that |x⟩ is the limit of a highly squeezed Gaussian state, one can use approximate

position basis states without leaving the Gaussian framework. More importantly, this work

investigates how switching to a center-of-mass/relational partition affects the entanglement

of Gaussian states. First, consider two particles 1 and 2, localized at some points x1 and x2

respectively, with respect to some external reference frame. This state can be written in an

external partition as |ψ⟩ = |x1⟩ ⊗ |x2⟩ 1. It is clear this state is a product state between the

two particles without any entanglement.

In diffeomorphism invariant theories there is, of course, no external frame dependence.

One common approach to preserving diffeomorphism invariance in quantum mechanics is

to move to a relational framework, where outcomes are defined in relation to others and

probabilities become conditional (for a review, see [69]). In this framework, a simple toy

model that captures the relational aspect of a fully diffeomorphism invariant system by

requiring that the quantum mechanical system be translationally invariant is constructed.

Intuitively, since only position states are considered, forcing a system to be translationally

1For the rest of this work, |x⟩ will be used as a shorthand to refer to a highly localized Gaussian state
around x, rather than an exact position eigenstate.

56



invariant will erase any absolute position information, leaving only translationally invariant

relational degrees of freedom, such as x1 − x2, in the reduced Hilbert space. The first step

on this path is to define new operators and a corresponding basis that captures the center-

of-mass and relational degrees of freedom. This basis will be referred to as the relational

basis, in contrast to the external or absolute basis defined by the position states |x⟩.

The states and operators with respect to the relational basis can be constructed via

transformation from the external frame and partition. The explanation below follows the

presentation in [70]. For a system with N degrees of freedom, the position and momen-

tum operators of the external partition, {x̂k, p̂k}Nk=1 are fully specified by the center-of-mass

position and momentum operators {x̂cm, p̂cm} and the relational position and momentum

operators {x̂i|1, p̂i|1}Ni=2. The transformation between the positions and momenta of the ex-

ternal partition and the positions and momenta in the center-of-mass/relational partition

are given by,

x̂cm =
1

M

n∑
k=1

mkx̂k, (7.1a)

p̂cm =
n∑
k=1

p̂k, (7.1b)

x̂i|1 = x̂i − x̂1 for i ∈ {2, n}, (7.1c)

p̂i|1 = p̂i − m̃ip̂cm for i ∈ {2, n}, (7.1d)

where M =
∑n

k=1mk is the total mass of the system and m̃i = mi/M is the mass fraction

of the ith particle. The canonical commutation relations for the operators in the center-of-

mass/relational partition follow from the commutation relations between operators of the

external partition, i.e., [x̂cm, p̂cm] = [x̂i|1, p̂i|1] = i with all other combinations vanishing.

Notice that the relational position and momentum operators are defined with respect to

particle 1, however, any other particle may be chosen with the same effect.

Transformations between the external partition and the center-of-mass/relational par-
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tition may engender entanglement if at least one of the particles is in a superposition in

the external partition. As an example, consider a two-particle composite state where, for

simplicity, only particle one is in superposition with respect to the external partition2,

|ψ12⟩ =
1√
2

(|x1⟩ + |x′1⟩) ⊗ |x2⟩

=
1√
2

(|x1⟩ ⊗ |x2⟩ + |x′1⟩ ⊗ |x2⟩) .
(7.2)

Here |x1⟩ , |x′1⟩ ∈ H1 are the possible position states of particle 1 and |x2⟩ ∈ H2 is the

position state of particle 2. It is clear no entanglement exists between degrees of freedom

in the external partition. Now transform into the center-of-mass/relational partition, with

particle 1 considered to be the “reference” particle from which the position of particle 2 will

be defined. The center-of-mass and relational position states for the two components of the

superposition differ and |ψ⟩ becomes

|ψ12⟩ → |ψ12,cm⟩ =
1√
2

(
|xcm⟩ ⊗ |x2|1⟩ + |x′cm⟩ ⊗ |x′2|1⟩

)
, (7.3)

where the prime denotes the center-of-mass and relational position states between |x′1⟩ and

|x2⟩. Now there is bipartite entanglement between the center-of-mass and the relational

position states [68].

There is a subtle difference in the n-particle case when compared to the two-particle case,

which can be demonstrated with the three-particle case. Consider a three-particle composite

state in the external frame where, for simplicity, only the reference particle is placed in

2Gaussian states in the highly squeezed limit have been chosen, to allow for a trivial normalization.
Generally, the Gaussian nature of the states does not allow for such a non-trivial normalization since ⟨x|x′⟩ ≠
δ(x− x′).

58



superposition,

|ψ123⟩ =
1√
2

(|x1⟩ + |x′1⟩) ⊗ |x2⟩ ⊗ |x3⟩

=
1√
2

(|x1⟩ ⊗ |x2⟩ ⊗ |x3⟩ + |x′1⟩ ⊗ |x2⟩ ⊗ |x3⟩) .

(7.4)

As in the previous example |x1⟩ , |x′1⟩ ∈ H1 are the possible position states of particle 1,

the reference particle, |x2⟩ ∈ H2 is the position state of particle 2, and |x3⟩ ∈ H3 is the

position state of particle 3. Currently, there is no entanglement between any of the degrees

of freedom. Different combinations of the states will generally have different centers-of-mass

positions and different relational positions, however, we would like to note that there exist

cases where the center-of-mass and/or relational positions between two or more combinations

are equal. After the transformation into the center-of-mass/relational partition, the state

|ψ123⟩ is described as,

|ψ123⟩ → |ψ123,cm⟩ =
1√
2

(
|xcm⟩ ⊗ |x2|1⟩ ⊗ |x3|1⟩ + |x′cm⟩ ⊗ |x′2|1⟩ ⊗ |x′3|1⟩

)
, (7.5)

where the primes denote center-of-mass and relational position states that utilized |x′1⟩ in

their definitions. Here there is tripartite entanglement between both the center-of-mass and

relational degrees of freedom, which differs from the two-particle case. In general, with

different transformations and n-particles entanglement can be generated between various

parts of the partitioned Hilbert space—one is not restricted to center-of-mass/relational

bipartite entanglement.

Below the generalization of (7.2) and (7.4) will be used extensively for calculational sim-

plicity. For a system of N particles, where one particle is placed in a location superposition
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with respect to the external frame, the state is given by

|ψ1,...,N⟩ =
1√
2

(|x1⟩ + |x′1⟩) |x2⟩ ⊗ . . .⊗ |xN⟩

=
1√
2

(|x1⟩ ⊗ |x2⟩ ⊗ . . .⊗ |xN⟩ + |x′1⟩ ⊗ |x2⟩ ⊗ . . .⊗ |xN⟩) (7.6)

where |x1⟩ , |x′1⟩ ∈ H1 are the possible position states of particle 1 and |xi⟩ ∈ Hi is the

position state of the ith particle. The state in (7.6) written in the center-of-mass/relational

partition is given by

|ψ1,...,N⟩ → |ψ1,...,N,cm⟩

=
1√
2

(|xcm⟩ ⊗ |xrel⟩ + |x′cm⟩ ⊗ |x′rel⟩)
(7.7)

where |xrel⟩ = |x2|1⟩ ⊗ . . . ⊗ |xN |1⟩ represents the N − 1 remaining relational degrees of

freedom. Notice that the state in (7.7) is an n-partite entangled state and our discussion

regarding the nature of entanglement within the two partitions still holds.

7.2 The G-Twirl

The entangled states in the center-of-mass/relational partition are not yet fully relational,

in that the center-of-mass coordinate contains degrees of freedom relative to the external

partition. To remove the center-of-mass degree of freedom one can group average over

translations, which will reduce the state to one containing only relational degrees of freedom.

The procedure from quantum information theory for group averaging over quantum reference

frames is known as the G-twirl [67].

Consider a quantum state represented by the density matrix ρ̂ ∈ H in some Hilbert space

H, described with respect to some external reference frame. Changes to the orientation of

the quantum state ρ̂ with respect to the external reference frame are performed via the action

of some unitary operation Û(g) ∈ H on the state ρ̂. Here, Û(g) is the unitary representation
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of a group element g ∈ G, where G is the group of all possible changes of the external

reference frame. It is important to note that in the definition of the G-twirl, G is a compact

group [67], however, as is shown below, G can be non-compact albeit yielding slightly more

complex results [37]. The result of the G-twirl is the description of the quantum state that

does not contain any information about the external frame. This description is achieved by

averaging over all possible orientations of ρ̂ with respect to the external frame, where every

possible orientation is weighted equally,

ρ̂R = G[ρ̂] ≡
∫
dgÛ(g)ρ̂Û †(g), (7.8)

where dg is the Haar measure of the group G and ρ̂R ∈ H is the relational description of ρ̂.

Since all elements of the group that transforms the external frame are averaged over, any

relation to the external reference frame that was used to describe the state ρ̂ is removed. Only

the relational degrees of freedom within the system remain, i.e., the information unaffected

by changes in the external reference frame. For example, suppose ρ̂ describes a composite

state of two particles such that H = H1⊗H2. After a G-twirl is performed, the remaining

information contains the relational degrees of freedom between the two particles. Note that

the G-twirl is done via the product representation Û(g) = Û1(g) ⊗ Û2(g), where Û1(g) ∈ H1

and Û2(g) ∈ H2 are the unitary representations of the group G in each Hilbert space.

Since translation invariant states are of interest here, the focus will be on the G-twirl

operation as it relates to translations. The presentation below follows from the work of [70].

For more details, the reader is encouraged to review the original work. Additionally, the

reader is encouraged to see the related approach, where G-twirls on physical states can

be understood as group averaging [71–73]. The action of the three-dimensional translation

group g = x ∈ R3 on the external frame in the external partition, H =
⊗N

n=1Hn is given by

Û(x) =
N⊗
n=1

e−ixp̂n . (7.9)
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In the center-of-mass/relational partition, Hcm⊗HR, the action of the translation group is

given by

Û(x) = e−ixp̂cm ⊗ ÎR. (7.10)

To carry out the G-twirl over translations, first express the state ρ̂ in the center-of-

mass/relational partition, in the momentum basis,

ρ̂ =

∫
dpcmdp

′
cmdpRdp

′
R ρ(pcm, p

′
cm, pR, p

′
R) |pcm⟩ ⟨p′cm| ⊗ |pR⟩ ⟨p′R| , (7.11)

where |pcm⟩ and |p′cm⟩ are the possible basis states of the center-of-mass momentum and

similarly, |pR⟩ and |p′R⟩ are the basis states of the N − 1 relational momentum vectors. It

follows that the G-twirl over the possible translations of the external frame is given by

GT [ρ̂] =

∫
dxÛ(x)

[∫
dpcmdp

′
cmdpRdp

′
Rρ(pcm, p

′
cm, pR, p

′
R) |pcm⟩ ⟨p′cm| ⊗ |pR⟩ ⟨p′R|

]
Û †(x)

=

∫
dxdpcmdp

′
cmdpRdp

′
Rρ(pcm, p

′
cm, pR, p

′
R)e−ixp̂cm |pcm⟩ ⟨p′cm| eixp̂

′
cm ⊗ |pR⟩ ⟨p′R|

= (2π)3
∫
dpcmdpRdp

′
R ρ(pcm, pcm, pR, p

′
R) |pcm⟩ ⟨pcm| ⊗ |pR⟩ ⟨p′R| . (7.12)

The definition of the Dirac delta function (2π)3δ(p− p′) ≡
∫
dxeix(p−p

′) has been used to go

from the second to the third equality. It is clear that the G-twirl operation is effectively the

trace over the center-of-mass degrees of freedom in the center-of-mass/relational partition,

i.e., GT [ρ̂] = I Trcm ρ̂, where I denotes a divergent constant originating from integral over

the probability function ρ(pcm, pcm, pR, p
′
R) in (7.12). The new state GT [ρ̂] is not normalized,

since there are infinitely many states to trace over, due in part to the noncompact nature of

the group of translations. However, the divergent nature of I will be inconsequential to the

physics of interest for reasons discussed below.
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7.3 Removal of the external partition via a G-twirl over translations

As an example, perform a G-twirl on the state in (7.3) over the set of one-dimensional

translations. Since the relational state has been shown to be GT [ρ̂] = I Trcm ρ̂ it follows that

GT [|ψ12,cm⟩ ⟨ψ12,cm|] = I Trcm[|ψ12,cm⟩ ⟨ψ12,cm|] = I
(
|x2|1⟩ ⟨x2|1| + |x′2|1⟩ ⟨x′2|1|

)
. (7.13)

Here the primes refer to center-of-mass and relational states defined with |x′1⟩ in (7.2). Note

that any normalization factors are absorbed into I. The state is now completely relational,

one that only contains relational information and no information regarding the external

frame. Furthermore, the entanglement between the center of mass and the relational degrees

of freedom has been removed and the relational degrees of freedom are now in a mixed state.

Notice that the G-twirl destroys the entanglement that existed between the center-of-mass

and relational degrees of freedom.

A slightly more interesting example is the G-twirl of the three particle state in (7.5), over

the set of one-dimensional translations. It follows that,

GT [|ψ123,cm⟩ ⟨ψ123,cm|] = I Trcm[|ψ123,cm⟩ ⟨ψ123,cm|]

= I
(
|x2|1⟩ ⟨x2|1| ⊗ |x3|1⟩ ⟨x3|1|

+ |x′2|1⟩ ⟨x′2|1| ⊗ |x′3|1⟩ ⟨x′3|1|
)
. (7.14)

Even though the original pure state was tripartite entangled, the G-twirl has removed

all the entanglement from the system. This is clear since the post G-twirl state is a sepa-

rable, mixed state over the center-of-mass/relational partition. Moreover, this implies that

constructing a purely relational state by discarding information about the external frame

removes any entanglement as well. As is demonstrated below, this phenomenon makes for

an interesting, case study of the entanglement extraction protocol as applied to relational

degrees of freedom.
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CHAPTER 8

Gauge Induced External Frames via the Z-Model

The labeling of spacetime points provided by an external frame has no physical meaning.

This implies that states in the external partition don’t come from any specific measurement

of an explicitly defined, physical observable, rather they can be thought of as a choice of a

particular gauge. As was demonstrated in Section 7.3, the G-twirl effectively removes this

gauge choice by integrating out a state’s dependence on the external frame, leaving only

relational information behind.

Alternatively, one can put the external partition into a relational framework by corre-

lating each position state |x⟩ with some dynamical observable. This will give the arbitrary

labeling meaning since the position states are now linked to the value of said observable.

However, such observables must be chosen carefully. For example, let the Hamiltonian Ĥ

be the ”reference” observable. Since Ĥ is fundamentally a generator of time translations,

it has no intrinsic dependence on position, however. This allows Ĥ to be translationally

invariant, which goes back to the G-twirl scenario described in the previous chapter—in

such a case there would be no way to correlate |x⟩ with a value of H. Instead, the values of

the Hamiltonian for some field configurations need to be in one-to-one correspondence with

the position states |x⟩. To give Ĥ this position dependence the Z-model construction will

be employed. This chapter will provide a brief overview of the construction and for more

details, the reader is encouraged to review the original work [29].

The original construction of the Z-model was meant to localize non-local, diffeomorphism-

invariant observables in low-energy, effective quantum gravity. For observables to be consid-
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ered diffeomorphism-invariant they must form a commuting subalgebra with the constraints

of the theory brought on by diffeomorphism-invariance. In the context of quantum gravity,

these constraints are the Hamiltonian and momentum constraints [29]. As a result, any nat-

urally diffeomorphism-invariant observable, or constructed via application of a dressing [47]

necessarily extends throughout the entirety of the spacetime, i.e., observables at different

locations do not commute with themselves.

Given a particular quantum state, the Z-model allows one to define the location of a local

operator by specifying it relative to a structure determined by the expectation value of a

pseudo-local operator. This gives physical meaning to the labeling provided by the external

partition. The first step is to introduce a dynamical, massless, auxiliary Z-field with a local

field operator relative to the external partition Ẑ(x). The field will be assumed to be in

some state |ψZ⟩ and the expectation value of Ẑ(x) with |ψZ⟩ is given as

Z(x) = ⟨ψZ | Ẑ(x) |ψZ⟩ . (8.1)

Since any coordinate system is monotonically increasing, |ψZ⟩ must be chosen such that

the expectation value is also monotonically increasing, implying that the gradient of the

expectation value ⟨Ẑ⟩ over the desired portion of spacetime is everywhere nonvanishing.

Given such a monotonic map, one can always make a coordinate transformation on the

underlying external frame to define x such that Z(x) = x if one wishes. In other words, the

coordinate system can now be completely defined by observations on some dynamical field

in a particular state.

Note here that the position labeling, even though it formally involves the quantum state,

is an expectation value that satisfies classical equations of motion. Expectation values do not

automatically follow the classical equations of motion. In single-particle quantum mechanics,

this can be seen when the potential V is a polynomial function of x̂. The expectation value

⟨V̂ ⟩ = ⟨x̂n⟩, while what would appear in the classical equations of motion is ⟨x̂⟩n and this
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is only equal for certain states (cf. [74]). In field theory, a similar discrepancy between

expectation values and classical equations of motion unfolds if the Z field is, for example,

self-interacting. In this implementation of the Z-model, however, the background Z-field is

in vacuum and free, e.g., the electromagnetic potential between two charged plates. Hence

the equations of motion are linear in Z and the expectation value will follow the classical

equations. Hence, while there is some quantum state of the Z-field, the quantum nature of

Ẑ can be essentially ignored in the following. For the moment, assume that such a field and

operator exists.

In the above, the Z-field itself was used as an observable that can be correlated with

position. There are other operators one could use that are linear in Ẑ. In this case, the most

straightforward way to construct a useful operator is to modify the Hamiltonian to introduce

a coupling between the Gaussian states and the Z-field, e.g., Ĥint = ψ̂Ẑ or Ĥint = ψ̂ψ̂Ẑ term,

where ψ is a field of the original model, and Z is the auxiliary field used to define the exter-

nal frame. Since the auxiliary field is dynamical and spontaneously breaks the translation

invariance of the Hamiltonian, the fundamental underlying translational invariance of the

theory remains intact. With such a construction, the expectation value of the Hamiltonian

for a Gaussian state |χx⟩ localized around x, i.e., the position eigenstates in the previously

mentioned limit gets correlated with the position. In other words

⟨χx, ψZ | Ĥ |χx, ψZ⟩ = H0 + αZ(x), (8.2)

where H0 is a constant piece from the free part of the Hamiltonian and the x in Z(x) is

the position the localized Gaussian state |χx⟩ is peaked around. The parameter α contains

expectation values of Gaussian operators with respect to the state |χx⟩. If one assumes

these expectation values are all equal neglecting backreaction (as there is no underlying

violation of translation invariance in the Gaussian state sector), α is just a constant. Since

Z(x) is monotonically increasing by construction and correlated with position by (8.1), the
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expectation value of the Hamiltonian, the observable of interest, therefore also gets correlated

with the external position. This allows one to define the external position variable in terms

of the expectation value of the Hamiltonian, thereby making the external position coordinate

relative to a dynamical field, a well-defined observable.

To concretely implement this idea within the framework, a gradient for the expectation

value of Ẑ needs to be generated. Consider a system within a parallel plate capacitor. A

system of charged particles, with individual charge q located within the capacitor, will be

represented by a family of Gaussian states. The plates, separated by distance L and with

charge density ±σ on the left/right plates respectively, will produce an everywhere (inside the

plates) non-vanishing electric field E. The potential field Aµ, therefore, has a non-vanishing

gradient everywhere within the capacitor (in an appropriate gauge). Therefore the Z-model

can be incorporated into the framework via the usual electromagnetic coupling, which does

not affect the Gaussian nature of the allowed states of the theory due to the form of the

interaction term. Since the potential field has a non-vanishing gradient between the plates,

it will be monotonic within the capacitor, allowing one to map the position x to the value

of the electric potential of a particle at point x, i.e., the expectation value of the interaction

term in the Hamiltonian. Particularly, the energy of a Gaussian state, centered around x is

given by,

⟨Ĥint(x)⟩ = qσ ⟨x⟩ , (8.3)

the expectation value of the electromagnetic coupling term.

Consider the three-particle state in the center-of-mass/relational partition shown in (7.5).

When determining the energy expectation value of this state in the Z-model, one finds

that, while the relational position eigenstate is independent of the electric potential, the

center-of-mass eigenstate is not. Hence, there is a 1-to-1 correspondence between xcm and

the observable Ĥint(xcm). Therefore, information about the external frame is unable to be

removed. Moreover, since the coupling is with the expectation value, then as long as it is

assumed there is never entanglement between the auxiliary field and the Gaussian states one
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can think about entanglement extraction between the Gaussian states themselves. In other

words, as long as the auxiliary field is coupled semi-classically, the entanglement extraction

analysis for relational systems is still possible without worrying about Z-field entanglement.

However, note that this assumption can be relaxed and investigated further in any future

work.
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CHAPTER 9

The Localization of Relational Quantum Information

It is now time to turn to the process of entanglement extraction for relational systems, using

the pieces developed in previous chapters. In particular, the work below demonstrates how

the entanglement extraction protocol from Chapter 6 can be implemented alongside the G-

twirl from Chapter 7 and the Z-model from Chapter 8. This chapter also demonstrates how

to relate these concepts.

9.1 Lack of Entanglement Extraction in G-Twirled Relational Partitions

The work in Section 7.1 demonstrated that a pure, non-entangled state in some external

partition can become entangled by writing the state in the center-of-mass/relational parti-

tion [37,70]. By writing the state in the center-of-mass/relational partition, there is entangle-

ment between the center-of-mass degrees of freedom and the relational degrees of freedom.

For examples see (7.3), (7.5), or (7.7). However, the transformation into the center-of-

mass/relational partition does not produce a purely relational state since the center-of-mass

degrees of freedom, which couple to the external frame, still exist. For the purposes of this

work, the energy cost of entanglement extraction for purely relational degrees of freedom is

of particular interest. The absolute position of the center-of-mass degrees of freedom, in this

case, xcm, is unknown without specifying some measurement system (reference frame) that

is capable of differentiating different xcm’s. However, if xcm is translationally invariant, then

such a measurement system cannot exist. Therefore the center-of-mass degrees of freedom

are not measurable degrees of freedom, rather they are gauge degrees of freedom. These
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gauge degrees of freedom can be removed by G-twirling over the center-of-mass degrees of

freedom. As was shown in Section 7.3 the G-twirl will produce a purely relational state but

at the cost of destroying the entanglement within the center-of-mass and relational degrees of

freedom. After the G-twirl is done, the relational degrees of freedom are left in a mixed state

that is not entangled. Therefore there is no possibility of an energy cost of entanglement

extraction—the entanglement extraction protocol cannot even be performed.

9.2 Entanglement Extraction via the Z-Model

The work in Chapter 8 demonstrated that the Z-model tied the absolute position of a state

with the configuration of an auxiliary field. This implies that the coordinate system used

to define the absolute position is no longer a gauge degree of freedom. Furthermore, since

the coordinate system now depends on the configuration of the auxiliary degree of freedom,

the external partition has been “relationalized”. The entanglement extraction protocol from

Chapter 6 can now be examined for purely relational states. This is in contrast to the

use of the G-twirl, where the G-twirl process creates a relational state by destroying the

entanglement between the relational and non-relational parts of the state.

In the framework with the Z-model, the absolute position of charged particles is given

meaning by the gradient electromagnetic vector potential inside a parallel plate capacitor.

This means that the two location configurations in the superposition found in (7.2), (7.4),

or (7.6) will have different energies. As a simple example, consider the superposition state

found in (7.2). Since |x1⟩ and |x′1⟩ will interact differently with the Z-model coupling in the

Hamiltonian, the energy for the components of the superposition state would be,

E = ⟨x2| ⊗ ⟨x1| Ĥ12 |x1⟩ ⊗ |x2⟩ , (9.1)

E ′ = ⟨x2| ⊗ ⟨x′1| Ĥ12 |x′1⟩ ⊗ |x2⟩ . (9.2)

Since |x1⟩ and |x′1⟩ are now physically different states, E ̸= E ′. The same principle is appli-
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cable to n particles, where at least one particle is in a location superposition. Furthermore,

these energy differences are unchanged by the choice of partition of the Hilbert space. There-

fore, one will see the same effect in the center-of-mass/relational partition as well. Since there

is entanglement and an energy difference the entanglement extraction protocol is able to be

performed as prescribed and results in a non-vanishing energy cost.

Let the n-particle initial state in the center-of-mass/relational partition from (7.7) be the

initial entangled state of the source system,

|ψI⟩ = |xcm⟩ ⊗ |xrel⟩ + |x′cm⟩ ⊗ |x′rel⟩ (9.3)

is relational. This state written as a density matrix is ρ̂I = |ψI⟩ ⟨ψI |. After the extraction

process, the system will be left in a mixed state

ρ̂F = |xcm⟩ ⟨xcm| ⊗ |xrel⟩ ⟨xrel| + |x′cm⟩ ⟨x′cm| ⊗ |x′rel⟩ ⟨x′rel| (9.4)

In Hackl and Jonson’s work, the final state of the source system is a statistical mixture of

states. As such, the final energy will be a statistical average of the energy for the state

|xcm⟩ ⊗ |xrel⟩ and the state |x′cm⟩ ⊗ |x′rel⟩. Since only one state is considered, the final state

will not be mixed but rather be either the primed or the unprimed state.

Unlike the scenario of Hackl and Jonsson, the initial state is not in the ground state,

by definition. In order to even run the Z-model, the position of the particles needs to be

correlated with different energies via the Hamiltonian interaction. This means that any state,

other than the single “ground state” position state, at the location of one of the plates, has

a higher energy. Hence the extraction process won’t yield a minimum energy, but instead an

energy difference, as was the resource used in the Z-model to establish the non-gauge nature

of the external partition. The energy difference is given by

∆E = Tr
[
ρ̂F Ĥ

]
− Tr

[
ρ̂IĤ

]
. (9.5)
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No matter the final state, the energy difference is non-vanishing so there will be a net

energy transfer to/from the target modes for extracting entanglement from this relational

system. Since the final state will be measured in either the primed or unprimed location,

there is an energy change for localizing the relational quantum information contained in the

state. Note the connection between entanglement extraction and how the system is made

relational. In the first approach, when any local information is thrown out, there is no

way to perform any quantum information process related to localization or entanglement

extraction at the end. And indeed, the protocol fails. In the second, when the location is

made relational via the Z-model, the necessary change to the Hamiltonian also automatically

enables the extraction protocol to occur. The two processes were locked together.

Of course, these results are only possible inside the capacitor. Outside the capacitor,

where the electric field used for the Z-model does not exist the entanglement extraction

protocol does not work, since there is no way to “relationalize” the states. This implies

that there is a limited domain where the entanglement extraction protocol works. This

is appropriate for a relational set-up with finite experimental configurations. Outside the

capacitor, the G-twirl is required to construct relational states, since there is no auxiliary

field with a monotonic gradient to use for the Z-model. The question then becomes, how can

one relate the Z-model with the entanglement extraction protocol to the G-twirl without the

entanglement extraction protocol? Below, it is shown that the G-twirl can be obtained as a

limit of the Z-model via the framework of positive operator valued measurements (POVM).

9.3 From G to Z via POVM

Heuristically, from the time-energy uncertainty relation, the time it takes to make a mea-

surement scales as ∆t ∼ 1/∆E, where ∆E is the uncertainty in the energy of the system [75].

Thus, any physically realizable system has some innate uncertainty in its energy. Therefore,
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resolving the position in a finite time has some inherent inaccuracy since,

⟨∆x⟩ ∼ ⟨∆Ĥint(x)⟩
qσ

. (9.6)

The expression in (9.6) is a result of considering the uncertainty in the position defined

in the Z-model, i.e., the uncertainty of (8.3). It is clear from the above relationship that

when the charge on the plates of the capacitor decreases, the uncertainty in x increases. In

other words, there must be a limit where the Z-model produces complete uncertainty about

the position. If one were to keep only relational degrees of freedom, this limit should also

reproduce the G-twirl. Such a transition can be constructed via the framework of POVMs.

As a reminder, POVMs are a set of positive semi-definite Hermitian matrices {P̂m}, where

m is the value of each measurement, on a Hilbert space H, that sums to the identity, i.e.,

for every measurement m, ∑
m

P̂m = Î. (9.7)

Generally the exact form of each P̂m is unknown, however for the purposes of this work, it

is convenient to assume the operators describe perfect measurements, i.e., P̂m = |m⟩ ⟨m|,

where |m⟩ is a measurement eigenstate with eigenvalue m. Given a pure state, |ψ⟩ and a set

of POVMs P̂m, the probability |ψ⟩ is in the |m⟩ state when measured is,

p(m) = ⟨ψ| P̂m |ψ⟩ = Tr(ρ̂P̂m), (9.8)

where ρ̂ = |ψ⟩ ⟨ψ| is the density matrix associated with the state |ψ⟩ and the trace is over the

eigenstates of the POVM operator. For mixed states, the probability is solely given by the

trace over the product of the density matrix and the POVM operators. In the case where the

measurement operator is constructed from continuous variables, the trace is replaced with

an integral over the possible eigenstates of the POVM operator.

Through the lens of POVMs, the energy expectation value of the detector, given a par-
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ticular center-of-mass of the particle system is given by,

⟨Ĥint(x)⟩ =
∑
j

Ej(xcm)p(xcm) (9.9)

where Ej(xcm) is a map between the center of mass of the system and the energy read by the

detector. Assume that the detector has a minimum uncertainty. That is, assume that when

the detector makes an energy measurement, the true energy of the system is placed into

bins Ej(xcm). The true energy of the system is then within the bin energy and the energy

uncertainty, i.e., Ej(xcm) + ∆E. In the continuum limit of, the probability of measuring the

state with a center of mass of xcm within one particular bin is given by,

p(xcm) =

∫ xcm,i+∆x

xcm,i

dx′′cm ⟨x′′cm|ψ⟩ ⟨ψ|x′′cm⟩ . (9.10)

The notion of a perfect measurement is given by P̂x′′cm = |x′′cm⟩ ⟨x′′cm|. The state |ψ⟩ will

be taken to be the n-particle entangled state in the center-of-mass/relational partition from

(7.7). It follows that the reduced density matrix containing only relational degrees of freedom,

constructed by tracing over the center-of-mass degrees of freedom, is represented by,

ρ̂rel =

∫ xcm,i+∆xcm

xcm,i

dx′′cm [⟨x′′cm|xcm⟩ ⟨xcm|x′′cm⟩ |xrel⟩ ⟨xrel|

+ ⟨x′′cm|xcm⟩ ⟨x′cm|x′′cm⟩ |xrel⟩ ⟨x′rel|

+ ⟨x′′cm|x′cm⟩ ⟨xcm|x′′cm⟩ |x′rel⟩ ⟨xrel|

+ ⟨x′′cm|x′cm⟩ ⟨x′cm|x′′cm⟩ |x′rel⟩ ⟨x′rel|] . (9.11)

In the limit where the charge on the plates goes to zero, qσ → 0, the uncertainty of the

position measurement becomes infinite, ∆x → ∞. This implies that the integral in (9.11)

is now over all space instead of two arbitrary bins of the detector. Since the integral is over
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all space, the reduced density matrix simplifies to

ρ̂rel = ⟨xcm|xcm⟩ |xrel⟩ ⟨xrel| + ⟨x′cm|xcm⟩ |xrel⟩ ⟨x′rel|

+ ⟨xcm|x′cm⟩ |x′rel⟩ ⟨xrel| + ⟨x′cm|x′cm⟩ |x′rel⟩ ⟨x′rel| . (9.12)

The results of the inner products are Gaussians given by (5.45). In the highly localized limit,

i.e., b → 0 is considered, then the inner products become delta functions. It is easy to see

that since xcm ̸= x′cm the second and third terms will vanish and the first and fourth terms

will remain, albeit with a divergent coefficient. It follows that,

ρ̂rel = N (|xrel⟩ ⟨xrel| + |x′rel⟩ ⟨x′rel|) , (9.13)

where N is divergent. Notice that this result matches the G-twirl result from 7.3.

In the limit where the charge on the plates becomes strong, qσ → ∞, the uncertainty of

the position measurement becomes zero ∆x→ 0. However, for these purposes is sufficient to

consider ∆x to be finite. As a consequence, one cannot utilize the resolution of identity as

was done previously since the integral is over a finite subset of xcm. Using the inner product

from (5.45) the reduced density matrix becomes,

ρ̂rel =
1

b2π

∫ xcm,i+∆xcm

xcm,i

dx′′cm

[
e−(x′′cm−xcm)2/2b2 |xrel⟩ ⟨xrel|

+e−(xcm−x′′cm)2/4b2e−(x′′cm−x′cm)2/4b2 |xrel⟩ ⟨x′rel|

+e−(x′cm−x′′cm)2/4b2e−(x′′cm−xcm)2/4b2 |x′rel⟩ ⟨xrel|

+e−(x′′cm−x′cm)2/2b2 |x′rel⟩ ⟨x′rel|
]
. (9.14)
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After integrating the coefficients are written as,

ρ̂rel =
1

b
√

2π

[(
erf

(
xcm − xcm,i

b
√

2

)
− erf

(
xcm − xcm,i − ∆xcm

b
√

2

))
|xrel⟩ ⟨xrel|

+e−(xcm−x′cm)2/8b2
(

erf

(
xcm + x′cm − 2xcm,i

b
√

8

)
− erf

(
xcm + x′cm − 2(xcm,i + ∆xcm)

b
√

8

))
× (|xrel⟩ ⟨x′rel| + |x′rel⟩ ⟨xrel|)

+

(
erf

(
x′cm − xcm,i

b
√

2

)
− erf

(
x′cm − xcm,i − ∆xcm

b
√

2

))
|x′rel⟩ ⟨x′rel|

]
,(9.15)

where erf denotes the Error function. When the position states become highly localized,

i.e., b → 0, the uncertainty of the detector becomes small,i.e., ∆x → 0. In this limit (9.15)

becomes,

ρ̂rel =
1

b
[Θ(xcm − xcm,i) − Θ(xcm − xcm,i − ∆x)] |xrel⟩ ⟨xrel|

+
1

b
[Θ(x′cm − xcm,i) − Θ(x′cm − xcm,i − ∆x)] |x′rel⟩ ⟨x′rel| , (9.16)

where Θ(x) denotes the Heaviside step-function. The cross-terms have vanished since the

exponential becomes a delta function in the highly localized limit and xcm ̸= x′cm. When

the measured center-of-mass position is within a bin of the detector one of the coefficients

of (9.16) are nonzero. As the energy of the system is increased the measured result will be

close to xcm,i, i.e., ∆x→ 0. This means that the Θ-functions will become closer making the

entire coefficient infinitesimally narrow and infinitely tall. The end result will be a mixed

state with a density matrix

ρ̂rel = δ(xcm − xcm,i) |xrel⟩ ⟨xrel| + δ(x′cm − xcm,i) |x′rel⟩ ⟨x′rel| , (9.17)

matching the results from the Z-model in the sense of (9.4) after a center of mass measure-

ment.
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CHAPTER 10

Summary and Outlook

A full theory of quantum gravity requires compatibility between quantum theory and general

covariance. However, diffeomorphism-invariant observables, a consequence of general covari-

ance, can be inherently non-local while observables in quantum theory are local, leading to

tension. The work presented in this dissertation explored two aspects of this tension. Par-

ticularly, how a typical quantum information paradox using local operators cannot be made

diffeomorphism invariant in a self-consistent, low-energy manner, and how the (related) re-

lational frameworks of the G-twirl and Z-model affect the energy cost of localizing non-local

quantum information.

The FR thought experiment generates a paradox between two local observers in the

absence of gravity. However, any thought experiment, especially those that draw deep con-

clusions about quantum mechanics, should employ gauge-invariant observables to ensure that

the conclusions are gauge-invariant and thus physical. Part I discussed the implementation

of diffeomorphism invariance, the gauge symmetry of general relativity, on the observables

in the FR thought experiment under the assumptions of the experiment, at first order in

Newton’s constant. Contrary to expectations, the necessary solutions of a perturbative con-

struction were sensitive to quantum gravity due to their non-analytic nature. This result

is similar to the results of other paradoxes in weak-field gravity. The paradox in the FR

thought experiment can be argued to be ill-posed if quantum gravity forbids non-analytic,

bulk solutions, similar to how the principle of boundary unitarity forbids non-analytic solu-

tions in time [28]. The paradox also requires a quantum gravitational analysis, even starting
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from weak field gravity, analogous to how semi-classical gravity breaks down even in low

curvature spacetimes with closed timelike curves and grandfather paradoxes [26].

Note that no individual piece of physics used was inherently not self-consistent. Without

gravity, the local excitations necessary for the FR experiment are perfectly valid. Similarly,

the construction of diffeomorphism-invariant observables, at first order in Newton’s constant,

is perfectly well defined. It is only the combination of the two that leads one to difficulty.

Specifically, when one combines certainty, which implies exact knowledge of the gravitational

field on a hypersurface, stability, which implies that the knowledge can be kept immutably

in a time-independent manner, and a discrepancy in gravitational observations between two

separated observers does one find that the resulting construction cannot be made diffeomor-

phism invariant in a way that is not sensitive to quantum gravity. Furthermore, if quantum

gravity satisfies boundary unitarity, then there would be no possible construction of the FR

thought experiment that is gauge invariant.

There is one more similarity with the infaller paradox. An additional way to “resolve” the

paradox in the FR thought experiment is with local excitations. Using the same assumptions

about certainty and stability as before, let Alice and Bob classically record two different mea-

surements from the same experiment, resulting in their respective, local stress-energy tensors

to differ. It follows that Alice’s and Bob’s spacetime regions are described by differing lo-

cal metrics, gAµν for Alice and gBµν for Bob. Assuming a vacuum between Alice and Bob, one

could solve the respective constraint equations to extend their metric solutions uniquely onto

the three-dimensional spacelike hypersurface at some time t. Of course, one can’t do this

globally, and therefore along some (otherwise arbitrary) 2D surface γ that intersects every

curve between Alice and Bob one must have a discontinuity in the metric. The metric that

describes the total spacetime is then gµν = Θ(x)gAµν + Θ(−x)gBµν , where, for convenience, the

boundary surface γ has been chosen to exist at x = 0. Since the metric is discontinuous,

substituting it into the Einstein equations would generate a divergent stress-energy tensor

along γ, similar to a firewall. This would be the necessary energy momentum configuration
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to keep local excitations while maintaining gauge invariance. However, this is not an en-

dorsement of the “solution”, but rather an argument that the construction itself cannot be

made gauge invariant and that such a solution would amount to a misunderstanding of the

quantum gravitational Hilbert space.

Part II implemented the localization of quantum information as an entanglement extrac-

tion protocol in relational systems with Gaussian states. One might expect that when full

translation invariance is implemented via the G-twirl, leaving only relational states, local-

ization can’t matter and there should be no notion of an entanglement extraction process.

This is indeed the case, as the G-twirl not only wipes out information on the external frame,

it also naturally wipes out any entanglement amongst center-of-mass and relational degrees

of freedom that were present in the external partition. The resultant mixed state has no

entanglement to extract.

In contrast, if one keeps the external partition information but implements it relationally

via a Z-model, then there is entanglement that can be extracted and states can be localized.

In this scenario, however, the implementation of the Z-model itself creates a Hamiltonian

in which there is an energy difference between the initial (entangled) and final (localized,

unentangled) states. Hence the entanglement extraction procedure as outlined in Hackl

can be run as expected. It is expected that a similar outcome would be present if one

used different otherwise conserved quantities than the energy to label states—entanglement

extraction would always require some net gain or loss of some resource (for example charge

or angular momentum). Furthermore, it was found there exists a map between the two

relational constructions, which can be implemented in the language of POVMs.

The work described in Part II broke the translation invariance and hence the degeneracy

of the Hamiltonian via a simple dynamical method imposed by hand, that of a Z-model, or

external field. However, gravitational self-interactions would also in principle lead to a non-

degenerate Hamiltonian for the initial and final states. In this type of scenario, the extraction

and localization process would result in the following: (A) the amount of entanglement
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extracted being proportional to the gravitational self-energy difference of the two states, and

simultaneously, (B) the system becoming more localized in space. This qualitatively reflects

black hole thermodynamics and other holographic approaches connecting entanglement and

gravitational dynamics (see [28] for an example). Whether or not implementing such a

localization/extraction protocol in this framework quantitatively matches black hole physics

is left for future work.
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