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collected in May 2018, October 2018, May 2019 and October 2019. Note the 

different y-axis scales in the Pleasant and St. John plots. Refer to the text for 

explanation of the empirical fitting calculations. Theoretical results calculated 

using observed salinity, pH, and pKa values of 4.0 (red line), 5.0 (orange line) 

and 6.0 (blue line) are shown to illustrate pKa influence. .................................. 124 
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ABSTRACT 

 

ALKALINITY AND BUFFERING IN NEARSHORE, COASTAL, AND SHELF WATERS 

 

By 

 

Christopher W. Hunt 

University of New Hampshire 

 

 As anthropogenic climate change continues to elevate the amount of carbon 

dioxide (CO2) in the Earth’s atmosphere, the absorption of a large portion of this CO2 by 

Earth’s oceans has resulted in a steady decrease in pH. The consequent phenomenon 

of ocean acidification (OA) is a result of shifts in the carbonate chemistry system of the 

ocean- a system which can be analytically described by several factors, including total 

alkalinity (TA).  TA in the oceans has been measured for over a century, but analytical 

and operational constraints have limited these measurements in time and space. 

Additionally, recent work has highlighted gaps in our knowledge of the species which 

collectively comprise TA.  This dissertation describes efforts to examine TA through 

several novel applications: by deploying an automated TA analyzer aboard a survey 

vessel to map East Coast USA TA distributions, using the same analyzer in a long-term 

fixed coastal location to build a timeseries and examine seasonal biogeochemical 

dynamics, and measuring the concentrations and properties of the poorly understood 

organic component of TA in two Gulf of Maine estuaries. 
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 East Coast regional distributions of salinity (S) and TA generally agreed with prior 

findings, but linear TA:S regressions varied markedly over time and deviated from 

previously developed models. This variability is likely due to a combination of biological, 

seasonal, and episodic influences and indicates that substantial errors of ±10-20 μmol 

kg−1 in TA estimation from S can be expected due to these factors. This finding has 

likely implications for numerical ecosystem modeling and inorganic carbon system 

calculations. New results presented in Chapter 1 provide refined surface TA:S 

relationships, present more data in space and time, and improve TA modeling 

uncertainty.  

 Coastal timeseries observations were collected hourly over 28 months 

representing all seasons between May 2016 and December 2019. Results presented in 

Chapter 2 indicated that endmember mixing explained most of the observed variability 

in TA and dissolved inorganic carbon (DIC), concentrations of which varied strongly with 

season. For much of the year, mixing dictated the relative proportions of salinity-

normalized TA and DIC as well, but a fall season shift in these proportions indicated that 

aerobic respiration was observed, which would decrease buffering (β-H) by decreasing 

TA and increasing DIC. However, fall was also the season of weakest statistical 

correspondence between salinity and both TA and DIC, as well as the overall highest 

salinity, TA and β-H. Potential biogeochemically-driven β-H decreases were 

overshadowed by increased buffering capacity supplied by coastal ocean water. A 

simple modeling exercise showed that mixing processes controlled most monthly 

change in TA and DIC, obscuring impacts from air-sea exchange or metabolic 

processes.  Advective mixing contributions, more than biogeochemically-driven 
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changes, are critical to observe when evaluating local estuarine and coastal ocean 

acidification. 

 Chapter 3 describes the first comparison study of both organic alkalinity (OrgAlk) 

distributions and acid-base properties in contrasting Gulf of Maine estuary-plume 

systems: the Pleasant (Maine USA) and St. John (New Brunswick CA).  Four surveys of 

each estuary were conducted between May 2018 and October 2019. Substantial 

amounts of OrgAlk were measured in each estuary, whose distributions were 

sometimes not conservative with salinity. Two measures of OrgAlk produced 

consistently differing results, indicating acid-base characteristics that may be 

inconsistent with the definition of TA.  OrgAlk and dissolved organic carbon (DOC) 

concentrations varied seasonally in the St. John Estuary, but not in the St. John. The 

fraction of TA represented by OrgAlk ranged from a maximum of 78% at low salinity in 

the St. John Estuary to less than 0.4% at the coastal ocean endmember. While the 

range of St. John OrgAlk concentrations was comparable to other studies, the St. John 

Estuary demonstrated a broader distribution. The acid dissociation constant (pKa) of the 

estuary samples was modeled according to a combined speciation and  mixing 

approach, while the organic carbon acid dissociation constant (pKDOC) was estimated 

using a separate method. Results showed general agreement, but with some notable 

exceptions in the St. John estuary. OrgAlk modeling results from the Pleasant Estuary 

were more consistent than the St. John, despite St. John OrgAlk, DOC and pH results 

exhibiting much less seasonal variability. The mean OrgAlk pKa was higher in the 

Pleasant than in the St. John, while the mean Pleasant pKDOC was higher or lower than 

that in the St. John depending on which OrgAlk analysis approach was employed. 
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Application of a bulk pKa or pKDOC to model OrgAlk from more common measurements 

such as pH, salinity, or DOC may offer promise (as in the Pleasant), but should be 

undertaken with caution as variability can pose challenges (as in the St. John). 

 Future work should blend the analyses described in the chapters of this 

dissertation. For example, by collecting discrete samples aboard the survey vessel or at 

the coastal laboratory organic alkalinity contributions could be used to refine carbonate 

system calculations. Regional shifts in TA:S could be used to differentiate local and 

remote coastal endmember TA shifts. While this work utilized novel TA and OrgAlk 

analyses in three specific applications, the applicability of these analyses is broad and 

offers the potential to greatly enhance monitoring efforts and ecosystem biogeochemical 

studies.
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INTRODUCTION 

 

The work presented in this dissertation was conducted during a period of great 

change in the global environment, including changes in the oceans which cover more 

than two-thirds of the planet and provide vital ecosystem services such as food, 

transportation, temperature regulation, element and nutrient cycling, and recreation. 

Human activities have increased the amount of anthropogenic carbon dioxide (CO2) 

stored in the atmosphere, leading to a cascade of effects upon Earth’s ecosystems and 

the human population which relies on them (IPCC 2014). One of these effects is ocean 

acidification (OA), which results from the exchange between CO2 in the atmosphere and 

CO2 dissolved in the upper ocean, where the natural buffering provided by ocean 

alkalinity and resulting CO2 absorption has led to a decrease in global upper ocean pH 

by about 0.002 yr-1 (Feely et al. 2004, Doney et al. 2011). OA poses widespread threats 

to aquatic flora and fauna that are just beginning to be understood.  

Just as environmental changes are accumulating rapidly at the time of this 

writing, changes in humankind’s ability to study, monitor, and perhaps remediate the 

effects of climate change are also accelerating. The important role of oceans- and 

specifically ocean alkalinity- in regulating climate has become more apparent in recent 

years, as oceans are estimated to have absorbed about 25% of anthropogenic carbon 

dioxide (CO2) between 2006-2015 (Le Quéré et al. 2016), with higher alkalinity waters 

providing enhanced buffering and CO2 sequestration. Ocean alkalinity acts as a 

powerful counter to anthropogenic climate change: increased alkalinity simultaneously 
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neutralizes the acidity generated by OA and promotes the further absorption of more 

atmospheric CO2, reducing the primary driver of climate change. Vast stores of alkalinity 

in deep ocean waters represent more than enough neutralizing capacity to both mitigate 

anthropogenic ocean OA and sequester the anthropogenic atmospheric CO2, but 

relatively languid ocean circulation means these stores of alkalinity will not neutralize 

the anthropogenic atmospheric CO2 for thousands of years (Zeebe 2012).  

In the short term, less-buffered upper ocean and coastal waters and the 

organisms living in them will be most susceptible to OA. But there is a converse to this 

vulnerability: coastal waters and the upper ocean are also sites of an opportunity to 

counteract both the result of anthropogenic climate change (i.e. OA) and anthropogenic 

climate change itself (via enhanced CO2 absorption). An increasing amount of attention 

is being paid to plans to enhance upper ocean and coastal alkalinity (a process termed 

Ocean Alkalinity Enhancement, OAE) to simultaneously mitigate OA and sequester 

atmospheric CO2 (Renforth 2017). These plans currently exist as theoretical designs or 

model evaluations and would require an unprecedented global effort to enact; however, 

climate change is an unprecedented threat requiring equally ambitious solutions. Upper 

ocean and coastal alkalinity in particular represent chemical systems that are sensitive 

to atmospheric CO2 in ways that simultaneously offer a global acidification risk and a 

partial global climate solution. 

Coastal areas may be especially vulnerable to the impacts of OA (Mathis et al. 

2015, Breitberg et al. 2015) and important in the application of OAE; however the 

dynamics of OA and the buffering capacity in coastal areas are still poorly understood 

relative to the open ocean, due to the complex interplay between a number of additional 
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coastal processes (Figure 1), including calcium carbonate production and dissolution 

(Cross et al. 2013), anaerobic alkalinity generation (Thomas et al. 2009), river inputs 

(Salisbury et al. 2008), organic contributions to total alkalinity (Song et al. 2020), and 

intertidal marsh exchanges (Wang et al. 2016). This complexity, together with the large 

range of variability in coastal ocean alkalinity and pH, produces substantial uncertainties 

in the ability to predict changes brought on by OA (Wallace et al. 2014, Hagens et al. 

2015, Breitburg et al. 2015) and sensitivity of coastal ocean waters to changes in 

alkalinity. Figure 1 also illustrates the outside influence that coastal margins have upon 

the global carbon and alkalinity cycles relative to the much larger open ocean; the 

coastal ocean is where the dynamics are strongest and changes most difficult to 

anticipate. 

 

Figure 1- The ocean alkalinity balance. Note all fluxes are in Tmol C year-1. From 

Middleburg et al. (2020).  
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Historically, alkalinity has been one of the most fundamental concepts in the 

study of the chemistry of the sea.  The concept of alkalinity as the buffering capacity or 

acid neutralizing capacity of seawater has been used since the early 1900s (e.g., 

Thompson and Bonnar 1931, Mitchell and Solinger 1934), and indeed alkalinity was one 

of the measurements made on the first oceanographic expedition aboard the Meteor 

(1925-1927) by ship’s chemist Herman Wattenberg.  More recently, a formal chemical 

definition of seawater total alkalinity (TA) has been used for over thirty years with little 

modification (Dickson 1981, Equation 1), while measurement methods have steadily 

improved, especially with the introduction of a readily available Certified Reference 

Material which researchers can use to assess the accuracy of measurements (Dickson 

et al. 2003). This TA definition centers on inorganic alkalinity contributors but includes a 

term for organic contributors; however, these organic species and their influence on TA 

measurements are infrequently studied, and a refined understanding of the importance 

and behavior of organics is especially pressing in the coastal ocean and estuaries 

where watershed inputs of organics may be substantial. 

For nearly two decades researchers in the Ocean Process Analysis Group at the 

University of New Hampshire have maintained monitoring assets and conducted 

sampling surveys along the coast of the Gulf of Maine and its contributing estuaries in 

an effort to better understand the inorganic carbon and alkalinity systems in these 

dynamic coastal environments. These efforts have led to insights into air-sea CO2 

exchange (Vandemark et al. 2011, Hunt et al. 2013), estuary inorganic carbon mixing 

(Salisbury et al. 2009), organic alkalinity distributions in coastal rivers (Hunt et al. 2011), 

impacts of OA on organisms (Salisbury et al. 2008) and broader Gulf of Maine coastal 
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OA (Salisbury and Jönsson 2018). However, a more complete understanding of coastal 

alkalinity and carbon chemistry, as well as changes in these factors over space and 

time, requires new tools and approaches.   

Fortunately, recent technological developments have provided a new tool for the 

accurate, rapid measurement of TA. The first two chapters of this dissertation employ 

this new TA tool in different applications. Chapter 1 describes the collection of coastal 

and shelf TA data over broad spatial scales, spanning several seasons, aboard a ship 

of opportunity. This work led to the collection of more TA data for several East Coast 

regions than had ever been collected previously, and the richness of this data set 

allowed for the determination of shifts in regional alkalinity distributions not previously 

reported. The results from this study can be used to enhance the assessment of East 

Coast OA vulnerability, or potential for OAE.  

Chapter 2 moves closer to the coast, using the same novel TA instrument to 

collect a years-long timeseries of TA data together with complimentary pCO2 and other 

associated parameters. This unique dataset provided an unprecedented view into the 

alkalinity and buffering dynamics at a location situated at the confluence of land and the 

coastal ocean. These dynamics proved to be highly seasonal, influenced both by 

physical mixing and temperature changes, and potentially impacted by shifting 

biogeochemical processes. 

 Chapter 3 moves further inland yet, and departs from Chapters 1 and 2 to focus 

on a specific, understudied component of TA.  Organic alkalinity was examined in two 

Gulf of Maine estuaries, to quantify both the concentrations of organic alkalinity and its 
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acid-base characteristics. Until a comprehensive understanding of the role of organic 

material in TA is achieved the use of TA data will carry increased uncertainties, 

especially in certain applications such as estimating pCO2 or pH. The work contributes 

to the increasing evidence that organic alkalinity is nearly universally present in river, 

estuary, and seawater, and even in reference materials. 

 While these three studies describe relatively small areas of the ocean, they serve 

to fill knowledge gaps in the understanding of spatial alkalinity distributions along a 

coastal margin, time-varying changes in alkalinity and buffering at the land-ocean 

interface, and a potentially important component of the alkalinity system. They should 

serve as important pieces of the foundation of knowledge needed to measure, 

understand, and perhaps ameliorate the ongoing anthropogenic changes to the global 

environment. 
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VARIABILITY OF USA EAST COAST SURFACE TOTAL ALKALINITY 

DISTRIBUTIONS REVEALED BY AUTOMATED INSTRUMENT MEASUREMENTS 

 

1.1 Introduction 

 

 The important role of ocean alkalinity in regulating climate has become more 

apparent in recent years, as oceans are estimated to have absorbed about 25% of 

anthropogenic carbon dioxide (CO2) between 2006-2015 (Friedlingstein et al. 2019). 

Waters containing higher alkalinity concentration relative to CO2 provide enhanced 

buffering and CO2 sequestration potential. This sequestration has led to a decrease in 

global upper ocean pH by about 0.002 yr-1 (Feely et al. 2004, Doney et al. 2011), a 

process termed ocean acidification (OA). Vast stores of alkalinity in deep ocean waters 

represent more than enough neutralizing capacity to mitigate anthropogenic OA over 

millennial time scales (Zeebe 2012). Over decadal time scales, the less-buffered upper 

ocean and coastal waters, where high biological production occurs, are more 

susceptible to OA and its consequences. Coastal areas may be especially vulnerable to 

the impacts of OA (Mathis et al. 2015, Breitburg et al. 2015), but the dynamics of OA 

and buffering capacity in these areas are still poorly understood relative to the open 

ocean. This is due to the complex interplay between a number of additional coastal 

biogeochemical and physical processes, including biological calcium carbonate 

production and dissolution (Cross et al. 2013), anaerobic alkalinity generation (Thomas 

et al. 2009), river inputs (Salisbury et al. 2008), intertidal marsh exchanges (Wang et al. 

2016), bottom-water acidification from metabolic CO2 accumulation (Cai et al. 2011, 
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Mucci et al. 2011), as well as cross-shelf exchange (Chen and Wang 1999). These 

processes, combined with the large range of variability in coastal ocean alkalinity, pH, 

and hydrography, can lead to substantial uncertainties in ecosystem models used to 

predict future OA impacts in these areas (Wallace et al. 2014, Hagens et al. 2015, 

Breitburg et al. 2015). 

 TA and dissolved inorganic carbon (DIC) distributions along the United States 

East Coast ocean margin (henceforth shortened to East Coast) have been extensively 

studied during several transects, including the four GOMECC (Gulf of Mexico and East 

Coast Carbon) and ECOA (East Coast Ocean Acidification) cruises (Cai et al. 2010, 

Wang et al. 2013, Wanninkhof et al. 2015) and the Ocean Margins Program in the MAB 

(Chipman et al. 1995). These ongoing surveys provide a synoptic view of conditions in 

the region, but they were confined to the summer season, were resource- and labor-

intensive, and were spaced several years apart. Methods that can expand temporal and 

spatial coverage of inorganic carbon system parameters would greatly enhance model 

estimates of East Coast DIC and CO2 exchange (Signorini et al. 2013).  

 Recent developments in both ocean observation and data synthesis efforts offer 

the promise of vastly improved East Coast TA and inorganic carbon estimates. In-situ 

data compilations such as GLODAP (Olsen et al. 2016, Key et al. 2015) provide 

extensive collections of in-situ TA, DIC, and pH measurements. These datasets have 

been used to construct statistical relationships between TA and practical salinity 

(hereafter referred to as “salinity” in this work and abbreviated as “S”) and sometimes 

temperature for major ocean basins (Lee et al. 2006, Millero et al. 1998, Takahashi et 

al. 2014), smaller sub-basins (Takahashi et al. 2014, Jiang et al. 2014, Cross et al. 
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2013), and even segmented coastal areas (DeGrandpre et al. 1997, Cai et al. 2010, 

Joesoef et al. 2017). In particular, Millero et al. (1998) presented an ‘Atlantic’ 

relationship assembled using surface data from 60°S to 80°N, whereas Lee et al. (2006) 

presented a ‘North Atlantic’ relationship using data from 30°N to 80°N.  

 These relationships have been used to estimate TA from either in situ salinity 

observations, salinity climatologies (Zweng et al. 2019), or space-based satellite 

measurements (Signorini et al. 2013, Fine et al. 2017, Salisbury and Jönsson 2018, 

Land et al. 2019, Reul et al. 2020). Satellite missions offer the potential for synoptic 

salinity estimates over vast spatial scales (Salisbury et al. 2015, Grodsky et al. 2018), 

which can then be used to derive estimates of surface ocean TA. The statistical 

relationships used to produce these estimates are, however, regionally and temporally 

variable (e.g., Land et al. 2019, Cai et al. 2010, Li et al. 2020). An additional source of 

high-quality TA data for the USA East Coast, collected at a higher frequency than the 

three-to-five year interval of the previous GOMECC/ECOA cruises, could inform the 

temporally variable nature of regional relationships. Recent technological advances and 

development efforts have provided a commercially available tool for this purpose: an 

automated TA analyzer (the CONTROS HydroFIA® TA, -4H-JENA Engineering GmbH, 

Jena, Germany, formerly of Kongsberg Maritime Contros GmbH, Kiel, Germany, 

hereafter referenced as HydroFIA TA). Deployed aboard a ship of opportunity, the 

collected underway surface TA measurements allow us to re-examine regional TA 

distributions along the East Coast and test existing statistical models relating salinity to 

TA. Here, we evaluate the performance of the HydroFIA TA instrument on multiple 

cruises aboard a ship of opportunity, present recommendations for future deployments, 
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compare findings to previous studies as well as to a newly-assembled database of 

historical East Coast TA measurements, and discuss how data collected during this 

effort help to inform our understanding of TA variability along the East Coast. 

1.2 Methods 

 

1.2.1 Study Regions 

 This study reports on observations from four East Coast oceanographic regions: 

Gulf of Maine, Nantucket Shoals/George’s Bank, Middle Atlantic Bight, and offshore 

Shelf Break Front (Figure 1.1). Delineations of the boundaries between these regions 

follow the methods of Signorini et al. (2013) and Hofmann et al. (2008). The Gulf of 

Maine (GOM, Figure 1.1) is a highly productive, semi-enclosed shelf sea, 

encompassing the area between Cape Cod in Massachusetts and the Canadian 

province of Nova Scotia. The area east of the Scotian shelf and also east of the more 

northern Newfoundland and Labrador shelf system is where the warm, salty, northeast-

flowing Gulf Stream and the colder, fresher, southwest-flowing Labrador Current interact 

(Loder et al. 1998). GOM circulation is typically cyclonic, with upstream Scotian Shelf 

and Atlantic slope water entering the region through the Northeast Channel and across 

the western Scotian Shelf, following the Maine coast southward, and exiting the GOM 

around the eastern flank of George’s Bank and the Great South Channel between the 

Nantucket and George’s Bank shoals. The area of George’s Bank and Nantucket 

Shoals (GBN) comprises two shallow regions which together geographically separate 

the GOM from the Middle Atlantic Bight, bisected north-to-south by the Great South 
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Channel. This region supports an active commercial fishery. The Middle Atlantic Bight 

(MAB) extends roughly from Cape Cod in Massachusetts to Cape Hatteras in North 

Carolina. This area also resides at the intersection of two major ocean currents: the 

colder, fresher inshore modified Labrador coastal current from the north (flowing first 

through the GOM and GBN regions) and the warmer, saltier offshore Gulf Stream from 

the south (Wang et al. 2013). These two currents are separated by the inshore shelf 

areas and slope sea further offshore, which stretches from Cape Hatteras to the Grand 

Banks. Warm core rings, shed from the Gulf Stream into the slope sea, are a frequent 

source of warm, high salinity water to the MAB region via cross-shelf exchange 

(Hofmann et al. 2008). The MAB is characterized by springtime phytoplankton blooms 

and low pCO2 during the winter and spring months (DeGrandpre et al. 2002, Wang et 

al. 2013). The offshore Shelf Break Front (SBF) region delineates a band of slope sea 

stretching from south of Cape Hatteras northeastward nearly to Nova Scotia, 

encompassing the area where the seafloor deepens from several hundred meters to 

more than 2000 m, and forming a boundary region between the inshore GOM, GBN and 

MAB regions and the offshore slope sea.  
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Figure 0.1: Study area map with bathymetry, adapted from Townsend et al. (2006), with 
study subregions outlined. The study subregions are the Gulf of Maine (GOM), 
George’s Bank/Nantucket Shoals (GBN), Middle Atlantic Bight (MAB), and Shelf-Break 
Front (SBF). The South Atlantic Bight (SAB) region is also shown south of Cape 
Hatteras. Numbers indicate specific locations found in the text: 1: Scotian Shelf; 2: 
Northeast Channel; 3: George’s Bank; 4: Great South Channel. General positions of 
major currents are shown as red and blue arrows. The position of the Gulf Stream’s 
northern edge is approximate, dashed red and blue arrows show the presence of cross-
shelf mixing and not locations of actual currents.
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1.2.2 Analytical Methods for Practical Salinity, Water Temperature, and pCO2 

 Measurements in 2017 were collected on seven cruises of opportunity aboard 

the National Oceanic and Atmospheric Administration (NOAA) Ship Henry B. Bigelow 

(hereafter referred to as the Bigelow), a 64-meter fisheries research vessel. A summary 

of these cruises is provided in Table 1.1. Surface seawater temperature and practical 

salinity (hereafter referred to as salinity) were measured from a continuous surface 

seawater supply (intake depth about 3 m) using a Seabird SBE-45 thermosalinograph 

(Sea-bird Electronics, Bellevue WA, manufacturer precision of ±0.0001°C and ±0.0002, 

respectively). Measurements of the partial pressure of carbon dioxide (pCO2) were 

made from the same continuous surface seawater supply using a General Oceanics 

(Miami, FL) pCO2 measurement system operated by the NOAA Atlantic Oceanography 

and Meteorological Laboratory (AOML), with a measurement accuracy of 2 µatm, as 

detailed in Pierrot et al. (2009). 



  

 

 

1
4

 

 

Table 1.1: Cruise summaries for the 2017 and ECOA-2 efforts, all aboard the NOAA Ship Henry B. Bigelow.  

   
 

        
  Dates Cruise Duration 

(days) 
Latitude Range 
(°N) 

Longitude Range 
(°W) 

n TA 
observations 

TA Range 
(µmol kg-1) 

Salinity Range T Range (degrees C) 
 

 Cruise 1 Feb 11 - Feb 22, 2017 12 37.15 - 42.51 -75.67 - -65.42 1585 2136 - 2356 31.46 - 36.08 2.495 - 14.969  

 Cruise 2 Mar 7 - Mar 22, 2017 16 34.43 - 40.32 -76.29 - -72.76 1575 1888 - 2400 22.97 - 36.55 4.765 - 24.003  

 Cruise 3 Mar 28 - Apr 6, 2017 10 39.04 - 41.48 -74.01 - -70.51 1544 2068 - 2332 30.11 - 34.88 3.728 - 11.209  

 Cruise 4 Apr 12 - Apr 26, 2017 15 39.93 - 42.68 -71.38 - -65.76 1679 2171 - 2294 31.49 - 34.83 2.1483 - 11.211  

 Cruise 5 May 5 - May 11, 2017 7 42.64 - 44.39 -70.74 - -66.57 536 2169 - 2217 31.2 - 32.52 4.504 - 8.167  

 Cruise 6 Jun 10 - Jun 22, 2017 13 40.62 - 44.23 -70.72 - -65.86 897 2156 - 2262 30.84 - 35.28 9.010 - 15.044  

 Cruise 7 Jul 6 - Jul 19, 2017 14 39.20 - 41.76 -73.38 - -65.27 1134 2156 - 2274 31.02 - 36.58 11.317 - 25.457  

   
 

       

 ECOA-2 Jun 26 - Jul 29, 2018 34 26.81 - 45.01 -80.98 - -61.4 1656 2001 - 2403 26.61 - 36.42 6.38 - 31.77  
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1.2.3 Discrete TA Sample Collection and Analysis Methods 1 

 Discrete samples for independent instrument evaluation were collected from the 2 

ship’s underway seawater supply on two cruises and analyzed by two laboratories. 3 

Samples from Cruise 1 in 2017 were collected and analyzed by the NOAA Atlantic 4 

Oceanographic and Meteorological Laboratory (AOML). Samples during the 2018 5 

ECOA-2 cruise were analyzed by the laboratory of Dr. Wei-Jun Cai (University of 6 

Delaware, referred to hereafter as U.Del.). Water from the shipboard seawater supply 7 

was transferred without bubbling into previously-flushed 500 mL (AOML) or 250 mL 8 

(U.Del.) glass BOD bottles with greased stoppers. These were filled to leave less than 9 

1% headspace in the bottle. Samples analyzed by AOML were preserved with 200 µl of 10 

saturated mercuric chloride solution and analyzed several weeks later; those analyzed 11 

by U.Del. were unpreserved and analyzed within 24 hours. A detailed description of the 12 

AOML TA analysis is provided by Barbero et al. (2017), specific analysis details for 13 

AOML Cruise 1 samples are described by AOML (2020), and U.Del. methods are 14 

described by Cai et al. (2010). Briefly, each lab performed open-cell titrations, 15 

measuring the e.m.f. during titration via glass pH electrodes, with results calibrated via 16 

comparison to certified reference material. AOML titrations were performed with 0.2N 17 

hydrochloric acid (HCl) prepared in a 0.55 molal NaCl solution. U.Del. titrations were 18 

performed with 0.1N HCl in a 0.5 molal NaCl solution. The TA endpoint of the titrations 19 

were determined according to calculation of the Gran function (Gran 1952) with a 20 

nonlinear least squares correction for the presence of sulfate and fluoride ions (Dickson 21 
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et al. 2007). AOML and U.Del. instrument performance statistics are discussed below 22 

and presented in Table 1.2. 23 

1.2.4 Analytical Method for Underway Total Alkalinity 24 

 Total Alkalinity (TA) was measured using a CONTROS HydroFIA® TA analyzer 25 

(Aßmann et al. 2013, Seelmann et al. 2019), modified for regular automated reference 26 

measurements as described below. Seelmann et al. (2019) provide a comprehensive 27 

account of instrument theory, design, and operation, and include extensive technical 28 

details we will not repeat here. Briefly, the HydroFIA TA instrument performs a single-29 

point titration of seawater with 0.1N hydrochloric acid prepared in deionized water, using 30 

bromocresol green (BCG) as the indicator for spectrophotometric pH detection, a 31 

technique developed by Yao and Byrne (1998) and refined by Li et al. (2013). 32 

 As part of the NOAA/OTT TAACT project (Tracking Ocean Alkalinity using New 33 

Carbon Measurement Technologies), the HydroFIA TA instrument was improved to 34 

allow for the automated, periodic measurement of certified reference material (CRM) by 35 

adding CRM input and exhaust ports, liquid switching valves, and a digital controlling 36 

device connected to an external computer (Appendix Figure A1). This capability is now 37 

a standard feature of the commercial version of the instrument. The CRM was obtained 38 

from the Scripps Institute of Oceanography laboratory of Dr. Andrew Dickson (Dickson 39 

et al. 2003), and its regular measurement supported assessments of instrument stability 40 

and accuracy over the course of multi-week deployments. Triplicate CRM 41 

measurements were typically made each day, while underway seawater TA 42 
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measurements were made every 10-15 minutes. A customized software program 43 

controlled the HydroFIA TA instrument by switching between seawater and CRM 44 

sample streams, starting and stopping HydroFIA TA analysis, collecting salinity, water 45 

temperature, and location data from the ship’s centralized data system, supplying real-46 

time salinity to the HydroFIA TA analyzer, and emailing data to shoreside researchers. 47 

The HydroFIA TA instrument was serviced by NOAA personnel between each cruise, 48 

who replaced the supplies of HCl and BCG, refilled the 2l CRM reservoir (which was 49 

stoppered to limit evaporation), and re-calibrated the instrument with CRM. After these 50 

steps, the instrument was placed in standby mode until the Bigelow was underway, at 51 

which time a shipboard technician used the customized software program to begin data 52 

collection.  53 

1.2.5 Filtration of Underway Seawater for Total Alkalinity Analysis 54 

 Unfiltered seawater was supplied to the HydroFIA TA instrument for the first five 55 

cruises. This resulted in a steady increase in pH readings and corresponding TA 56 

readings using the same batch of CRM, presumably due to fouling of the instrument’s 57 

optical cell. CRM absorbance spectra over these cruises showed decreased BCG 58 

absorbances at the isobestic point over time, which were closely correlated with 59 

increased CRM TA concentration. As the CRM TA concentration and volumes of BCG 60 

and HCl added did not change over time, we believe that accumulation of material on 61 

the optical cell resulted in increased absorbance at the indicator wavelengths. A blank 62 

spectrum measurement is made before BCG and HCl addition, and subtraction of this 63 

blank resulted in decreased calculated BCG absorbance as the blank absorbance 64 
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increased. Drifts in the HydroFIA TA instrument have been observed by other 65 

investigators (Seelmann et al. 2019). CRM measurements from Cruises 1-5 showed 66 

clear, steady instrument drift of up to 93 µmol kg-1 by the end of Cruise 2, or a drift of 67 

nearly 3 µmol kg-1 per day (Appendix Figure A.2, Table A.1). After the fifth cruise an 68 

inline cross-flow filter (0.2 µm) connected to a small 50 mL reservoir for filtered 69 

seawater was installed which eliminated the instrument drift during Cruises 6 and 7. The 70 

HydroFIA TA sample analysis time was 10 minutes, and flow rate supplied to the filter 71 

had to be adequate to replenish the reservoir within the analysis time frame. The cross-72 

flow filter (currently supplied by 4H-JENA engineering GmbH, Jena, Germany, formerly 73 

Kongsberg Maritime Contros GmbH, Kiel, Germany) uses tangential flow filtration, 74 

where unfiltered seawater flowed continuously across the filter surface (in this case, a 75 

series of tubes of filter material) at positive pressure, with filtrate moving through the 76 

walls of the tubes and collected in a reservoir for analysis. This method allowed the 77 

same filter to be used for all subsequent cruises. 78 

 To account for instrument drift over the first five cruises, the differences between 79 

the CRM TA concentration and the mean of periodic triplicate instrument CRM readings 80 

were linearly interpolated; the interpolated CRM difference corresponding to each 81 

individual TA measurement was then retrieved from the HydroFIA TA timestamp and 82 

subtracted from the observed reading.    83 
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1.2.6 Statistical Calculations 84 

 In order to evaluate the performance of the HydroFIA TA instrument and 85 

reference titration systems from two laboratories, several statistical quantities were 86 

calculated following the approach of Seelmann et al. (2019). Complete descriptions and 87 

equations are presented in the Supplementary Material.  Briefly, five statistical 88 

parameters will be discussed.  First, precision (σ) was determined as one standard 89 

deviation of repeated measurements of certified reference material (CRM). Second, 90 

instrument accuracy (or also the uncertainty between two measurement methods, such 91 

as HydroFIA TA and laboratory TA measurements) was determined as the root mean 92 

square error (RMSE) of either repeated CRM measurements relative to the certified 93 

CRM TA or the difference between paired TA analyses. Third, the uncertainty in 94 

instrument bias, u(bias), incorporates the instrument RMSE and the known uncertainty 95 

of the certified TA of the CRM. Fourth, the combined method uncertainty, uc, 96 

incorporates u(bias) together with σ. Finally, the overall uncertainty between two TA 97 

measurement methods, such as HydroFIA TA and laboratory TA analyses, including 98 

factors such as replicate uncertainty and unknown uncertainties, is presented as 99 

uc(HydroFIA TA, B).  100 

1.2.7 HydroFIA TA Analyzer and Discrete Sample Uncertainty Evaluation 101 

 Triplicate periodic CRM measurements were automatically made on a roughly 102 

daily interval by the HydroFIA TA while underway during each cruise, permitting an 103 

assessment of precision (σ, Equation 1). The CRM used in 2017 was Batch 159. For 104 
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Cruises 1-5, the σ of triplicate CRM measurements ranged from ±0.2 to ±9.2 µmol kg-1, 105 

with a mean σ of ±2.0 µmol kg-1. Addition of the filter resulted in no substantial change 106 

in the σ of CRM measurements for Cruises 6 or 7 in 2017 (mean CRM σ ±0.8 and ±1.8 107 

µmol kg-1, respectively). Accuracy of the HydroFIA TA during Cruises 1 through 7 in 108 

2017, determined as the RMSE of periodic CRM readings which were corrected as 109 

described above, ranged from ±1.0 to ±3.8 µmol kg-1 with a mean value of ±2.2 µmol kg-110 

1. These precision and accuracy levels matched or exceeded those given by the 111 

manufacturer (±2 and ±5 µmol kg-1, respectively). 112 

 Discrete TA samples were collected on two cruises from the same underway 113 

seawater supply sampled by the HydroFIA TA (Table 1.2). AOML measurements of 114 

CRM Batches 129 and 144 resulted in an uncertainty (uc) of ±2.8 µmol kg-1. Analysis of 115 

duplicate seawater samples returned an AOML sampling uncertainty, u(rep), of ±5.2 116 

µmol kg-1. The RMSE of paired AOML-HydroFIA TA analyses was ±7.0; solving 117 

Equation 5 resulted in an estimated contribution of ±2.9 µmol kg-1 of ‘other’ uncertainty 118 

to the total uncertainty between AOML and HydroFIA TA measurements, beyond the 119 

combined uncertainties of instrument precisions, biases, CRM uncertainties, and 120 

sampling or replicate uncertainties.121 



  

21 

 

 

Table 1.2: Analytical uncertainties of paired discrete bottle sample and HydroFIA TA 
analyses. Paired sampling was conducted during Cruise 1 (Feb 11-22, 2017) and the 
2018 ECOA-2 cruise. Discrete TA analyses were performed by two laboratories: the 
NOAA Atlantic Oceanographic and Meteorological Laboratory (“AOML”) and the 
laboratory of Dr. Wei-Jun Cai at the University of Delaware (“U.Del.”). AOML analyses 
used CRM Batches 129 and 144; U.Del. used Batch 173. The HydroFIA CRM was 
Batch 159 in 2017 and 173 during ECOA-2. AOML samples were preserved and 
analyzed three weeks after Cruise 1, U.Del. samples were not preserved and analyzed 
on board within 24 hours of collection. 

 

   

  2017 Cruise 1 ECOA-2 

Analyzing laboratory AOML U.Del. 
σ (CRM) ±2.0 ±1.2 
RMSE (CRM) ±1.8 ±1.2 
u(CRM) ±0.52 ±0.64 

u(bias)CRM ±1.9 ±1.4 

uc ±2.8 ±1.8 
RMSE (rep) ±5.6 ±1.5 

u(rep) ±5.2 ±0.9 

nCRM,nrep 10,9 81,27 

σ (HydroFIA CRM) ±2.0 ±1.4 
RMSE (HydroFIA CRM) ±1.3 ±3.8 
u (HydroFIA CRM) ±0.59 ±0.64 
u(bias) HydroFIA ±1.4 ±3.9 

uc (HydroFIA) ±2.4 ±4.1 
n 9 25 

RMSE, paired samples  ±7.0 ±10.3 
u(other), paired 
samples ±2.9 ±9.2 

 

 The calculations described above were used to compare HydroFIA TA results to 

those measured onboard by U.Del. during the 2018 ECOA-2 cruise (Table 1.2). U.Del. 

analyses of CRM Batch 173 showed a low overall method uncertainty (uc) of ±1.8 µmol 

kg-1 and very good agreement between replicate samples, with a u(rep) of ±0.9 µmol kg-

1. Despite an overall HydroFIA TA uc similar to that from Cruise 1 in 2017 (±4.1 µmol kg-
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1, from triplicate measurements of CRM Batch 173), the RMSE between HydroFIA TA 

and U.Del. measurements was a relatively high ±10.3 µmol kg-1, with a u(other) of ±9.2 

µmol kg-1. 

 HydroFIA TA performance was consistent within ±2 µmol kg-1 across cruises, 

making it challenging to attribute the difference in u(other) between Cruise 1 in 2017 

and ECOA-2. Possible factors contributing to u(other) could be the choice to preserve 

(AOML) or not preserve (U.Del.) discrete samples, the timing of discrete sample 

collection relative to the intake of sample by the HydroFIA TA, nonlinearity of the 

HydroFIA TA instrument drift as documented by Seelman et al. (2019), or variable 

effects of the presence of titratable organic species dependent on the TA analysis 

method used. It is important to note that organic species represent an unknown but 

potentially significant contributor to TA (Yang et al. 2015, Kuliński et al. 2014, Fong and 

Dickson 2019). Neither the HydroFIA TA analyzer nor typical discrete TA titrations are 

capable of distinguishing organic alkalinity contributions, which may exert a variable 

influence depending on the acid-base characteristics of the organic species and the TA 

analysis method employed (Sharp and Byrne, 2020). This topic requires further 

examination, but for this work we will discuss TA as the inorganic system conforming to 

the definition set by Dickson (1981). 

1.2.8 Data Analysis 

 Linear regression analysis of TA against salinity was performed using an 

iteratively weighted least-squares algorithm with a bisquare weighting function (tuning 
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constant 4.685) and robust fitting options enabled (fitlm in Matlab®, Mathworks, Natick 

MA USA). The robust fitting identified outliers as any point outside 1.5 times the 

interquartile above or below the 75th or 25th percentile, respectively, and outliers were 

excluded from the calculation of the r2 statistic. This outlier analysis excluded outliers at 

roughly the 10th and 90th percentiles. The regression analysis returned two linear 

coefficients: the change in TA per unit salinity (i.e., slope, designated “TA:S” hereafter) 

and the TA calculated at salinity zero (i.e., intercept, designated “TA0”). All regional and 

seasonal TA:S regressions were statistically unique according to one-way ANOVA 

tests, with p-values less than 0.05. Other studies (i.e., Lee et al., 2006) used a second-

order polynomial regression with both salinity and temperature as independent input 

variables, but this approach yielded worse RMSE statistics for our data (results not 

shown), and we have chosen to use the linear regression approach described above. 

Data were divided into seasons according to the following: winter (December, January, 

February), spring (March, April, May), summer (June, July, August), and fall 

(September, October, November). 

1.2.9 Historical Data 

 To compare the results from this work to past observations in these regions, a 

historical dataset was assembled. Datasets used in this compilation included several 

categories: ship-of-opportunity measurements obtained from NOAA’s AOML, data from 

the GOMECC-1 and -2 and ECOA-1 East Coast surveys, newly-available data from 

Fisheries and Oceans, Canada (DFO), the global-scale GLODAPv2 (2019) synthesis 

product, and data from the Ocean Margins Project (OMP) in the MAB. The earliest TA 



  

24 

 

observations made in the four study regions discussed in this work were from 1967, with 

the number of observations increasing steadily to the present, and with occasional 

years-long periods having no observations. The dataset contains over 11,000 surface 

measurements at depths of 10 m or less. 

 

1.3 Results and Discussion 

 

HydroFIA TA measurements were collected on seven Bigelow cruises between 

February 11, 2017 and July 19, 2017 (Figure 1.2), resulting in a total of 8,950 surface 

seawater TA measurements (Table 1.1) and 167 CRM validation measurements. The 

same HydroFIA TA instrument used in 2017 aboard the Bigelow was also deployed 

during the 2018 ECOA-2 cruise, for 28 days in July and August 2018, collecting a total 

of 1,656 TA and 75 CRM validation measurements. The 2018 ECOA-2 cruise occupied 

the same regions as the 2017 cruises (Figure 1.2) and included a much more spatially 

comprehensive survey of the SAB region. To exploit the large number of new 

measurements made by the HydroFIA TA instrument, we examine the data obtained 

during the deployments aboard the Bigelow in the context of previously published 

analyses of TA distributions, and use these new observations to examine published 

relationships relating TA to sea surface salinity. We also re-evaluate data from other 

broad-scale data collections efforts in these regions. These comparisons are not meant 

to show that one dataset provides a better or worse understanding of TA conditions 

relative to another; rather, they are meant to show that TA conditions are dynamic in 

these coastal zones, and the capability provided by the largely unsupervised 
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deployment of the HydroFIA TA system can help fill in knowledge gaps regarding 

seasonal and regional dynamics in ways that episodic research cruises collecting a 

necessarily limited number of discrete water samples cannot. 

 

Figure 0.2: Map of 2017 (panel a) and 2018 (panel b) cruise tracks presented in this 
work with East Coast regions outlined. Note that colors in panel a identify the cruise 
number (see Table 1.1), while colors in panel b indicate day-of-year. The NOAA Ship 
Henry B. Bigelow’s home port of Newport Rhode Island USA is shown as a yellow 
circle. A summary of these cruises is provided in Table 1.1. 

 

Salinity, water temperature, and TA generally increased from north to south in 

2017, as upstream Scotian Shelf water feeds a coastal current flowing southward 

through the GOM and GBN regions to the MAB region, while gradually being modified 

by interactions with local rivers and offshore SBF water masses (Figures 1.3 and 1.4, 

Table 1.3). Salinity and TA were lowest closer to shore and increased with distance 

from the coast in the GOM, GBN and MAB regions. The SBF region extends seaward 
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from the outer boundary of each of the other regions, and was generally warmer, saltier, 

and higher in TA than the more shoreward regions. The SBF region contains a 

combination of slope water modified by interaction with the southward-flowing coastal 

shelf water along the boundary lines between the MAB, GBN and GOM regions (Dupont 

et al. 2006).  

 

Figure 0.3: Maps of all surface data collected underway in 2017. Parameters shown are 
sea surface salinity (panel a), temperature (panel b, degrees Celsius), pCO2 (panel c, 
µatm), and HydroFIA TA (panel d, µmol kg-1). Black lines represent regional boundaries, 
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see text and Figure 1.1. Color bars correspond to the data point colors in each panel 
and are scaled identically to those in Figure 1.4. 

 

The increasing north-to-south trend in salinity, water temperature and TA was 

generally repeated in 2018, but the MAB region was an exception to this trend, as the 

MAB mean salinity (31.19±1.07) and TA (2132±43 μmol kg−1) were both lowest among 

the studied regions (Table 1.3). The ECOA-2 cruise made a shore stop in the MAB 

region, and the low-salinity data recorded outside the Newport News harbor mouth 

contributed to the low mean values (Xu et al. 2017). Nonetheless, even when these 

nearshore data are excluded the mean salinity and TA were still the lowest among the 

regions.  
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Table 1.3: Regional summary statistics for 2017 and ECOA-2 data. In order, the data 
presented for each parameter (e.g., salinity, temperature) are: the regional range of 
each observation type (minimum and maximum), the statistical mean, one standard 
deviation around the mean, and total number of measurements in each region. The 
mean, standard deviation, and measurement number are grouped in parentheses. 
Results from the 2018 ECOA-2 cruise are in shaded rows. Bold values indicate the 
highest and lowest values observed for each parameter in 2017 and 2018. 

 

      

  Dates Salinity 
Temperature            
(degrees C) pCO2            (µatm) 

TA            
(µmol kg-1) 

GOM 
Feb 19 - Jun 

21, 2017 

24.13 - 33.68 
(31.95±0.85 

n=2244) 

2.87 - 14.54 
(8.30±3.26 

n=2271) 

229 - 448 (335±43 
n=1546) 

2154 - 2258 
(2196±15 
n=1857) 

GOM 
Jun 27 - Jul 7, 

2018 
30.94 - 32.34 

(31.72±0.31 n=497) 

6.37 - 18.91 
(13.17±2.96 

n=497) 

310 - 457 (390±33 
n=484) 

2112 - 2213 
(2158±18 

n=185) 

GBN 
Feb 16 - Jul 

19, 2017 

31.12 - 33.57 
(32.75±0.42 

n=1451) 

2.15 - 20.94 
(7.96±3.87 

n=1460) 

202 - 564 (346±54 
n=1353) 

2166 - 2267 
(2211±16 
n=1196) 

GBN 
Jun 26 - Jul 8, 

2018 
31.48 - 32.80 

(32.46±0.33 n=212) 

10.14 - 18.71 
(15.74±1.87 

n=212) 

333 - 441 (378±16 
n=201) 

2146 - 2225 
(2204±17 

n=196) 

MAB 
Feb 11 - Jul 

19, 2017 

28.99 - 35.04 
(32.98±0.85 

n=3285) 

3.73 - 25.45 
(9.18±6.16 

n=3288) 

255 - 599 (331±36 
n=3009) 

2087 - 2400 
(2225±31 
n=2699) 

MAB 
Jul 8 - Jul 20, 

2018 
26.61 - 33.47 

(31.19±1.07 n=219) 

17.85 - 26.28 
(22.23±2.38 

n=219) 

307 - 534 (421±52 
n=189) 

2001 - 2257 
(2132±43 

n=193) 

SBF 
Feb 12 - Jul 

18, 2017 

31.26 - 36.55 
(33.76±1.12 

n=2564) 

4.85 - 25.19 
(13.57±6.1 

n=2570) 

196 - 437 (352±42 
n=2353) 

2183 - 2397 
(2247±44 
n=2116) 

SBF 
Jun 26 - Jul 

21, 2018 
30.77 - 36.20 

(34.08±1.06 n=353) 
14.37 - 29.14 

(22.49±3.1 n=353) 
352 - 480 (398±27 

n=325) 

2138 - 2389 
(2285±50 

n=325) 
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Figure 0.4 Maps of ECOA-2018 sea surface salinity (panel a), temperature (panel b, 
degrees Celsius), pCO2 (panel c, µatm), and HydroFIA TA (panel d, µmol kg-1). Black 
lines represent regional boundaries, see text and Figure 1.1. Color bars correspond to 
the data point colors in each panel and are scaled identically to those in Figure 1.3. The 
low-salinity, low-alkalinity data shown in Long Island Sound do not fall within the bounds 
of the regions discussed in this study, and thus do not influence the discussion of 
regional findings. 

 In contrast, seawater pCO2 showed no clear regional pattern, and was almost 

always undersaturated or at near equilibrium with respect to the atmospheric CO2 

partial pressure (Table 1.3). Atmospheric pCO2 measured by the shipboard AOML 
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system averaged 412±6 μatm. To test for significant differences among regional 

observations, we employed two-sample t-tests ('ttest2' in Matlab®, Mathworks Inc., 

Natick MA, USA), at a significance level (p) of 0.01. These tests showed that mean 

salinity, sea surface temperature, pCO2 and TA were all statistically different between all 

regions in the 2017 dataset (Table 1.3). These differences are attributed to circulation 

patterns, variability of contributions from upstream or offshore water masses, terrestrial 

inputs, or biogeochemical processes; likely the variability is due to a combination of all 

these factors. The same t-tests indicated that salinity, water temperature, TA and pCO2 

were all significantly different amongst the regions during ECOA-2.  
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Figure 0.5: Monthly counts of regional surface TA measurements. The top panel shows 
the counts for each region from the historical dataset described in Section 2.4. The 
bottom panel shows counts for each region once the HydroFIA TA system 
measurements from 2017 and 2018 described in this study are included. Note the 
roughly one order of magnitude difference in y-axis scales between top and bottom 
panels. 

1.3.1 Regional Salinity:TA Regressions 

 Regressions of regional HydroFIA TA data against salinity showed clear 

differences between years, regions, and seasons (Figures 1.6-1.9). Broadly, the slope 

of the TA:S regression line for all 2017 data increased from the GOM (24.9±0.3) to GBN 

(36.6±0.6) to MAB (36.7±0.3) regions along the path of southward-flowing coastal 

water, while TA0 decreased from north to south (1395±8, 1011±19, and 1008±11 µmol 
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kg-1, respectively). This pattern of increasing slope and decreasing TA0 from north-to-

south is consistent with the results of Cai et al. (2010), but the TA:S regression 

coefficients were distinctly different from those found by Cai et al. (2010) for all regions, 

with uniformly shallower slopes and higher TA0. The 2018 ECOA-2 data showed an 

opposite pattern to that from 2017, with decreasing TA:S slope from the GOM to GBN to 

MAB regions (62.7, 52.5, 38.5, respectively) and increasing TA0 (178, 497, 936 µmol kg-

1, respectively). The regressions of surface TA against salinity were again distinctly 

different from those found by Cai et al. (2010) for all regions, with uniformly shallower 

slopes and higher TA0 (Figure 1.10), although the GOM slope (62.7) and intercept (178 

µmol kg-1) for 2018 were somewhat similar to the low-salinity GOM slope (65.8) and TA0 

(75.1 µmol kg-1) from Cai et al. (2010). It is important to mention here that the TA-

salinity relationships presented in Cai et al. (2010) were constructed from data acquired 

throughout the water column, from the surface to deeper slope and shelf waters, with 

the deepest samples ranging from 200-290 m. Thus, direct comparison between the 

surface measurements presented in this work and the deeper measurements used by 

Cai et al. (2010) may be unrealistic as contributions from various water masses are 

likely unequal.  
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Figure 0.6: Gulf of Maine seasonal and historic TA and salinity data. Upper-left panel 
shows the locations of surface data collections. Lower-left and lower-right panels show 
scatterplots of seasonal salinity and TA from 2017 and the 2018 ECOA-2 cruise, 
respectively. Note that the historical data are inclusive of all seasons. For reference, the 
solid line indicates the robust linear regression of historical data; the dashed lines 
indicate the mixing lines described by Cai et al. (2010). The slope and TA0 from Cai et 
al. (2010) are 65.8 and 75.1±291.2 µmol kg-1, respectively, for sample salinities less 
than 31.75. The slope and TA0 from Cai et al. (2010) are 39.1 and 932.7±16.5 µmol kg-

1, respectively, for sample salinities greater than 31.75. Whisker plots show the median 
TA (white circles) at 0.5-salinity intervals of historical data; whiskers indicate the range 
of TA over each 0.5-salinity interval. Colored lines show the linear regression of 
measurements for each season. The table in the upper-right lists the linear regression 
slope and intercept coefficients (with standard errors in parentheses), as well as the r2, 
RMSE and n statistics. The p-values for all regressions were much less than 0.01. 
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Figure 0.7: George’s Bank-Nantucket Shoals (GBN) seasonal and historic TA and 
salinity data. See the caption of Figure 1.6 for detailed figure explanations. For 
reference, the solid line indicates the robust linear regression of historical data; the 
dashed lines indicate the “Woods Hole Transect” mixing lines described by Cai et al. 
(2010). The slope and TA0 from Cai et al. (2010) are 73.4 and (-188.7±92.3) µmol kg-1, 
respectively, for sample salinities less than 33. The slope and TA0 from Cai et al. (2010) 
are 43.1 and 809.2±60.9 µmol kg-1, respectively, for sample salinities greater than 33. 
The p-values for all regressions presented in the table were much less than 0.01. 
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Figure 0.8: Middle Atlantic Bight (MAB) seasonal and historic TA and salinity data. See 
the caption of Figure 1.6 for detailed figure explanations. For reference, the solid line 
indicates the robust linear regression of historical data; the dashed line indicates the 
mixing line described by Cai et al. (2010). The slope and TA0 from Cai et al. (2010) are 
46.6 and 670.6±12.3 µmol kg-1, respectively. The p-values for all regressions presented 
in the table were much less than 0.01. 
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Figure 0.9: Shelf Break Front (SBF) seasonal and historic TA and salinity data. See the 
caption of Figure 1.6 for detailed figure explanations. For reference, the solid line in the 
lower two panels indicates the robust linear regression of historical data; the magenta 
line indicates the mixing line described by Lee et al. (2006, TA = 2305 + 53.97*(S - 35) 
+ 2.74* (S - 35)2 - 1.16 (SST - 20) -0.040 (SST - 20)2, where S is salinity and SST is 
surface temperature) and the dashed black line indicates the mixing line described by 
Millero et al. (1998, TA=S*51.24 + 520.1, where S is salinity). The p-values for all 
regressions presented in the table were much less than 0.01. 
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 Seasonal TA:S shifts were found in the GOM (Figure 1.6). The 2017 winter TA:S 

slope (41.3) and TA0 (852 µmol kg-1) were similar to the high-salinity values of Cai et al. 

(2010, data collected in summer), who reported a slope and TA0 of 39.1 and 932 µmol 

kg-1, but during the springtime in 2017 (March through May) the GOM TA:S changed 

substantially, with a much shallower slope (24.3), higher TA0 (1415 µmol kg-1), and 

lower r2 (0.77). These conditions persisted into the summer of 2017 (June and July) in 

the GOM, and contrast sharply with the GOM TA:S regression in the summer of 2018. A 

similar 2017 seasonal shift was seen in the GBN region (Figure 1.7) from winter, 

through spring and into summer, with progressively shallower slopes (32.3, 30.2, and 

18.4, respectively), higher TA0 (1160, 1215, 1600, respectively), and lower r2 (0.63, 

0.63, 0.40, respectively). 

 Seasonal regressions from the MAB region in 2017 were lagged in time 

compared to those from the GOM and GBN regions. MAB winter and spring 2017 TA:S 

results were quite consistent in 2017 (Figure 1.8), with similar TA:S slopes (40.8 and 

44.1, respectively) and TA0 (880 and 763 µmol kg-1, respectively), and encompassed 

the MAB slope and TA0 provided by the historical dataset (43.7 and 769 µmol kg-1, 

respectively). The summer MAB regression changed substantially in a similar fashion to 

the GOM and GBN regions, with the TA:S slope dropping from 44.1 to 14.5 and TA0 

increasing from 763 to 1726 µmol kg-1. 

 SBF TA:S regressions further reinforce the observation that a seasonal shift 

occurred, as SBF winter and spring slope (44.2 and 42.2, respectively) and TA0 (761 

and 821 µmol kg-1, respectively) were similar in 2017, whereas the summer slope (21.7) 

and TA0 (1497 µmol kg-1) were markedly different (Figure 1.9). SBF results are also 
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notably differentiated by latitude: Steeper SBF winter and spring slopes were influenced 

by data from latitudes at or below 39°N, whereas the shallower summer SBF slope was 

mostly controlled by data from latitudes higher than 40°N. Cruise tracks from 2017 

(Figure 1.2) showed that the SBF data north of 40°N were collected in a region near the 

confluence of the SBF, GOM, and MAB regions, whereas the cruise tracks south of 

39°N ran very close to the boundaries between the SBF and MAB regions. The SBF 

slope from 2018 (46.9) was similar to the steeper, lower-latitude 2017 data group and 

the historical SBF slope (47.9). The 2018 SBF data also followed a uniform linear trend 

regardless of latitude. 

Table 1.4: Deviations between 2017 TA observations and TA estimates from regional 
models. The models used are those of Cai et al. (2010) and Lee et al. (2006). All 
differences are calculated as model-derived TA subtracted from the observed TA, thus 
positive values indicate model underestimate relative to the observed TA. Negative 
values are shown in parentheses. The third column (“Difference σ”) lists one standard 
deviation of the calculated differences for each region, and the fourth column lists the 
number of observations. All values are µmol kg-1. 

      

  Difference from Cai et al. (2010)    

Region 
Mean 
Difference 

Range of 
Difference 

Difference 
σ n  

GOM 8 (-33) - 74 14 1546  
GBN -5 (-52) - 90 16 1353  
MAB 12 (-60) - 97 16 3009  
SBF - - - -  
      

  Difference from Lee et al. (2006)    

Region 
Mean 
Difference 

Range of 
Difference 

Difference 
σ n  

GOM 13 (-27) - 82 10 1539  
GBN 4 (-32) - 67 10 1353  
MAB 1 (-66) - 87 12 2764  
SBF -4 (-64) - 53 13 1919  
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 The work of Lee et al. (2006) presented a polynomial expression of both salinity 

and sea surface temperature for the estimation of TA in North Atlantic surface waters, 

so direct comparison of linear regression coefficients is not possible here. The GOM 

equation of Cai et al. (2010) returned TA closer to measured values in 2017 (mean 

difference 8±14 µmol kg-1, Table 1.4) compared to the Lee et al. (2006) equation 

including in situ sea surface temperature (mean difference 13±10 µmol kg-1). The 

reverse was true in the MAB region where the TA calculated according to Lee et al. 

(2006) was more similar to the observed HydroFIA TA values (mean difference 1±12 

µmol kg-1) than TA calculated from the Cai et al. (2010) equation (mean difference 

12±16 µmol kg-1). The GBN region was represented equally well in 2017 by the Lee et 

al. (2006) equation (mean difference 4±10 µmol kg-1) and Cai et al. (2010) equation 

(mean difference -5±16 µmol kg-1). 
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Figure 0.10: Seasonal, regional slope and y-intercept (TA0) statistics produced from a 
robust linear regression method (see Section 2.3). Error bars show the standard error 
around each value, and numbers beside each point correspond to the r2 statistic. Blue 
lines and r2 values were calculated from the historical dataset (see Section 2.4), red 
lines and r2 values were calculated from the 2017 HydroFIA TA data, and magenta lines 
and r2 were calculated from the 2018 ECOA HydroFIA TA data. 
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 Regional and seasonal changes in TA:S combine to form a cohesive trend in 

2017. During winter, the TA:S slope and TA0 for all regions except the SBF were 

indistinguishable both from those of Cai et al. (2010, Figures 1.6-1.9) and from historical 

TA:S trends (Figure 1.10). The winter SBF slope (44.2), while not indistinguishable, still 

resembled the slope from the historical dataset (47.9) as well as the “Atlantic” slope of 

51.2 presented by Millero et al. (1998, Figure 9). Thus, the winter of 2017 data appear 

to reflect ‘typical’ conditions consistent with previous findings. In contrast, atypical 

conditions developed in the GOM in the spring of 2017 and continued into the summer 

and expanded southward and westward to the GBN, MAB, and SBF regions. By the 

summer of 2017, all regions showed TA:S conditions quite different from both the 

historical dataset and the results of Cai et al. (2010). These atypical summer conditions 

were not reflected in the 2018 ECOA-2 data, so the progression seen in 2017 is likely 

not due to typical seasonal patterns. Instead, the historical data show that the shifts in 

2017 were opposite of the typical seasonal changes in TA:S slope and TA0. 

1.3.2 Seasonal Biases in Data Availability 

 

 It is important to note here the paucity of available historical TA observations in 

winter; despite collecting the broadest extent of data we could find, there were no 

surface TA measurements in any region in January, and only about 25 GOM 

measurements in December (Figure 1.5). The vast majority of historical winter 

measurements were taken in February, and the existing East Coast TA data are overall 

heavily weighted towards summertime sampling. Data collected aboard the Bigelow in 
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2017 by the HydroFIA TA instrument provided some of the first widely spatially-

distributed TA measurements along the East Coast outside the summer months, as the 

GOMECC and ECOA cruises were all conducted during the summer months of June, 

July and August. Regular NOAA Ecosystem Monitoring (EcoMon) cruises have been 

conducted since 2012 during non-summer months, including TA sampling, but with a 

limited number of stations. Incorporation of the data collected in this work increases 

available TA observations by more than one order of magnitude during the months 

when the HydroFIA TA system was deployed. Winter is a difficult time to conduct 

cruises in Atlantic waters, but it is also a biologically important season, as it sets up 

conditions for the springtime bloom. The lack of historical evidence of shifts in seasonal 

TA:S, such as we have shown, may not be because these shifts are rare, but because 

the data have not been available to detect them. 

1.3.3 Mechanisms Affecting Linear TA:S Relationships 

 A variety of processes can alter ocean TA and salinity, contribute to TA:S 

variability, and potentially contribute to the observations presented here. Over time 

scales greater than 100,000 years, alkalinity (and salinity) in the oceans are controlled 

by geologic weathering and net seafloor sedimentary processes whereas over time 

scales between 1,000 and 100,000 years surface alkalinity is controlled by variations in 

biological pumping and interactions with carbonate and silici-clastic sediments (Zeebe 

2012). On shorter time scales, Takahashi et al. (2014) described five “oceanographic 

situations” and their effect upon the linear TA:S relationship. These situations, which will 

be discussed in terms of their applicability to the findings from this study, are: (a) 
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evaporation-precipitation (b) mixing in subtropical gyres between subtropical waters 

(whose TA is depleted by calcareous organism growth) and fresher subpolar waters 

enhanced in TA due to upwelling (c) biological production and decomposition, especially 

of CaCO3-containing shells (d) mixing of a source water with river water containing 

higher or lower TA, and (e) mixing of a source water with another body of water 

containing higher salinity and reduced TA (such as a warm evaporative basin or 

upwelled slope waters). As evaporation-precipitation (a) alters salinity and TA in 

proportion, this process will not affect the TA:S relationship. Neighboring regions 

exhibiting higher salinity and TA include the coastal SAB region to the south and the 

more offshore Gulf Stream water mass, providing two possible sources contributing to 

process (e). The regions in this study are likely not large enough to reflect changes in 

subtropical-subpolar mixing over seasonal time scales (e.g., Fry et al. 2015), and thus 

process (b) can be discounted. This leaves the situations of biological production (c), 

river water mixing (d), or mixing with a higher salinity water mass (e) as the most likely 

processes affecting the TA:S relationships in these regions. 

1.3.4 The Effect of Net Calcification or Dissolution 

 CaCO3 production events have been shown to lower TA (Bates et al. 1996a, 

Bates 2001), and therefore alter the slope of the TA:S line. In a regional context, 

uniform production across the region would result in no change to the TA:S line, 

whereas higher production in the saltier waters of a region would lead to a decreased 

TA:S slope, and higher production in the lower salinity waters would lead to an 

increased slope. This biological utilization in high-nutrient waters can potentially account 
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for up to a 50 µmol kg-1 TA reduction (Takahashi et al. 2014, Bates et al. 1996b, Harlay 

et al. 2010). It is conceivable that an offshore bloom of a calcifying species (such as a 

coccolithophore) could have drawn down TA in 2017, reducing the slope of the TA:S 

mixing line. This could explain the high-salinity data in 2017 that fall well below the 

Millero et al. (1998) regression line (Figure 1.9), but corresponding CaCO3 dissolution is 

needed to explain the low-salinity data that fall above the Millero et al. (1998) line. This 

can be seen especially in the offshore SBF region, where the 2017 summertime TA:S 

line appears to be rotated about a salinity of 33 relative to the other SBF regression 

lines, with lower TA above salinity 33 and higher TA below (Figure 1.9). An offshore 

calcifying bloom could explain the apparent TA drawdown above salinity 33, with 

corresponding CaCO3 dissolution inshore explaining the elevated TA input below 

salinity 33. Indeed, reductions in the TA:S slopes in the GOM, GBN and MAB regions all 

appear to be due to lower-salinity TA enhancement (Figures 1.6-1.8).  

 The formation of CaCO3 by calcifying species results in elevated pCO2 through 

shifts in the DIC:TA ratio, with the opposite effect for CaCO3 dissolution (Zeebe 2012, 

Bates et al. 1996b); however, the overall net pCO2 change depends on the amount of 

CaCO3 formation or dissolution relative to net ecosystem production. Thus, elevated 

pCO2 levels would be expected in areas where calcification is the primary mechanism of 

TA:S variability, and reduced pCO2 in those areas where dissolution predominates, 

although other mechanisms may offset some or all of this pCO2 increase (Balch 2018). 

In the case of the GOM region, the mean 2017 summer pCO2 (335 µatm) was lower 

than any other sampling period within the GOM region for this study, a potential 

indication of CaCO3 dissolution, or alternatively high net productivity. For a historical 
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climatological comparison all surface pCO2 measurements within each study region 

were extracted for each season from the 2019 Surface Ocean CO2 Atlas with data from 

1957 to 2019 (SOCAT2019, Bakker et al. 2016). The mean GOM pCO2 in summer 2017 

(336 µatm) was significantly lower than the historical (2002-2018) mean GOM summer 

pCO2 from the SOCAT database (370 µatm) as well as the mean GOM pCO2 from the 

2018 ECOA-2 cruise (390 µatm, significance determined according to one-way ANOVA 

tests, see Supplementary Material Figure A.3). Some of this difference may be due to 

the colder temperature in 2017 resulting in lower pCO2. Furthermore, the 2017 summer 

MAB and SBF mean pCO2 values (376 and 366 µatm, respectively) were significantly 

lower than the respective values from summer 2018 during the ECOA-2 cruise (421 and 

398 µatm, respectively) or seasonal mean pCO2 from the SOCAT database (411 and 

392 µatm, respectively). While the presence of lower pCO2 concurrent in space and 

time with the atypical TA:S relationships supports the idea that CaCO3 dissolution 

resulted in elevated TA:S slopes in the coastal GOM and MAB regions, this mechanism 

is unlikely given that these surface waters are typically supersaturated with CaCO3 

(Wanninkhof et al. 2015). 

1.3.5 Potential River or Shelf Mixing Effects 

 Mechanisms (d), mixing of a source water with river water containing higher or 

lower TA and (e), mixing with a higher salinity water mass, remain as explanations to 

the observed seasonal TA:S shifts. Cai et al. (2010) characterized the GOM, GBN and 

MAB regions as “Current-Dominated Margins”, where freshwater and TA inputs from 

local rivers are greatly outweighed by those carried by alongshore currents. For regions 
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in this study, the dominant alongshore current is the southward-flowing Labrador 

Current, a branch of which travels successively southward through the GOM, GBN, and 

MAB regions. Recent rapid warming of the Gulf of Maine (Pershing et al. 2015, 

Pershing et al. 2018) has been linked to increased intrusions of deeper, salty, and warm 

water through the Northeast Channel and concurrent reductions in Labrador water 

(Figure 1.1, Townsend et al. 2015, Brickman et al. 2018), the prevalence of which are in 

turn affected by changes in the Atlantic Meridional Overturning Circulation (Sherwood et 

al. 2011, Claret et al. 2018) or changes in the strength of the Labrador Current inflows 

(Jutras et al. 2020). Cai et al. (2010) suggest that continuous mixing of regional surface 

water with deeper slope and shelf waters would result in the lowering of the TA:S slope, 

providing a possible explanation of the seasonal shifts seen in this study. This 

explanation may not be satisfactory, as the regional salinities in 2017 generally 

decreased from winter to spring and then summer, while the TA at lower salinity 

gradually rises above the mixing line, suggesting a change in the amount of freshwater 

and TA being carried into the region.  

 The seasonal TA:S shifts seen in the 2017 data may have resulted from an 

increase of upstream shelf water entering the GOM relative to warm slope water. GOM 

temperature anomaly analyses, updated through 2020 using methods described by 

Pershing et al. (2015), show that GOM surface temperatures in early 2017 (January and 

February) were high enough to be judged a ‘heat wave’ (Pershing et al. 2018, updated 

data presented at https://www.gmri.org/stories/gulf-maine-temperature-update-normal-

new-cold/, accessed 10/4/2020). The GOM surface water temperature then fell through 

the spring and early summer to either lower-than-usual or typical values, indicating a 

https://www.gmri.org/stories/gulf-maine-temperature-update-normal-new-cold/
https://www.gmri.org/stories/gulf-maine-temperature-update-normal-new-cold/
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transition from warmer, saltier source water to colder, fresher shelf water. Cai et al. 

(2010) report a Labrador TA:S regression slope of 33 and TA0 of 1124 µmol kg-1. These 

values are lower than the 2017 summer GOM slope and TA0 in this study (26.2 and 

1357 µmol kg-1, respectively, Figure 1.10). As the Labrador Current travels from the 

Labrador Sea to our study regions and becomes shelf water, it is modified by other 

inputs, notably those from the St. Lawrence Estuary, which carries massive amounts of 

freshwater to the Atlantic coast north of Nova Scotia. St. Lawrence Estuary TA0 (1124-

1314 µmol kg-1, Dinauer and Mucci 2017, 2018) is typically lower than the TA0 

calculated for spring 2017 in the GOM (1415 µmol kg-1) and summer 2017 in all study 

regions- all TA0 values which statistically exceed the historical TA0 for each region by 

wide margins. Whereas the St. Lawrence experienced a large flooding event in early 

2017 (ILO-SLRB 2018), the water transit time of more than six months between the St. 

Lawrence and the Gulf of Maine discounts the influence of the St. Lawrence on our 

2017 observations (Ohashi and Sheng 2013). Measured TA0 values from local rivers in 

the GOM, GBN, and MAB regions (Hunt et al. 2011, Cai et al. 2010) are much too low 

to account for the elevated TA0 measured in this study, and discharge levels from these 

rivers are too small to broadly impact the biogeochemistry of these regions (Cai et al. 

2010).  

 We compared surface salinity measured in this study to climatological data from 

the World Ocean Atlas 2018 (WOA2018) salinity product (Zweng et al. 2019). Gridded 

monthly North Atlantic and Coastal WOA2018 salinity at 1/4° resolution was retrieved, 

and the same regional boundaries discussed previously were used to compute 

seasonal, climatological statistics for the GOM, GBN, MAB and SBF regions. In three of 
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the four study regions (GOM, GBN, and SBF), the 2017 mean summer salinity was 

lower than that from winter or spring 2017, and lower than the seasonal mean WOA 

salinity for winter, spring or summer (see Supplementary Material Figure A.3). The GBN 

and SBF 2017 mean summer salinities were also lower than those from ECOA-2. The 

one exception is the MAB region, where the mean 2017 summer salinity was 

indistinguishable from the mean summer salinity during ECOA-2 or from the WOA, and 

all were lower than the 2017 mean winter and spring salinities. These exceptionally low 

salinities show the abnormal levels of freshwater present in the regions, which cannot 

be accounted for by local river discharge, and instead must be transported southward 

by upstream sources. 

 Mixing with freshwater can potentially explain the 2017 changes in TA:S slope 

but cannot readily explain the relatively low TA at salinities greater than 35, which were 

observed around Cape Hatteras. Lower than usual pCO2 suggests that biological 

uptake through calcification was not likely, and thus another high-salinity endmember, 

with characteristic TA much lower than the Gulf Stream is needed. One possibility is 

provided by Cai et al. (2010), who describe TA:S regressions from seven South Atlantic 

Bight (SAB) shelf cruises resulting in a calculated TA at salinity 36.5 of 2366-2400 µmol 

kg-1, with a mean value of 2384 µmol kg-1. The same paper lists an unusual TA:S slope 

and TA0 from a series of GYRE93 cruises around the intersection of the MAB and SAB 

regions which result in an unusually low calculated TA at salinity 36.5 of 2300 µmol kg-1, 

and support the concept that the observed 2017 TA from this study at salinity 36.5 

(2355 µmol kg-1) is low but not unprecedented. The SAB thus represents a potential 

high-salinity/low TA water source, through surface water exchange between coastal 
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SAB waters inshore of the Gulf Stream and the MAB and SBF regions, or SBF water 

transported northwards via the Gulf Stream and then eastwards into the MAB region via 

eddies or warm-core rings (Rasmussen et al. 2005, Hare and Cowen 1996). 

  Previous work has discussed a mean southward flow of coastal water from the 

GOM, through the GBN, and into the MAB region (Townsend et al. 2006, Cai et al. 

2010, Wang et al. 2013, Wanninkhof et al. 2015), with both salinity and TA enriched by 

mixing with slope waters along the way. The measurements made as part of this study, 

as well as the historical data discussed above, indicate that the surface water conditions 

are substantially more complex between regions and across seasons. In addition to the 

alongshore gradient in TA, there also appears to be an offshore influence as well, as 

warmer and saltier north-flowing Gulf Stream water interacts with southward-flowing 

coastal water masses. The mixing balance between the saltier, TA-enriched northward-

flowing Gulf Stream water, the southward-flowing shelf water, and deeper slope water 

may dictate much of the distribution of salinity and TA along the East Coast. 

 

1.4  Conclusions 

 

 Deployment of the CONTROS HydroFIA® TA instrument aboard the Bigelow 

produced high quality (uc of 2.4-4.1 µmol kg-1) surface TA data over broad spatial and 

temporal time scales. Results from 2017 and 2018 showed that use of the HydroFIA TA 

instrument aboard cruises of opportunity can greatly increase regional carbonate 

system monitoring capacity. Inter-annual and seasonal comparisons showed that TA 

distributions along the United States East Coast are dynamic, not easily predicted from 
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physical variables such as salinity, and not yet fully characterized by current studies. 

Significant seasonal shifts in linear TA:S relationships demonstrate potential problems 

with any single linear model for the retrieval of TA from salinity. Analysis of a compiled 

historical regional dataset reinforces the finding that salinity, TA, and TA:S linear 

relationships shift seasonally, although data availability is extremely sparse in some 

months and regions. Additional deployments during undersampled months may further 

advance the understanding of the seasonal nature of TA:S relationship in these regions, 

and analyses of derived DIC, pH or carbonate saturation state may provide even more 

insights. Especially when deployed on ships equipped with instrumentation to measure 

another carbonate system parameter (i.e., pCO2), the HydroFIA TA instrument 

represents a substantial advancement in the ability to comprehensively monitor and 

characterize surface waters.  
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CHAPTER 2: CONTROLS ON BUFFERING AND COASTAL ACIDIFICATION IN A 

NEW ENGLAND ESTUARY 

 

2.1 Introduction 

 

 Balanced at the confluence of the land and sea, estuaries are dynamic mixing 

zones, sites of biogeochemical transformations and enrichments, and essential habitats 

in the life cycles of many species. The continuous, complex journey of dissolved and 

particulate materials derived from terrestrial sources through an estuary proceeds along 

a number of dimensions in space and time (Borges 2005, Gattuso 1998). Along one 

dimension, substances are carried by rivers and groundwater into the estuary, where 

they are physically mixed with coastal seawater while utilized and altered by pelagic and 

benthic organisms. Vertical exchanges between the pelagic water column, benthic 

sediments and the atmosphere add a vertical dimension of complexity (Cai et al. 2017), 

while mixing of water and associated materials within certain ecosystems such as 

mangroves and salt marshes provide another lateral dimension (Sippo et al. 2016, 

Wang and Cai 2004, Wang et al. 2016). Finally, all of the above mechanisms may be 

altered over time by shifts in temperature and salinity, changes in freshwater discharge 

and associated changes in constituent loads, seasonal and episodic alterations in net 

ecosystem productivity, anthropogenic watershed and ecosystem modifications, 

variations in coastal ocean exchange, and other short- and long-term factors (Lee et al. 

2015, Pacella et al. 2018, Waldbusser and Salisbury 2014). 

 Against this backdrop of complex biogeochemical changes, estuaries are also 

situated as hotspots of acidification (Cai et al. 2020). The accumulation of 
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anthropogenic carbon dioxide (CO2) in the atmosphere has led to a compensatory 

increased uptake of CO2 by the global ocean in a process termed ocean acidification 

(OA, Orr et al. 2005, Doney et al. 2009), which has driven down seawater pH by about 

0.1 units since the start of the Industrial Revolution and threatens to further lower pH by 

another 0.3 by the end of the 21st century (Caldeira and Wickett 2003). In addition to 

OA, estuaries are also under acidification pressure from coastal-specific processes 

grouped into the term coastal acidification (CA). CA specifically refers to nutrient-

enhanced productivity which can lead to enhanced productivity and subsequent 

decomposition of the produced organic material (Breitburg et al. 2015) and also refers 

to shifts in the amount and composition of freshwater discharge (Kaushal et al. 2013, 

Kaushal et al. 2014, Salisbury et al. 2008). The combined effects of OA and CA are 

termed ocean and coastal acidification (OCA), which result in changes in pH and other 

properties due to both local and remote forcing (Gledhill et al. 2015).  The capacity of a 

water body to resist changes in acid level is termed buffering and can be parameterized 

using the concentrations of total alkalinity (TA) and dissolved inorganic carbon (DIC) in 

that water body (Egleston et al. 2010).  Changes to both the absolute concentrations 

and the relative proportions of TA and DIC can have potentially profound effects on the 

buffering capacity (and consequently pH) of an estuary; thus the influences of mixing 

and biogeochemical transformations of TA and DIC in an estuary are important to 

understand in light of growing OCA pressures.  

 Estuaries are generally thought to enrich DIC through the respiration of 

allochthonous and autochthonous organic carbon and transport of river and coastal 

wetland DIC (Bauer et al. 2013, Borges et al. 2003, Sippo et al. 2016). Conversely, 
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primary productivity and carbonate precipitation can draw down DIC. Additionally, 

several processes have been shown to produce TA within estuaries (Table 2.1), 

including primary productivity, denitrification, manganese reduction, iron reduction, and 

sulfate reduction (Raymond et al. 2000, Borges et al. 2003, Sippo et al. 2016).  Growth 

of calcifying organisms, such as oysters, and the harvest or burial of their shells 

represents a sink of TA (Waldbusser et al. 2013), as does aerobic respiration (Borges et 

al. 2003).  In the Chesapeake Bay, Waldbusser et al. (2013) estimated a TA sink of 225 

g m2 yr-1 (assuming the loss was entirely due to calcium carbonate formation).  In the 

temperate York River estuary, Raymond et al. (2000) attributed additions of TA and DIC 

to sulfate reduction. In mangroves TA export estimates range from –1.2 to 117 mmol m2 

d-1 (Leopold et al. 2016, Sippo et al. 2016), while mangroves may account for up to 93% 

of DIC exports in a watershed (Faber et al. 2014).  Several studies have identified 

sulfate reduction and aerobic respiration as the major drivers of TA and DIC additions in 

mangroves (Borges et al. 2003, Bouillon et al. 2007, Sippo et al. 2016). Salt marshes 

have also been described as ‘CO2 Pumps’- absorbing CO2 from the atmosphere and 

exporting the resulting inorganic carbon (at least partly as TA) to the coastal zone 

(Wang and Cai 2004).  Several salt marsh systems have been shown to follow this 

mechanism; however, these studies have been limited to sites containing a large 

proportion of marsh habitat (Cai and Wang 1998, Wang and Cai 2004), or were based 

on discrete sampling at monthly or seasonal time scales, which may not capture 

shorter-scale variability. Estuaries are also frequently mixed-habitat areas, with a wide 

array of processes and natural and anthropogenic factors combining to affect the TA 

and DIC exchange with the coastal ocean. Additionally, the dynamics of TA and DIC 
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production, consumption and exchange may change episodically, seasonally, or on an 

interannual basis. 

 Estuaries and coastal waters in New England have been identified as particularly 

vulnerable to the effects of OCA (Gledhill et al. 2015, Salisbury et al. 2008), and local 

management agencies have initiated studies of the potential effects of OCA 

(COMNARE 2017, MSLCOOA 2021) and called for the examination of the contributions 

of individual processes to overall OCA.  Here, we present a study of a New England 

estuary using novel, highly-resolved time series measurements of TA and derived DIC, 

and use the ratios of these parameters to examine the seasonality and relative 

magnitudes of processes that affect buffering, pH, and potential future OCA. 
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Table 2.1. Aerobic and anaerobic biogeochemical processes and their relative stoichiometric alterations to TA and DIC. 
Positive values for ∆TA and ∆DIC indicate additions of total alkalinity and dissolved inorganic carbon by the forward 
reaction, respectively; negative values indicate removal. Values for carbonate transformation are for 
dissolution/precipitation, respectively. Table compiled after Sippo et al. (2016) and Cai et al. (2017). 

 

Process(es)   Formula         ∆TA ∆DIC  nTA:nDIC 

Primary Production  106CO2 + 16HNO3
-+H3PO4 + 122H2O↔(CH2O)106(NH3)16(H3PO4) + 106O2 +17 -106  -0.16 

Aerobic Respiration  (CH2O)106(NH3)16(H3PO4) + 106O2↔106CO2 + 16HNO3
-+H3PO4 + 122H2O -17 +106  -0.16  

Sulfate Reduction   CH2O + 0.5SO4
2- + 0.5H+→CO2 + 0.5HS- + H2O    +1 +1  +1 

Carbonate Dissolution/  CaCO3↔Ca2+ +CO3
2-       +2/-2 +1/-1  +2 

Precipitation 

Denitrification   CH2O + 0.8NO3
- + 0.8H+→CO2 + 0.4 N2 + 1.4H2O    +0.8 +1  +0.8 

Nitrification   0.5NH4
+ + O2→0.5NO3

- + 0.5H2O + H+     -1 0  n/a 

Iron Reduction   CH2O + 4Fe(OH)3 + 8H+→CO2 + 4Fe2+ + 11H2O    +8 +1  +8
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2.2 Study Area and Methods 

 

 The Great Bay is a macrotidal estuary covering 44 km2 in southeastern New 

Hampshire and southwestern Maine, USA.  The Great Bay is enclosed by 230 km of 

generally steep rocky shoreline, bordered by narrow salt marshes, and connected to the 

neighboring Gulf of Maine via the Piscataqua River (Figure 2.1).  Great Bay contains 

about 9 km2 of salt marsh, or about 20% of the total estuary area, with the remaining 

area comprised of clam flats, eelgrass beds, intertidal and subtidal macroalgal cover, 

mudflats, and rocky outcrops and islands (Jones 2000). 

 The University of New Hampshire’s Coastal Marine Laboratory (CML) is located 

at the outlet of Great Bay at the mouth of the Piscataqua River.  A continuously pumped 

intake located 0.5 m from the bottom of the Piscataqua channel supplies the CML with 

seawater.  Water depth at this intake ranges roughly between 4 and 6 meters over a 

typical tidal cycle (DeMeo 2011).  Tidal exchange and currents at this location are very 

strong, and previous work at this same location showed that low tide water pumped to 

CML was comprised of outgoing Great Bay estuary water, while at high tide the water 

was near-shore western Gulf of Maine water (Brown 2006). 
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Figure 2.1: The Great Bay estuary.  Panel (a) shows the Gulf of Maine region, with 
Great Bay indicated by a red box.  Panel (b) includes Great Bay, its bathymetry, and its 
contributing rivers, with the Coastal Marine Laboratory (CML) location shown as a red 
box.  Panel (c) shows aerial imagery of the CML and surrounding environs, including 
the lab water intake (yellow), local eelgrass beds (green), and predominant tidal flow 
(blue).  Panels (a) and (b) used with permission from Cook (2019), panel (c) modified 
from Google Maps imagery. 
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 Sensors for the measurement of CML intake water temperature and salinity 

(Aanderaa 4319) and dissolved oxygen (Aanderaa 4835) were suspended in a large 

200-liter open tank equipped with a passive debubbling and sediment settling system.  

Seawater was continuously pumped through this tank at a rate of about 5 liters per 

minute.  Seawater was also pumped to a spray-type seawater gas equilibrator for the 

measurement of pCO2, similar to that described by Wanninkhof and Thoning (1993).  

Equilibrated air was drawn at 100 mL/min through tubing containing a Nafion selectively 

permeable membrane (Perma Pure, Toms River NJ), with the same analyzed sample 

stream at lower pressure returned through an outer tubing to carry away the stripped 

water vapor.  This “reflux method” effectively dries the sample gas stream of water 

vapor with no external supply of drying gas required.  No water temperature difference 

was observed between that measured by the Aanderaa temperature sensor in the open 

tank and the outflow from the equilibrator (measured with a handheld meter—YSI 

Yellow Springs, Ohio—manufacturer accuracy ±0.2 °C). Temperature data from the 

Aanderaa sensor was used in sea-surface temperature corrections during the 

calculation of pCO2. After drying, the sample was pumped to a non-dispersive infrared 

gas analyzer (Li-cor LI-840, Lincoln NE), which measured the molar fraction of carbon 

dioxide (xCO2) of the sample stream. The Li-cor was calibrated weekly or biweekly 

using a tank of pure nitrogen (0 ppm CO2 molar fraction) and a tank of known CO2 

concentration (span tank). Over the study period we employed a succession of span 

tanks containing a gas mixture with CO2 molar fraction between 500 and 850 ppm 

(Scott-Marin, Riverside, CA), which were calibrated against a primary standard obtained 

from the National Oceanic and Atmospheric Administration’s Earth System Research 
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Laboratory. Additionally, a set of switching valves operated by a computer running a 

custom-built software program allowed for periodic checks of pure nitrogen and span 

gas to monitor instrument drift.  Corrections of data for water vapor pressure and sea 

surface temperature and conversion from xCO2 to the partial pressure of carbon dioxide 

(pCO2) were carried out according to standard methods (Dickson et al. 2007).  The 

estimated uncertainty of pCO2 measurements is ±3 μatm.  

 An automated total alkalinity analyzer (Contros HydroFIA TA) was installed at 

CML in May 2016 and operated until November 2019, with an extended break in later 

2017 when the instrument was returned for service, and a longer break from 2018 into 

2019 when fire damaged the CML facility and regular operations were suspended.  The 

HydroFIA instrument performs a single-point titration of seawater with 0.1N hydrochloric 

acid, using bromocresol green as the indicator for spectrophotometric pH detection, a 

technique developed by Yao and Byrne (1998) and refined by Li et al. (2013).  Filtered 

seawater (pore size 0.2 µm) was supplied to the HydroFIA instrument from a cross-flow 

filter supplied by Kongsberg.  The HydroFIA instrument was set to perform hourly 

measurements, and re-calibrated on a one to two week interval with certified reference 

material from Dr. Andrew Dickson (Dickson et al. 2003). All CML data, including 

measurements of TA and pCO2, are hosted by the Northeastern Regional Coastal 

Ocean Observing System (http://neracoos.org). 
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2.2.1 Derived parameter calculation 

 The concurrent measurements of salinity, temperature, pCO2 and TA at CML 

allowed for the determination of other carbonate system components.  The calculation 

of dissolved inorganic carbon (DIC) and pH (on the total scale, at a constant 25°C or at 

in-situ temperature) was performed using the CO2SYS program (van Heuven et al. 

2011).  The K1 and K2 constants chosen were the estuarine constants of Cai and Wang 

(1998), the KSO4 and KB constants were those of Dickson et al. 1990 and Dickson 

1990 respectively, and the total boron concentration was calculated from salinity 

according to Uppstrom (1974). Phosphate and silica concentrations were set to zero in 

CO2SYS, as studies have shown low nutrient concentrations in the study area (Short 

1992, PREP 2018). The buffer factor β-H was also calculated by first calculating β-TA 

(Equation 1) and then applying a proportionality constant to calculate β-H (Equation 2). 

ß-H and β-TA are buffering factors which quantify the capacity of seawater to resist a 

chemical change such as the addition of acid. These buffer factors are related to, but 

not identical to, the Revelle factor which quantifies the change in pCO2 relative to a 

change in DIC (Broeker et al. 1979). We used the bicarbonate ([HCO3
-]), carbonate 

([CO3
2-]), hydrogen ion ([H+]), and borate ([B(OH)4

-]) concentrations and KB returned by 

CO2SYS for each pair of observed pCO2 and TA to calculate the β-TA and β-H 

according to Egleston et al. (2010): 

𝛽 − 𝑇𝐴 = (
𝜕 ln[𝐻+]

𝜕𝑇𝐴
)

−1

=  
𝑇𝐴𝐶

2

𝐷𝐼𝐶
− 𝐹𝑆        (2.1) 
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where 𝑇𝐴𝐶 = [𝐻𝐶𝑂3
−] + 2[𝐶𝑂3

2−], 𝐷𝐼𝐶 = [𝐶𝑂2] + [𝐻𝐶𝑂3
−] + [𝐶𝑂3

2−], and FS is a sensitivity 

factor (denoted simply “S” in Egleston et al. 2010, but modified here to avoid confusion 

with the common salinity notation): 𝐹𝑆 = [𝐻𝐶𝑂3
−] + 4[𝐶𝑂3

2−] + 
[𝐻+][𝐵(𝑂𝐻)4

−]

𝐾𝐻𝐵+[𝐻+]
+ [𝐻+] − [𝑂𝐻−] 

β-H, the resistance of pH to change upon addition of a strong acid or base (TOTH), was 

then calculated according to Egleston et al. (2010): 

𝛽 − 𝐻 =  − (
𝜕𝑝𝐻

𝜕𝑇𝑂𝑇𝐻
)

−1

= −2.3 𝑥 𝛽 − 𝑇𝐴        (2.2) 

 The presence of organic constituents contributing to measured titration alkalinity 

has been shown in estuaries (Cai et al. 1998), coastal waters (Yang et al. 2015), and 

even reference materials (Sharp and Byrne 2021). While the concentrations of organic 

alkalinity constituents were shown to be generally low relative to TA, the concentrations 

were variable and the sources of the organic constituents were unclear. In light of these 

uncertainties, calculations in this study were performed under the approximation that TA 

did not contain an organic component. 

 

2.2.2 Salinity Normalization Approach 

 Some analyses in the following sections required normalization of data to a 

constant salinity. Various studies have used a simple technique to normalize data (e.g., 

normalization to a constant salinity of 35, such as described by Millero et al. 1998), but 

Friis et al. (2003) pointed out that this technique can lead to erroneous results if a non-

zero TA intercept is present, as was the case in this study. We adopted the approach of 
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Friis et al (2003) to calculate salinity-normalized TA (nTA) and DIC (nDIC) according to 

the following: 

𝑛𝑇𝐴 = {
𝑇𝐴𝑜𝑏𝑠−𝑇𝐴0

𝑆𝑜𝑏𝑠
× 𝑆𝑚𝑒𝑎𝑛} + 𝑇𝐴0        (2.3) 

 

𝑛𝐷𝐼𝐶 = {
𝐷𝐼𝐶𝑜𝑏𝑠−𝐷𝐼𝐶0

𝑆𝑜𝑏𝑠
× 𝑆𝑚𝑒𝑎𝑛} + 𝐷𝐼𝐶0       (2.4) 

where TAobs and DICobs are the observed TA and DIC, TA0 and DIC0 are the zero-

salinity TA and DIC determined from linear regression against salinity, Sobs is the salinity 

corresponding to the observation of TA or DIC, and Smean is the mean salinity of all 

observations used in the linear regression. 

 

2.2.3 Linear Regression Analysis 

 Linear regression analysis of TA and DIC against salinity was performed using 

an iteratively weighted least-squares algorithm with a bisquare function to weight 

outliers and robust fitting options enabled (fitlm in Matlab®, Mathworks, Natick MA 

USA). This returned two linear coefficients: the change in TA or DIC per unit salinity 

(i.e., slope, designated “TA:S” or “DIC:S” hereafter) and the TA or DIC calculated at 

salinity zero (i.e., intercept, designated “TA0” and “DIC0”, respectively). 
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2.2.4 Performance of the Contros HydroFIA® TA System 

 The HydroFIA® TA instrument collected 11,150 hourly measurements between 

May 2016 and November 2019. Additionally, instrument checks were performed every 

one to two weeks using certified reference material (CRM) obtained from the Scripps 

Institute of Oceanography laboratory of Dr. Andrew Dickson (Dickson et al. 2003) to 

support assessments of instrument stability and accuracy. A total of 80 sets of triplicate 

CRM checks were conducted over the study period, each prior to instrument re-

calibration (see Supplementary Material Figure B.1).  The magnitude of one standard 

deviation (σ) of the triplicate CRM checks ranged from less than 1 µmol kg-1 to 23.4 

µmol kg-1, with a mean σ of 3.8 µmol kg-1.  This σ is somewhat higher than that reported 

by Seelmann et al. (2019) for the HydroFIA® TA instrument, as well as that reported by 

Hunt et al. (2021) in a shipboard deployment; however, as will be shown in this work the 

σ from this study was adequate for resolving the dynamic TA signals at CML, both at 

shorter tidal and longer monthly time scales, where TA variability was greater than the 

mean σ by an order of  magnitude or more. The mean difference between CRM 

measurements and the certified TA value was -2.9±19.0 µmol kg-1, where the negative 

value indicates that the mean HydroFIA® TA values were lower than the certified CRM 

TA. This instrument performance was similar to those reported by Hunt et al. (2021) and 

Seelmann et al. (2019) using the same instrument. 
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2.2.5 Mechanistic Model 

 To estimate the relative contributions of mixing, net ecosystem metabolism 

(NEM, Caffrey 2004), and air-sea flux of CO2 to changes in TA and DIC, we used a 

mechanistic model modified from that of Pacella et al. (2018). This model calculated the 

partial change in TA and DIC between time t and time t+1 (in this study, from one hour 

to the next) due to mixing (using salinity changes and linear TA:salinity and DIC:salinity 

mixing relationships), NEM (in this model NEM incorporated all biologic activity, 

including benthic anaerobic processes) and air-sea CO2 exchange. Briefly, this model 

apportioned changes in DIC according to: 

 

[𝐷𝐼𝐶]𝑡+1 = [𝐷𝐼𝐶]𝑡 + ∆[𝐷𝐼𝐶]𝑀𝑖𝑥𝑖𝑛𝑔 +  ∆[𝐷𝐼𝐶]𝑁𝐸𝑀 +  ∆[𝐷𝐼𝐶]𝐺𝑎𝑠    (2.5) 

 

where [DIC]t+1 is the DIC concentration at time t+1, [DIC]t is the DIC concentration at 

time t, ∆[DIC]Mixing is the change in the DIC concentration from time t to time t+1 due to 

mixing, ∆[DIC]NEM is the change due to NEM, and  ∆[DIC]Gas is the change due to the 

air-sea flux of CO2. Changes in TA were apportioned similarly, with no air-sea flux term: 

 

[𝑇𝐴]𝑡+1 = [𝑇𝐴]𝑡 + ∆[𝑇𝐴]𝑀𝑖𝑥𝑖𝑛𝑔 +  ∆[𝑇𝐴]𝑁𝐸𝑀      (2.6) 
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where [TA]t+1 is the TA concentration at time t+1, [TA]t is the TA concentration at time t, 

∆[TA]Mixing is the change in the TA concentration from time t to time t+1 due to mixing 

and ∆[TA]NEM is the change due to NEM.  The terms ∆[DIC]Mixing and  ∆[TA]Mixing were 

calculated using endmember mixing between river endmember TA and DIC as 

discussed below and monthly mean marine TA and DIC measured at the WBD station 

offshore of CML, at depths greater than 20m (Supplementary B.2). The ∆[DIC]Gas term 

was calculated using CO2 fluxes calculated as in Hunt et al. (2013) from the observed 

pCO2 data, wind velocity from a nearby weather station (National Data Buoy Center 

station IOSN3), and atmospheric pCO2 values from the coastal UNH CO2 buoy 

(Vandemark et al. 2011). Pacella et al. (2018) used changes in dissolved oxygen 

concentration from time t to time t+1 to stoichiometrically calculate ∆[DIC]NEM and 

∆[TA]NEM and thus derive [DIC]t+1 and [TA]t+1. However, using changes in dissolved 

oxygen to estimate NEM-driven changes to DIC has been shown to be problematic 

(Van Dam et al. 2019). The availability of hourly measurements in this study provided 

observed values of [DIC]t, [DIC]t+1, [TA]t+1, and [TA]t+1, and allowed calculation of 

∆[DIC]NEM and ∆[TA]NEM. 

 

2.3 Results 

 

2.3.1 Observed Conditions  

 Conditions at CML during the study period were strongly seasonal: colder and 

fresher in the winter and spring, and warmer and saltier in the summer and fall (Figure 
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2.2, Table 2.2).  The coldest monthly average water temperature was in February, while 

the lowest monthly average salinity was in April; the highest average water temperature 

was in August, while the highest average salinity was in September.  Vigorous 

semidiurnal tidal exchanges between the coastal ocean and Great Bay produced clear 

temperature and salinity differences at CML between high and low tides.  Differences 

sometimes exceeded 5°C in temperature and 5 in salinity over the tidal cycle. Salinity 

variability was greatest in the late winter and spring, when seasonal storms and melting 

snowpack brought more fresh water into Great Bay that mixed with saltier coastal water, 

but summer or fall storms also produced periods of high episodic salinity variability.  For 

instance, salinity increased over 8 between low and high tides during late winter and 

spring of 2018, and by 9 during a period in spring 2019.  In contrast, late summer and 

fall typically had fewer storms and drier conditions, which resulted in much less salinity 

variability during these seasons.  For example, in the fall of 2016 the salinity change 

between high and low tides was as little as 0.15-0.3 when Great Bay received very little 

fresh water.  Similarly, in the fall of 2017 salinity changed by about 0.7 between tides. 

The smallest tidal salinity difference was 0.02, on September 9, 2016; the largest tidal 

salinity difference was 8.7 on March 4, 2017. The generally dry conditions in fall were 

reflected in the low standard deviations for salinity from July through October, while 

wetter spring conditions were reflected in high salinity standard deviations from March 

through May (Table 2.2). 
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Table 2.2: Monthly mean values, with standard deviation and range (in parentheses) of water temperature, salinity, pCO2, 
and TA measured at the CML site from 2016-2019.   

     

  

Water Temperature 

(°C) 

Salinity pCO2 

(µatm) 

TA 

(µmol kg-1) 

Jan 4.53 ± 1.49     (1.80-7.71) 29.9 ± 1.6    (26.0-32.1) 401 ± 14    (359-439) 2069 ± 92    (1841-2223) 

Feb 3.75 ± 0.75     (2.06-5.83) 30.2 ± 1.6    (23.7-32.1) 372 ± 24    (270-420) 2077 ± 86    (1679-2207) 

Mar 3.97 ± 0.60     (1.75-5.64) 29.4 ± 2.0    (22.6-32.2) 343 ± 42    (218-434) 2021 ± 125   (1564-2199) 

Apr 8.25 ± 0.75     (6.86-9.51) 26.3 ± 2.2    (22.4-30.4) 324 ± 24    (288-361) 1815 ± 139   (1523-2073) 

May 9.74 ± 1.44     (6.12-12.95) 28.1 ± 2.0    (22.9-31.1) 423 ± 40    (333-520) 1947 ± 124   (1610-2150) 

Jun 12.51 ± 1.85   (8.40-17.71) 29.1 ± 1.6     (23.0-31.2) 464 ± 58    (321-807) 2023 ± 90    (1634-2194) 

Jul 15.93 ± 2.24   (9.53-20.1) 30.0 ± 0.6     (27.1-31.3) 556 ± 73    (402-969) 2057 ± 57    (1800-2196) 

Aug 16.62 ± 1.93   (12.16-20.60) 31.0 ± 0.5     (29.6-31.8) 602 ± 86    (390-973) 2092 ± 36    (1991-2206) 

Sep 16.26 ± 1.90   (12.23-20.12) 31.7 ± 0.1     (31.1-32.0) 659 ± 114    (423-858) 2131 ± 26    (2055-2187) 

Oct 13.94 ± 1.06   (11.97-15.76) 31.5 ± 0.5     (28.5-32.1) 598 ± 59     (459-730) 2120 ± 36    (1947-2201) 

Nov 9.82 ± 1.28     (8.27-12.94) 31.0 ± 0.8     (28.7-32.3) 585 ± 94    (407-815) 2120 ± 52    (1962-2213) 

Dec 7.49 ± 1.33     (4.63-10.16) 30.5 ± 1.2     (27.4-32.1) 426 ± 22    (376-485) 2103 ± 74    (1694-2209) 



  

68 

 

 

 

Figure 2.2: Coastal Marine Laboratory hourly timeseries plots, from top to bottom, of: 
water temperature, salinity, pCO2, and TA (black markers) measured from 2016-2019.  
Grey lines depict annual climatologies, calculated from monthly averages of data from 
2005-2019, except for TA data which were only collected from 2016 through 2019.  All 
monthly climatologies were smoothed over 60 days (‘smooth’ function, Matlab®, 
Mathworks Natick MA USA). 
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 Monthly mean pCO2 dropped from 401 µatm in January to annual low values in 

March and April indicating net estuary productivity (343 and 324 µatm, respectively), 

then rose steadily to an annual high of 659 µatm indicating net estuary respiration in 

August before dropping through the fall to 426 µatm in December. In contrast to salinity, 

pCO2 variability was highest when salinity variability was lowest, as seen during the late 

summer and fall in 2016, when pCO2 variability over the tidal cycle reached 400 µatm in 

September, and again in the fall of 2019 when the same variability reached 350 µatm 

(Figure 2.2). This pattern was reflected in larger pCO2 standard deviations from July to 

November and smaller pCO2 standard deviations from December to May (Table 2.2). 

While pCO2 was generally higher at low tide, there were periods each year when pCO2 

at low tide was lower than at high tide, typically during spring months.   

 TA concentrations followed salinity, with higher TA associated with higher 

salinity, and higher tidal TA variability associated with periods of higher salinity 

variability. Monthly average TA was highest in September (2131 µmol kg-1), which was 

also the month of lowest TA variability as measured by the standard deviation of 

monthly data (Figure 2.2, Table 2.2) and highest average salinity.  The largest tidal TA 

difference, as measured by the difference between TA at high tide and TA at the 

subsequent low tide, was 578 µmol kg-1 on March 4, 2017; the smallest tidal TA 

difference was 0.1 µmol kg-1 on October 4, 2019. While infrequent, there were periods 

when the TA at high tide was lower than that on the subsequent low tide, generally in 

summer or fall (there were no such periods of lower salinity at high tide than low tide, 

however). The monthly average TA was lowest in April (1815 µmol kg-1), which was the 

month of lowest average salinity (26.3) and highest TA variability (Table 2.2), but also 
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the fewest monthly TA measurements (Table 2.4).  The monthly co-variation of TA with 

salinity was not perfect.  For instance, although March had the second-highest hourly 

salinity at CML (32.2) the corresponding TA was not particularly high (2159 µmol kg-1).  

Indeed, the highest observed TA (2223 µmol kg-1, in January 2017) was measured at a 

salinity of 32.1. Monthly mean, salinity-normalized TA (nTA, normalized to a dataset 

mean salinity of 29.95) was highest in January (2071 µmol kg-1), dropped each 

successive month to an annual low in April (nTA 2018 µmol kg-1), then increased to 

another annual high value in June (2068 µmol kg-1). During the latter half of the year 

monthly nTA remained between 2036 and 2061 µmol kg-1 (Supplementary Table B.1). 

 

2.3.2 Derived Parameter Conditions 

 DIC concentrations followed the general patterns of salinity and TA, with higher 

DIC found at higher salinities.  The highest average monthly DIC was in September 

(2017 µmol kg-1), while October was the month of lowest DIC variability (±29 µmol kg-1, 

Figure 2.3, Table 2.3).  The lowest average monthly DIC was in April (1710 µmol kg-1), 

also the month of highest DIC variability (±124 µmol kg-1). Low DIC in April due to the 

annual spring phytoplankton bloom coincided with the highest monthly average pH 

calculated at 25°C (pH25°C 7.82), while the lowest monthly average pH25°C was in 

January (7.72). As pH is strongly affected by temperature, results of pH at in-situ 

temperature (pHin-situ) were quite different, with the lowest pHin-situ in September (7.85) 

and the highest pHin-situ in March (8.06). ß-H was highest, and thus buffering was 
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strongest, in August (376 µmol kg-1) and weakest in April (326 µmol kg-1). The lowest 

monthly average ß-H in April coincided with the second-freshest month (average salinity 

28.6), while the second-lowest monthly ß-H in May (332 µmol kg-1) coincided with the 

lowest average monthly salinity (28.1). While August was the month of strongest 

buffering, it was not the month of highest salinity (which was September/October); 

however, August was the month of highest average water temperature (16.4 °C). 

Monthly mean, salinity-normalized DIC (nDIC, normalized to a dataset mean salinity of 

29.95) was highest in January and February (1957 and 1955 µmol kg-1, respectively) 

and lowest  in April (1889 µmol kg-1) in a similar pattern to nTA.  The nDIC for months 

from May to December ranged between 1913 µmol kg-1 (in August) and 1947 µmol kg-1 

in November. 
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Figure 2.3: Coastal Marine Laboratory hourly timeseries plots, from top to bottom, of 
calculated parameters: dissolved inorganic carbon (DIC), pH on the total scale at 25°C, 
aragonite saturation state (Ωa), and the buffering factor β-H.  See text for details of the 
calculation of these parameters from in situ measurements of salinity, temperature, 
pCO2 and TA.  Grey lines depict annual climatologies, calculated from monthly 
averages of data from 2016-2019.  See Appendix B for further detail regarding the 
preparation of climatologies.
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Table 2.3: Monthly mean values, with standard deviation and range (in parentheses), of derived variables DIC, pH and β-
H.  Note that larger values of β-H indicating higher buffering capacity. 

     

  

Dissolved Inorganic Carbon 
(µmol kg-1) 

pH 
(Total scale, 25°C) 

pH  
(Total scale, in situ 

temperature) 

β-H 
(µmol kg-1) 

Jan 1956 ± 81     (1761-2077) 7.723 ± 0.030    (7.625-7.874) 8.003 ± 0.016    (7.958-8.040) -146 ± 14   (-178, -114) 

Feb 1969 ± 77     (1590-2082) 7.736 ± 0.034    (7.687-7.952) 8.035 ± 0.018    (7.988-8.098) -150 ± 9     (-168,-117) 

Mar 1907 ± 115     (1492-2065) 7.758 ± 0.038    (7.620-7.900) 8.059 ± 0.042    (7.966-8.201) -150 ± 15   (-175,-102) 

Apr 1710 ± 124     (1510-1932) 7.819 ± 0.028    (7.768-7.865) 8.051 ± 0.031    (7.988-8.104) -142 ± 16   (-169,-108) 

May 1837 ± 110     (1544-2035) 7.764 ± 0.046    (7.659-7.877) 7.972 ± 0.045    (7.858-8.075) -144 ± 17   (-191,-101) 

Jun 1892 ± 84   (1566-2065) 7.785 ± 0.051     (7.593-7.921) 7.955 ± 0.051    (7.712-8.096) -156 ± 17   (-201,-104) 

Jul 1924 ± 56   (1704-2063) 7.786 ± 0.043     (7.605-8.011) 7.899 ± 0.048    (7.687-8.017) -163 ± 10   (-193,-132) 

Aug 1964 ± 36   (1850-2073) 7.764 ± 0.053     (7.545-7.921) 7.874 ± 0.055    (7.671-8.034) -164 ± 12   (-204,-125) 

Sep 2017 ± 38   (1823-2111) 7.736 ± 0.082     (7.589-8.119) 7.848 ± 0.071    (7.735-8.015) -162 ± 17   (-203,-136) 

Oct 2011 ± 29   (1868-2095) 7.734 ± 0.049     (7.546-7.891) 7.877 ± 0.040    (7.787-7.984) -161 ± 11   (-191,-128) 

Nov 2003 ± 42     (1879-2098) 7.735 ± 0.038     (7.652-7.804) 7.944 ± 0.052    (7.826-8.022) -157 ± 12   (-179,-131) 

Dec 1974 ± 64     (1802-2067) 7.745 ± 0.015     (7.710-7.784) 7.990 ± 0.020    (7.942-8.031) -155 ± 11   (-174,-130) 
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2.4 Discussion 

2.4.1 TA and DIC Mixing 

 TA can be a useful tracer of conservative river-ocean mixing in estuaries and 

coastal waters (Howland et al. 2000, Cai et al. 2010, Wang et al. 2013), as it is 

unchanged by CO2 exchange with the atmosphere. Unlike DIC, changes in which can 

indicate biological uptake or release of CO2, pairing TA with salinity often yields a nearly 

conservative behavior in an estuary system (Salisbury et al. 2009). However, there is 

increasing evidence that estuarine biogeochemical processes can influence TA as well 

as DIC, producing nonconservative TA mixing as well as nonconservative DIC mixing 

(Raymond et al. 2000, Cai et al. 2017, Wang et al. 2016, Sippo et al. 2016). 

 Linear regression of all the CML TA measurements against salinity (Figure 2.4) 

yielded a regression slope of 53.8±0.2 µmol kg-1 and zero-salinity intercept (TA0, 

Equation 2.2) of 442±6 µmol kg-1, with an RMSE of 34.8 µmol kg-1 (r2 0.87, p<<0.001).  

There was also a strong linear relationship between DIC and salinity (Figure 2.4), with a 

regression slope of 50.3±0.2 µmol kg-1 and zero-salinity intercept (DIC0, Equation 2.3) of 

428±6 µmol kg-1, with an RMSE of 36.4 µmol kg-1 (r2 0.84, p<<0.001). The relatively 

high RMSE values indicate that there was considerable variability in the TA-salinity and 

DIC-salinity relationships at CML, either due to changes in water mass mixing, 

biogeochemical processes, or (in the case of DIC) air-sea exchange. This is evident in 

Figure 2.4, as considerable scatter of TA and DIC both above and below the linear 

regression lines. To set reasonable bounds for how much of this variability might be due 

to variable river inputs of TA and DIC, we used the river endmember data reported by 
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Hunt et al. (2011a) for three rivers draining to Great Bay to estimate the mean and one 

standard deviation uncertainty of river TA (507±270 µmol kg-1) and DIC (644±308 µmol 

kg-1). Upper and lower conservative river mixing bounds were thus calculated using the 

values of Hunt et al. (2011a) and a theoretical ocean endmember calculated from the 

linear regression of all the TA and DIC observations (Figure 2.4). 

 River TA and DIC concentrations vary considerably with season and discharge, 

leading to a range of river-ocean mixing lines through time (Najjar et al. 2020, Joesoef 

et al. 2017, Hunt et al. 2011b). While this was likely true in the CML data as well, and 

thus some amount of the variability of TA and DIC above and below the river mixing 

lines in Figure 2.4 was due to changing river endmember TA and DIC, a substantial 

number of TA and DIC observations at CML were still above or below the bounds of this 

theoretical river mixing. This indicates that some of the TA and DIC variability is likely 

due to another process or combination of processes in addition to conservative river 

mixing.  Another indication of estuary modification of TA and DIC was the finding 

that the regressed CML TA0 (442±6 µmol kg-1) was higher than the regressed DIC0 

(428±6 µmol kg-1). In contrast, measured river DIC was always higher than the 

corresponding river TA (Hunt et al. 2011a,b). While the TA0 of 442 was slightly lower 

than the mean river TA (507 µmol kg-1), the DIC0 of 428 µmol kg-1 was substantially 

lower than the mean river DIC (644 µmol kg-1). This discrepancy supports the idea that 

river-borne TA and DIC are processed non-conservatively and in different proportions in 

Great Bay before reaching CML. Specifically, while there may be a small amount of 

overall TA removal, the amount of DIC removal appears to be much larger. 
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Figure 2.4: CML TA (top panel) and DIC (bottom panel) distributions with salinity for 
data collected from 2016-2019. The TA measurements were made by the HydroFIA® 
TA instrument, while DIC was derived from measured TA and pCO2 (refer to the text for 
the calculation description). The solid grey lines show the linear regression of all TA or 
DIC observations against salinity. The dotted grey lines show the conservative mixing of 
mean river TA or DIC from Hunt et al. (2011a) with a coastal ocean endmember 
(calculated as the TA or DIC from the solid linear regression line at the maximum 
observed salinity of 32.58). The grey shaded area represents the upper and lower 
bounds of river and coastal ocean conservative mixing. The bounds for the river 
endmembers were defined as one standard deviation above and below the mean TA 
and DIC for the three Great Bay rivers reported by Hunt et al. (2011a), while the bounds 
for the ocean endmember were obtained from subsurface data offshore of CML.  
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Table 2.4: Monthly robust linear regression statistics for TA and DIC against salinity. 

Year Month Salinity Range

TA-salinity 

Slope

TA-salinity 

Intercept TA-salinity r
2

TA-salinity n

TA-salinity 

RMSE 

DIC-salinity 

Slope

DIC-Salinity 

Intercept DIC-salinity r
2

DIC-salinity 

n

DIC- salinity 

RMSE

2016 May 3.3 63 ± 1.6 206 ± 47 0.91 158 15 56 ± 1.1 324 ± 34 0.94 158 11

2016 Jun 2.3 65 ± 1.6 135 ± 48 0.75 566 18 65 ± 4.3 -1 ±130 0.35 434 40

2016 Jul 0.7 75 ± 12.8 -171 ± 389 0.07 467 41 52 ± 12.8 376 ±390 0.04 426 39

2016 Aug 2.1 82 ± 1.4 -448 ± 43 0.84 655 17 66 ± 1.8 -72 ±55 0.68 652 22

2016 Sep 0.5 151 ± 3.0 -2627 ± 95 0.79 690 9 193 ± 9.9 -4105 ± 313 0.37 664 29

2016 Oct 1.2 43 ± 3.2 774 ± 102 0.35 337 13 -0.03 ± 4.3 2017 ± 134 0.03 336 17

2016 Nov 2.7 59 ± 0.6 296 ± 20 0.98 166 6 45 ± 1.3 594 ± 41 0.88 164 13

2016 Dec 4.8 61 ± 0.4 221 ± 13 0.98 463 11 52 ± 0.4 392 ± 14 0.97 459 11

2017 Jan 5.9 61 ± 0.6 234 ± 19 0.95 530 22 52 ± 0.5 385 ± 14 0.96 507 16

2017 Feb 8.4 58 ± 0.5 336 ± 16 0.96 484 17 54 ± 0.5 323 ± 15 0.96 479 16

2017 Mar 9.3 65 ± 0.3 115 ± 9 0.99 280 12 59 ± 0.3 160 ± 10 0.99 279 12

2017 Apr 8.1 61 ± 0.6 236 ± 17 0.99 57 11 54 ± 0.7 293 ± 17 0.99 57 11

2017 May 7.1 62 ± 0.4 199 ± 11 0.99 293 14 51 ± 0.6 405 ± 16 0.96 291 19

2017 Jun 7.6 56 ± 0.8 392 ± 23 0.89 560 35 47 ± 0.7 525 ± 21 0.88 557 31

2017 Jul 3.2 44 ± 2.3 765 ± 68 0.39 660 30 3 ± 3.5 1845 ± 105 0.00 385 28

2017 Aug 8.9 5 ± 10.1 1914 ± 305 -0.01 64 19 -3 ± 15.6 2031 ± 470 -0.02 63 29

2018 Jan 5.9 47 ± 0.7 686 ± 22 0.92 334 24 36 ± 1.5 905 ± 45 0.83 109 29

2018 Feb 8.2 47 ± 0.7 643 ± 20 0.92 450 24 35 ± 0.7 910 ±23 0.91 209 16

2018 Mar 8.1 60 ± 0.8 259 ± 23 0.95 303 23 55 ± 0.6 300 ± 17 0.97 298 18

2019 Mar 7.3 62 ± 1.2 200 ± 36 0.97 96 19 62 ± 1.3 61 ± 38 0.96 96 20

2019 May 7.9 54 ± 1.4 412 ± 40 0.79 393 48 46 ± 1.4 524 ± 39 0.75 393 47

2019 Jun 5.0 48 ± 1.1 576 ± 33 0.79 494 29 40 ± 1.4 714 ± 40 0.64 494 36

2019 Jul 4.1 45 ± 1.8 668 ± 55 0.47 703 38 41 ± 1.8 665 ± 55 0.42 703 38

2019 Aug 1.8 46 ± 1.8 669 ± 55 0.62 415 14 32 ± 2.9 967 ± 90 0.23 415 24

2019 Sep 1.0 89 ± 5.6 -698 ± 178 0.63 149 16 113 ± 12.5 -1544 ± 396 0.40 127 31

2019 Oct 4.0 45 ± 1.4 704 ± 45 0.64 544 23 33 ± 2.7 954 ± 85 0.40 221 27

2019 Nov 5.3 57 ± 1.9 333 ± 59 0.95 43 13 51 ± 2.4 420 ± 74 0.91 43 16
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2.4.2 Seasonal Changes in TA and DIC Mixing Patterns 

 The hourly measurement rate at CML allowed for highly-resolved data collection 

over long periods of time. To examine temporal shifts in the conservative mixing of TA 

and DIC with respect to salinity, we constructed monthly linear regressions for the 27 

months with sufficient data collection from 2016-2019 (Table 2.4). Of these 27 months, 

19 TA-salinity regressions returned zero-salinity intercepts that were within the TA river-

mixing bounds discussed previously, while 16 months had DIC-salinity regressions with 

zero-salinity intercepts that were within the DIC river-mixing bounds. Taking results from 

all sampled months, the mean TA-salinity regression slope was 60.0 µmol kg-1 (±24 

µmol kg-1, one standard deviation), while that of DIC-salinity was 51.5 µmol kg-1 (±36 

µmol kg-1, one standard deviation). The TA-salinity slope was higher than the 

corresponding DIC-salinity slope for 22 of the 27 months in Table 2.4, again indicating 

stronger estuary removal or decreases of DIC. The mean TA-salinity slope was similar 

to the slope of 65.8 described by Cai et al. (2010) for a transect whose inshore leg 

began very near CML in August 2007. However, Cai et al. (2010) reported a zero-

salinity TA intercept of -188.7 µmol kg-1, a value which clearly requires some 

mechanism of TA removal to explain. 

 The strongest linear correlations between TA and salinity or DIC and salinity, 

according to the r2 statistic, tended to be in the winter (December, January, February) 

and spring months (March and May), while the weaker r2 statistics in summer and fall 

months indicated that mixing was less conservative. The winter and spring months also 

tended to have TA-salinity regression slopes near the mean value (60.0), while the 
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summer and fall months showed widely varying TA-salinity slopes (ranging from 5.0 to 

150). However, it should be noted that the summer and fall months were also those with 

lowest river flow and range of salinity change, and therefore the less robust salinity 

mixing relationships for these months were not surprising. For example, in September 

2016 the salinity range was only 0.5; considering the overall mean TA-salinity slope of 

53.8 this translated into a potential TA variability of half the slope, or 26.9 µmol kg-1.  

This was only somewhat higher that the overall uncertainty in the TA instrument 

accuracy (±18 µmol kg-1), indicating that in months of very low salinity variability the TA 

instrument may not be capable of determining a meaningful TA-salinity relationship. But 

it is worth noting that while the overall accuracy uncertainty over the study period was 

±18 µmol kg-1, in September 2016 the uncertainty in instrument accuracy was smaller 

(±11 µmol kg-1, n=3), allowing for meaningful interpretation of the results despite the 

small salinity changes in this and other months (Appendix Figure B.1). Other summer 

and fall months, such as June and August 2016 as well as June and August 2019 when 

the salinity range was larger, had relatively high r2 values, and were still much different 

in the slope and intercept terms. Despite the added uncertainty in TA-salinity and DIC-

salinity regressions in the summer and fall months, there appeared to be other factors 

contributing to TA and DIC observations. 
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Figure 2.5: CML salinity timeseries (panel a) with high tide readings shown in blue, low 
tide readings shown in green, and mid-tide readings shown in grey.  See the text for 
discussion regarding the identification of high and low tide points.  The linear regression 
of salinity against high and low tide TA is shown in panel b.  The regression equation for 
high tide TA against salinity is TAhigh tide=Sx54.7(±1.4) + 415(±43) with r2=0.65; that for 
the low tide TA is TAlow tide=Sx52.0(±0.6) + 495(±18) with r2=0.89. The linear regression 
of salinity against high and low tide DIC is shown in panel c.  The regression equation 
for high tide DIC against salinity is DIChigh tide=Sx59.6(±1.5) + 133(±47) with r2=0.68; that 
for the low tide DIC is DIClow tide=Sx48.3(±0.6) + 492(±18) with r2=0.89.



  

81 

 

2.4.3 High and Low Tide TA and DIC 

 Tidal exchanges between the coastal ocean and Great Bay are very strong, 

funneling large volumes of water past CML over each diurnal cycle. One study 

estimated a Great Bay flushing time of 2.5-7 days (Matso 2018), while another gave a 

range of 5-30 days depending on tidal stage and river discharge (Bilgili et al. 2005). 

Both studies show that much of the water in Great Bay is replaced over each tide. As 

the predominant coastal flow outside of CML is southward (Townsend 2006), the water 

which passes CML on the incoming tide is mostly advected south on the subsequent 

outgoing tide instead of re-entering Great Bay on the next tide. Therefore, we suggest 

that a simplistic conceptual model for each tidal cycle can be represented by “newer” 

coastal water entering the estuary past CML on the incoming tide, mixing with a pool of 

estuary water comprised of a combination of river and “older” coastal water, and then 

exiting past CML again on the outgoing tide. As data collection at CML was hourly, it is 

useful to examine the differences in the TA and DIC compositions of water at CML at 

high and low tides, where high tide presumably represents the greatest fraction of 

coastal water, and low tide represents the greatest fraction of mixed estuary water. We 

used salinity to identify high and low tides (as opposed to the observed tidal stage 

height) and the corresponding high and low tide TA and DIC (Figure 2.5) by first 

identifying the lowest salinity measurement within a seven-hour time frame of data 

(“findpeaks”, MATLAB, Mathworks Natick MA), then searching the previous nine hours 

for the highest salinity. We chose to employ this strategy due to a mismatch between 

the time of lowest tidal height and the time of lowest salinity, where the lowest salinity 
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was observed multiple hours after the lowest tidal height observation. This apparent 

asymmetry between tidal elevation and salinity is due to the dissipation of the energy of 

the tidal wave as it moves past CML and proceeds upstream, resulting in the phase of 

the tidal flow lagging that of the elevation (T. Lippmann, pers. comm.). Thus, while our 

salinity-based identification method did not strictly correspond to the technical 

definitions of high and low tides relative to sea surface height, we will use the common 

terms high and low tide henceforth to refer to the times of highest and lowest salinity 

during each diurnal tidal cycle. 

 By employing the method described above, the salinity, TA, and DIC were 

identified at high and low tide throughout the dataset. Linear regression of high and low 

tide TA against salinity yielded statistically similar results (Figure 2.5), indicating that 

there did not appear to be a significant change in TA in the water leaving Great Bay 

past CML on the outgoing tide relative to water entering past CML on the incoming tide. 

Additionally, the TA0 for high and low tides (415±43 µmol kg-1 and 495±18 µmol kg-1, 

respectively) were well within the wide river endmember TA range (507±270 µmol kg-1). 

However, linear regression of DIC against salinity produced different regression lines for 

high and low tide, with the low tide DIC having a steeper linear slope and higher DIC0 

than those from the high tide measurements, indicating a relative input of DIC to the 

water leaving Great Bay past CML on the outgoing tide. The low tide DIC0 (492±18 

µmol kg-1) is also much closer to the approximate river endmember DIC (644±308 µmol 

kg-1) than the corresponding high tide DIC0 (133±47 µmol kg-1). 
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2.4.4 Seasonal pCO2 Dynamics and Effects on Buffering 

 Seasonal pCO2 patterns have been documented at a buoy (WBD) located 12km 

offshore of CML (Vandemark et al. 2011), showing a strong CO2 drawdown in the spring 

and gradual efflux in the fall and winter.  April was the month of strongest CO2 

drawdown at WBD, matching results from CML and indicating that the timing of the 

spring pCO2 minimum is a regional phenomenon and not specific to CML.  Peak CO2 at 

WBD was typically in October or later, while that at CML was somewhat earlier in 

September. In general, pCO2 at CML followed the seasonal patterns seen at WBD, but 

with higher overall pCO2: the minimum buoy pCO2 in April was typically lower than the 

corresponding minimum value at CML, while maximum WBD pCO2 in the fall was also 

lower than the CML value. A study of spring, summer and fall pCO2 distributions in three 

of the Great Bay tributaries also showed the same seasonal progression, with low pCO2 

in April and higher values in October (Hunt et al. 2011a). This study also estimated that 

river-borne DIC contributions to estuary DIC were usually much larger than the DIC 

contributed by the estuary itself, with the exception of April when estuary DIC drawdown 

was nearly equal to the river DIC input. 

 The strong spring CO2 drawdown is due to the well-known regional spring bloom 

(Townsend et al. 2006). Intense primary productivity should stoichiometrically remove 

DIC and contribute a smaller amount of TA (Table 2.1), a phenomenon reflected by the 

highest pH and lowest DIC also occurring in April, the minimum DIC being due to a 

combination of increased low-DIC freshwater and biological drawdown of CO2. Monthly 

mean TA was also lowest in April (Table 2.2), due to dilution from river mixing. The 
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estuary buffering reflected in β-H was also lowest in April (Table 2.3), concurrent to the 

highest pH25°C and second-highest pHinsitu. Fall showed the opposite trend, with higher 

salinity, TA, pCO2 and DIC. The highest monthly DIC in September produced both the 

lowest pHinsitu and highest monthly β-H. While pHinsitu and water temperature are 

expected to vary inversely, lower pH25°C values in the fall emphasized that temperature 

was not the only factor contributing to the pH changes. The co-occurrence of high pH 

and low β-H in the spring, or low pH and high β-H in the fall, may appear to be 

contradictory but in fact demonstrates that β-H simply reflects the resistance of estuary 

pH to perturbation, and not the overall estuary pH itself. The processes which dictate 

seasonal β-H in an estuary, such as mixing, may be decoupled from the processes 

which dictate pH such as temperature or NEM. Our results indicate that mixing dictates 

TA, DIC, and β-H at CML, while pCO2 and pH are more strongly influenced by strong 

positive net estuary and coastal production during the spring bloom, and ongoing 

negative net estuary metabolism through the late summer and fall as allochthonous and 

autochthonous organic matter is consumed in the estuary. 

 

2.4.5 Biogeochemical Processes Affecting TA and DIC 

 As discussed earlier, conservative river-ocean TA mixing models are often used 

to estimate TA distributions in estuaries, and during the winter and spring seasons in 

Great Bay conservative mixing does appear to explain the general TA distributions with 

salinity (Figure 2.4, Table 2.4). But estuaries can also be sites of intense 
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biogeochemical processing, especially of allochthonous and autochthonous organic 

matter, which can alter TA, DIC, or both in varying proportions, depending on the 

stoichiometry of the chemical reaction or reactions that predominate (Borges et al. 

2003, Bouillon 2007, Krumins et al. 2013, Sippo et al. 2016, Cai et al. 2017).  The most 

common processes and their ∆DIC:∆TA ratios are compiled from Cai et al. (2017) and 

Sippo et al. (2016): aerobic respiration and primary production (AR/PP, ∆TA :∆DIC -

0.16), sulfate reduction (SR, ∆TA: ∆DIC 1.0), carbonate dissolution or precipitation 

(CD/P, ∆TA: ∆DIC 2.0), denitrification (DN, ∆TA: ∆DIC 0.8), and iron reduction (IR, ∆TA: 

∆DIC 8.0). Note that both aerobic respiration and carbonate dissolution are reversible 

reactions (with primary production and carbonate precipitation, respectively) and are 

thus named according to the forward and backward reactions. AR/PP can occur in the 

pelagic environment or the oxygenated benthos, while the remaining processes are 

components of complex anerobic biogeochemical cycling within estuarine and coastal 

sediments that is subsequently reflected in the overlying water, where AR/PP, SR, 

CD/P, and DN tend to predominate in most estuaries (Burdige 2011, Ulfsbo et al. 2011, 

Hagens et al. 2015). These processes may occur simultaneously or be coupled together 

to transport electrons through various sediment layers, and the linkage between 

sediment chemistry and the chemistry of the overlying water may depend on a variety of 

physical and biogeochemical factors (Burdige 2011, Cai et al. 2017).  The chemical 

reaction stoichiometry for each of these reactions is listed in Table 2.1. 

 The linear regression of all salinity-normalized TA against salinity-normalized DIC 

(nTA and nDIC respectively, normalized to a Smean of 29.95, Figure 2.6) yielded a 

nTA:nDIC slope of 0.83±0.005. This slope most closely matched the theoretical 
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nTA:nDIC slope of denitrification (DN, 0.8), and was shallower than the theoretical 

slopes for sulfate reduction (SR, 1.0), carbonate dissolution or precipitation (CD/P, 2.0) 

or iron reduction (8.0). This is consistent with previous work, as denitrification is thought 

to represent a small proportion of NEM (Bouillon et al. 2007), while PP/AR and SR are 

thought to be the dominant processes in systems such as Great Bay and the coastal 

Gulf of Maine (Köster et al. 2000, Raymond et al. 2000, Hopkinson et al. 1999). The 

observed  slope (0.83) is somewhat lower than the theoretical slope for SR (1.0), but 

much higher than the slope for AR/PP (-0.16), indicating that a mixture of the SR and 

AR/PP processes are likely either operating sequentially or simultaneously to alter 

nTA:nDIC, but that SR could be the dominant process. Cai et al. (2017) modeled a 

mixture of aerobic respiration, SR, and carbonate dissolution in both sequential and 

simultaneous arrangements in order to explain oxygen and sulfide concentrations and 

DIC:TA changes in subsurface summertime Chesapeake Bay waters, with the 

simultaneous arrangement producing a closer match to their observations. Sippo et al. 

(2016) calculated nTA:nDIC slopes from six Australian mangrove estuaries; five of 

these had slopes ranging from 0.44 to 0.95 (mean slope 0.71) and good linearity 

(r2>0.5, mean r2 0.81),  while one had a slope of essentially zero and poor linearity 

(slope 0.05, r2 0.07). Like Cai et al. (2017), Sippo et al. (2016) invoked a combination of 

processes to explain their observations, specifically a combination of aerobic respiration 

and SR. It seems likely that an overall combination of SR and AR/PP was responsible 

for the nTA:nDIC observed at CML as well. 
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Figure 2.6: All  salinity-normalized  DIC (nDIC) and salinity-normalized TA (nTA) from 
the CML observations (gray points), with high tide data (blue points) and low tide data 
(green points) corresponding to those shown in Figure 2.5.  Dashed lines show the 
stoichiometric nTA:nDIC changes for common estuarine processes: aerobic respiration 
(AR), denitrification (DN), sulfate  reduction (SR), carbonate dissolution (CD) and iron 
reduction (IR).  The solid blue line shows the linear regression of high tide data points 
(slope 0.84±0.017), while the solid green line shows that of low tide data points (slope 
0.92±0.016). The linear regression of all data (dashed gray line, slope 0.83±0.005) is 
essentially covered by the solid blue high tide regression line.
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 While the overall CML nTA:nDIC regression was linear (r2 0.75, p<0.001), there 

was significant scatter around the regression line (nTA RMSE 18 µmol kg-1). 

Examination of the nTA:nDIC distributions at high and low tide showed clear differences 

(Figure 2.6). The high tide slope (0.84±0.017, r2=0.77, p<0.001) was indistinguishable 

from the overall trend of all data and may reflect an apparent combination of SR and 

AR/PP.  The low tide slope (0.92±0.016, r2=0.83, p<0.001), however, was significantly 

steeper than the high tide slope. The steeper low tide slope was very close to the 

stoichiometric slope for SR (1.0), perhaps indicating that this process was a stronger 

contributor at low tide, a logical result as the tidal flushing out of Great Bay and past 

CML and consequent sea height drop results in more benthic-pelagic interaction.  

 In addition to differences in the nTA:nDIC slope between high and low tides, 

there was an evident seasonal progression of nTA:nDIC slope as well (Figure 2.7). 

Monthly nTA:nDIC slope values were generally between the SR and DN values, 

excepting a large decrease in the later summer and fall months (August through 

October) toward the AR value.  These months were also the months of relatively high 

nonlinearity between nTA and nDIC as indicated by generally low r2 values (Table 2.4). 

This general pattern was seen across years between 2016-2019 with some interannual 

variability. While there were differences between low and high tide monthly nTA:nDIC 

slopes, these differences were small and inconsistent between years.  
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Figure 2.7: Monthly climatological salinity (dashed blue line), water temperature (dashed 
red line), buffer factor β-H (solid magenta line), and nTA:nDIC slope (solid black line) at 
the Coastal Marine Lab, calculated using data from 2016 through 2019.
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 Examination of TA:DIC changes have been used to estimate the prevalence of 

biogeochemical processes, however it is worthwhile to consider how river-ocean mixing 

might also affect the TA:DIC signature. Hunt et al. (2011a) presented a limited dataset 

of TA and DIC from three Great Bay rivers, which exhibited a mean TA:DIC of 0.78 

(±0.11, n=12). If this ratio represents the predominant TA:DIC signature of river water 

entering Great Bay, then comparison to the low tide nTA:nDIC slope discussed above 

(0.92±0.016) would indicate substantial biogeochemical transformation between the 

river mouths and CML. Processes which would raise the nTA:nDIC slope above 0.78 

would include SR, CD/P and iron reduction. Hunt et al. (2011b) presented a more 

extensive timeseries of data from one Great Bay river: the Oyster River, which was 

among the three Great Bay rivers sampled in Hunt et al. (2011a). These Oyster River 

data exhibited a mean TA:DIC of 1.02 (±0.14, n=41), a value substantially higher than 

both that from Hunt et al. (2011a, 0.78) and from the low and high tide data (0.92 and 

0.84, respectively) discussed above. Thus TA:DIC data from Great Bay rivers 

encompass the TA:DIC values seen at both high and low tides at CML. However, a 

simple endmember mixing calculation determined that variability in river TA:DIC 

probably has little effect on the nTA:nDIC slope at CML, and that other processes must 

be present in order to produce the observed nTA:nDIC slopes. 

 It is important to consider that while nTA:nDIC slopes can be informative, they 

should also be interpreted together with TA and DIC addition or removal processes. For 

example, a nTA:nDIC slope of -0.16 could indicate aerobic respiration, as TA is 

consumed and DIC is produced. The same slope, however, can equally indicate primary 

production, as TA is produced and DIC is consumed. This is also true of carbonate 
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dissolution and precipitation. The above discussion focuses on nTA:nDIC slopes, which 

indicate that SR may have the strongest effect on relative changes in DIC and TA, with 

some possible influence of DN and seasonal expression of AR/PP. The overall TA 

mixing line appears mostly conservative, with perhaps a small TA removal (Figure 2.4), 

and indistinguishable between high tide and low tide (Figure 2.5). The DIC mixing line 

appears to indicate that DIC at CML is lower than that predicted by mixing with local 

rivers. Air-sea flux is one obvious explanation for the lower DIC, as CO2 is removed 

from estuary water by degassing (Hunt et al. 2011a), a process which leaves TA 

unchanged. The biogeochemical processes that remove DIC are primary production 

and carbonate precipitation, but these processes produce changes in TA as well and 

this is not apparent in the data. 

 

2.4.6 Contributions of mixing and temperature to buffering and pH 

 A simple set of calculations were performed to examine the relative influence of 

TA and DIC mixing and seasonal temperature changes on β-H and pH. Each parameter 

was calculated using CO2SYS, with TA and DIC inputs determined from the dataset-

wide relationships with salinity (Figure 2.4). The mixing influence was determined using 

a constant water temperature of 10°C, monthly mean salinity (Table 2.2), and 

conservatively mixed TA and DIC (Figure 2.4). The temperature influence was 

determined using mean monthly temperature (Table 2.2) and a dataset-wide mean 

salinity of 29.9, TA of 2048 µmol kg-1, and DIC of 1931 µmol kg-1. Application of the 
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monthly mixing and temperature effects to mean β-H (352 µmol kg-1) and pH (7.96) 

produced results matching the mean observed values within one standard deviation 

(Figure 2.8), indicating that mixing and temperature together account for much of the 

annual variability in β-H and pH at this site. Individually, the mean mixing effect was 

about three times stronger than the mean effect of in-situ temperature change for β-H 

(9.4 and 2.4 µmol kg-1, respectively), while the effect of in-situ temperature change was 

nearly an order of magnitude stronger than the mixing effect for pH (0.06 and 0.007, 

respectively). 
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Figure 2.8: Observed monthly mean buffer factor β-H (top panel) and pH (bottom 
panel), indicated by the solid grey line.  Errorbars indicate plus and minus one standard 
deviation of monthly mean β-H or pH. Theoretical β-H (“β-H MIX/TEMP”) and pH(“pH 
MIX/TEMP”) due to endmember mixing and temperature changes, calculated from 
whole-dataset salinity-TA and salinity-DIC regressions, mean monthly salinity, and 
mean monthly temperature, are shown as dashed blue lines.  
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2.4.7 Relative influences of mixing and NEM on TA and DIC 

 Both mixing and NEM contributed to changes in TA, DIC, pH and β-H.  These 

contributions appeared to shift seasonally, with mixing processes (and temperature) 

controlling changes for much of the year as shown in Figure 2.8, but metabolic process 

signatures were also evident in the late summer and fall (Figure 2.7).  Results from a 

mechanistic model (Figure 2.9) help explain the apparent contradiction that β-H was 

highest in late summer and fall while this period also showed the largest change in 

nTA:nDIC that implied enhanced metabolic activity. We note that limited paired TA and 

pCO2 data were available for the month of April in one year (n=29 in 2017), and these 

data were often not collected consecutively, producing unrealistically large, negative 

average monthly values of ∆[DIC]Mixing and  ∆[TA]Mixing (-15.5 and -16.8 µmol kg-1, 

respectively) which have been excluded from the following discussion. More complete 

data collection in April would likely result in seasonally-appropriate values of ∆[DIC]Mixing 

and  ∆[TA]Mixing. Overall, the model showed that mixing was the dominant control on 

changes in DIC and TA in winter and spring, a model result that is mostly driven by the 

higher degree of salinity variability (Figure 2.2, Table 2.2). By June the salinity became 

much less variable, and NEM overtook mixing as the more significant control.  Air-sea 

flux, which only influences changes in DIC, also increased in importance through the 

summer, becoming the largest factor influencing DIC in the months of August and 

October.  Interestingly, the model showed that late summer and fall represented a 

period of diminished NEM influence on DIC relative to the spring and early summer, but 
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this decrease in NEM was smaller than the decrease in mixing. The decreased mixing 

influence was due to less freshwater entering the estuary, resulting in saltier conditions 

at CML and relatively high salinities at both low and high tides, with proportionally higher 

DIC and TA. This then led to a more strongly buffered system despite the relatively 

strong influence of NEM.  It is worth noting that some metabolic activity may be 

reflected in the seasonal changes in the ocean mixing endmember (Appendix B.2), and 

thus some of the mixing contribution at CML may instead be reflective of remote coastal 

ocean NEM.  Whereas some studies have indicated that metabolic processes may pose 

a significant acidification risk in estuaries (Van Dam and Wang 2019, Cai et al. 2017), 

others have indicated that well-mixed estuaries may actually be buffered by increased 

NEM (Nixon et al. 2015).  These results suggest that NEM at CML represents a smaller 

acidification risk than changes to river inputs (Salisbury et al. 2008) or acidification 

controlled by the coastal ocean. We emphasize here that these findings from CML, 

located at the mouth of the estuary, may not apply to conditions in Great Bay itself.  

Oxygen and pH monitoring data at CML and in central Great Bay surface waters do not 

show especially low oxygen or pH levels (PREP 2018, NERR 2021). However, the 

same oxygen and pH levels in tidal rivers supplying Great Bay (the Oyster, Lamprey 

and Squamscott rivers, Figure 2.1) can be much lower, with frequent evidence of 

hypoxia and low pH which may be promoted by NEP (PREP 2018, NERR 2021).  While 

efforts to mitigate OCA by reducing nutrient inputs to lower overall NEM may be 

beneficial in Great Bay, they may have a lesser effect at CML, where AR appears to be 

a smaller contributor to NEM than SR, except in the fall when estuary buffering is 

already high (Figure 2.7). 
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Figure 2.9: Modeled, monthly mean changes in DIC and TA due to mixing, metabolic 
and air-sea flux processes (top panel) and relative contributions of these processes to 
the total monthly DIC or TA change (bottom panel).  Values shown in the top panel are 
the monthly mean values of DIC and TA changes over each hourly time step.  The 
colors of lines shown in the legend of the top panel correspond to the bar colors of the 
bottom panel.  Note that the DIC Mix and TA Mix lines in the top panel virtually overlie 
one another, and that results from April are excluded due to low data availability as 
discussed in the text. 
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2.5 Conclusions 

 

 This study presents evidence that CML, at the outlet of Great Bay, is a site of 

dynamic mixing, and this mixing influences estuary buffering capacity and acidification 

potential. Biogeochemical processes such as primary productivity and aerobic 

respiration may contribute to annual changes in pH, pCO2, DIC, and β-H but the 

signatures of these processes are difficult to discern within the strong mixing and 

temperature signals. The annual period when biogeochemical processes have the 

strongest influence on changes in TA and DIC is also the period when the estuary is 

most highly buffered by an abundance of high salinity water.  Future work could include 

estuary sampling transects from CML through Great Bay, with concurrent river 

endmember sampling. This would provide a snapshot view of TA and DIC addition 

relative to conservative mixing along the salinity gradient over a short time period and 

may identify areas upstream of CML where biogeochemical process signatures are 

discernible beyond physical influences. The addition of sampling for nitrate and 

ammonia at CML and upstream in Great Bay, particularly during winter, spring and early 

summer, would help constrain the possible influence of nitrification and denitrification on 

TA and DIC. These next steps would produce findings useful to policy makers and 

coastal managers who will need to decide which processes may be affected by 

regulation in order to better monitor and potentially ameliorate OCA. 
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CHAPTER 3: ORGANIC ALKALINITY DISTRIBUTIONS AND CHARACTERISTICS IN 

TWO GULF OF MAINE ESTUARIES 

 

3.1 Introduction 

 

 Estuaries are the dynamic connection between terrestrial and oceanic aquatic 

systems, and the sites of some of the heaviest population densities in the world (Nixon 

1995). Estuaries also provide important ecosystem services such as nursery and fishery 

habitats, filtering and detoxification, and flooding and storm event mitigation (Barbier et 

al. 2011).  However, estuaries are threatened by changing atmospheric conditions 

(nitrogen deposition, carbon dioxide enrichment) oceanic conditions (ocean 

acidification, sea level rise, warming, frequency and intensity of storms), and 

terrestrially-derived impacts (eutrophication, organic matter fluxes, increased runoff).   

 The overall cumulative impacts of these changes on estuaries are unclear.  On 

one hand, estuaries are commonly heterotrophic, high CO2 environments that are more 

susceptible to acidification than adjacent ocean waters (Cai et al. 2011).  The primary 

sources of acid buffering in ocean water have long been known to be the dissolved 

carbonate (CO3
2-) and bicarbonate (HCO3

-) ions (Park 1960), whose concentrations are 

commonly lower in estuaries.   The carbonate/bicarbonate buffer regulates pH and the 

partial pressure of carbon dioxide (pCO2) by the equilibria: 

 

CO2 + H2O <--> H2CO3 <--> H+ + HCO3
- <--> 2H+ + CO3

2-    (3.1) 
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While the CO3
2- and HCO3

- ions are the primary contributors to total alkalinity (TA) and 

pH buffering, other charged species can make significant contributions as well.  Organic 

alkalinity (OrgAlk) has been identified as an important contributor to TA in riverine and 

low salinity coastal environments (Waldbusser and Salisbury 2014) including Gulf of 

Maine rivers (Hunt et al. 2011), the Kennebec estuary (ME, USA, Hunt et al. 2013), 

intertidal salt marshes (Song et al. 2020), some Southeastern U.S. estuaries (Cai et al. 

1998), Baltic Sea estuary waters (Kulinski et al. 2014), Gulf of Mexico estuaries and 

coastal waters (Yang et al. 2015), and Korean coastal waters (Ko et al. 2016). The term 

organic alkalinity refers to the contributions of the conjugate bases of weak organic 

acids to total alkalinity- a contribution that depends on the total concentrations of the 

conjugate bases, their dissociation constants (pKs), and the pH of the water containing 

them.  Thus, the contributions of a particular organic acid to total alkalinity may be quite 

different in an acidic estuary than in a well-buffered system; similarly, different forms of 

organic acid may have quite different contributions to alkalinity at the same pH.  

Ultimately, it is clear that the relative organic alkalinity concentrations are pH 

dependent.  While a potentially important alkalinity component, the overall sources and 

roles of organic acids in driving physio-chemical reactions within estuaries remain 

unclear.  Without a better understanding of the interplay between organic acids and 

inorganic alkalinity in estuaries and their coastal plumes, the potential of estuaries to 

respond to acidification threats from both land and sea cannot be determined. 

 Examinations of the aquatic carbonate system can employ measurements of TA, 

pH, dissolved inorganic carbon (DIC), and the partial pressure of carbon dioxide (pCO2).  

Measurements of two of these parameters, together with the appropriate acid 
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dissociation constants (pKa) are frequently used to calculate the other parameters in 

lakes (Cole et al. 1994, McDonald et al. 2013), rivers (Butman et al. 2011, Raymond et 

al. 2013), estuaries (Borges 2005) and ocean waters (Park et al. 1960).  Software 

packages such as CO2SYS (Lewis and Wallace 1998) and SeaCARB (Lavigne et al. 

2011) are available across a wide range of computing platforms to automate these 

calculations.  However, if TA is used as one of the inputs for these calculations, and 

OrgAlk is present in significant quantities, then derived results will be inaccurate 

(systematically biased).  For example, if TA and pH are used to derive pCO2 and DIC, 

and OrgAlk is significant, DIC and pCO2 will both be overestimated, sometimes by a 

large factor (Abril et al. 2014).  A number of recent estimates of CO2 release from U.S. 

lakes (McDonald et al. 2013), U.S. rivers (Butman et al. 2011), and global rivers 

(Raymond et al. 2013) derive CO2 flux estimates from the combination of TA and pH 

measurements; consequently, our understanding of global terrestrial and estuary CO2 

fluxes are subject to large potential uncertainties due to the undetermined effects of 

OrgAlk. 

 In addition to the quantity of OrgAlk present in a system, the acid-base 

characteristics of that OrgAlk are also important.  While the pKa values of carbonate and 

bicarbonate are well characterized and predictable from salinity, temperature and 

pressure, those of OrgAlk are not.  The few studies which have characterized the pKa of 

estuary OrgAlk have yielded a continuum of values from 4.5-7.5, and indicate that the 

acid-base chemistry associated with OrgAlk is complex (Cai et al. 1998, Kulinski et al. 

2014, Yang et al. 2015, Ko et al. 2016).  If the pKa's of OrgAlk are sufficiently low, then 

organic bases will remain dissociated at oceanic and estuary pH levels, and will not 
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bond with H+ ions, even at the lower pH levels predicted under ocean acidification 

scenarios.  Thus, even at high concentrations of organics, the effect of OrgAlk on pH 

may be small, contributing weakly as a buffer against ocean acidification. 

 In studies of seawater (Dickson 1981) and freshwater (Stumm and Morgan 1995, 

Drever 1997), total alkalinity (TA) is discussed as the sum of anions in solution which 

can be neutralized by strong acid.  In both aquatic environments, the pH ‘equivalence 

point’ has been operationally set at pH 4.5. This definition has served the aquatic 

sciences well, as the majority of TA is typically thought to be comprised of carbonate 

and bicarbonate species, which will be about 96% protonated to carbonic acid at pH 

4.5.    Similarly, other significant species such as borate and silicate will also be fully 

protonated at or below pH 4.5, while the first dissociation constant of phosphoric acid 

(H3PO4) of about 2.1 is low enough to exclude protonation at the 4.5 equivalence point.  

To ensure complete carbonic acid formation and increase hydrogen ion concentration 

signals, current seawater analysis methods call for titration at lower pH working range 

(3.5-3.0, Dickson et al. 2007), although with accurate pH measurements the TA can 

also theoretically be measured accurately at virtually any pH, with results consistent 

with those at pH 4.5, or 3.0, and also consistent with the formal definition of TA (Liu et 

al. 2012), provided that no species are present in solution that have a dissociation 

constant similar to the equivalence point.  This definition, from Dickson (1981) is 

presented in Equation 3.2, where any species with an acid dissociation constant (pKa) 

greater than 4.5 at zero ionic strength is defined as a base, or proton acceptor, while 

any species with a pKa less than 4.5 defined as an acid.    
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TA = [HCO3
−] + 2[CO3

−2] + [B(OH)4
−] + [OH−] + [HPO4

-2 ] + 2[PO4
-3] + [H3SiO4

−] + 

2[H2SiO4
−2] + [HS−] + 2[S−2] + [NH3

0] + [OrgAlk−] − [H+] − [HSO4
-] - [HF] - [H3PO4]  

            (3.2) 

However, all definitions of TA have included a catch-all term of unspecified organic 

anions (OrgAlk in Equation 3.2).  These organics will contribute to TA in a way 

consistent with Equation 3.2, provided that they become fully protonated at or above pH 

4.5 (i.e., have a pKa substantially greater than 4.5).  However, there is increasing 

evidence that some naturally occurring anions are not fully protonated below pH 4.5 

(Ulfsbo et al. 2015, Sharp and Byrne 2020).   

 In this study we sampled two Gulf of Maine estuary systems: the St. John 

Estuary in Maine USA, and the St. John estuary in New Brunswick Canada over four 

spring and fall transits, collected samples along the estuary salinity gradient and at the 

river endmember, and analyzed samples for several parameters including OrgAlk 

measured according to two different methods. We then compare these measures of 

OrgAlk and estimated values of estuary organic matter pKa. 

 

3.2 Materials and Methods 

 

3.2.1 Study  Sites 

 Two river-estuary systems were selected for this study, based on previous work 

which documented contrasting levels of DOC, TA, OrgAlk and pH measured at the river 

endmembers (Hunt et al. 2011).  The Pleasant River drains an approximately 160 km2 
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watershed forested in deciduous trees before emptying into Pleasant Bay, but the 

watershed is also characterized by substantial regions of heath predominantly used to 

cultivate wild blueberries.  Pleasant River water is known to be rich in tannins (a 

synonym for humic acids), and the darkly colored water empties into the marsh-fringed 

estuary at the town of Columbia Falls, ME (Keller 2020).  The tidal portion below the 

dam at Columbia Falls Maine is identified on NOAA chart 13324 as the “Pleasant 

River”; however, for this work we will refer to the Pleasant River as the freshwater 

portion upstream of the dam, and we will refer to the tidal portion between the dam and 

Pleasant Bay as the St. John Estuary. The St. John River drains a much larger 

watershed, approximately 55,000 km2, which encompasses areas of Maine (USA) and 

New Brunswick (Canada). The river empties into the Bay of Fundy at St. John, New 

Brunswick, although vigorous tidal mixing occurs above and below this location. The 

watershed is mostly forested, with occasional agricultural areas. Soils are loamy and 

well-drained, overlying a mixture of limestone and sandstone bedrock. 
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Figure 3.1: The Pleasant (white) and St. John (blue) watersheds. The Pleasant River 
watershed is located in Maine USA; the St. John River watershed includes areas of 
Maine USA and New Brunswick Canada. The Bay of Fundy, the northern extension of 
the Gulf of Maine, is shown between Maine and Nova Scotia. Estuary sampling 
locations were located at the outlets of the outlined watersheds.  

 

3.2.2 Sample Collection 

 Estuary samples were collected during single-day surveys on small vessels in 

each system. Four surveys were conducted of both the Pleasant and St. John estuaries, 

in May and October 2018, and again in May and October 2019. Estuary water was 

continuously pumped to an underway measurement system, which recorded location, 
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salinity, water temperature, and the partial pressure of carbon dioxide (pCO2). A 

detailed description of this underway system can be found in Hunt et al. (2013). Surveys 

were started on the incoming tide and lasted through high tide and into the ebb tide. At 

intervals determined from the underway salinity, surface water was captured for discrete 

sample collection. During the October 2017 and May 2018 surveys a Niskin bottle was 

lowered overboard by hand; during the later surveys, a 10-liter high-density 

polyethylene (HDPE) carboy was rinsed and filled from the outflow of the underway 

system, then tightly capped until samples were drawn from a spout at the bottom of the 

carboy. River endmember samples were collected from above the most downstream 

dam on each river. For the Pleasant, this dam formed a physical tidal barrier, and the 

transition from river to estuary was immediate. For the St. John the closest site was in 

Fredericton New Brunswick, a location over 120 km from the estuary mouth along the 

river’s course. For both endmember sites, a plastic bucket was lowered from the center 

of a bridge over the river, rinsed three times with river water, and samples were 

collected as described above. The temperature and conductivity of samples were 

measured directly from the bucket with a handheld meter (YSI, Yellow Springs, Ohio). 

 Water from the Niskin or carboy was transferred without bubbling into individual, 

previously-flushed glass BOD bottles: 500 mL for alkalinity and pH analyses, and 300 

mL for inorganic carbon (CT) analysis. All bottles had greased stoppers and positive 

closure mechanisms, were filled to leave less than 1% headspace in the bottle and all 

samples were preserved with saturated mercuric chloride solution. Samples for silicate 

and phosphate analysis were filtered using a plastic syringe and 0.2 µm cartridge filter 

into acid-washed and previously-rinsed 50 mL HDPE vials and preserved with 



  

106 

 

chloroform. Samples for DOC were filtered as was done for the nutrients into acid-

washed and previously-rinsed 30 mL HDPE bottles. All samples were immediately 

placed on ice. Alkalinity, pH, and DIC samples were refrigerated until analysis; nutrient 

and DOC samples were frozen until analysis. 

 

3.2.3 Alkalinity Titrations 

 Total alkalinity and organic alkalinity titrations were conducted using a custom-

build apparatus similar to that presented in Cai et al. (1998). This system performed 

several successive titrations upon the same water sample, in order to measure (in 

order) the TA (AlkGran1), the carbonate-free alkalinity according to the Gran titration 

approach (AlkGran2), and the carbonate-free alkalinity at pH 4.5 according to an endpoint 

approach (Alk4.5, Figure 3.2). 
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 An empty, clean titration vessel with magnetic stir bar were first weighed (to the 

nearest 0.001 g), then sample was poured into the vessel and the mass of sample 

determined by difference.  A cap with openings for the pH electrode, ultrapure nitrogen 

(N2) gas line, hydrochloric acid titrant (HCl) line, and sodium hydroxide (NaOH) line was 

then screwed onto the titration vessel.  The vessel was then placed into a water-

Figure 3.2: The steps of the AlkGran1-AlkGran2-Alk4.5 titration approach.  All steps after 
number four were carried out under a nitrogen atmosphere. 
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jacketed beaker, maintained at 25°C by a circulating water bath.  This beaker rested on 

a magnetic stir plate.  The pH electrode and HCl dosing tube were inserted through the 

titration vessel cap and stirring started. The pH electrode used in this work was a 

Metrohm EcoTrode Plus (Metrohm USA, Riverview FL) connected to a Thermo 

Scientific Orion StarTM A211 pH meter (Thermo Fisher Scientific, Waltham MA USA).  

The experimental response slope of this electrode was periodically verified by 

comparison to a series of spectrophotometric seawater pH measurements using purified 

meta-cresol purple indicator (mCP, Liu et al. 2011) according to the procedure of Easley 

and Byrne (2012).  Details of the electrode slope calibration are included in Appendix C. 

As the electrode intercept potential (E0) has been shown to be salinity dependent 

(Easley and Byrne 2012, Martell-Bonet and Byrne 2020), a unique E0 was calculated for 

each sample based on the AlkGran1 titration data. As the electrode was calibrated against 

spectrophotometric pH measurements on the Total pH scale, all pH measurements 

presented in this work are also on the Total scale. Once the electrode was inserted into 

the sample and stirring started, an initial pH reading was taken (pHi). 

 HCl titrant was dispensed by a Dosimat 876 digital burette (Metrohm USA, 

Riverview FL), controlled by a custom-designed software program.  The HCl used was 

certified titrant obtained from Dr. A. Dickson (Batch A18, 0.100661±0.000006 mol kg-1).  

For a typical Gran titration, as described in Standard Operating Procedure 3B (Dickson 

et al. 2007), the software program added HCl titrant to a pH of about 3.5, before 

prompting the operator to insert the ultrapure nitrogen gas (N2) tube used to purge the 

acidified sample and maintain a CO2-free environment for subsequent titrations.  The 

sample was bubbled for five minutes to purge any remaining CO2, and the N2 tube 
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remained in the sample for the remainder of the measurement, as well as during 

subsequent measurements of the samples.  After purging, the instrument then added 

subsequent doses of HCl titrant (n=8 to 10) to a pH near 3.0, which produced the 

HCl/pH pairs needed for the Gran alkalinity calculation over the 3.5 to 3.0 pH range.  

For each sample the initial Gran titration yielded a measurement of TA (AlkGran1) and E0 

(the electrode potential at pH 0).  E0 has been shown to be electrode-and-salinity 

dependent (Easley and Byrne 2012, Martell-Bonet and Byrne 2020), so the 

experimentally-determined E0 was paired with the spectrophotometrically-verified 

electrode slope to calculate pH for each sample titration point. 

 After the initial Gran titration, CO2-free NaOH (see Supplementary Material) was 

added to the acidified sample using a Metrohm Dosimat 665 in order to raise the pHT 

back to pHTi, resulting in a sample at a pHT nearly identical to the untitrated sample but 

containing no CO2 species.  This CO2-free sample was then titrated according to two 

methods (Figure 3.2). For AlkGran2 the Gran titration approach was repeated on the CO2-

free sample to pHT 3.0, as described above. NaOH was again added to return the 

sample to pHTi. Finally, an endpoint titration to pHT 4.5 was performed on the CO2-free 

sample, yielding Alk4.5. 

 

3.2.4 Analytical Methods 

 Discrete sample salinity was measured with a Guildline Portasal salinometer 

(Guildline, Smiths Falls Canada). The pHT of samples above 7.0 was measured 
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spectrophotometrically as described above, using 10cm round glass cells and an 

Agilent Technologies Cary 8454 UV-Vis.  The same instrument was used to verify the 

electrode response slope. For samples of pHT less than 7.0, and therefore outside the 

working range of mCP, the initial mV reading and E0 value determined from the AlkGran1 

titration were used to calculate the pH of the untitrated sample. All pHT measurements 

were performed on samples preserved with mercuric chloride. DOC was measured 

using a Shimadzu high temperature catalytic oxidation analyzer with chemiluminescent 

detection, with an uncertainty of 1.5 µmol kg-1. Nutrients including phosphate and 

silicate were analyzed using a SmartChem automated analyzer (Westco Scientific) 

according to standard colorimetric methods, resulting in uncertainties of 0.8 µmol kg-1 

and 0.25 µmol kg-1, respectively (Strickland and Parsons 1972). CT was measured by 

acidifying each sample using a custom-built gas extraction system, with the evolved 

CO2 passed through a Picarro G5131-I cavity ringdown spectrometer (Picarro, Santa 

Clara CA).  

 

3.2.5 Calculation of AlkGran1, AlkGran2, and Alk4.5  

 AlkGran1 and AlkGran2 were calculated according to the Gran function (Gran 1952) 

with a nonlinear least squares correction for the presence of sulfate and fluoride ions 

(Dickson et al. 2007). AlkGran2 and Alk4.5 were measured sequentially after AlkGran1 on 

the same aliquots of water; the AlkGran1 procedure removed all inorganic carbon, and 

continuous purging of the titration vessel prevented re-dissolution of CO2.  At an 
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endpoint of 4.5, Alk4.5 was simply determined as the difference between the 

concentration of added H+ ions from the HCl titrant and the measured H+ ion 

concentration (of 10-4.5, or about 3.2x10-5 M at pHT 4.5): 

𝐴𝑙𝑘4.5 =
𝑚𝐴𝑐𝐴

𝑚0
−

[𝐻+](𝑚0+𝑚𝐴)

𝑚0
         (3.3) 

where mA is the mass of added HCl titrant, cA is the concentration of HCl titrant, m0 is 

the initial sample mass, and [H+] is the hydrogen ion concentration determined from the 

endpoint pH measurement on the Total pH scale.  The pHT was calculated from the 

observed E0 determined during the AlkGran1 measurement for each sample: 

𝑝𝐻 =
𝐸−𝐸0

𝑅𝑇∙
ln (10)

𝐹

           (3.4) 

where E is the electrode potential measured at the titration endpoint (in volts), E0 is the 

electrode intercept potential, R is the molar gas constant, T is the titration temperature 

(in Kelvin), and F is the Faraday constant. 

 

3.2.6 Calculation of OrgAlkGran2 and OrgAlk4.5 

 As AlkGran2 and Alk4.5 titrations were performed on CO2-free solutions, their 

values represented the sum contribution of minor alkalinity components (Ax): 

𝐴𝑥 = [𝑂𝐻−] + 2[𝑃𝑂4
3−] + [𝐻𝑃𝑂4

2−] + [𝑆𝑖𝑂(𝑂𝐻)3
−] + [𝐵(𝑂𝐻)4

−] + [𝑂𝑟𝑔𝐴𝑙𝑘𝑥
−] − [𝐻+]𝑇 (3.5) 

where Ax is either AlkGran2 or Alk4.5 and [H+]T is the total hydrogen ion concentration 

(including hydrogen sulfate, HSO4
-). OrgAlkx represents the contribution of organic 
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species to AlkGran2 or Alk4.5, and was calculated as the residual after all other alkalinity 

species were taken into account. Phosphate and silicate concentrations were either 

taken from the reported CRM documentation or measured using a SmartChem 

automated analyzer (Westco Scientific) by standard colorimetric methods and have 

uncertainties of 0.0008 µmol kg-1 and 0.25 µmol kg-1, respectively (Strickland and 

Parsons 1972). 

 

3.2.7 Estuary OrgAlk and Ka parameterizations 

 Cai et al. (1998) presented two methods for the estimation of organic function 

group concentration and dissociation constant determination.  The first involved a 

stepwise titration of previously-acidified sample with CO2-free NaOH, from pH 3 to 10, 

and nonlinear least squares fitting of the resulting titration curve. We attempted to 

employ a modified version of this model, using CO2-free NaOH to return the acidified 

sample to a pH of 8.5, then titrating in a stepwise manner with the same HCl titrant used 

in the original titration. However, we were unable to consistently estimate pKa values or 

OrgAlk concentrations with this method, even when titrating a simple NaCl solution.  

The reasons for this are not clear, but may include interferences from silicate inputs 

from glassware not present in the lower-pH OrgAlkGran2 or OrgAlk4.5 titrations, 

compounding uncertainties related to the repeated dispensing of very small titrant 

volumes from the digital burette, or hysteresis in acid-base behavior during additions of 

NaOH or HCl, as documented by Paxéus and Wedborg (1985). Our test titrations 
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resulted in unreasonably large alkalinities of test solutions, which did not match the 

alkalinities determined via AlkGran1, AlkGran2 or Alk4.5 approaches. Further development 

and refinement of this method is greatly needed. 

 As we were unable to reliably reproduce this first method with our samples, we 

used the second method (hereafter referred to as the “Cai Fit”), which takes advantage 

of the natural titration of organic material between the acid river and alkaline coastal 

ocean endmembers, and returns best-fit parameterizations of pKa and the XT charge 

group total concentrations at the river and ocean endmembers. This calculation uses 

inputs of OrgAlk concentration, pHT, and salinity, assumes that changes in OrgAlk 

concentration are only determined by pHT and mixing, and also assumes that the total 

concentration of a single organic charge group (for example, XT) is the sum of the 

protonated (HX) and ionic forms (X-) and remains conservative during estuary mixing 

(i.e., XT=HX + X-): 

𝑂𝑟𝑔𝐴𝑙𝑘 = (1 −
𝑆𝑚

𝑆𝑂𝑐𝑒𝑎𝑛
) ∑

𝑋𝑇𝑟𝑖𝑣𝑒𝑟𝐾𝑋

𝐾𝑋+[𝐻+]𝑓
𝑗 +

𝑆𝑚

𝑆𝑂
∑

𝑋𝑇𝑜𝑐𝑒𝑎𝑛𝐾𝑋

𝐾𝑋+[𝐻+]𝑓
𝑗       (3.6) 

 Equation 3.6 is from Cai et al. (1998), where OrgAlk is either OrgAlkGran2 or 

OrgAlk4.5 concentration, measured as described above, Sm is the salinity of the estuary 

sample, SOcean is the coastal ocean endmember salinity, XTriver is the total concentration 

of charge group X at the river endmember, KX is the dissociation constant of charge 

group X, [H+]f is the free hydrogen ion concentration and XTocean is the total 

concentration of charge group X at the coastal ocean endmember. Using the Matlab® 

“lsqcurvefit” function (Mathworks, Natick MA) and OrgAlk, pHT and salinity data from 
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each estuary survey, the Cai Fit returned the parameters XTriver, XTocean, and KX which 

best fit the observations. 

 

3.2.8 Estuary DOC, KDOC and f parameterizations 

 Kuliński et al. (2014) presented an empirical parameterization of organic alkalinity 

(Hereafter referred to as the “Kuliński Fit”), using inputs of organic alkalinity, DOC, and 

pHT. This parameterization returns best-fit values of the bulk DOC dissociation constant 

(pKDOC) and acidic fraction of DOC (f), according to: 

𝑂𝑟𝑔𝐴𝑙𝑘 =
𝐾𝐷𝑂𝐶∗𝑓∗[𝐷𝑂𝐶]

[𝐻+]𝑇+𝐾𝐷𝑂𝐶
         (3.7) 

Where KDOC is a bulk dissociation constant which reflects the fraction f of DOC that acts 

as a weak acid charge group, [DOC] is the total DOC concentration, and [H+]T is the 

hydrogen ion concentration calculated from pH measurements on the Total pH scale. 

As with the Cai Fit, we used the Matlab “lsqcurvefit” function (Mathworks, Natick MA), 

inputs of OrgAlk (both OrgAlkGran2 and OrgAlk4.5), pHT and DOC from each estuary 

survey to model the parameters of KDOC and f that best fit the observed data. 

 

3.3 Results 

 

 Conditions at the river or lowest-salinity endmember of each estuary varied 

widely (Table 3.1), and the conditions of each endmember offered a view of contrasting 

watershed inputs. The Pleasant River endmember was highly acidic and poorly 
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buffered, with a mean pHT of 4.394 and mean AlkGran1 of  -39 µmol kg-1. The concept of 

a negative alkalinity concentration may be counterintuitive, but simply relates to the 

deficit of proton donors relative to proton acceptors; as the equivalence point of total 

alkalinity is defined at pH 4.5 (Dickson 1981) a sample with a natural pH less than 4.5 

may be expected to exhibit negative AlkGran1. A pHT of 4.394 translates to a [H+]T of 40 

µmol kg-1; as shown in Equation 3.5 the [H+]T is treated as a negative quantity in the 

alkalinity calculation, and thus the negative Pleasant River AlkGran1 is entirely due to the 

natural hydrogen ion concentration. The St. John River by contrast was more buffered, 

with a mean pHT of 6.808 and mean AlkGran1 of 650 µmol kg-1. The mean Pleasant River 

endmember DOC was also double that of the St. John River, while the mean St. John 

River DIC was more than four times higher than that in the Pleasant River. The October 

surveys in both systems followed dry summers with low river discharge and coincided 

with the highest endmember pHT and AlkGran1, DIC, and DOC concentrations. 
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Table 3.1: Endmember characteristics for the four surveys described in this study.  
Minimum and maximum values are shown above, with the mean and one standard 
deviation in parentheses below. 

   

  Pleasant St. John 

AlkGran1 (µmol kg-1) (-92) - (-15)          
(-39±36) 

463 - 858  
(650±182) 

pHT 3.976 - 4.785 
(4.394±0.333) 

6.437 - 6.920  
(6.808±0.356) 

DIC (µmol kg-1) 123 - 211 
(153±40) 

337 - 978 
(691±201) 

DOC (µmol kg-1) 545 - 1944 
(1238±720) 

463 - 882 
(612±185) 

OrgAlkGran2 (µmol 
kg-1) 

(-31) - (-12)          
(-25±8.9) 

40 - 51 
(43±5.6) 

OrgAlk4.5 (µmol kg-1) 
n/a 

24 - 33 
(28±3.8) 
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 AlkGran1, pHT and DOC distributions with salinity in both the Pleasant and St. John 

estuaries reflected the mixing of the distinct river endmembers with the common Gulf of 

Maine higher-salinity endmember (Figure 3.3). AlkGran1 and pHT were consistently lower 

in the Pleasant Estuary than the St. John Estuary at the same salinity. AlkGran1 in both 

estuaries appeared to reflect mostly conservative mixing across the salinity gradient, 

although at salinities less than 3 the Pleasant AlkGran1 exhibited some nonlinear 

characteristics with non-conservative AlkGran1 (Figure 3.3). While the slope and zero-

salinity intercept of the Pleasant Estuary AlkGran1 was consistent across the four surveys, 

the respective quantities in the St. John Estuary varied, with shallower slopes and 

higher zero-salinity intercepts in October than in May. Nonlinear distributions of pHT with 

salinity are thermodynamically consistent, although the pHT values below 6 in the 

Pleasant Estuary reflected a distinctly acidic system. Note that all pHT values are 

reported as measured at 25°C in the laboratory. pHT was higher by several tenths 

across the salinity range during October surveys in the St. John Estuary when 

compared to October surveys, especially at salinities lower than 15; the opposite was 

true in the Pleasant Estuary, when pHT was somewhat higher in May than October, 

although the difference was not as large as in the St. John Estuary. This is explained by 

higher St. John AlkGran1 in October relative to May at the same salinity, while DIC at the 

same salinity remained similar between May and October, resulting in more buffering 

and higher pHT. The Pleasant Estuary pHT results are explained by the opposite trend: 

TA remained consistent at the same salinity among May and October surveys, but DIC 

at the same salinity was higher in October, leading to less buffering and lower pHT. In 

contrast to AlkGran1 and pHT, DOC was consistently higher in the Pleasant Estuary than 
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in the St John at a comparable salinity and season. While St. John DOC-salinity 

distributions were similar across the four surveys, with the possible exception of the 

October 2019 St. John survey, DOC concentrations across the salinity gradient in 

October were more than twice as high than in May in the St. Pleasant Estuary. 
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May 2018 

October 

2018 

May 2019 

October 

2019 

Figure 3.3: Distributions of AlkGran1 (left panels, µmol kg-1), pHT (center panels, Total 
scale), and dissolved organic carbon (right panels, µmol kg-1) against salinity in the 
Pleasant (circles) and St. John (crosses) estuaries.  From top to bottom, data were 
collected in May 2018, October 2018, May 2019 and October 2019. Lines in the 
alkalinity plots connect the lowest- and highest-salinity data points, and do not represent 
a quantitative regression line. 
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3.3.1 OrgAlk Titration Validation Results 

 Since there are no standard solutions of organic alkalinity available, nor a 

standard methodology for the measurement of organic alkalinity, we assessed the 

titration procedure in two ways. We performed repeated measurements of the AlkGran1 

and Alk4.5 of a 0.7M NaCl solution (see Appendix C), which could be reasonably 

expected to contain little to none of the phosphate, silicate, or boron Ax alkalinity 

components listed in Equation 3.5. These measurements in 0.7M NaCl showed that at 

most 1 µmol kg-1 of Alk4.5 could be attributed to unknown alkalinity contributors, while no 

excess contribution to AlkGran2 was observed; when measurement uncertainties are 

taken into account no measurable alkalinity was observed in either test.  

 We also repeatedly measured the AlkGran1 and Alk4.5 of certified reference 

material (CRM) obtained from Dr. A. Dickson (Batch 185, Dickson et al. 2003).  The 

mean CRM AlkGran1 was 2218.6 µmol kg-1, representing a mean difference from the 

certified TA value of -2.1±5.0 µmol kg-1 (n=37) and indicating reasonable titration 

system performance. The mean AX of previously titrated, CO2-free CRM at the titration 

endpoint of 4.5 (AX4.5) was 65.6±3.1 µmol kg-1, a value which includes all the potential 

AX contributors listed in Equation 3.5, the largest of which is expected to be from borate 

(AB). To examine the potential contribution of OrgAlk4.5 to AX4.5 the contributions of 

phosphate and silica alkalinities were calculated from the total phosphate and silicate 

concentrations listed for CRM Batch 185 (0.42 and 3.0 µmol kg-1, respectively). The 

boron concentration of CRM Batch 185 has not been determined; however two boron-

to-salinity ratios are commonly employed to estimate seawater boron concentrations: 
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Uppström (1974, 0.1284 mg kg-1 ‰-1) and Lee et al. (2010, 0.1336 mg kg-1 ‰-1). Using 

these ratios to calculate total boron concentrations and AB, then subtracting AB and the 

phosphate, silicate and hydroxide ion alkalinities from AX4.5 resulted in calculated CRM 

OrgAlk4.5 values of 5.2±3.2 µmol kg-1 and 2.9±3.2 µmol kg-1, respectively (n=37). To 

simplify the presentation of results we chose to use the mean of the Uppström and Lee 

et al. ratios to calculate boron concentration, AB, and subsequent OrgAlkGran2 and 

OrgAlk4.5, resulting in a mean CRM OrgAlk4.5 of 4.0±3.2 µmol kg-1 (n=37), a value 

dependent on the actual final pH of each endpoint titration. A similar approach using the 

mean of the Uppström and Lee et al. ratios resulted in a mean CRM OrgAlkGran2 value of 

12.0±2.8 µmol kg-1 (n=3). 

3.3.2 Estuary OrgAlk 

 Organic alkalinity measured as OrgAlkGran2 and OrgAlk4.5 was observed in both 

the Pleasant and St. John estuaries, including the lowest-salinity endmembers, in all 

four surveys (Figure 3.4, Table 3.1). As with AlkGran1, the Pleasant endmember 

OrgAlkGran2 was consistently negative, reflecting the low pHT conditions of the Pleasant 

River. This low river pH did not permit the measurement of OrgAlk4.5 at the river 

endmember, as the titration endpoint pH of 4.5 was higher than the river pH. The St. 

John low-salinity endmember had consistent OrgAlkGran2 and OrgAlk4.5 concentrations, 

with mean values of 43±5.6 and 28±3.8 µmol kg-1, respectively. Estuarine mixing rapidly 

changed the distributions of OrgAlkGran2 and OrgAlk4.5 in the Pleasant Estuary, with 

increasing salinity coinciding with both increasing OrgAlkGran2 and OrgAlk4.5 to a mid-

estuary maximum and then decreasing towards the ocean endmember. This low-salinity 
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increase was particularly large in the Pleasant October surveys, when OrgAlkGran2 rose 

more than 100 µmol kg-1. OrgAlkGran2 and OrgAlk4.5 were typically higher in the Pleasant 

Estuary than in the St. John above a salinity of 3 in the October surveys, while 

concentrations were similar between the two systems during the May surveys. 

Maximum OrgAlkGran2 and OrgAlk4.5 concentrations were typically found between 

salinities 1-11, with exceptions in the Pleasant Estuary in May 2018 where the 

maximum values were at higher salinities, and the St. John in October 2018 when the 

maximum OrgAlk4.5 was found at the highest salinity sampled (32.10). This sample was 

collected outside the St. John Estuary while the other samples on this survey were 

collected inside the Estuary; this sample also was collected on the seaward side of a 

sharp gradient in salinity, which may indicate that it represented a distinct water mass 

from the Estuary samples. For these reasons this sample was held out of the pKa and 

pKDOC fitting analyses. OrgAlkGran2 concentrations were consistently higher than the 

respective OrgAlk4.5 concentrations at low and middle estuary salinity, but the 

concentrations typically became comparable at salinities above 25. 
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Figure 3.4: Distributions of OrgAlkGran2 (µmol kg-1) observations and fitted empirical 
results (black solid and dashed lines) plotted against salinity in the Pleasant and St. 
John estuaries (left and right panels, respectively). From top to bottom, data were 
collected in May 2018, October 2018, May 2019 and October 2019. Note the different y-
axis scales in the Pleasant and St. John plots. Refer to the text for explanation of the 
empirical fitting calculations. Theoretical results calculated using observed salinity, pH, 
and pKa values of 4.0 (red line), 5.0 (orange line) and 6.0 (blue line) are shown to 
illustrate pKa influence. 
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Figure 3.5: Distributions of OrgAlk4.5 (µmol kg-1) observations and fitted empirical results 
(black solid and dashed lines) plotted against salinity in the Pleasant and St. John 
estuaries (left and right panels, respectively). From top to bottom, data were collected in 
May 2018, October 2018, May 2019 and October 2019. Note the different y-axis scales 
in the Pleasant and St. John plots. Refer to the text for explanation of the empirical 
fitting calculations. Theoretical results calculated using observed salinity, pH, and pKa 
values of 4.0 (red line), 5.0 (orange line) and 6.0 (blue line) are shown to illustrate pKa 
influence. 
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3.4 Discussion 

 

 Organic alkalinity was present in both the Pleasant and St. John endmembers 

and estuary samples during all surveys. Indeed, measurable concentrations of organic 

alkalinity were present in certified reference material as well, a result which confirms 

findings reported by Sharp and Byrne (2021). Those authors described a method similar 

to our OrgAlk4.5 measurement, and CRM organic alkalinity concentrations (10.5, 10.9, 

and 7.6 µmol kg-1 for Batches 172, 176 and 183, respectively, applying the 

boron:salinity ratio of Uppström 1974) comparable to the concentration we measured in 

Batch 185 (5.2 µmol kg-1, applying the Uppström ratio). The ubiquitous presence of 

organic alkalinity in natural waters from terrestrial to marine systems requires an 

understanding of the concentrations and chemical nature of this material if total 

alkalinity measurements are to be accurately used in carbon system calculations (Sharp 

and Byrne 2020).  

 Concentrations of OrgAlkGran2 and OrgAlk4.5 in the Pleasant and St. John 

estuaries were comparable to those reported in other studies (Figure 3.6, Table 3.2), 

although the negative Pleasant OrgAlkGran2 is larger than previously reported. Pleasant 

Estuary OrgAlkGran2 levels and distributions with salinity during October surveys were 

similar to those reported for the Satilla estuary by Cai et al. (1998), whose analytical 

approach was used for the OrgAlkGran2 measurements in this study and whose surveys 

of the Georgian estuary were also conducted in October.  The Satilla zero-salinity 

endmember also had a very high DOC concentration (about 2170 µmol kg-1) resembling 

the Pleasant river endmember concentrations (1767 and 1944 µmol kg-1 in October 
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2018 and 2019, respectively). Kuliński et al. (2014) also measured very high OrgAlk 

concentrations in two Baltic rivers, the Oder and Vistula (184 and 265 µmol kg-1, 

respectively). The Oder (505 µmol kg-1) and Vistula (614 µmol kg-1) DOC concentrations 

were lower than those in the Satilla River or the elevated Pleasant River DOC in 

October, but were quite similar to the Pleasant River DOC concentrations in May (545 

and 695 µmol kg-1 in May 2018 and 2019, respectively) and St. John endmember DOC 

concentrations overall. The Oder and Vistula both had much higher total alkalinity (2563 

and 3366 µmol kg-1, respectively) than the Satilla, Pleasant or St. John rivers. While the 

Satilla estuary pH shown in Cai et al. (1998) was not as low as our Pleasant 

endmember observations, the Satilla pH did approach 5.5 (on the NBS scale) at the 

endmember, the lowest level registered among the studies presented in Table 3.2. 

 The Altamaha estuary presented by Cai et al. (1998) most closely resembled the 

conditions we observed in the St. John, with comparable OrgAlkGran2 (about 5-50 µmol 

kg-1), DOC concentrations (about 350-750 µmol kg-1) and pH and AlkGran1 near the river 

endmember (about 6.6 on the NBS scale and 500 µmol kg-1, respectively). The AlkGran1 

and pH of the Baltic sites in Kuliński et al. (2014) were much higher than those in the St. 

John, with lower DOC concentrations as well. Overall, the Satilla estuary is the closest 

analogue to the St. John Estuary, while the Altamaha is the closest analogue to the St. 

John estuary from systems described in the literature. 
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Table 3.2: Organic alkalinity ranges reported by several studies in estuary or coastal ocean systems, the range of salinity 
(‘nr’ indicating the salinity was not reported) in each study, the method of OrgAlk determination, and the referring study. 
The Gran2 and Endpoint 4.5 methods correspond to those described in this work, while the ∆OrgAlk(TA,DIC,pH) method 
employed measurements of total alkalinity, dissolved inorganic carbon and pH, together with calculated dissociation 
constants, to overdetermine the inorganic carbon system and calculate OrgAlk. 

     

System OrgAlk Range 
(µmol kg-1) 

Salinity 
Range 

Method Study 

Satilla Estuary 25 - 115 0 - 27 Gran2 Cai et al. 1998 
Altamaha Estuary 10 - 50 0 - 32 Gran2 Cai et al. 1998 
Savannah Estuary 20 - 40 0 - 25 Gran2 Cai et al. 1998 

Baltic Sea 22 - 58 3 - 8 ∆OrgAlk(TA,DIC,pH) Kulinski et al. 2014 

N. Gulf California 0 - 120 nr ∆OrgAlk(TA,DIC,pH) 
Hernandez-Ayon et al. 
2007 

San Diego Bay 100 - 200 nr ∆OrgAlk(TA,DIC,pH) 
Hernandez-Ayon et al. 
2007 

San Quintin Bay 0 - 70 nr ∆OrgAlk(TA,DIC,pH) 
Hernandez-Ayon et al. 
2007 

Gulf of Mexico/Florida (-19) - 90 20 - 38 ∆OrgAlk(TA,DIC,pH) Yang et al. 2015 
Gulf of Mexico/Florida 0 - 40 22 - 33 Spectrophotometric Titration Yang et al. 2015 

Baltic Sea (-8) - 50 7 - 14 ∆OrgAlk(TA,DIC,pH) Hammer et al. 2017 
Waquoit Bay, 
Massachusetts 20 - 80 22 - 31 Gran2 Song et al. 2020 
Pleasant Estuary Gran2 (-31.9) - 110 0 - 32 Gran2 This study 
Pleasant Estuary 4.5 4 - 52 0 - 32 Endpoint 4.5 This study 
St. John Estuary Gran2 7 - 51 1 - 30 Gran2 This study 
St. John Estuary 4.5 6 - 55 1 - 30 Endpoint 4.5 This study 
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3.4.1 Middle-estuary OrgAlk Maxima 

 A feature of organic alkalinity mixing in the Pleasant Estuary surveys was a peak 

of OrgAlkGran2 and OrgAlk4.5 in the middle of the salinity gradient. While this peak was 

present in all the Pleasant Estuary surveys, it was not as clearly present in the St. John 

surveys,  Furthermore, the salinity of highest OrgAlkGran2 and OrgAlk4.5 was not 

consistent among Pleasant Estuary surveys.  For example, in October 2018 the peak in 

the Pleasant Estuary was between salinities 3-6.5, while in May 2018 the Pleasant peak 

was between salinities 14-19. The salinity of maximum organic alkalinity also varied 
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Figure 3.6: Ranges of OrgAlk observed in estuary or coastal waters as reported by 
other studies, as well as ranges from this work. Refer to Table 3.2 for more details. The 
studies listed were: (a) Cai et al. 1998 (b) Kuliński et al. 2014 (c) Hernández‐Ayon et al. 
2007 (d) Yang et al. 2015 (e) Hammer et al. 2017 (f) Song et al. 2020. 
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between OrgAlkGran2 and OrgAlk4.5, as in the example of the October 2019 Pleasant 

data, where OrgAlk4.5 rapidly reached a maximum at salinity 1.0, while the maximum 

OrgAlkGran2 was measured around salinity 11-14.  

 The low-salinity region of estuary mixing is typically the site of dramatic pH 

increases, particularly in the acidic Pleasant system. Cai et al. (1998) documented 

similar mid-estuary organic alkalinity maxima, and attributed the phenomenon to two 

different processes: rapid pH change in early estuary mixing followed by conservative 

mixing of the peak organic alkalinity with the coastal endmember over a salinity 

gradient. If charge groups are present in the organic material whose pKa is higher than 

the in-situ river pH, this rapid pH increase during estuary mixing would result in those 

groups being increasingly deprotonated at ambient estuary pH and thus available for 

titration with acid. Cai et al. (1998) theorized that this pH change is of more importance 

to estuary organic alkalinity contributions than the potential dependence of organic pKa 

on ionic strength (i.e., salinity). Others have pointed out that salt marshes and 

mangroves represent inputs of alkalinity- presumably at least partly of organic 

components- to the estuary independent of the river and ocean endmembers (Wang et 

al. 2016, Sippo et al. 2016), which could explain the mid-estuary maxima in our 

observations. Song et al. (2020) proposed a large intertidal salt marsh OrgAlk 

contribution, representing 36% of the total OrgAlk concetration, during a time of limited 

freshwater input. However, recent experimental work by Hinckley (2021) using samples 

collected during our October 2019 surveys provides a counterargument. Hinckley 

prepared serial dilutions of Pleasant River and St. John River water with CRM to 

achieve mixed salinities of 0.25, 0.5, 0.75, 1.0, 2.5, 5, 10, 15 20, 25, and 30, to 



  

130 

 

artificially simulate the estuary mixing process. The pHT of the Pleasant River sample 

was 3.933, while the pHT of the St. John River sample was 6.924. The author then 

performed an AlkGran1 titration, added CO2-free NaOH to a pHT of 8.5, and finally 

performed a second whole-pH titration using very small acid increments to a pHT of 3.0. 

These incremental acid additions allowed for the calculation of OrgAlkGran2 and OrgAlk4.5 

from various initial pHT values. When the initial titration pHT for each salinity mixture was 

selected to match as closely as possible the river endmember pH for each salinity 

mixture- thus effectively removing the estuary pHT change cited by Cai et al. (1998)- 

there was still a mid-salinity peak of OrgAlkGran2 and OrgAlk4.5 observed in the serial 

dilution series, despite the presumed dilution of organic material with the addition of 

CRM. Under the conditions of these titrations and data analyses the only changes were 

in the mixing of river and CRM inorganic and organic materials, and the change in ionic 

strength- the initial pHT of each titration calculation was effectively the same (near 3.933 

for the Pleasant and near 6.924 for the St. John). Thus the pKa dependence of organic 

charge sites on ionic strength may be more important than previously reported and 

bears further investigation, as increasing ionic strength appears to affect organic charge 

sites in a manner similar to increasing pHT. 

3.4.2 OrgAlk Fitting 

 The Cai Fit calculations returned values of Ka, XTriver and XTocean for each estuary 

survey, which were able to reproduce the distributions of OrgAlkGran2 and OrgAlk4.5 over 

the estuary salinity gradient reasonably well (Figures 3.4 and 3.5), although the Cai Fit 

tended to underestimate the strongly negative Pleasant river OrgAlkGran2 values (which 



  

131 

 

were probably equivalent to an OrgAlk concentration of zero, with the negative alkalinity 

due to excess [H+] below the 4.5 equivalence point) and the highest mid-salinity OrgAlk 

values. Overall differences from the observed organic alkalinity concentrations were 

small, ranging from 2 to 6 µmol kg-1 with the notable exception of the Pleasant October 

surveys, where much of the discrepancy stems from relatively large differences in the 

very low salinity samples (Table 3.3). We present model results for a single charge 

group; the addition of a second or third charge group produced minimal improvements 

in model fit to the observed data. 

 

Figure 3.7: Fitted pKa values for each estuary survey.  The Cai Fit is based on the 
approach of Cai et al. (1998) and the Kuliński Fit from Kuliński et al. (2014), as 
described in sections 3.2.7 and 3.2.8, respectively. Blue circles represent pKa values 
calculated from OrgAlkGran2 measurements, orange circles were calculated from 
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OrgAlk4.5 measurements.  Black X symbols are placed over circles where the estuary 
OrgAlk and salinity were highly linearly correlated (p<0.01) and not sensitive to pKa. The 
horizontal green band shows the range of carboxyl function group pKa identified by 
Paxéus and Wedborg (1985). The horizontal orange bar shows the phenol or amine 
function group pKa range from the same study. 

Table 3.3: Root mean square error (RMSE) and coefficient of determination (r2, 
between fitted and observed OrgAlk) for the Cai Fit and Kulinski Fit results for each 
estuary survey. 

     

  Results from Cai Fit Results from Kulinski Fit 

       

survey RMSE r2 RMSE r2 

  µmol kg-1   µmol kg-1   

OrgAlkGran2      

Pleasant May2018 5.4 0.87 8.7 0.73 

St. John May 2018 3.2 0.89 8.1 0.69 

Pleasant October 2018 10.1 0.89 10.9 0.88 

St. John October 2018 1.9 0.98 3.7 0.92 

Pleasant May 2019 6.1 0.85 7.9 0.78 

St. John May 2019 2.1 0.90 3.0 0.94 

Pleasant October 2019 15.1 0.79 21.3 0.69 

St. John October 2019 2.4 0.98 11.8 0.55 

OrgAlk4.5      

Pleasant May2018 3.6 0.85 4.7 0.83 

St. John May 2018 1.6 0.91 5.2 0.68 

Pleasant October 2018 5.5 0.73 7.7 0.73 

St. John October 2018 1.4 0.95 2.4 0.87 

Pleasant May 2019 2.8 0.67 5.1 0.61 

St. John May 2019 2.1 0.90 2.1 0.93 

Pleasant October 2019 5.4 0.86 11.6 0.66 

St. John October 2019 2.0 0.96 3.1 0.90 
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 Results from the Cai Fit calculations included the fitted pKa of the organic charge 

group (Figure 3.7) and estimates of the correspondence between calculated and 

observed OrgAlk (Table 3.3). The Pleasant pKa value was generally higher than that in 

the St. John, with the exception of the OrgAlkGran2 results from October 2019. Overall, 

10 of the 16 pKa values fell in the range of 5.2 and 5.9, with 5 values below this range 

and one pKa above. This falls between the Satilla estuary Group I and Group II pKa 

values reported by Cai et al. (1998), matches the river fulvic Group III pKa reported by 

Paxéus and Wedborg (1985), and generally represents a pKa value between the lower 

pKa values reported for soil humics and streams and the higher values reported for 

estuaries or coastal seas (Table 3.4). St. John Cai Fit pKa values were mostly below 4, 

indeed sometimes outside the titration range of the OrgAlk analyses (Figure 3.7). A 

charge group with such a low pKa would never be protonated in a natural estuary 

environment, and only partially protonated during laboratory titrations. For surveys with 

unusually low pKa values (i.e., the St. John in October 2018 and 2019), we 

experimented with varying the upper and lower pKa bounds of the fitting function by 

setting these bounds to the approximate range of pH experienced by organic material 

during the laboratory titration procedure (i.e., pH 3.0-8.5); the resulting pKa was 

invariably selected to be at the lower bound of 3.0 and the RMSE and r2 statistics 

remained virtually identical. St. John surveys with low modeled pKa also exhibited very 

linear distributions of OrgAlk and pH with salinity (Figures 3.4 and 3.5), and these inputs 

produced a conservative distribution of OrgAlk concentrations and a low pKa. It is clear 

from Figures 3.4 and 3.5 that the pKa value calculated in the St. John surveys has little 

effect on the fitted OrgAlk, as the OrgAlk distributions are so highly related to salinity. If 
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pKa values are ignored when the linear regression of OrgAlk and salinity returns a p-

value less than 0.01 one Pleasant estuary survey is ignored (the October 2019 

OrgAlk4.5 value) while all St. John estuary pKa values are ignored (Figure 3.7). This 

merely reflects a limitation of employing the Cai Fit approach to estimate pKa from 

conservative estuary OrgAlk distributions, instead of directly modeling pKa from sample 

titration data. 
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Table 3.3: Aquatic pKa values determined by several studies. 

   

Sample type Reported pKa Authors 

Soil Porewater 1 5.3-5.88 Badr et al. (2012) 
Soil Porewater 2 5.1-5.75  
Soil Porewater 3 4.9-5.2  
Sewage Sludge 5.25-6.45  
Nile Water Hyacinch compost 6.5-6.75   

Soil humics 4.28 Andjelkovic et al. (2006) 

Adirondack soil/stream humics 3.85 Cronan and Aiken (1985) 

Humics 4 Lozovik (2005) 

Bickford (MA) watershed 3.5-3.7 
Eshleman and Hemond 
(1995) 

River fulvic acid Group I 2.66 
Paxeus and Wedborg 
(1985) 

River fulvic acid Group II 4.21  
River fulvic acid Group III 5.35  
River fulvic acid Group IV 6.65  
River fulvic acid Group V 8.11  
River fulvic acid Group VI 9.54   

Satilla Estuary Group I 4.46 Cai et al. (1998) 
Satilla Estuary Group II 6.64  
Satilla Estuary Group III 8.94  
Altamaha Estuary 6.7  
Savannah Estuary 7.1   

Intertidal Salt Marsh Group I 4.1-5.5 Song et al. (2020) 
Intertidal Salt Marsh Group II 7.4-9.8   

Baltic Sea 7.53 Kulinski et al. (2014) 

Baltic Sea 7.27 Hammer et al. (2017) 

Tampa Bay coastal waters 5.31, 7.05 Yang et al. 2015 
Tampa Bay coastal waters 5.45, 7.32 Yang et al. 2015 

Pleasant Estuary 5.3-5.9 This Work 

St. John Estuary 5.2-5.6 This Work 
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3.4.3 Differences between OrgAlkGran2 and OrgAlk4.5 

 We chose to measure the organic alkalinity of CO2-free samples using two 

different approaches: a Gran-style interpretation of titration data between pH 3.5-3.0 

(OrgAlkGran2), and a separate endpoint titration to the total alkalinity equivalence pH of 

4.5 (OrgAlk4.5). If no OrgAlk was present in solution, or if the organic charge groups had 

pKa values considerably higher than 4.5 or lower than 3.0 (and thus became totally 

protonated or remained deprotonated during both titration procedures, respectively) 

then in principle the concentrations of OrgAlkGran2 and OrgAlk4.5 would be equal. Some 

of the modeled Pleasant and St. John pKa values shown in Figure 3.7 are consistent 

with this idea; for example, the pKa of 5.9 modeled in the Pleasant using October 2018 

OrgAlk4.5 measurements would result in the organic charge group being 97% 

protonated at the pH 4.5 endpoint and 100% protonated at the pH 3.0: a potential 3% 

difference between OrgAlkGran2 and OrgAlk4.5 concentrations simply due to differing 

degrees of dissociation. However, the mean difference between our Pleasant Estuary 

measured OrgAlkGran2 and OrgAlk4.5 in October 2018 was 37±14%, a difference too 

large to be explained by the estimated pKa. Overall for all Pleasant and St. John Estuary 

surveys the mean difference between OrgAlkGran2 and OrgAlk4.5 attributable to the fitted 

pKa at pH 3.0 and 4.5 was 15±22%; the mean difference of 32±28% between our 

measured OrgAlkGran2 and OrgAlk4.5 was larger than the pKa-attributable difference. 

 If the pKa of natural organic material does indeed lie below pH 4.5, or the pKa of 

one common functional organic group lies below the pH 4.5 threshold, then it is not only 

possible but expected that the OrgAlk measured at pH 4.5 can be different than that 
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measured at pH 3.0, but that both measures can be carried out correctly and represent 

the internally consistent measure at that particular pH.  Our work shows that these 

differences can be substantial. These organic anions may have a pKa which impacts the 

titration alkalinity but which would not affect buffering or the overall acid-base chemistry 

at in situ pH, and careful consideration is called for both when measuring OrgAlk and 

discussing its contribution to TA.  Indeed, there does not currently appear to be a good 

way to include OrgAlk in a quantitative summation of all the alkalinity contributors in 

aquatic solution.  One approach may be to simply use the OrgAlk at pH 4.5 in order to 

conform to the definition of total alkalinity; however, as the change in behavior of OrgAlk 

over the pH range is not predictable without knowledge of OrgAlk pKa, using the OrgAlk 

value at pH 4.5 may exclude significant behavior differences at lower pH. 

 While modeling additional charge groups did not appreciably improve the model 

OrgAlk fit to our observations, it is unlikely that the organic charge groups present in the 

Pleasant and St John estuaries are actually so uniform in their properties. Instead, it is 

reasonable to expect that the organic charge group types are polydisperse with a 

number of distinct pKa values, as those described by Paxéus  and Wedborg (1985) and 

Cai et al. (1998). The simple model and dataset we employed, which only encompassed 

the natural pH conditions of the Pleasant and St. John estuaries, could not account for 

charge groups with a low pKa, such as the pKa 2.66 group listed by Paxéus and 

Wedborg (1985), which was also the most abundant organic charge group in their 

sample. A charge group with pKa around this value, together with differences in 

dissociation among higher- pKa charge groups as discussed above, could explain the 

discrepancies between our OrgAlkGran2 and OrgAlk4.5 observations. 
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3.4.4 OrgAlk as a Component of DOC 

 The Kuliński Fit returned best-fit values of KDOC and f (the weak acid fraction of 

DOC). DOC concentrations along the salinity gradient were similar among the St. John 

Estuary surveys, but demonstrated a clear seasonal shift in the Pleasant Estuary, with 

much higher DOC concentrations at low salinity during the October surveys in 

comparison to the May surveys (Figure 3.3). These higher DOC concentrations were 

also reflected in the higher XTriver modeled charge group concentrations returned by the 

Cai Fit calculations for Pleasant Estuary October surveys relative to May surveys 

(Figure 3.4), and generally higher measured Pleasant Estuary OrgAlk (Figures 3.4 and 

3.5). The Pleasant October surveys were conducted after months of very low river flow, 

which may have resulted in wetlands contributing disproportionately to river flow. It is 

worthwhile to note, however, that if true this enhancement did not appreciably shift the 

acid-base character of the Pleasant Estuary DOC as reflected in the Kuliński Fit pKDOC 

(Figures 3.7, 3.8, 3.9). 
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Figure 3.8: Distributions of OrgAlkGran2 (µmol kg-1) observations and empirical Kuliński 
Fit results (black line) plotted against salinity in the Pleasant and St. John estuaries (left 
and right panels, respectively). From top to bottom, data were collected in May 2018, 
October 2018, May 2019 and October 2019. Note the different y-axis scales in the 
Pleasant and St. John plots. Refer to the text for explanation of the DOC fitting 
calculations. Theoretical results calculated using observed salinity, pH, and pKDOC 
values of 4.0 (red line), 5.0 (orange line) and 6.0 (blue line) are shown to illustrate the 
effect of varying pKDOC. 
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 Estimating OrgAlkGran2 and OrgAlk4.5 from modeled f and pKDOC parameters 

produced concentrations that generally followed the observed distributions with salinity, 

but with significantly more scatter than comparable model results from the Cai Fit 

empirical approach. RMSE and r2 statistics from the DOC approach were generally less 

robust than those from the mixing model as well (Table 3.3). The same estuary surveys 

which displayed a high correlation between salinity and OrgAlk and lack of sensitivity to 

pKa according to the Cai Fit also returned variable pKDOC values (Figure 3.7), especially 

in the St. John Estuary Kuliński Fit results. All of the St. John pKDOC were identified as 

highly dependent on the conservative mixing of OrgAlk with salinity, indicating that the 

fitted value of pKDOC did not impact OrgAlk distributions. It is possible that the St. John 

OrgAlk could possess pKa and pKDOC characteristics similar to those in the Pleasant 

Estuary (about 5.6 and 5.9, respectively). But as the St. John Estuary pHT was 

substantially higher than these pKa and pKDOC values (the lowest St. John Estuary pHT 

was 6.175), and the Cai Fit and Kuliński Fit simulate OrgAlk titrations over the natural 

pH range of the observations, the organic charge sites remained mostly or fully 

deprotonated. These results indicate that estimating Pleasant Estuary OrgAlk- either 

from pKa, pHT and salinity (Equation 3.6) or pKDOC and pHT (Equation 3.7)- may hold 

some promise, while similar estimates in the St. John estuary will prove difficult. 
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Figure 3.9: Distributions of OrgAlk4.5 (µmol kg-1) observations and empirical Kuliński Fit 
results (black line) plotted against salinity in the Pleasant and St. John estuaries (left 
and right panels, respectively). From top to bottom, data were collected in May 2018, 
October 2018, May 2019 and October 2019. Note the different y-axis scales in the 
Pleasant and St. John plots. Refer to the text for explanation of the DOC fitting 
calculations. Theoretical results calculated using observed salinity, pH, and pKDOC 
values of 4.0 (red line), 5.0 (orange line) and 6.0 (blue line) are shown to illustrate 
pKDOC influence. 
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3.5 Conclusions 

 

 We present some of the first seasonal observations of estuary organic alkalinity 

distributions, measured by two different analytic approaches, from two estuaries with 

contrasting river endmember chemistries. OrgAlk constituted a major part of total 

alkalinity at lower salinities in both estuaries and was an appreciable alkalinity 

contributor at higher salinities and in certified reference material. Distributions of OrgAlk 

and DOC with salinity varied seasonally in the Pleasant Estuary but were similar 

between seasons in the St. John estuary. Two empirical fits were applied to the 

observations which returned bulk dissociation constants (pK’s) which differed between 

estuaries and also differed in terms of their degree of consistency. While many of the 

bulk pK values indicated OrgAlk buffering above the total alkalinity equivalence point of 

pH 4.5, contrasts between OrgAlkGran2 and OrgAlk4.5 results for the same samples 

indicate that a lower-pH charge group may be present as well. This lower-pH charge 

group may not have an influence on in situ alkalinity under natural pH conditions, but 

poses a potential challenge to the interpretation of titration data. Future efforts to 

constrain pK characteristics should focus on development of a robust incremental 

titration procedure, which would provide the data needed to model multiple pK charge 

groups, and examination of the differing effects of changing salinity and pH upon pK 

characteristics.
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CONCLUSIONS 

 

 This dissertation presented some of the first highly temporally and spatially 

resolved TA measurements in the coastal ocean along the USA East Coast, in addition 

to a unique analysis of seasonal organic alkalinity distributions in two East Coast 

estuaries. In Chapter 1, TA along the East Coast and shelf-front break showed a pattern 

consistent with regional circulation, but seasonal and inter-annual distributions of TA 

and salinity were changeable and not fully described by previous studies.  These 

changes are likely due to biological processes and shifts in source water masses 

entering the region, which in turn dictate the TA and salinity entering the East Coast 

region, and were not consistent with the seasonal TA and salinity patterns reflected in a 

newly-assembled historical regional dataset. Ocean acidification (strictly as the 

absorption of elevated atmospheric CO2 by the ocean) represents one direct and 

relatively predictable effect of anthropogenic climate change upon the marine 

environment. On the other hand, indirect effects such as heating, changes in 

precipitation patterns, and changes in large-scale ocean currents will surely result in 

altered regional ocean chemistry in ways that are complex, interrelated, and difficult to 

predict. The analytical capability demonstrated in Chapter 1 offers a way to monitor 

regional ocean chemistry broadly, at high frequency, and with relatively little supervision 

or expense. This type of monitoring capability can be especially powerful when paired 

with concurrent measurements of pCO2 or with satellite products, and will be an 

important tool in tracking the progression and effects of global climate change. 
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 Chapter 2 used the high-frequency hourly TA (and associated temperature, 

salinity and pCO2) measurements at the UNH coastal laboratory to examine the effects 

of various processes upon buffering and pH.  The relatively simple concept of ocean 

acidification becomes vastly more complex in shelf and coastal regions, where 

biogeochemical processes and freshwater inputs can exacerbate or ameliorate 

acidification, and it can be difficult to attribute short- and long-term changes to specific 

causes. The data collected for this project allowed for the examination of the potential 

impact of various processes on coastal chemistry, and a simple mechanistic model was 

used to apportion contributions of ecosystem metabolism, mixing, and air-sea exchange 

to changes in TA and DIC. The results indicated that at this site mixing and temperature 

changes dictated much of the change in buffering and pH, and potential biogeochemical 

contributions to acidification were overshadowed by enhanced buffering driven by 

seasonal reductions in freshwater inputs. At this time the relevance of these findings to 

other coastal sites is undetermined, but the presented monitoring approach, data 

analysis techniques and model application offer some potential tools for coastal 

resource managers or other interested parties who may wish to examine acidification at 

other sites in a similar manner.  A logical next step in pursuit of this research area would 

be to replicate the analytical capability at the UNH Jackson Estuary Laboratory, located 

in Great Bay itself, to see if the processes driving TA and DIC change at that location 

agree with or differ from those at the coastal lab. 

 Moving even further upstream, Chapter 3 detailed several surveys of organic 

alkalinity in two estuary systems.  One estuary (the Pleasant) was showed remarkable 

acidity and organic alkalinity levels, which varied seasonally with dissolved organic 



  

145 

 

carbon concentrations.  The other estuary (the St. John) showed fairly constant organic 

alkalinity and dissolved organic carbon distributions. Examination of the organic acid 

dissociation constant (pKa) in each estuary via two modeling approaches produced 

varied results, and a reliable method for direct pKa determination via a titration approach 

is clearly needed. This is especially important as there is increasing evidence that 

organic alkalinity is a nearly universal component of TA, including in open ocean waters 

and reference materials.  This component is sometimes quite small, but can also 

sometimes be quite large in estuary waters, and appears to be repeatably measurable. 

Without a knowledge of the pKa of the organic alkalinity component, however, it is 

difficult or impossible to determine whether the presence of organic alkalinity is an 

analytical concern at the low measurement pH, or whether organic alkalinity has real 

effects on pH and buffering at real estuary and ocean conditions.  A standardized 

method for the determination of organic alkalinity and pKa would represent a significant 

contribution to the understanding of the ocean and coastal buffering system. 
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APPENDIX A 

 

Statistical Calculation Detail 

Precision was determined as one standard deviation (σ) of repeated measurements of 

certified reference material (CRM): 

𝜎 = ±√
∑ (𝑇𝐴𝑖−𝑇𝐴̅̅ ̅̅ )2𝑛

𝑖=1

𝑛−1
          (1) 

where n is the number of measurements, TAi is the ith of n TA measurements, and 𝑇𝐴̅̅ ̅̅  is 

the mean of all TA measurements. Accuracy was determined at the root mean square 

error (RMSE) of repeated CRM measurements relative to the certified TA, or of the TA 

differences of paired samples measured by independent instruments such as laboratory 

titration systems: 

𝑅𝑀𝑆𝐸 = ±√
1

𝑛
∑ (𝑇𝐴𝐴,𝑖 − 𝑇𝐴𝐵,𝑖)2𝑛

𝑖=1         (2) 

where n is the total number of paired sample or CRM measurements, TAA,i is the ith TA 

measured by instrument A, and TAB,i is either the ith TA measured by instrument B or 

the CRM TA concentration. The RMSE and CRM uncertainty were then used to 

calculate a total bias uncertainty u(bias): 

𝑢(𝑏𝑖𝑎𝑠) = ±√𝑅𝑀𝑆𝐸2 + 𝑢(𝐶𝑅𝑀)2        (3) 

where u(CRM) is the uncertainty of the certified CRM TA concentration. Then u(bias) 

and σ, together with a u(other) term for non-CRM seawater samples, were combined 

into an overall uncertainty uc (approximating a 68.3% confidence interval): 
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𝑢𝑐 = ±√𝜎2 + 𝑢(𝑏𝑖𝑎𝑠)2         (4) 

The combined known uncertainties between the HydroFIA TA measurements and 

discrete TA measurements, with uncertainties calculated from replicate bottle analyses 

can be propagated into a combined uncertainty- uc(HydroFIA TA,B)- as: 

𝑢𝑐(𝐻𝑦𝑑𝑟𝑜𝐹𝐼𝐴 𝑇𝐴,𝐵) = ±√𝑢𝑐(𝐻𝑦𝑑𝑟𝑜𝐹𝐼𝐴 𝑇𝐴)
2 + 𝑢𝑐(𝐵)

2 + 𝑢(𝑟𝑒𝑝) + 𝑢(𝑜𝑡ℎ𝑒𝑟)   

 (5) 

where u(rep) is calculated from Equation 4 (substituting the calculated RMSE of 

replicate bottle samples for uc and u(rep) for u(bias). The u(other) term includes all 

potential non-instrumental uncertainties, including temporal offsets between sample 

collection and instrument measurement times, discrete sample preservation 

uncertainties, and other unknown uncertainties.      
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Figure A.1: Top panel: schematic diagram of HydroFIA TA instrument components 

as used in this work, including modifications for automated CRM measurements. 

Bottom panel: photograph of the HydroFIA TA analyzer, installed aboard the NOAA 

Ship Henry B. Bigelow. 

 



  

179 

 

 

Figure A.2: Offsets of automated HydroFIA TA measurements of certified reference 

material (CRM) measured during the seven 2017 cruises. The offset was calculated as 

the certified TA concentration subtracted from the measured TA value, thus positive 

values indicate an overestimate of the CRM TA. The CRM used on 2017 cruises was 

Batch 159, with a certified TA concentration of 2213.59 µmol kg-1 (Dickson et al. 2003). 

The in-line filter described in the text was added in June with some sample offsets (i.e., 

noise) but no substantial drift observed after. 
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Figure A.3:   Seasonal box-and-whisker plots of mean salinity (left panels) and mean 

pCO2 (right panels, µatm). Red lines denote mean values, upper and lower box 

boundaries depict the 75th and 25th percentiles, respectively, and whiskers depict range 

of values. WOA and SOCAT datasets are described in the text. 
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Dates Minimum CRM 

Offset 

(µmol kg-1)

Maximum CRM 

Offset

 (µmol kg-1)

Mean CRM 

Offset 

(µmol kg-1)

σ 

(µmol kg-1)

n

Cruise 1 Feb 11 - Feb 22 -31 37 11 6.2 27

Cruise 2 Mar 7 - Mar 22 32 93 62 2.5 27

Cruise 3 Mar 28 - Apr 6 2 68 39 3.4 27

Cruise 4 Apr 12 - Apr 26 1 45 24 1.2 30

Cruise 5 May 5 - May 11 22 27 24 1 18

Cruise 6 Jun 10 - Jun 22 -4 15 0 4.2 26

Cruise 7 Jul 6 - Jul 19 -10 37 3 3.3 38

 

Table A.1: Summaries of automated Certified Reference Material tests aboard the 

Bigelow during cruises in 2017. The CRM used was Batch 159 (TA 2213.59 µmol kg-1 

and salinity 33.572, Dickson et al. 2003). Plots of individual CRM tests are shown in 

Appendix A Figure A.1. The offset was calculated as the certified TA concentration 

subtracted from the measured TA value, and thus positive values indicate an 

overestimate of the CRM TA by the HydroFIA TA instrument.  
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Table A.2: Data sources used to compile the ‘Historical’ East Coast TA dataset described in this work. 

 

Filename region source/link 

33GG20130609_BT.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1302/GU1302-Discrete.csv 

33GG20131114_BT.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1305/GU1305-Discrete.csv 

33GG20140301_GU1401_hy1.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1401/GU1401-Discrete.csv 

33GG20151012-GU1506-data.xlsx 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1506/33GG20151012-GU1506-data.xlsx 

33GG20160521-GU1608-data.xls 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1608/33GG20160521-GU1608-data.xls 

33GG20160521-GU1608-data.xls 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1608/33GG20160521-GU1608-data.xls 

33GG20170516_GU1701_GU1702_data.xls 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

http://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1701/33GG20170516-GU1701-data.csv 
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33GG20170610-GU1702-data.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

http://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1702/33GG20170610-GU1702-data.csv 

33GG20171031-GU1706-data.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

http://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1706/33GG20171031-GU1706-data.csv 

33GG20180822-GU1804-data.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

http://www.aoml.noaa.gov/ocd/gcc/shortcruises/GU1804/33GG20180822-GU1804-data.csv 

33HH20140902-HB_1405-data.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/HB1103/Bigelow_1103-Discrete-Web.csv 

Bigelow_1103-Discrete-Web.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/HB1103/Bigelow_1103-Discrete-Web.csv 

33HH20120531-HB1202-data.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/HB1202/33HH20120531-HB1202-data.csv 

33HH20130314-HB1301-data.xlsx 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/HB1301/33HH20130314-HB1301-data.xlsx 

33HH20140902-HB_1405-data.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/HB1405/33HH20140902-HB_1405-data.csv 

33HH20150519-HB1502-data.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/HB1502/33HH20150519-HB1502-data.csv 

33HH20170210-HB1701-data.xls 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

https://www.aoml.noaa.gov/ocd/gcc/shortcruises/HB1701/33HH20170210-HB1701-data.xls 
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33HH20180523-HB1803-data.csv 

Gulf of Maine, 
Georges Bank, 
Mid-Atlantic Bight 

http://www.aoml.noaa.gov/ocd/gcc/shortcruises/HB1803/33HH20180523-HB1803-data.csv 

33H520181102-S11802-data.csv North Atlantic https://www.aoml.noaa.gov/ocd/gcc/shortcruises/Delaware_II_1202/Delaware_1202-Discrete-Web.csv 

46SL20181115-Transit846-data.csv North Atlantic http://www.aoml.noaa.gov/ocd/gcc/shortcruises/Selfoss/46SL20181115-Transit846-data.csv 

Reykjafoss_2010-Discrete-Web.csv North Atlantic https://www.aoml.noaa.gov/ocd/gcc/shortcruises/Reykjafoss_2010/Reykjafoss_2010-Discrete-Web.csv 

PC1207-Discrete.csv Mid Atlantic https://www.aoml.noaa.gov/ocd/gcc/shortcruises/PC1207/PC1207-Discrete.csv 

PC1405-Discrete.csv Mid Atlantic https://www.aoml.noaa.gov/ocd/gcc/shortcruises/PC1405/PC1405-Discrete.csv 

PC1607-PC1609-data.xls Mid Atlantic https://www.aoml.noaa.gov/ocd/gcc/shortcruises/PC1607_PC1609/PC1607-PC1609-data.xls 

MLCE-EQUINOX-2015-2016-Data.csv Mid Atlantic https://www.aoml.noaa.gov/ocd/gcc/shortcruises/EQNX_2015_2016/MLCE-EQUINOX-2015-2016-Data.csv 

GOMECC1MasterBottle06212013.xls East Coast https://www.aoml.noaa.gov/ocd/gcc/GOMECC1/data.php 

GOMECC2_discrete_underway_samples.xlsx East Coast https://www.aoml.noaa.gov/ocd/gcc/GOMECC2/GOMECC2_discrete_underway_samples.xlsx 

GOMECC2_station_data.xlsx East Coast https://www.aoml.noaa.gov/ocd/gcc/GOMECC2/GOMECC2_station_data_version4.xlsx 

ECOA2015_Discrete_Underway_Data_Final.xlsx East Coast https://www.nodc.noaa.gov/oads/data/0157389.xml 

ECOA2015_MasterSamplingSheet_vAlk.xlsx East Coast https://www.nodc.noaa.gov/oads/data/0157389.xml 

BioChem_Query_1801_Data.csv 

Northeast, 
Canadian 
Maritimes, 
Labrador Sea 

http://www.dfo-mpo.gc.ca/science/data-donnees/biochem/index-eng.html  

bats_bottle.xls Sargasso Sea http://batsftp.bios.edu/BATS/bottle/bats_bottle.txt 

GLODAP Atlantic https://www.nodc.noaa.gov/archive/arc0133/0186803/2.2/data/0-data/ 

OMP East Coast Charles Flagg, Pers. Comm. 
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APPENDIX B 

 

 

 

Figure B.1:  Differences between measurements of Certified Reference Material at the 

Coastal Marine Laboratory over the study period and the certified TA.  The CRM 

Batches used were: 124, 125, 151, 156, 159, 162, 163, 164 and 172, with TA ranging 

from 2213.6-2403.7 µmol kg-1.  Horizontal dashed red lines indicate twice the standard 

deviation of all differences shown (±56.6 µmol kg-1). 
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  Month Mean nTA nTA STD Mean nDIC nDIC STD  
    (µmol kg-1) (µmol kg-1) (µmol kg-1) (µmol kg-1)  
Jan 1 2071 33 1957 29  
Feb 2 2066 26 1955 24  
Mar 3 2051 32 1933 29  
Apr 4 2018 31 1889 26  
May 5 2043 48 1927 46  
Jun 6 2068 41 1940 43  
Jul 7 2054 46 1922 45  
Aug 8 2036 20 1913 24  
Sep 9 2046 16 1931 31  
Oct 10 2040 23 1929 25  
Nov 11 2061 14 1947 13  
Dec 12 2060 15 1944 12  

       
 

Table B.1: Monthly mean nTA and nDIC at CML, with one standard deviation (STD), 

normalized to a mean dataset salinity of 29.95. 
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Figure B.2:  Monthly mean TA and DIC observed at station WBD, at depths greater than 

20m. 
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Calculation of smoothed climatologies 

Smoothed climatologies were prepared according to the following procedure.  First, 

monthly mean values were calculated, incorporating any measurements within a certain 

month.  These mean values were then reproduced twice, to form a 36-month series, 

repeating annually (see Figure B.2).  The Matlab function ‘pchip’ (Mathworks, Natick MA 

USA) was used to interpolate the monthly means onto a daily time step, and the Matlab 

function ‘smooth’ was then applied over a 60-day window.  The annual climatology was 

taken as the middle year to avoid smoothing irregularities at the beginning and end of 

the year. 
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Figure B.3.  Example of climatology calculation using pCO2.  Squares are monthly mean 

values calculated over the entire timeseries (2005-2019).  Solid black markers are the 

interpolated daily values using the ‘pchip’ function.  The solid gray line represents the 

one-year daily climatology of pCO2 calculated using the ‘smooth’ function on the solid 

black points. 
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APPENDIX C 

 

Spectrophotometric Electrode Validation 

Briefly, a novel sample holder was constructed from an inert polyetheretherketone 

(PEEK) block, with a central sample channel and quartz windows on either end, an 

apparatus derived from the design presented by Easley and Byrne (2012).  This sample 

holder was place in the light path of an Agilent 8454 UV-Vis spectrophotometer.  The 

sample channel was filled with seawater (~100 mL), and a cover, also constructed of 

PEEK, was placed on top.  This cover had openings for the pH electrode, tubing for the 

addition of mCP, and a stirring apparatus consisting of a small electric motor which 

stirred the sample with a loop of PEEK tubing.  A blank reading of the seawater was 

taken, and 300 ul mCP was added, followed by simultaneous spectrophotometric pH 

readings according to Douglas and Byrne (2017) and electrode potential (in mV) 

readings from the pH electrode.  A drop of ~0.1N HCl was added to the sample, and 

another pair of mCP and electrode readings was recorded.  This process continued until 

8-10 reading pairs were obtained.  The paired spectrophotometric pH and electrode 

potential readings were used to prepare an electrode calibration curve and resulting 

electrode response slope. 

 

Preparation and Examination of CO2-free NaOH Solution 

A requirement of OrgAlk measurements is the use of CO2-free base, typically sodium 

hydroxide (NaOH), to raise the pH of a titrated sample back to the original, pre-titration 
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value (e.g., Cai and Wang 1998).  This solution should be CO2-free in order to ensure 

that no additional carbonate anions are introduced between the first and second 

titrations.  However, the details for preparation of the CO2-free NaOH have been scarce 

in the few direct studies of OrgAlk.  Cai and Wang (1998) provide no detail; while Yang 

et al. (2015) describe a test used to quantify the potential trace CO2 present in their 

NaOH reagent, they do not describe the actual preparation of the NaOH. Recently, 

Sharp and Byrne (2021) described a method for the preparation of CO2-free NaOH; 

these authors also measured the CO2 content of their NaOH solution directly, finding a 

concentration of about 6 nanomoles total inorganic carbon per microliter of NaOH. This 

translated to a potential CO2 addition of about 4 µmol kg-1 to the titrated sample. 

We have adapted the method presented in Sipos et al (2000) for our analyses.  Instead 

of using solid NaOH pellets, which can form sodium carbonate on the surface of the 

pellets, this method calls for the dilution of a concentrated 50% NaOH solution.  At this 

high concentration, any carbonate forms an insoluble Na2CO3 precipitate.  To prepare 

the solution, we filled a Pyrex bottle with distilled/deionized water.  A fritted glass tube 

connected to a tank of ultrapure nitrogen gas was inserted, the top of the bottle sealed 

with paraffin film, and the water bubbled with nitrogen gas for a minimum of two hours to 

strip any CO2 and create a nitrogen headspace in the bottle.  Since the concentration of 

the NaOH solution was not of concern for this method, a 1-mL syringe was filled with 

the concentrated 50% NaOH solution.  A disposable 0.22 µm cartridge filter was then 

attached to the syringe, followed by a stainless steel needle attached to the filter.  The 

needle was then inserted  through the paraffin film, and the 1 mL of 50% NaOH 

dispensed into the CO2-free distilled/deionized water. The resulting NaOH solution was 
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continuously bubbled throughout the analysis to maintain the nitrogen headspace and 

prevent CO2 infiltration. 

To test the possible addition of CO3
2- from this NaOH solution, a solution of 0.7M NaCl 

was titrated according to the procedure described in the Methods, resulting in AlkGran2 

and Alk3.5 values.  For three repeated analyses of the NaCl solution, the mean AlkGran2 

was -0.1 µmol kg-1 (±0.5 µmol kg-1) and the mean Alk3.5 was 1.1 µmol kg-1 (±0.4 µmol 

kg-1). Results of this test showed that the NaOH solution may have contributed on the 

order of 1 µmol kg-1 of DIC at the most to the titration of Alk3.5, and no detectable 

alkalinity to the titration of AlkGran2. 
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