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ABSTRACT 

INVESTIGATING THE SPATIAL AND TEMPORAL SCALE VARIABILITY OF 

EBULLITIVE FLUX FROM A SUBARCTIC THAW POND SYSTEM 

By 

Sophia A. Burke 

University of New Hampshire 

 

Arctic regions are experiencing more rapid warming than other parts of the world, 

leading to destabilization of carbon (C) that has been sequestered in permafrost, 

especially in peatlands where the C content of the peat is very high. More frequent 

incidence of thaw in permafrost peatlands is leading to the development of small thaw 

ponds that are known to be sources of methane (CH4) to the atmosphere, yet there is a 

lack in long-term studies of CH4 emission from these formations. This is of concern 

because CH4 has thirty-two times the global warming potential of carbon dioxide over a 

one-hundred-year timescale (Holmes et al., 2013). At a site in northern Sweden, we 

have collected over 3000 measurements of CH4 ebullition, or bubbling, from eight small 

thaw ponds (<0.001 km2) differing in physical and hydrological characteristics over 

seven growing seasons (2012-2018).  

We found ebullitive emission to be highly variable over space and time, with an 

average emission rate of 21.9 mg CH4 m-2 d-1. Between 2012 and 2015, ebullitive 

emission was weakly correlated with environmental conditions like atmospheric 
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pressure and temperature and potentially more influenced by the physical 

characteristics of the ponds themselves. Based on their rates of daily ebullitive 

emission, the ponds fell into four statistically significant groups which appeared to differ 

from each other based on physical characteristics among the ponds within each group. 

This grouping, further called pond types, distinguishes ponds from one another based 

on vegetation presence, pond depth, and hydrologic connectivity to neighboring fen 

areas (or lack there-of). Type 1, with the lowest daily ebullitive emissions measured, are 

the shallowest ponds, they are hydrologically isolated have low instances of sedge 

vegetation (Carex spp. and Eriophorum spp.) and have Sphagnum spp. mosses present 

within them. Type 2 ponds, which emit more ebullitive CH4 than type 1, are deeper, 

have more sedge vegetation present and are hydrologically isolated. Type 3 ponds are 

this highest emitting on a daily scale and are the deepest, with more sedge vegetation 

present than type 3 yet remain hydrologically isolated. Type 4, are shallower than type 

3, have no Sphagnum spp. present, are surrounded by sedge vegetation and connected 

to a neighboring fen area allowing water to flow. Based on our findings, and the 

available literature, we estimate that small ponds (< 0.001 km2) emit between 0.2 and 

1.0 Tg of CH4 through ebullition over an estimated 149 ice-free days. Using acoustic 

techniques, we determined that on a sub-daily timescale CH4 emission rates varied 

significantly over space and time within a single pond with diel variability in bubbling rate 

following that of air temperature, shortwave radiation and wind speed. Using remotely 

collected imagery from an unmanned aerial system (UAS) platform of seven ponds 

collected over five sampling seasons (2014 — 2018) we found pond edge and water 
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area varied significantly between ponds as well as over time, with water area varying 

significantly between pond types. Annual ebullitive flux was highest in ponds that 

ranged in pond edge area of 50 – 150 m2 with smaller and larger ponds emitting less, 

however this relationship is likely more related to physical differences between the 

ponds, rather than differences in overall size.   

This work supports the importance of long-term studies that take advantage of a 

range of spatial and temporal scale sampling techniques in order to adequately capture 

the variability in CH4 ebullition from these highly dynamic formations. Not only are high 

resolution measurements of CH4 ebullition important, but the tandem monitoring of pond 

size and other physical characteristics that distinguish ponds from one another are also 

important to better understand the observed CH4 emissions. With an increase in the 

number of long-term studies such as this, we will be better able to model CH4 emissions 

from thawing permafrost ecosystems in the future.
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INTRODUCTION 

I. Background 

Peatlands in the northern hemisphere contain large amounts of soil carbon (C) due 

to saturated conditions and low temperatures that result in slow rates of decomposition 

(Gorham, 1991). Peatlands are estimated to contain 50% of the worlds organic C 

(Tarnocai et al., 2009) with those in the northern hemisphere containing an estimated 

547 GtC of soil organic carbon (OC) (Yu et al., 2010). At high latitudes, much of this 

high C content soil or peat is located in permafrost regions where the ground is 

permanently frozen further stabilizing this C. Over the past several decades, rising 

atmospheric temperatures have led to increased thawing in permafrost regions, 

resulting in the liberation of C for decomposition into carbon dioxide (CO2) and methane 

(CH4) (Callaghan et al., 2010; Schuur et al., 2008; Stocker et al., 2013). Though CO2 is 

the most studied radiatively important trace gas and is responsible for much of the 

observed the atmospheric warming, recent studies have shifted the focus to CH4 due to 

its much stronger global warming potential (thirty-two times that of CO2; Holmes et al., 

2013).  

Methane is produced only in anoxic environments, and therefore is the least 

energetic way to decompose organic matter (Bell, 1969). Once CH4 is formed 

belowground, it can then be released to the atmosphere via three important transport 

mechanisms: diffusion through the saturated peat, plant mediated transport, and 

ebullition or bubbling (Bastviken et al., 2011; Coulthard et al., 2009; Fechner-Levy & 
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Hemond, 1996), with ebullition considered an important yet the least understood 

pathway (Coulthard et al., 2009; Walter et al., 2006). Ebullition has been observed to 

occur in at least two modes: low background bubbling that occurs on a more or less 

constant level (Goodrich et al., 2011) and more irregular episodic events that are larger 

in volume and can be more difficult to monitor (Rosenberry et al., 2003). Episodic 

ebullition events are often triggered by environmental conditions such as changes in 

hydrostatic pressure due to decreasing water level and/or atmospheric pressure or 

varying levels of incoming solar radiation (Goodrich et al., 2011; Weyhenmeyer, 1999; 

Wik et al., 2014).  

Wetlands are the largest natural source of CH4 to the atmosphere (Saunois et al., 

2016) and in high latitude regions, permafrost thaw can result in CH4 emissions by 

giving rise to the formation of small ponds and lakes due to the slumping and 

degradation of peat surfaces and subsequent filling with water (Bouchard et al., 2014; 

Negandhi et al., 2013; O’Donnell et al., 2011). Very small ponds (surface area < 0.001 

km2), formed by thermokarst in permafrost regions, have been studied in various 

subarctic and Arctic areas (e.g. Hamilton et al., 1994; Shirokova et al., 2013). They 

comprise less than 9% of the area covered by lakes and ponds globally yet they 

account for over 40% of the hydrodynamically driven diffusive CH4 emissions from these 

water bodies (Holgerson & Raymond, 2016). A review of both ebullitive and diffusive 

emissions from lakes and ponds located above 50°N found that small ponds are a 

significant source of CH4 for the northern latitudes (Wik, Varner et al., 2016). However, 

few of the reviewed studies focused on ebullition (Hamilton et al., 1994) and even fewer 
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presented multiple seasonal measurements (Laurion et al., 2010) therefore further study 

of ebullitive flux from small ponds are needed to provide quantitative understanding of 

the emissions and any feedbacks to warming of these ecosystems.   

Vegetation shifts and hydrologic change associated with pond formation has direct 

effects on C cycling in permafrost ecosystems. The increased wetness observed due to 

the thawing of permafrost peat (O’Donnell et al. 2011) can provide new habitat for 

plants that have an affinity for wetter conditions such as Eriophorum angustifolium 

Honck., Carex rostrate Stokes (Malhotra & Roulet, 2015; Malmer et al., 2005) and 

Sphagnum mosses. A common initial colonizer of thawed, wetter areas are Sphagnum 

spp. mosses because they generally prefer lower pH and low nutrient conditions in the 

absence of flowing water (Gignac et al. 1991; Glaser, Hansen et al., 2004; Vitt & Slack, 

1975). Water bodies can then be colonized with sedges (Camill, 1999; Tuittila et al., 

2013; Vitt & Slack, 1975). Continued thaw and consequent increase in the size of wet 

areas can also lead them to them becoming connected to already wet surrounding fens 

and thus introduce a flow component into these systems (Olefeldt & Roulet, 2012). 

Changes in vegetation composition have been observed with concomitant increases in 

CH4 emissions (Johansson et al., 2006; King et al., 1998; Kutzbach et al., 2004) 

because vascular plants, such as sedges, colonize newly thawed areas and can 

become conduits for CH4 to bypass the oxidation, or CH4 consumption, zone (Chanton, 

2005; Noyce et al., 2014) as well as provide newly fixed C as substrate for 

methanogenesis (Moore et al., 2011; Wilson et al., 1989). Changes in vegetation and 

hydrology due to permafrost thaw will impact the production rates and emission of CH4 
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and therefore need to be taken into account when modeling these changing 

ecosystems.    

Remote sensing technology offers a unique opportunity to monitor changes in water 

body size using repeat measurements that could help identify transitions over time. The 

use of remote sensing in ecological research has increased in recent years due to its 

enhancement of spatial and temporal resolution (Chambers et al., 2007; Palace et al., 

2018). However, remote sensing, particularly using satellites, has limitations due to 

spatial resolution (Anderson & Gaston, 2013). For example, many satellite platforms 

have a spatial resolution too large to see water bodies smaller than 0.1 ha (Muster et 

al., 2012) making them difficult to use in studying temporal changes in thaw ponds. 

Unmanned aerial systems (UAS), also known as drones, have offered a potential 

steppingstone between ground-based measurements and satellite imagery due to their 

much higher spatial resolution (Anderson & Gaston, 2013; Marris, 2013).  

II. Hypotheses 

 The goal of my dissertation research is to better understand the controls on CH4 

emissions from small ponds in permafrost ecosystems and how these features change 

over time by specifically addressing the following hypotheses (Figure i. 1): 

H1.  Variability in physical characteristics of small ponds (depth, hydrology, sedge 

dominance) will drive variability in ebullitive flux on a daily and seasonal basis more so 

than meteorological variability (Chapter 1).  
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H2. Remotely sensed pond edge and water area of thaw ponds will vary in response 

to episodic precipitation events, seasonally and interannually relating to differences in 

pond type (see H1) (Chapter 2).   

 
Figure i. 1 Schematic showing varying spatial and temporal resolution of sampling techniques used in each 
chapter of the dissertation. Chapter 1 focuses on sampling on a daily basis using simple floating funnels, 
Chapter 2 focuses on seasonal and interannual variability using drone imagery, while Chapter 3 focuses on 
sub-hourly sampling using hydrophones. 

H3. Sub-daily emissions of CH4 via ebullition will vary spatially and temporally within 

ponds.  Diel fluctuations of emissions within a measurement location will vary according 

to diel fluctuations in air temperature, incoming solar radiation and wind speed. (Chapter 

3).  
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My dissertation chapters have been formatted for submission to peer-reviewed 

journals. These three hypotheses have been addressed through the collection of 

manual measurements of ebullitive CH4 from eight thaw ponds with bubble traps 

installed at Stordalen Mire over four field seasons and are discussed in Chapter 2 (H1; 

Burke et al., 2019). Remotely sensed data collected using UAS technology was used to 

assess the changes in pond and water area size over time in Chapter 2 (H2). Two of the 

thaw ponds were equipped with acoustic systems and were used to determine drivers of 

ebullitive flux on a high temporal scale in Chapter 3 (H1 and H3). As of May 2020, the 

first chapter of this dissertation has been published in AGU’s Journal of Geophysical 

Research: Biogeosciences. Chapter 2 is in preparation for submission to Remote 

Sensing of the Environment. Chapter 3 is in preparation for submission to either 

Hydrology & Earth System Science or Environmental Science & Technology pending 

co-author comment. The citations for the chapters included in this dissertation are as 

follows: 

1. Burke, S. A., Wik, M., Lang, A., Contosta, A. R., Palace, M., Crill, P. M., & 

Varner, R. K. (2019). Long‐Term Measurements of Methane Ebullition from Thaw 

Ponds. Journal of Geophysical Research: Biogeosciences, 2018JG004786. 

https://doi.org/10.1029/2018JG004786 

2. Burke, S. A., Palace, M., Contosta, A. R., Perryman, C., Bennett, K., Rocci, K., 

Herrick, C., Crill, P. M., & Varner, R. K. In prep. Using unmanned aerial systems 

to monitor the change in thaw pond size over five growing seasons: Implications 

for CH4 ebullitive flux. Remote Sensing of the Environment.  
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3. Burke, S. A., Palace, M., Perry, A., Padilla, A., Herrick, C., Contosta, A. R., 

Weber, T., Crill, P. M., & Varner, R. K. In prep. Using acoustic techniques to 

monitor methane ebullition in subarctic thaw ponds. Hydrology & Earth System 

Science or Environmental Science & Technology.  

The data presented in this dissertation, along with the code used for data processing 

and analysis will be made available on the IsoGenie project data repository 

(https://isogenie-db.asc.ohio-state.edu/index). Data associated with Chapter 1 is already 

available online at the data repository (https://isogenie‐

db.asc.ohiostate.edu/datasources#fluxes). Any questions regarding data the data 

presented in this dissertation can be directed to Sophia Burke 

(sophieaburke@gmail.com). 

III. Summary 

This work represents a unique pairing of long-term, high-resolution data using 

several sampling methodologies that when combined provide insight to the varying 

spatial and temporal dynamics of CH4 ebullition in a changing and vulnerable 

ecosystem. Presented here is a dataset of ebullitive emissions from thaw ponds with 

over 3000 manual measurements over seven sampling seasons of ebullitive emissions 

collected on a daily to weekly basis (84% of which were collected within 1—3 days). 

From 2012-2018, the daily average ebullitive rate of CH4 from eight ponds was 21.9 mg 

CH4 m-2 d-1. Non-parametric statistical analyses were used to interpret significant 

relationships in the data. On a daily basis, ebullitive emissions varied significantly by 
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pond, with the eight ponds falling into four statistically significant groups using non-

parametric statistical tests; Kruskal -Wallis sums test for variability and the Dunn’s test 

to determine pairwise comparisons. These groups, further called types, appeared to 

differ from each other based on observed physical characteristics of vegetation 

presence, pond depth, and hydrologic connectivity. To assess the importance of 

meteorological drivers on daily ebullitive flux (e.g. incoming solar radiation [SWR], air 

temperature [Tair], pond temperature [Tpond], and air pressure changes over a five-day 

moving window [ DP5]), non-parametric Kendall correlation tests were used. However 

only weak correlations were observed. This result indicated that meteorological 

parameters were less important at driving fluxes than apparent physical differences 

between ponds (types). 

In addition to manual flux sampling, two UASs were used to collect high spatial-

resolution imagery of seven small thaw ponds over five growing seasons (2014 – 2018). 

Over this period, 144 images were developed, and two polygons hand delineated for 

each pond; the first representing the extent of collapsed area (pond edge) and the 

second representing the extent of water within the pond. Non-parametric Kruskal-Wallis 

sums tests and Kendall Correlation tests were used to assess the variability in polygon 

area (both pond edge and water) seasonally and interannually over the study period 

and to investigate relationships between pond size and CH4 ebullitive emission. Dunn’s 

tests were used to determine significant pairwise comparisons between variables. Over 

several growing seasons, pond edge and water area varied significantly between ponds 

and pond types. Higher annual ebullitive emissions were seen among the smaller thaw 
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ponds in this study, however this can be attributed to cumulative differences in physical 

characteristics rather than simply differences in size. 

 Lastly, this work effectively used a hydroacoustic monitoring system to monitor 

ebullitive emissions from two thaw ponds during the 2018 growing season. Generalized 

Mixed Effects modeling (GLMM) was applied to investigate the influence of high 

temporal-resolution meteorological variables (e.g. Tair, SWR, WS; 2-hr averages) on 

bubble detections from the acoustic system. Results of the GLMM analysis showed that 

ebullition varied spatially and temporally across the study period within a single pond. 

Meteorological drivers (SWR, Tair and WS) explained little of the variability in acoustic 

detections across the study period however, sub-daily variability in average bubble 

emissions appearing to follow diel fluctuations in SWR, Tair and WS. 

Through the use of multiple measurement techniques, at a variety of different spatial 

and temporal scales, I have concluded that (1) physical characteristics of ponds explain 

ebullitive flux variability between ponds, (2) higher ebullitive emissions are seen from 

smaller ponds, yet this is more related to physical differences between ponds rather 

than size supporting the first finding, and (3) ebullitive emissions on a sub-daily scale 

follow diel fluctuations in Tair, SWR and WS. These results support the need for 

monitoring of physical characteristics and areal extent of thaw ponds in tandem with 

high frequency (e.g. daily and sub-daily), measurements of CH4 ebullition over multiple 

seasons due to the dynamic nature of these ecosystems. The effective combination of 

varying spatiotemporal sampling techniques (manual measurements, UAS imagery 

collection and acoustic monitoring) is also highlighted, as each technique provides new 
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ways to expand our understanding of subarctic thaw ponds. While monitoring pond size 

over time is an important component of modeling CH4 emissions across the changing 

Arctic, this work suggests that monitoring other pond characteristics, like pond type, in 

conjunction with size are important in understanding CH4 emissions, and how they 

might change in the future. With the inclusion of the thaw pond classification in Earth 

system models, in addition to measurements of size, modelers can better represent CH4 

emissions from thaw ponds in models of the changing Arctic. 
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 LONG TERM MEASUREMENTS OF METHANE EBULLITION FROM 
THAW PONDS1 

1.1 Abstract 

Arctic regions are experiencing rapid warming, leading to permafrost thaw and 

formation of numerous water bodies. Although small ponds in particular are considered 

hotspots for methane (CH4) release, long-term studies of CH4 efflux from these surfaces 

are rare. We have collected an extensive dataset of CH4 ebullition (bubbling) 

measurements from eight small thaw ponds (< 0.001 km2) with different physical and 

hydrological characteristics over four summer seasons; the longest set of observations 

from thaw ponds to date.  The measured fluxes were highly variable with an average of 

20.0 mg CH4 m-2 d-1 (median: 4.1 mg CH4 m-2 d-1, n = 2063) which is higher than that of 

most nearby lakes. The ponds were categorized into four types based on clear and 

significant differences in bubble flux. We found that the amount of methane released as 

bubbles from ponds was very weakly correlated with environmental variables, like air 

temperature and atmospheric pressure, and was potentially more related to differences 

in physical characteristics of the ponds. Using our measured average daily bubble flux 

plus the available literature, we estimate circumpolar thaw ponds < 0.001 km2 in size to 

emit between 0.2 and 1.0 Tg of CH4 through ebullition. Our findings exemplify the 

 
 

1 This chapter has been published and the full citation is as follows: Burke, S. A., Wik, M., Lang, A., 
Contosta, A. R., Palace, M., Crill, P. M., & Varner, R. K. (2019). Long‐Term Measurements of Methane 
Ebullition from Thaw Ponds. Journal of Geophysical Research: Biogeosciences, 2018JG004786. 
https://doi.org/10.1029/2018JG004786  
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importance of high frequency measurements over long study periods in order to 

adequately capture the variability of these water bodies. Through the expansion of 

current spatial and temporal monitoring efforts, we can increase our ability to estimate 

CH4 emissions from permafrost pond ecosystems now and in the future.  

1.2 Plain Language Summary 

Long term studies of methane emissions from thaw ponds are rare but essential for 

our understanding of how these ecosystems are responding to Arctic warming. Our 

study incorporates over 2000 measurements of methane gas, collected over four 

summer seasons from eight small ponds located within one single peatland in northern 

Sweden. These ponds formed when frozen soil thawed due to increasing air 

temperatures. Ponds like this are known to release methane, a strong greenhouse gas, 

through bubbling, diffusion along a concentration gradient, and transport through plant 

internal structure, though bubbling is the least understood. We also used photographs 

collected with a drone to estimate the area of each pond. We found the ponds to vary 

widely in methane emission over time as well as between ponds. We also found that 

meteorological variables like air temperature and atmospheric pressure explained little 

of the variability in bubble flux we measured. Our measurements represent the longest 

record of bubble measurements from climate sensitive ponds to date and help us to 

better understand the amount of methane released and what controls it. It is important 

to include these bodies of water in our understanding of how Arctic areas are changing 

with increasing air temperatures. 
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1.3 Introduction 

It is essential to quantify sources of atmospheric methane (CH4) because it is a 

radiatively important trace gas with thirty-two times the warming potential of carbon 

dioxide (CO2) over a 100-year timescale (Holmes et al., 2013). Sources at high latitudes 

are significant contributors of CH4 to the atmosphere (Kirschke et al., 2013; Saunois et 

al., 2016), although the effect of increased Arctic warming on CH4 release is uncertain. 

For example, an increase in emissions could occur in conjunction with rising 

temperatures and permafrost thaw (Schuur et al., 2008), but extensive thaw could 

alternatively lead to large scale drainage of wetlands and an overall decrease in CH4 

emissions (Avis et al., 2011). 

Permanently frozen peatlands in the northern hemisphere alone are estimated to 

contain between 436 -547 Pg of soil organic carbon (OC; Loisel et al., 2014; Yu et al., 

2010). When such peatlands thaw, some of this sequestered OC may become available 

for anaerobic decomposition processes in which CH4 is the final byproduct (IPCC, 2013; 

Laurion et al., 2010; O’Donnell et al., 2011). Once CH4 is produced in anoxic 

environments there are three main transport modes to the atmosphere: ebullition 

(bubbling), hydrodynamic flux (previously called diffusive flux), and plant assisted 

transport. Ebullition is often dominant but still the least understood (Bastviken et al., 

2011; Coulthard et al., 2009; Fechner-Levy & Hemond, 1996). The uncertainty in 

ebullition is due to highly episodic releases, triggered by environmental conditions such 

as changes in water level and atmospheric pressure (Goodrich et al., 2011; 

Weyhenmeyer, 1999), in combination with large spatial variations (Laurion et al., 2010; 
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Wik et al., 2013), as well as lack of measurements able to account for these 

heterogeneities (Wik, Thornton, et al., 2016). 

Thawing of ice-rich permafrost and the ensuing collapse of peat surfaces can give 

rise to thermokarst, or subsidence of the land surface due to permafrost thaw 

(O’Donnell et al., 2011; Zimov et al., 2006), and the formation of water bodies of 

different sizes (Bouchard et al., 2014; Negandhi et al., 2013; O’Donnell et al., 2011). 

Very small ponds (defined in this study as those with a surface area < 0.001 km2) 

comprise less than 9% of the total area covered by lakes and ponds globally yet they 

are estimated to contribute 40% of the hydrodynamically driven diffusive CH4 emissions 

from freshwater lakes and ponds worldwide (Holgerson & Raymond, 2016). A review of 

both ebullitive and hydrodynamic emissions from water bodies located north of 50°N 

found that small ponds are a significant source of CH4 for the northern latitudes (Wik, 

Varner, et al., 2016). However, few of the available studies focus on ebullition and even 

fewer present multiple seasonal measurements (Wik, Varner, et al., 2016). Therefore, 

further study of bubble flux from small ponds is needed to provide a quantitative 

understanding of the emissions and potential feedbacks of the warming of these 

ecosystems.    

Shifts in vegetation species composition and hydrologic change associated with 

pond formation have effects on OC cycling in permafrost ecosystems. For example, 

changes in vegetation composition can increase CH4 emissions (Johansson et al., 

2006; King et al., 1998; Kutzbach et al., 2004). When vascular plants colonize newly 

thawed, wet areas they can become conduits for CH4 to bypass oxidation that can occur 
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in oxic zones near the air/water interface (Chanton, 2005; Noyce et al., 2014) as well as 

provide newly fixed OC as substrate for methanogenesis (Chanton et al., 2008; Malmer 

et al., 2005). Vascular plants can also transport oxygen to the submerged rooting zone, 

therefore allowing for oxidation to occur (Laanbroek, 2010; Whalen, 2005). Increased 

wetness due to permafrost thaw (O’Donnell et al., 2011) can provide new habitat for 

plants that have an affinity for wetter conditions such as sedge species, e.g. Eriophorum 

angustifolium, Carex rostrata (Malhotra & Roulet, 2015; Malmer et al., 2005) and 

different species of Sphagnum. Sphagnum spp. are considered a common initial 

colonizer of thawed, wetter areas due to their preference for lower pH and nutrient 

conditions in the absence of flowing water (van Breemen, 1995; Gignac et al., 1991; 

Glaser, Hansen, et al., 2004; Vitt & Slack, 1975). Continued thaw and consequent 

increase in wetness may not only increase anoxia, providing an ideal environment for 

methanogenesis (Segers, 1998), but may also lead to these areas becoming connected 

to already wet surrounding fens and thus introduce a flow component into these 

systems (Olefeldt & Roulet, 2012). Distinguishing sub-habitats from each other based 

on vegetation characteristics and hydrology was conducted previously in some 

subarctic peatlands (e.g. Johansson et al., 2006; Malhotra & Roulet, 2015; Malmer et 

al., 2005) though very few studies have applied classification schemes to thaw ponds 

(Kuhn et al., 2018). Changes in vegetation and hydrology can impact the production 

rates and emission of CH4 and therefore should be accounted for when modeling these 

changing ecosystems.   
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The goal of this study is to improve our understanding of the magnitude and controls 

on the spatiotemporal variation in daily ebullitive CH4 emissions from rapidly changing 

ponds in a highly dynamic permafrost ecosystem. Here we report measurements of 

ebullitive CH4 flux, collected over four summer sampling seasons, from eight ponds 

located in northernmost Sweden.  

1.4 Methods 

1.4.1 Study Site 

We studied eight ponds located within the Stordalen Mire, a sporadic permafrost 

peatland complex located 10 km east of Abisko in northernmost Sweden (68°21’N, 

19°02’E, Figure 1.1). Since 2000, climate trends in northern Sweden have led annual 

mean temperatures to cross the 0°C threshold, thus destabilizing permafrost (Callaghan 

et al., 2010). Consequently, rapid permafrost thaw and changes in vegetation cover 

have been observed in the Stordalen area (Johansson et al., 2006; Malmer et al., 

2005). The mire contains the following sub-habitats: palsa plateaus, semi-wet 

Sphagnum spp. dominated areas, wet Eriophorum spp. dominated areas, and collapse 

features due to thaw. Collapse features that accumulate water (Christensen et al., 2004) 

are classified as thaw ponds. Satellite imagery, focusing on the terrestrial area of 

Stordalen Mire, reveal the areal extent of hummocks (e.g. cold, dry, raised permafrost 

mounds) and tall shrubs has decreased by 10% between 1970 and 2000. These areas 

have been recolonized by more moisture-tolerant vegetation (i.e. graminoids) that 

consequently release more CH4 to the atmosphere, resulting in a 48% increase in the 
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radiative forcing of this site from 1970 to 2000 (Johansson et al., 2006). Some thaw 

ponds in Stordalen Mire were also included in a recent study by Kuhn et al. (2018), that 

reported CO2 and CH4 emissions from floating chambers. However, the CH4 

measurements in this study were scarce, made on a biweekly schedule, which is far 

from ideal when investigating ebullition (Wik, Thornton, et al., 2016). Kuhn et al. (2018) 

distinguished ponds from each other based on vegetation dominance and hydrology but 

no difference in overall emissions was observed between pond types in this one-season 

investigation.  
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Figure 1.1. Adapted from Burke et al. (2019). Orthomosaic image of the Stordalen Mire in northernmost 
Sweden, (68°22’ N, 19°03’ E) taken 12 July 2016 from a collection of images acquired at an altitude of 70 m 
using an unmanned aerial system (UAS). Ponds measured in this study are labeled with their corresponding 
letter. Using Google Earth Engine, transect lines were drawn across the length of each pond and 10 m oval 
shaped buffers (here outlined in magenta) were drawn around each transect. These were used to calculate 
spatial extent of ponds based on the percent wet area within the buffer. Rough edges show the extent of the 
stitched images. The general location of lake Villasjön is represented by its label. 

1.4.2 Pond Sites 

Pond sampling sites were chosen based on their proximity to boardwalks and ease 

of access so as to minimize mire and sampling disturbance. The following descriptions 

of the ponds were generally identified during surveys conducted in 2013 and 2014 (see 

Lake Villasjön
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below and Table 1.1). Such descriptions include water table depth (WTD), relative 

Sphagnum spp. and sedge (e.g. Eriophorum spp., Carex spp.) vegetation presence and 

hydrologic regime. Measurements of WTD presented here are the averaged values of 

measurements collected over both 2013 and 2014 surveys (see Table A.1 for averaged 

WTD for 2013 and 2014 separately). At Stordalen Mire, the WTD in Eriophorum 

dominated sites varies much less than in Sphagnum dominated sites (Bäckstrand, 

2010). We found a similar relationship in the ponds, with those that were shallow and 

isolated to be more vulnerable to dry-out than those that were connected to neighboring 

fens. Hydrologic connectivity was determined visually and is supported by flow paths 

developed previously for this site (see Olefeldt & Roulet, 2012). The abundance of 

Sphagnum spp. and sedge species (Carex spp. and Eriophorum spp.) were based on 

comparisons of the vegetation surrounding each pond relative to the other study ponds 

and was not expressly quantified. 

Ponds A and B – the shallowest ponds in this study (22 cm and 18 cm respectively) 

and unlike the other ponds, are surrounded by few sedges and are located in the 

northeast of the mire, on a palsa plateau (Figure A.1).  

Pond C – positioned with one edge along a collapsed palsa, is hydrologically 

isolated from neighboring fen areas and contains floating Sphagnum spp. It also has an 

increased presence of Eriophorum spp. relative to that of ponds A and B (Figure A.1). 

Pond WTD = 35 cm.  
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Pond D – features collapsing palsa on one side, Eriophorum spp. and Carex spp. 

along the opposite and a clay-rich bottom. It is located in the top left corner of the site 

and abuts a fen area that has water flowing from east to west (Figure A.1). WTD = 41 

cm. 

Pond E – positioned on a remnant palsa and is hydrologically isolated from the 

surrounding fen areas. This pond contains significant amounts of floating Sphagnum 

spp. and some Eriophorum spp. and Carex spp. along the edges (Table 1.1, Figure 

A.1.E). Observations made of the area since 2003 show that this particular pond began 

forming around 2007 (P. Crill, unpublished data). Pond E is the deepest in this study 

with a WTD of 85 cm (Table 1.1).   

Pond F – is hydrologically isolated like pond E (Figure A.1.F). It is surrounded by 

collapsing palsa, with Carex spp. and Eriophorum spp. present along its edges. WTD = 

43 cm.  

Pond G – contains no Sphagnum spp. but is surrounded by sedge species and is 

connected to a fen that drains the neighboring Lake Villasjön (Figure A.1.G). The water 

flows west through the fen towards the catchment’s main stream (Figure 1.1). WTD = 47 

cm. 

Pond H – positioned between pond G and the fen, containing similar vegetation to 

pond G (Figure A.1.H). WTD = 41 cm. 
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Table 1.1 Characteristics of ponds sampled at Stordalen mire, Abisko, Sweden between 2012-2015. Mean 
water temperature is the average water temperature measured between 1 June and 30 September between 
2014 – 2015 field seasons. Median pH is presented here due to the minimal measurements collected in 2014. 
Vegetation presence is described as whether or not Sphagnum spp. is present (distinguished by a check 
mark or an X) and sedge presence (Eriophorum spp. and or Carex spp.) as low, medium or high presence in 
comparison to ponds A and B. A schematic showing the relative depth, vegetation, and hydrology is shown 
on the left side of the table.  Based on similarities between their physical characteristics, the ponds can be 
grouped into four pond types: (1) shallow with low sedge presence, (2) intermediate depth and increased 
sedge presence, (3) deepest and sedge dominated, and (4) intermediate depth, open water and flow through 
present.   

 

Vegetation Present

Pond n

Surface 

Area* 

(m

2

)

Average 

WTD (cm)

Sphagnum 
spp. Sedges Other notes

Hydrologic 

Status ◆
Mean Water 

Temperature 

(℃)

Median 

pH

A 67 110 22

✓ Eriophorum 
spp. Isolated

11.6 4.1

B 196 32 18 12.1 3.8

C 311 24 35

✓

Eriophorum 
spp.

(increased 

presence 

relative to 

ponds A and 

B)

collapsing 

palsa along 

one edge 

and a fen on 

the other

Transitioning

10.2 4.3

D 289 13 41

Collapsing 

palsa on one 

edge, fen on 

the other, 

clay bottom

10.0 4.5

E 289 83 85

✓

Eriophorum 
spp. and 

Carex spp.
around edge 

(increased 

presence 

relative to 

ponds C and 

D)

Isolated

5.8 3.8

F 529 135 43

collapsing 

palsa 

surrounding, 

fen area 

along one 

edge

8.0 4.3

G 72 451 47

✗

Carex spp.
and 

Eriophorum 
spp. around 

the edge 

(increased 

presence 

relative to 

ponds C and 

D)

Open Water; 

Connected to 

adjacent Fen

11.6 NA

H 319 161 41 12.2 5.9

* Image analysis of 2016 UAS image. ◆ Classification based on Olefeldt & Roulet (2012). A pond considered to be  

isolated is surrounded by intact peat and is not connected to any adjacent fen areas. A  transitioning pond is one 

that is partly surrounded by intact peat but has the potential to be connected to adjacent fens that receive water 

from neighboring lakes (i.e. shallow waterlogged peats between the pond and surrounding fen areas). A pond that is 

considered to be  connected to adjacent fen are ponds that intersect areas of known flow (Olefeldt and Roulet, 

2012). 

Type 1

Type 2

Type 3

Type 4
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All eight ponds were sampled for at least two summer seasons during 2012-2015; 

ponds C and H were sampled for all four summer seasons, ponds B, D, E, F were 

sampled for three seasons, and ponds A and G were sampled for only two of the four 

summer sampling seasons. Pond A was subject to drying during the field season more 

than the other ponds, rendering it too shallow to deploy bubble traps (e.g. this pond was 

not sampled during the warm and dry summer of 2014) and Pond G became too difficult 

to sample without causing disturbance to the site after two sampling seasons.  

Once during the 2013 sampling season, WTD, was manually measured at all our 

study ponds at a single time period (Table A.1). In 2014, WTD, and dissolved oxygen 

concentration (DO; mg L-1; YSI Environmental Model 556) were measured weekly 

between June and September in the surface water of each pond (except for pond G, 

Table A.1). Measurements of active layer depth below each pond were attempted during 

2013 and 2014 but the permafrost layer was consistently below the length of the 

measurement tool (100 cm), therefore those data are not presented here. 

Measurements of the surface pond water pH (Waterproof Double Junction pHTestr 30, 

Oakton Instruments) were collected three times during the 2014 sampling season (8 

July, 23 July, and 24 August; median value presented in Table 1.1).  

To determine the surface area of each of our study ponds (presented in Table 1.1), 

we used remotely sensed image data collected from an unmanned aerial system (UAS; 

Triton XL with a Goose autopilot from Robota; http://www.robota.us/). The imagery was 

collected on July 12, 2016 at 11:30 am local time. We flew during this time because 

vegetation could be easily distinguished, and it overlapped with a period of another 
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study. More than 700 images were collected over a 26-minute time period using a 

commercial, handheld RBG camera (Lumix GM-1). The UAS was flown at an altitude of 

70 m. Imagery was stitched together using Photoscan Pro 1.2 by AgiSoft 

(http://www.agisoft.com/). We used existing georeferenced UAS imagery data from 

2014 (Palace et al., 2018) to georeference the 2016 image (QGIS 2.14 Essen was used 

for georeferencing). The result was an image with 3 cm resolution and an estimated 

spatial error of 5 cm (Figure 1.1).  

We then used Google Earth Engine to manually delineate transects across each of 

the eight ponds with each transect featuring a 10-m buffer. Due to the oblong shape of 

many of the ponds, a 10-m buffer around a delineated center line was used in order to 

enclose the pond while limiting the inclusion of neighboring ponds. We developed 

additional bands for pond surface area analysis using texture algorithms in Google 

Earth Engine (entropy and gray-level co-occurrence matrix, GLCM) on red, green, and 

blue bands. A kernel of 5 by 5 pixels was used for all texture analysis (Palace et al., 

2018). We ran an unsupervised classification using a k-means algorithm on the entire 

image (Arthur & Vassilvitskii, 2007). We used 15,000 samples randomly selected across 

the mire with eight classes for the cluster analysis. A cluster was considered a set of 

connected pixels with a maximum size of 256 pixels and the connection of these pixels 

with four connected neighbors. Each cluster was then given a class value. From the 

classified image, we determined that one of the specific classes represented open water 

(containing no submerged vegetation) based on visual inspection of the original UAS 
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collected image. Tallies of pixels for each class were extracted for each pond transect, 

and total surface area of open water was determined for each polygon. 

1.4.3 Ebullition sampling 

Ebullition of CH4 from the ponds was measured using bubble traps that were similar 

in design to those used by Wik et al. (2013). Since we were focused on understanding 

the drivers of bubble flux through long term monitoring, we did not quantify diffusive or 

plant mediated flux. They consisted of inverted plastic funnels (30.5 cm diameter) 

affixed with tubing (10 cm × 1 cm inner diameter) capped with a 60-mL syringe, a three-

way stopcock, and sealed with 3M Marine Adhesive Sealant (Fast Cure 5200). The 

bubble traps were 45 cm tall, from the bottom of the funnel to the top of the stopcock. 

Two bubble traps were deployed in each pond, with the exception of pond F which had 

four traps due to its oblong shape, for the duration of the field season (June through 

September). The traps were deployed adjacent to each other and kept afloat using 

Styrofoam blocks so that the traps would not disturb the bottom of the ponds. 

Accumulated gas was collected manually from the traps using 10 mL polypropylene 

syringes. Gas samples collected from the traps were returned to the laboratory at the 

Abisko Scientific Research Station (ANS) and analyzed for CH4 mixing ratios within 24 

hours of sampling according to the procedure described in Wik et al. (2013), using a gas 

chromatograph equipped with a flame ionization detector (GC-FID, Shimadzu 2014). 

Samples were collected from the traps on daily to weekly timescales over four summer 

sampling seasons; 86.5% of the measurements were made between one and three 

days apart. A small percentage (11%) of the measurements had a sample period 
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greater than 3 days (n = 227); 91 of these samples (collected mostly in 2014 and 2015) 

were run on the GC for CH4 concentrations, likely providing an underestimated mixing 

ratio for flux calculation. The remaining measurements (n = 136, collected in 2012 and 

2013) used the volume of gas accumulated multiplied by a moving seasonal average 

CH4 concentration to calculate emissions. Wik et al. (2013) found CH4 dissolution back 

into the water column in their floating funnels to be minimal if samples were collected 

within 3 days. The small percentage of our measurements that fall out of this 3-day 

criteria introduce a minimal source of error into our calculations and likely underestimate 

therefore providing a conservative estimate of ebullitive emissions for those time 

periods.     

1.4.4 Pond water temperature and meteorological variable collection 

Pond water temperature was measured continuously from July 2013 onward using 

temperature data loggers (HOBO Water Temp Pro v2, model U22-001) that were set to 

record every five minutes between June and September. In the ponds deeper than 30 

cm, we measured temperatures at ~ 10 cm below the water surface and at ~ 5 cm 

above the bottom of the pond. In ponds that were shallower than 30 cm, only one logger 

was deployed to measure surface water temperature. Though not the focus of this 

study, all ponds froze completely during the winter. Meteorological parameters of 

interest such as air temperature (Tair), air pressure (atmp), and incoming shortwave 

radiation (SWR) were obtained from the ANS weather station (ANS, 2017).  

1.4.5 Data processing and analysis 
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Daily CH4 bubble flux from each pond was calculated, using code developed in R 

version 3.3.3 (R Core Team, 2017), following the protocol described in Wik et al. (2013). 

In our study, however, we used a smaller funnel cross-section area (0.05 m2) when 

calculating the fluxes. Since samples were not collected every single day throughout the 

study period, daily flux calculations assume a steady release of gas between the time 

sampled and previous sampling time. Pond temperature data collected from the HOBO 

loggers as well as meteorological data of interest were also processed in R to calculate 

daily averages between 1 June and 30 September of each year in the study (Tpond, Tair, 

SWR respectively). In order to explore how large drops in atmospheric pressure may 

elicit ebullitive events, as shown previously by e.g. Tokida et al. (2007), we calculated 

the difference between current day atmospheric pressure and the average over the 

previous five days (i.e., (∆"!)  and used this value in the analyses.  

Statistical analysis of daily CH4 flux measurements was also performed using R. 

Several steps of data exploration, described by Zuur et al. (2010), were performed to 

assess both the presence of outliers as well as potential violations of key assumptions 

in parametric statistical analysis, such as normality, collinearity, equal variance, and 

autocorrelation. Due to violations of these key assumptions in our data, we chose to 

analyze our data using non-parametric tests. We performed Kruskal-Wallis sum tests to 

examine variation in bubble flux as a function of pond, month, sampling season and on 

the combination of month and sampling season with pond. A post-hoc Dunn’s Test of 

multiple comparisons using the Bonferroni method (a = 0.05) was performed to 

determine pairwise comparisons (dunn.test package; Dinno, 2017). Lastly, we used the 
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non-parametric Kendall correlation test to investigate the influence of meteorological 

variables (SWR, Tair, Tpond, ∆"!) on bubble flux. Based on the criteria developed by 

Cohen (1988), we classified correlations as strong, moderate, or weak depending on 

the value of the Kendall’s tau (t) statistic. According to these criteria, the absolute value 

of t, which ranges between -1 and 1, was greater than or equal to 0.5 for strong 

correlations, between 0.3 and 0.5 for moderate correlations, and between 0.1 and 0.3 

for weak correlations (Cohen, 1988). If the absolute value of t was less than 0.1, we 

considered the strength of the correlation to be very weak, even if the p-value was 

statistically significant.     

1.5 Results 

1.5.1 Variation in daily bubble flux among ponds 

Daily bubble flux varied across the sampling seasons in all ponds, with episodic 

events of high CH4 flux observed periodically (characterized by short term peaks in flux; 

Figure 1.2). Some of these episodic events appear to correspond to drops in 

atmospheric pressure (Figure A.3 & Figure A.4). For some ponds, peaks in bubble flux 

during the sampling season also appear to follow increases in pond temperature 

however this was not observed in all ponds (Figure 1.2). Across the entire data set, 

daily average meteorological parameters (SWR, Tair, Tpond, ∆#") were found to correlate 

with daily bubble flux (p < 0.05, Table A.2). Although these correlation were statistically 

significant, Kendall’s t values indicated that these correlations were very weak (- 0.13 < 

t < 0.09, Table A.2). For example, we observed a significant, positive correlation between 
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SWR and daily bubble flux (p = 0.001, Table A.2). We interpreted this correlation as 

very weak despite its statistically significant p-value because the corresponding t was -

0.05 (Table A.2).  

Our eight ponds measured over four sampling seasons had an overall average daily 

bubble flux of 20.0 mg m-2 d-1 (Median: 4.1 mg CH4 m-2 d-1, n = 2063). The shallowest 

ponds in this study (A and B), were the lowest emitting, with near zero fluxes (A & B 

median: 0.0 mg CH4 m-2 d-1, Table 1.2). Ponds C and D, both deeper than ponds A and 

B, emitted on average 4.5 and 3.6 mg CH4 m-2 d-1 respectively (C median: 0.5 mg CH4 

m-2 d-1, D median: 0.1 mg CH4 m-2 d-1, Table 1.2). The most frequent ebullition came 

from the deepest isolated ponds (ponds E and F: daily average of 53.4 and 40.9 mg 

CH4 m-2 d-1 respectively, E median: 22.5 mg CH4 m-2 d-1, F median: 21.6 mg CH4 m-2 d-

1, Table 1.2). The hydrologically connected ponds (G and H) emitted on average less 

than half the amount (G median: 6.4 mg CH4 m-2 d-1 , H median: 11.7 mg CH4 m-2 d-1, 

Table 1.2) emitted by E and F (11.6 and 26.5 mg CH4 m-2 d-1 respectively), the deep, 

isolated ponds. There was no consistent pattern between surface area of ponds and 

bubble flux in any sampling season (Table 1.1).  
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Figure 1.2 Daily bubble flux (mg CH4 m-2 d-1) and pond temperature (°C) from selected ponds due to their 
statistically significant bubble flux (distinguished by different colored bars and lines respectively) located in 
the Stordalen Mire, Abisko Sweden. Daily average atmospheric pressure (mbar) for each sampling season is 
displayed as a black line (ANS, 2017). 

During the study period, daily bubble fluxes varied significantly between ponds 

across the peatland (c2 = 841.55, p < 0.0001, Figure 1.3). We classified the ponds into 

four types, based on the pairing of ponds due to statistical similarity, and found that 

these four types coincided with apparent differences in physical characteristics between 

ponds as described above (see Section 1.4.2; Table 1.1).  
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Figure 1.3 Boxplots of all measurements collected over four sampling seasons represented as daily bubble 
flux (mg CH4 m-2 d-1). The different colors are used to distinguish ponds form each other. To show the real 
distribution of the data, the y axis was plotted between 0 and 150 mg CH4 m-2 d-1, with outliers greater than 
140 mg CH4 m-2 d-1 omitted from this figure. The number of measurements collected at each pond over the 
study period are in italics below each pond label. Solid triangles represent the mean daily bubble flux of each 
pond across the study period. Dark lines across each box represent median values and small grey circles 
represent outliers. Lowercase letters represent significant differences between ponds. Results of the 
Kruskal-Wallis rank sum test noted as c2 and p. Ponds are divided up into types 1 through 4 based on their 
statistically different fluxes and these types appear to correspond to physical differences (depth, vegetation 
presence, hydrology; see Table 1.1).  

1.5.2 Monthly and seasonal variation in daily bubble flux 

When combining all pond emissions over the study period, the highest monthly 

average of bubble flux across all sampling seasons occurred in July (24.5 mg CH4 m-2 d-

1, Table 1.2) followed closely by August (20.8 mg CH4 m-2 d-1, Table 1.2). The lowest 

mean daily bubble flux occurred in September (14.2 mg CH4 m-2 d-1, Table 1.2). Looking 
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across sampling seasons, the lowest average daily bubble flux occurred during the 

2013 sampling season (10.7 mg CH4 m-2 d-1, n = 314, Table 1.2) coinciding with one of 

the warmest and rainiest and therefore cloudiest field seasons of the study (Table 1.3). 

We saw the highest average daily bubble flux during the 2015 sampling season (28.5 

mg CH4 m-2 d-1; Table 1.2) and conditions were cooler, less rainy, and clearer (Table 

1.3).  

We examined the monthly and full sampling season variability in the median bubble 

flux (see median values in Table 1.2), modeling each alone and in combination with 

each pond. As single factors, both month and sampling season were significant 

predictors of flux (month: p < 0.0001, Figure A.5, sampling season: p < 0.0001, Figure 

A.6). Pairwise comparisons of monthly medians showed that bubble flux in June was 

significantly different to that of July, August, and September (Figure A.5). This indicates 

that while the average daily bubble flux was highest in July, there appeared to be more 

days where bubble flux was zero in July, August and September, than in June. We also 

found that bubble flux varied significantly among most sampling seasons, except 

between 2013 and 2014 (Figure A.6). 
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Table 1.2 Temporal and spatial variability in CH4 bubble flux across ponds, months and sampling season 
shown using arithmetic mean, range, median and 10th to 90th percentile. Ponds are listed in order by Type (1-
4).  Total numbers refer to the mean bubble flux across the four sampling season study period. Average daily 
CH4 flux from each pond was calculated by averaging the daily flux from individual bubble traps in each pond 
to generate one daily flux per pond from each summer sampling season. N represents the number of 
samples collected. 

  Daily Bubble Flux (mg CH4 m-2 d-1) 

  
n Mean  

10th to 
90th 

Percentile 
Range Median 

Pond      
A 66 0.0 0 to 0 0.0 to 1.5 0.0 
B 196 0.0 0 to 0.1 0.0 to 2.2 0.0 
C  311 4.5 0 to 8.6 0.0 to 118.5 0.5 
D 287 3.6 0 to 7.6 0.0 to 92.1 0.1 

E 288 53.4 
3.3 to 
131.3 0.0 to 1257.1 22.5 

F 524 40.9 1.8 to 93.4 0.0 to 1132.5 21.6 
G 72 11.6 1 to 24.6 0.0 to 131.1 6.4 
H 319 26.5 0 to 68 0.0 to 308.6 11.7 

      
Month      

June 462 15.2 0 to 24.4 0 to 1132.5 0.0 
July 874 24.5 0 to 67.6 0 to 1257.1 3.7 

August 517 20.8 0 to 62.1 0 to 400.0 6.5 
September 210 14.2 0 to 48.7 0 to 524.8 4.4 

      
Sampling Season     

2012 117 17.3 0.6 to 62.1 0.0 to 131.1 5.0 
2013 314 10.7 0 to 24.7 0.0 to 206.1 6.4 
2014 689 24.9 0 to 68.5 0.0 to 1257.1 4.4 
2015 943 28.5 0 to 87.2 0.0 to 1132.5 0.0 

      
Overall      

Total 2063 20.0 0 to 58.8 0.0 to 1257.1 4.1 
            

 

 



 

 33 

We also examined whether individual ponds behaved differently on a monthly and 

seasonal sampling season basis and found both of these interactions to be significant 

(month ´ pond: p < 0.0001, Figure A.7, sampling season ´ pond: p < 0.0001, Figure 

A.8). Though there were a few exceptions, daily bubble flux in ponds found not 

significantly different from each other across the whole study period (Figure 1.3) also 

did not significantly differ from one another within months or sampling seasons (see 

Table A.3 through Table A.6 for p values).   

Table 1.3 Summary of meteorological data across the study period. Average incoming shortwave radiation 
(SWR, W m-2), average air temperature (Tair, °C) and total precipitation (P, mm) were calculated from data 
collected at the Abisko Weather Station (ANS, 2017). Average values were calculated across data spanning 1 
June to 30 September of every summer sampling season. 

 

1.6 Discussion 

1.6.1 Spatiotemporal variability in ebullitive emission across ponds 

Our dataset is the longest record (four-sampling seasons) of high frequency 

measurement of CH4 ebullition from thaw ponds. These data allow us to identify drivers 

of the spatial and temporal variability in bubble flux in very small, high latitude water 

bodies. Such analyses have not been possible since previous studies relied on few 

measurements over a short study period (Hamilton et al., 1994; Negandhi et al., 2013) 

or derive bubble flux indirectly from floating chambers (Kuhn et al., 2018; Laurion et al., 

2010).  

2012 2013 2014 2015
SWR (W m-2) 142.9 145.8 176.3 162.54

Tair (°C) 8.3 10.6 10.7 9.4
P (mm) 153.9 197.9 160.9 171.3



 

 34 

Wik et al. (2014) determined sediment temperature and incoming solar energy to be 

significant drivers of ebullitive CH4 flux from lakes. These drivers are partly explained by 

the observed variability of emission with lake depth (Varadharajan & Hemond, 2012). In 

our case, SWR and Tpond were found to correlate with daily bubble flux. Because t 

values varied between -0.13 and 0.09 (Table A.2), we interpret these correlations to be 

very weak (Cohen, 1988). This is unexpected since all of the ponds measured in our 

study are shallower than the shallow zones of the neighboring lakes (85 cm vs. 1.3 m; 

Wik et al. 2014). Although the ponds heat more rapidly, they also cool off faster due to a 

lower heat capacity. Hence, their water temperature is more variable on a daily basis 

(Figure 1.2) than those measured in the lakes (Wik et al. 2013). The apparent higher 

temperature sensitivity of the ponds could be due to their very shallow nature and less 

dense sediment (Wik et al., 2018), which could limit rapid gas pocket formation and thus 

promote a more erratic ebullition versus temperature pattern.  

In peatland ecosystems where ebullitive events have been observed with high 

frequency measurements, water table and atmospheric pressure changes often seem to 

trigger the release of CH4 bubbles (Glaser, Chanton, et al., 2004; Goodrich et al., 2011; 

Tokida et al., 2007). In lakes adjacent to our study ponds, long-term seasonal 

observations showed a doubling of bubble flux during periods of dropping atmospheric 

pressure over periods of increasing atmospheric pressure (Wik et al., 2013). Through 

the visual inspection of daily average bubble flux and atmospheric pressure, we found 

that large episodic bubbling events occurred in our ponds but were not always 

associated with changes in atmospheric pressure (Figure A.3-Figure A.4). Large 
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episodic events were not observed in all ponds at the same time, though events seen in 

higher emitting ponds (i.e. pond E, Figure A.3 and Figure A.4) appeared to be more 

associated with atmospheric pressure events than the lower emitting ponds (i.e. pond B, 

Figure A.3 and Figure A.4). These finding suggest that the CH4 production rates below 

ground are higher and more important at these sites to fully saturate pore waters and 

recharge the pond sediments with bubbles in between episodic events (Weyhenmeyer, 

1999; Wik et al., 2014). For this study, we did not collect high frequency WTD (though 

such measurements have been collected at this site; Persson et al., 2012). We believe 

the influence of fluctuating WTD on bubble flux is an area that should be explored 

further. Previous research at this site by Bäckstrand et al. (2010) showed that through 

manual measurements collected across the growing season that, WTD varied much 

more in sites dominated by Sphagnum spp. than by Eriophorum spp. dominated sites. 

We saw a similar relationship in the ponds with two isolated Sphagnum dominated 

ponds (A and B) drying out mid-sample season to the point where we could no longer 

sample. The variable WTD at these two ponds could partly explain why they had the 

lowest daily bubbly flux of all the ponds in this study. 

Kuhn et al. (2018) recently classified 52 ponds in the Stordalen Mire and in nearby 

Storflaket bog into four types, based on dominant vegetation and hydrologic status, and 

determined there was no significant difference in bubble flux between pond types. In our 

study, we instead grouped the ponds into four types based on the statistical differences 

in daily bubble flux and found these statistical differences appeared to coincide with the 

ponds’ apparent physical differences (Table 1.1, Figure 1.3). While we did not 
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quantitatively measure vegetation species composition, we did observe differences in 

vegetation between ponds (Table 1.1). Type 1 ponds likely exhibited the lowest CH4 flux 

observed since they were underlain by permafrost and potentially had drier conditions 

exhibited by their low incidence of sedges compared to Sphagnum (Malhotra & Roulet, 

2015; Malmer et al., 2005). Type 2 ponds were located on collapsing palsa margins in 

close proximity to flow through fens. The proximity to a collapsed palsa of this pond type 

indicates a potential increase in the decomposition rate of the thawed OC and increased 

OC lability, which is known to lead to increased CH4 emissions (Chanton et al., 2008; 

Hodgkins et al., 2014). The pond type with higher bubble flux could have been 

influenced by the presence of sedges (types 2 and 3, Table 1.1) which may have 

increased available substrate for decomposition (Johansson et al., 2006; Kutzbach et 

al., 2004; Malmer et al., 2005). Alternatively, they may have also reduced bubble flux 

due to sedge roots transporting CH4 to the atmosphere through their aerenchymous 

tissue (Noyce et al., 2014). We saw lower median bubble flux in June compared to July, 

August and September (Figure A.5), similar to what was seen in nearby lakes (Wik et 

al., 2013). This likely is indicative of the lower early season CH4 production rates due to 

lower temperatures and the time-lag required to build up enough below ground CH4 to 

form bubbles (Zeikus & Winfrey, 1976). Type 4 ponds had lower fluxes than type 3 but 

were within the same depth range. However, they had no Sphagnum spp. present and 

were connected to an adjacent fen allowing water to flow through them (i.e. pH of pond 

H = 5.9; Table 1.1) indicative of a flow-through fen (Chasar et al., 2000). The presence 

of flow through these water bodies could potentially affect the residence time of OC 
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within the system (Olefeldt & Roulet, 2012; Striegl & Michmerhuizen, 1998), increasing 

the chance of the water column remaining oxic (the average DO of pond H measure in 

2014 was one of the highest we measured in this study, Table A.1). Oxygenation of the 

water column could also reduce the rate of deposition and burial of OC compared to 

other more isolated ponds in the study (Lundin et al., 2016; Olefeldt et al., 2013), which 

could further explain the lower fluxes measured at type 4 compared to type 3 ponds.  

With significant changes in vegetation cover observed at Stordalen mire (Malmer et 

al. 2005) and the effect these changes have had on C emissions locally (Johansson et 

al., 2006), we can expect increased fluxes of CH4 from these sites with further thawing 

of permafrost and the creation of larger and more numerous thermokarst ponds. The 

spatial variability in ebullition we observed appears to relate to the variety of physical 

characteristics among the ponds (dominant vegetation, depth, hydrologic connectivity) 

therefore suggesting that these characteristics are important to measure to increase our 

understanding of bubble flux from thaw ponds (Holgerson & Raymond, 2016; Kuhn et 

al., 2018; Wik, Varner, et al., 2016).  

1.6.2 Pond emissions compared to other sub-habitats 

The average daily bubble flux of 20.0 mg CH4 m-2 d-1 from our measured ponds is 

more than 3 times that reported for open water at the Stordalen Mire (5.3 mg CH4 m-2 d-

1, Johansson et al., 2006 and the references therein). It is important to note that CH4 

flux reported in Johansson et al. (2006) for open water is an average of literature values 

for lakes in Wisconsin USA, northern Finland, and the Arctic, representing different 
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ecosystems and methodologies. In comparison to other mire ecosystems sub-habitats, 

our ponds emit up to 30 times less (53, 120, 293 mg CH4 m-2 d-1 for semi-wet, wet, and 

tall graminoids, respectively; Christensen et al., 2004). The bubble fluxes from our 

ponds are 1.5 and six-fold lower rates than those of total hydrocarbon (THC) emissions 

from the nearby Sphagnum spp. and Eriophorum spp. dominated  sites (30 and 127 mg 

CH4 m-2 d-1, respectively; measured using autochambers and calculated as 80% of 

THC emissions reported in Bäckstrand et al., 2010). It is important to note however, that 

we present bubble flux while Bäckstrand et al., (2010) and Christensen et al. (2004) 

report CH4 emissions from chamber measurements which include all transport 

pathways.  In comparison to larger open water areas adjacent to the ponds, the average 

bubble flux measured at the nearby Villasjön lake is more than twice that was measured 

from thaw ponds in this study (45.4 mg CH4 m-2 d-1; Wik et al., 2013). A comparison 

between the mean and 10th and 90th percentile from this study to that of Wik et al. 

(2013) shows that the data are somewhat overlapping, suggesting that ebullition is as 

highly variable in both the ponds as in the lakes.  

In comparison to ebullition rates reported in the literature for some of these and 

other ponds in the Stordalen Mire area, our daily average bubble flux measures 20 mg 

m-2 d-1( measured using frequent, often daily sampling over four sampling seasons [see 

Methods]) are an order of magnitude smaller than their than those of 272 mg CH4 m-2 d-

1, reported by Kuhn et al. (2018). Kuhn et al. (2018) sampled their chambers twice per 

week between June and October in 2015. Again, 39 days of direct ebullitive 

measurements, not estimated from chambers, are considered necessary to accurately 
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estimate local ebullitive emissions from lakes (Wik, Thornton, et al., 2016). Because 

more than 85% of our ebullitive measurements were made within one to three days 

(169 sampling days in total), we are confident that our numbers are representative for 

the Stordalen ponds. It is likely that the bubble flux estimate made by Kuhn et al. (2018) 

is an overestimation, due to their lack of direct measurements using bubble traps.  

Our four seasons of high frequency bubble measurements from thaw ponds in a 

subarctic region show that these small and shallow surface waters are significant 

emitters of CH4. The ebullition component of emissions from northern water bodies < 

0.001 km2 have been left out of recent syntheses (Holgerson & Raymond, 2016; Wik, 

Varner, et al., 2016) leaving a substantial part of the annual emission excluded from the 

CH4 budget. Considering a bubble flux of 20 mg CH4 m-2 d-1 as representative of small 

ponds, we calculated regional emissions using a total area of 59,105 to 344,361 km2 

across permafrost regions north of 50°N. These numbers are 40% of the global area 

range of < 0.001 km2 ponds, reported in Holgerson et al. (2016), based on the general 

distribution of water bodies worldwide (Verpoorter et al., 2014).  Including the estimated 

average of 149 ice-free days (Wik et al., 2016), we determined that between 0.2 and 1.0 

Tg CH4 is emitted via ebullition from thaw ponds <0.001 km2 in size. We recognize that 

this estimate is conservative as recent attention has been paid to non-growing season 

fluxes from lake ecosystems, which includes ice-break up, spring thaw, and bubbles 

trapped in ice (Jammet et al., 2015, 2017; Wik et al., 2011). While we did not measure 

these fluxes, we expect that since these ponds freeze completely during the winter, they 

likely do not emit CH4 during winter and have a low potential emission during ice-out. 
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We also did not measure diffusive flux or plant-mediated flux in this study, so this 

estimate does not represent total CH4 from these ponds. At a regional scale, our 

estimate is almost one-fourth of that of Walter et al. (2006), which conservatively 

estimated the areal coverage of thermokarst lakes in the yedoma region of Northern 

Siberia to be 11% (3.8 Tg CH4). On a global scale, our estimate is one-third of the 

estimated emission from thermokarst water bodies worldwide (3.3 ± 1.7 Tg CH4) of 

which 2.6 Tg CH4 (79%) is from ebullition (and includes the data in Walter et al., 2006; 

Wik, Varner, et al., 2016).  

1.7 Conclusions 

We collected over 2000 measurements, over four sampling seasons, of ebullitive 

emission from eight thaw ponds, making this dataset the largest of its kind. We 

investigated the drivers of significant spatial and temporal variability seen among the 

study ponds. Contrary to other studies, meteorological variables such as SWR, 

atmospheric pressure, and temperature showed very weak correlations with bubble flux. 

This result highlights the need for high frequency (e.g. sub-daily), long term 

measurements. Many of the studies available on this topic reference only portions of the 

sampling season, with some studies collecting samples for a month or less. Pond 

physical characteristics, such as water depth, vegetation presence and hydrology may 

be the primary control on a pond’s ability to process OC and are critical observations for 

determining CH4 emission potential from these systems. Since permafrost ecosystems 

are vulnerable to thaw due to climate change, it is likely that such characteristics as 

these could change rapidly over a pond’s life time. Our findings agree with previously 
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published work that suggest thaw ponds are important emitters of CH4 on regional 

scales. We suggest that the classification of type for small thaw ponds, through a 

combination of ground-based measurements, remote sensing and modeling, across all 

permafrost ecosystems is essential for modeling and scaling future emissions. 
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 USING UNMANNED AERIAL SYSTEMS TO MONITOR THE CHANGE 
IN THAW POND SIZE OVER FIVE GROWING SEASONS: IMPLICATIONS FOR CH4 

EBULLITIVE FLUX2 

2.1 Introduction 

Freshwater aquatic ecosystems, including lakes and rivers, are a large source of 

atmospheric methane (CH4; Bastviken et al. 2011; Ciais et al. 2013; Downing, 2010; 

Kirschke et al. 2013). Globally, small water bodies in particular have higher CH4 

concentrations and therefore emissions, than their larger counterparts (Bastviken et al., 

2004; Downing, 2010). Recent work by Holgerson and Raymond (2016) have estimated 

that very small ponds (< 0.001 km2) comprise less than 9% of the area covered by lakes 

and ponds globally, yet they account for over 40% of the hydrodynamically driven 

diffusive CH4 emissions from these water bodies. Additionally, inclusion of CH4 

emissions from ebullition, or bubbling, would make contributions from small ponds to the 

global CH4 budget even more significant (Bastviken et al. 2011; Downing, 2010; 

Holgerson & Raymond, 2016; Wik, Varner, et al. 2016). A review of both ebullitive and 

diffusive emissions from lakes and ponds located above 50°N found that small ponds 

are a significant source of CH4 for the northern latitudes (Wik, Varner et al., 2016). Yet a 

 
 

2 The work in this chapter is currently in prep for submission to a peer-reviewed journal: Burke, S. A., 
Palace, M., Contosta, A. R., Perryman, C., Bennett, K., Rocci, K., Herrick, C., Crill, P. M., & Varner, R. K. 
In prep. Using unmanned aerial systems to monitor the change in thaw pond size over five growing 
seasons: Implications for CH4 ebullitive flux. Remote Sensing of the Environment.  
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full understanding of the size of these waterbodies, the relationship between their size 

and the amount of CH4 they emit, and how these change over time remains unknown.  

Small ponds, in particular thaw ponds, which develop due to the thawing and 

slumping of ice-rich permafrost peat (Bouchard et al., 2014; Negandhi et al., 2013; 

O'Donnell et al., 2011), represent an ecosystem type that has the potential to become 

more dominant as the Arctic continues to change in response to increasing global 

atmospheric temperatures (Shirokova et al. 2013). However, they are often ignored in 

larger scaling and modeling studies (Downing et al., 2006, Downing, 2010; Lehner & 

Döll, 2004) because relationships to vegetation, water table depth and other parameters 

that can be scaled easily have not been identified. Recently, Kuhn et al. (2018) 

surveyed 52 ponds over a single growing season in two permafrost peatland mires 

located in northern Sweden. The ponds were classified into different types based on 

their vegetation dominance and hydrology and while ebullition was found to be highly 

variable among ponds, no significant difference in ebullitive flux was observed (Kuhn et 

al., 2018). Burke et al. (2019) focused their study of ebullitive emissions on eight ponds 

in the same region over the growing seasons of 2012 – 2015. They found ebullitive 

emissions to be highly variable between ponds and found the eight ponds to fall into 

four statistically different groups. Further scrutiny found these four groups, hereafter 

called pond types, to vary based on apparent physical characteristics, such as 

vegetation presence, depth, and hydrologic connectivity (Burke et. al., 2019). When 

looking at CH4 emissions from water bodies above 50°N, lake type was found to be an 

important factor in determining emission potential (Wik, Varner et al., 2016) however the 
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categories included in this study were broad (e.g. peatland ponds was considered a 

single pond type). Additionally, though lake spatial area was not as important as depth 

and sediment type in driving flux per unit area, Wik, Varner et al. (2016) called for more 

studies to include the monitoring of physical characteristics along with areal extent of 

CH4 emitting water bodies.  

Earth observing remote sensing satellites, such as Landsat, have been used broadly 

in ecosystem scale modeling studies, and have been used extensively to assess water 

body size, particularly in rice paddy environments (Cohen & Goward, 2004, Dong et al., 

2016; Zhou et al. 2016). However, remote sensing, particularly using satellites, is limited 

due to spatial resolution (Anderson & Gaston, 2013). For example, many satellite 

platforms have spatial resolutions too large to see water bodies smaller than 0.001 km2 

(Muster et al., 2012) making them difficult to use in studying temporal changes in thaw 

ponds. Unmanned aerial systems (UAS), offer a potential scaling stepping-stone 

between ground-based measurements and satellite imagery due to the increased 

spatial and temporal resolution, cost-effectiveness, and ease of use particularly in 

remote field areas (Chambers et al., 2007; Palace et al., 2018).  

Mapping ponds on smaller spatial scales is also important for monitoring change 

over time (Kim et al., 2013). UAS technology has been used successfully to map and 

monitor melt ponds on glaciers in Nepal (Immerzeel et al., 2014; Miles et al., 2016) and 

on Arctic sea ice (Inoue et al., 2007; Wang et al., 2018; Tschudi et al., 2008), though 

few studies involve repeat measurements to look at change over time (Immerzeel et al., 

2014 ; Miles et al., 2016; Tschudi et al., 2008). UASs provide researchers with the 
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ability to fly their field sites repeatedly, so they can capture important seasonal 

milestones, such as the melt and monsoon seasons (Immerzeel et al., 2014; Miles et 

al., 2016). Using UAS imagery collected in 2013 and 2014, Miles et al. (2016) was able 

to model the melting rate of a pond on Lirung Glacier and found it was large enough to 

likely contribute to substantial glacial abatement. Further, Immerzeel et al., (2014) used 

UAS imagery to model melting rate across the same glacier and found the melting rate 

around ponds was much higher than other parts of the glacier. The ease of use of UASs 

can often offer a much better alternative than more time and resource intensive field 

methods, especially when site accessibility is an issue (Immerzeel et al., 2014).   

The purpose of this work is to monitor pond size over time at a rapidly changing 

permafrost peatland area in northern Sweden and determine potential relationships of 

changing pond size to ebullitive CH4 emission. This site has been found to have varying 

CH4 flux rates from ponds of differing type (Burke et al., 2019). In order to better 

understand how these ponds are changing over time, we monitored the spatial area of 

seven ponds using a high-resolution UAS equipped with a RGB (three channel red, 

green, blue) camera multiple times across the growing season over a three-year period. 

We also took advantage of UAS imagery collected in July over the whole site in recent 

years to expand our dataset to five growing seasons. We then compared the spatial 

extent of the ponds estimated from high resolution UAS imagery to measured rates of 

ebullitive CH4 flux.  

2.2 Methods 
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2.2.1 Study Site 

This study focuses on the Stordalen Mire complex located 10 km east of Abisko, 

Sweden (68°22′N, 19°03′E; Figure 2.1). Northern Sweden has experienced mean 

annual temperatures above 0°C since 2000, leading to the destabilization of underlying 

permafrost in the region (Callaghan et al., 2010; Kuhn et al., 2018). This research site 

contains the following four subhabitats: dry palsa plateaus underlain by permafrost, 

Sphagnum spp. dominated semi-wet areas, Eriophorum spp. dominated wet areas and 

collapsed features that accumulate water (Johansson et al., 2006, Malmer et al., 2005), 

hereafter called thaw ponds (Christensen et al., 2004). In previous work, eight thaw 

ponds within Stordalen mire were measured for CH4 ebullitive emissions across several 

growing seasons (Burke et al., 2019), seven of which are the focus of this study. 

High resolution meteorological measurements at Stordalen Mire have been collected 

since 2013 and maintained by the Swedish network of the Integrated Carbon 

Observation System (ICOS), a European infrastructure for measuring the C balance 

across Europe (http://www.icos-sweden.se/station_stordalen.html). Measurements from 

their WeatherHawk Series 500 system (WeatherHawk, Logan, UT) that is mounted on 

top of the ICOS instrument shelter at Stordalen Mire (4 m above ground level) and has 

measured air temperature, relative humidity, barometric pressure, solar radiation, rain, 

wind direction and wind speed averaged over 10-minute intervals since 2013. 

2.2.2 Measurements of Methane Ebullition from Thaw Ponds 
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Measurements of ebullition were collected from seven ponds during the growing 

season (June – August) of 2012 to 2018 using simple floating funnels following the 

methodology of Burke et al. (2019). The funnels were sampled for the accumulated gas 

on a daily to weekly basis, with 84% of measurements collected within 3 days or less 

(2012 - 2018). Samples collected were run on a gas chromatograph equipped with a 

flame ionization detector (GC-FID, Shimadzu 2014) to get CH4 concentration and rates 

of daily ebullitive flux were calculated based on the concentration, volume sampled and 

time between sampling periods (see Burke et al., 2019 for more details). Based on 

statistical results from our previous study (Burke et. al., 2019), the ponds fell into four 

groups, which were related to apparent physical differences between ponds (Table 2.1, 

Figure B.9; see Burke et al., 2019 for full descriptions of each pond, and the four pond 

types). The ponds varied in vegetation presence, depth and hydrologic connectivity with 

some of the funnels deployed in ponds containing floating Sphagnum spp. while other 

ponds contained no floating vegetation (Burke et al., 2019).  
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Table 2.1 Modified Table from Burke et al. (2019) (Table 1.1). Physical characteristics of ponds sampled at 
Stordalen Mire, Abisko, Sweden between 2016 – 2018. Based on statistical differences in ebullitive flux, the 
ponds fall into four groups (see Figure A2.9): These groups, hereafter called types, differ in apparent 
physical characteristics: (1) shallow with low sedge (Carex spp. & Eriophorum spp.) presence, (2) 
intermediate depth and increased sedge presence, (3) deepest and sedge dominated, and (4) intermediate 
depth, open water and flow through present. The check marks mean that plant species is present, the x 
marks mean that plant species is not present. Hydrologic status is based on the work done by Olefeldt & 
Roulet (2012). See Burke et al. (2019) for more detailed description of each pond and pond type. 

 

2.2.3 Imagery Collection    

Tie points made from Styrofoam wrapped in yellow tape and forming a large X (~1m 

´ 1m) were placed around the ponds and used for georectification (Figure 2.1, inset). 

Considering the compact nature of the areas of interest, no more than three to five tie 

points were placed around each pond. The center of each tie point was recorded as a 

waypoint using a highly accurate differential GPS system (Trimble® Geo7X handheld 

unit (H-Star) with Floodlight™ technology used with a Trimble® Tornado external 

antenna, accuracy ± 12 cm). Tie points were initially placed in June of each field season 
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and were removed at the end of the field season in August; their GPS locations were 

collected once each field season, usually in August.   

 
Figure 2.1 Modified from Burke et al. (2019) (Figure 1.1). Orthomosaic image of Stordalen Mire, Sweden 
(68º22’N, 19º03’E) with pond sites marked. The image was collected using a fixed wing UAS in July of 2016 
(DelGreco, 2018; Palace et al., 2018). The fixed wing image was provided by Jessica DelGreco, Michael 
Palace and Christina Herrick. The seven ponds focused on in this study are outlined in orange and labeled 
with their corresponding letter. Inset image of Pond B, collected using a quadcopter UAS July 2018, shows 
the yellow X tie points placed around each pond used for georeferencing. The quadcopter image was 
provided by Sophia Burke and Kathryn Bennett. 

Imagery of the seven ponds was collected using a quadcopter and a fixed wing 

airplane. Most of the images (n = 139 out of 144) were collected in .mp4 format using a 

Yuneec® Q500 quadcopter UAS equipped with a gimbal RGB camera, flying on 
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average every week during the 2016, 2017 and 2018 growing seasons. The UAS was 

flown at an altitude of fifteen to twenty meters to ensure that all tie points were visible in 

the video and adequate coverage of vegetation surrounding the pond could be visible. 

The UAS was flown only during calm days with no rain, which limited the number of 

flights made particularly during the 2017 growing season.   

2.2.4 Orthorectification 

After quadcopter image collection, individual frames were extracted from each .mp4 

video (Free Video to JPEG Converter, DVDVideoSoft) at a rate of one per half second. 

Images collected during individual flights over each pond were loaded into Photoscan 

Pro 1.2 by AgiSoft (Agisoft LLC, St. Petersburg, Russia) where a camera calibration 

was performed using a pixel size of 0.0013 × 0.0013 mm and a focal length of 5.0 mm. 

The images were initially aligned using high accuracy and generic preselection settings. 

Then the image projections were sorted in descending order followed by the removal of 

all images with projections less than 100. Then additional photo alignments were 

performed until all images had projections greater than 100. A dense point cloud was 

built using medium quality and aggressive depth filtering settings, followed by a mesh 

with height field surface type and dense cloud source data (interpolation enabled) 

settings. Lastly, an orthomosaic was rendered using a planar projection (because the 

images would not be georeferenced within AgiSoft), mesh surface and mosaic blending 

mode parameters, with color correction enabled. Orthomosaics were exported as JPEG 

images. A total of 139 orthomosaics were created from the quadcopter imagery 

collected across the three sampling seasons.   
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Each July of 2014 through July 2018, images of the larger Stordalen Mire area were 

collected using a fixed-wing UAS (n = 5 ;Triton XL, Robota, Lancaster, TX) equipped 

with a built-in camera and was flown at an altitude of seventy meters the full extent of 

the mire using a preset flight plan (Goose™ autopilot program, Robota; see Palace et 

al., 2018 for complete methodology). Orthomosaic imagery collected with the fixed-wing 

UAS was rendered using the methodology described in detail in Palace et al. 2018. 

Both sets of imagery, quadcopter and fixed-wing, had a spatial resolution of 3 cm 

(DelGreco, 2018; Palace et al., 2018). 

2.2.5 Georectification 

Orthomosaic images collected with the quadcopter were next georeferenced in 

QGIS 2.14 (QGIS Development Team, 2020) using the Georeferencer GDAL plugin. 

Separate QGIS projects were created for each field season, with the collected GPS 

points loaded in with the coordinate reference system (CRS) set to EPSG:4326, WGS 

84. On the fly CRS transformations was enabled for the project, with the CRS for the 

world set to EPSG: 32634, WGS 84/UTM 34N. Orthomosaic images were 

georeferenced using a first polynomial transformation algorithm with cubic resampling. 

The target spatial reference system for each image was set to EPSG:32634. Reports 

were generated for each initial georectification. If multiple images of a pond were 

available in a sampling season, the raster with the lowest average of the tie point 

residuals (a metric for the accuracy of each tie point georectification) was considered 

the ‘Best of’ image, with few exceptions (e.g. image showed incomplete coverage of the 

pond or there was distortion in the image; Table B.1). The remaining images of that 
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pond collected in the same sampling season, were then re-georeferenced, using the 

‘Best of’ image as the target. Additional ground control points were added to the 

remaining images, by marking the ends of each tie-point, based on matching points in 

the ‘Best of’ image. If the images contained boardwalk, matching crosshatches were 

marked in the remaining images based on their location in the ‘Best of’ image. Updated 

output rasters were created for the remaining images, following the same transformation 

settings.   

2.2.6 Pond Edge Polygons and Water Polygons 

Each stitched image was delineated by hand using QGIS 2.14 (QGIS Development 

Team, 2020). Two polygons were drawn over each georeferenced orthomosaic (Figure 

2.2). One polygon delineated the location of the pond’s edge, defined by the distinct 

edge where collapse due to thaw was occurring. The other polygon marked the location 

of the water’s edge, defined as where open water appeared to be in the orthomosaic. 

This proved difficult to define in areas where submerged vegetation was present. 

Vegetation type was of help in defining certain edges as certain types of vegetation 

prefer waterlogged conditions than others and were included in the water polygon (e.g. 

Carex spp.; Malhotra & Roulet, 2015; Malmer et al., 2005).  



 

 54 

 
Figure 2.2 Orthomosaic of Pond F (panel A) with pond edge polygon overlaid (panel B) and water polygon 
overlaid (panel C). The pond edge polygon represented where the thawed areas met the intact areas. The 
water polygon represented where the water currently was within the pond. The boardwalk is visible in each 
panel, along with the yellow tie points used for georeferencing. 

For ponds that were of type 4, meaning they had flow through them, pond edge was 

defined as where open water occurred. Once all the polygons were drawn (n = 337, 275 

from the quadcopter imagery, 62 from the fixed wing imagery), the polygons were 

merged into a single shapefile and then the field calculator was used to calculate area, 

the length of the edge or perimeter, and the ratio between edge and area for each 

polygon. Then the attribute table of the merged shapefile was exported to a .csv file for 

statistical analysis. 

2.2.7 Statistical Analysis 
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Statistical analysis was performed in R 3.6.1 (R Core Team, 2019). Initial data 

exploration, following the protocol of Zuur et al. (2010), determined that non-parametric 

statistical tests would be the most appropriate, given the violation of several parameters 

of the key assumptions in parametric statistical analysis (collinearity, normality, equal 

variance, and autocorrelation). Kruskal-Wallis sums tests were performed to determine 

the variation in polygon area (both pond edge and water) between various categorical 

variables of interest (e.g. ponds, pond types, sampling months and sampling seasons). 

Post-hoc Dunn’s tests were then performed to examine pairwise comparisons between 

variables (dunn.test package; Dinno, 2017).  Further we found the statistical differences 

between area, edge, and the ratio between the two when compared on their own to 

other parameters (e.g. pond, pond type, month etc.) were marginal, so we chose to 

focus further statistical analysis on polygon area. 

In order to relate polygon area to CH4 flux, we looked at the temporal differences in 

flight dates across the 2016, 2017 and 2018 sampling seasons and found flight dates 

occurred on average around eight days apart. An eight-day moving window of median 

daily CH4 flux (mg CH4 m-2 d-1) and total flux over an eight-day moving window (mg CH4 

m-2) was calculated across the eight days leading up to, centered around, and following 

each drone flight date. Preliminary comparisons were conducted between these flux 

parameters and water polygon area and the most statistical significance was found 

when median centered flux was used. Therefore, we performed all further statistical 

testing with regards to CH4 using the median centered daily flux. To investigate the 

influence of precipitation on water polygon area, we used high temporal resolution 
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precipitation data (measured every ten minutes), collected at the field site (ICOS – 

WeatherHawk system), to calculate total precipitation accumulation over Stordalen Mire 

in the seven days leading up to and including each flight date. Non-parametric Kendall 

correlation tests were used to investigate relationships among pond size and various 

continuous variables of interest (e.g. flight date, total precipitation accumulation before 

flight). We chose a similar approach to approaching the interpretation of Kendall 

correlation tests as Burke et al. (2019) by following criteria set out by Cohen (1988). 

Based on the absolute value of the resulting Kendall’s tau (t) statistic, correlations were 

classified as strong (|t| ³ 0.5), moderate (0.3 < |t| < 0.5), or weak (0.1 < |t| < 0.3; Cohen, 

1988). We considered the strength of the correlation to be very weak if the |t| was less 

than 0.1, regardless of whether the p-value was statistically significant.       

2.3 Results 

2.3.1 Spatial Variability in Pond Area 

Based on imagery collected using the quadcopter UAS, area of both pond edge and 

water polygons varied significantly by pond (p < 0.0001, Figure 2.3). Among pond edge 

polygons, most of the ponds ranged between 25.9 to 219 m2, except for pond D, which 

ranged in size between 411.3 and 533.4 m2. The smallest pond measured was pond B, 

with a median pond edge area of 34.5 m2, and the largest was pond D, with a median 

pond edge area of 476.3 m2.   
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Figure 2.3 Pond edge area (A.) and water polygon area (B.) of ponds from quadcopter UAS imagery collected 
at Stordalen Mire in 2016, 2017 and 2018 field seasons. N values displayed below each pond indicate the 
number of images represented in each boxplot. Black lines represent median values, and black circles 
represent outliers. Lowercase letters represent significant differences between ponds. Results of the Kruskal 
Wallis ranks sum test are displayed as  c2 and p values. 

Among water polygons, the smallest areas were again measured at pond B, with a 

median water area of 24.6 m2. The largest fluctuation or most variable water area was 

pond A, with a minimum area of 43.5 m2 and maximum area of 346.2 m2. Overall 

variability in water polygon area was found not to be significantly related to the amount 

of precipitation accumulated within the eight days before each flight (Figure B.2).  When 

the variability in water polygon area of each pond individually was compared to 

precipitation accumulation before each flight, pond B was found to have a significant 
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relationship (p = 0.002, t = 0.50), however this appears to be driven by a single point 

(Figure B.3). 

2.3.2 Seasonal Variability in Water Polygon Area 

To explore seasonal variability among ponds, we chose to focus on water polygon 

area, as this acts as a proxy for water contained in each pond during the season. When 

all water polygon areas are grouped together by month, no significant difference is seen 

across the sampling season (Figure 2.4), yet when water polygon area across the 

sampling season is explored in each pond individually, pond A shows a significant 

difference between months (Figure B.5). The lowest median water polygon areas were 

observed in June, at 69.5 m2 and the highest median areas were observed in July, at 

86.8 m2, followed closely by August, with median area of 82.7 m2 (Figure 2.4).  
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Figure 2.4 Variability in water polygon area among months in the sampling season from imagery collected at 
Stordalen Mire using the quadcopter drone in 2016 to 2018 field seasons. N values displayed below each 
month indicate the number of images represented in each boxplot. Black lines represent median values, and 
black circles represent outliers. Results of the Kruskal Wallis ranks sum test are displayed as c2 and p 
values.
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Figure 2.5 Variability in water polygon area (m2) across the sampling season (day of year) from quadcopter imagery. Each pond is displayed with a 
different color. The different shapes represent different sampling seasons. Kendall rank sum tests were performed on each pond, with ponds showing 
a significant relationship indicated by the * next to their name. Those that were significant also have their p value and t displayed.
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This follows the pattern in monthly average precipitation, with June having the lowest 

average precipitation and July having the highest when 2016, 2017 and 2018 sampling 

seasons are looked at together (Table B.2). When the variability in water polygon area 

across the sampling season is explored in each pond individually, the ponds overall had 

stable water polygon areas over the course of the season with the exception of pond A 

which is the only pond found to significantly differ in area with an increase over the 

season (p = 0.002, t = 0.49, Figure 2.5). When flight date is treated as a continuous 

variable, water polygon area is found to vary significantly across the sampling season in 

pond C with a decreasing area, though small, over the growing season (Figure 2.5).  

2.3.3 Fixed Wing vs. Quadcopter Platforms: Water Polygon Area 

To test the validity of using both the fixed wing and quadcopter imagery together in a 

time series analysis, we compared the pond edge areas from fixed wing imagery in 

2016, 2017, and 2018 to the average of pond edge areas from quadcopter imagery in 

the same years (Figure 2.6). We found a strong significant agreement in areas 

measured between the two UASs (t = 0.90, p < 0.0001, Figure 2.6A), which provided 

support for our inclusion of fixed wing imagery from 2014 and 2015 in statistical analysis 

of interannual variability of pond edge and water areas.  
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Figure 2.6 Comparison of pond edge polygon area from fixed wing imagery collected in July to the average 
pond edge polygon area measured from quadcopter imagery collected across the whole sampling season 
(A.) or in July (B.). The different shapes represent different sampling season and the different colors 
represent the different ponds. Results of a Kendall correlation test are presented as t and p values. A 1:1 line 
is also displayed as a solid black line. 

I also looked at this relationship with quadcopter imagery collected only in July and 

found the relationship to be slightly stronger (t = 0.91, p < 0.0001, Figure 2.6B). A 

similarly strong relationship was also seen when comparing water polygon areas 

measured from fixed wing imagery versus quadcopter imagery across the season and 

only in July (Figure B.5). 

2.3.4 Interannual Variability in Pond Edge Area 

In exploring interannual variability, we chose to focus on pond edge area, as this 

represents the extent at which thawing has occurred in the pond. Similar to the overall 

relationship of water polygon area in different months, pond edge area did not vary 

significantly among sampling seasons (Figure 2.7). However, the median pond edge 
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area does increase steadily across years, despite no significant difference between 

sampling seasons.  

 
Figure 2.7 Variability in pond edge polygon area among different sampling seasons from both quadcopter 
and fixed wing imagery. N values displayed below each year indicate the number of images represented in 
each boxplot. Black lines represent median values, and black circles represent outliers. Results of the 
Kruskal Wallis ranks sum test are displayed as chi2 and p values. 

Lowest median pond edge area was seen in 2014, at 78.9 m2. The highest median 

pond edge area was measured in 2018 was almost double that of 2014, at 146.5 m2 

(Figure 2.7).
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Figure 2.8 Variability in pond edge area by sampling season from both quadcopter and fixed-wing imagery. Note the differences in scale of the y-axis 
between subplots. N values displayed below each month indicate the number of images represented in each boxplot. Black lines represent median 
values, and black circles represent outliers. Lowercase letters represent significant differences between sampling seasons. Results of the Kruskal 
Wallis ranks sum test are displayed as  c2 and p values.
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 The range in pond edge area was also smallest in 2014, ranging between 26 m2 

and 142.4 m2 while in 2016 the range in pond edge area was between 25.9 m2 and 

479.4 m2. And as with seasonal variability, when interannual variability is broken up by 

pond significant relationships begin to emerge (Figure 2.8). Pond edge area in ponds B, 

D, and E were found to vary significantly by sampling year (p = 0.0009 – 0.001, Figure 

2.8).  In all cases, pond edge area in 2018 was significantly larger than 2016 (Figure 

2.8). In pond E, 2016 and 2017 were also found to be significantly different from each 

other, with pond edge area in 2017 significantly higher than 2016 (Figure 2.8). 

2.3.5 Pond Area and Ebullitive CH4 Emissions 

Comparison of polygon area to ebullitive CH4 emission from our studied ponds was 

done by calculating a median daily ebullitive flux (mg CH4 m-2 d-1) across an eight-day 

moving window that was centered around each flight date (this included the three days 

preceding and the four days following each flight date). We chose to present median 

daily flux in this study as averages tend to swamp out the variability that is apparent in 

ebullitive emissions. Median daily ebullitive flux was found to vary significantly by pond 

(p < 0.0001, Figure 2.9).  
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Figure 2.9 Modified from Burke et al. (2019) (Figure 1.3). Median daily ebullitive flux calculated across an 
eight-day moving window that is centered around each flight date during the 2016 – 2018 sampling seasons. 
Black lines represent median values, while black dots represent outliers. Lowercase letters represent 
significant differences between ponds. Results of the Kruskal Wallis ranks sum test are displayed as c2 and p 
values. 

Burke et al. (2019) found daily ebullitive flux to vary significantly between ponds, 

creating four distinct groups, and contributed this significant difference to the varying 

physical characteristics between ponds that included vegetation presence, depth and 

hydrologic connectivity (Table 2.1; see Burke et al. 2019 for complete description of the 

pond types). Ponds A & B fall into type 1, ponds C & D fall into type 2, ponds E & F fall 

into type 3 and pond H is part of type 4. Pond G was not included in this current study 

due to sampling access limitations described in Burke et al. 2019. When the ponds are 
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placed into these statistically predetermined pond types, water polygon area was found 

to vary significantly (Figure 2.10). Pond types 1 and 2 were smaller and differed 

significantly from types 3 and 4. Pond edge area was also found to vary significantly by 

pond type, though the relationship wasn’t as strong (c2 = 8.2, p = 0.04, Figure B.6). The 

lowest median water polygon area was seen in type 2, at 54.65 m2 followed closely by 

type 1, at 56.3 m2, with the largest median water polygon area seen in pond type 4 at 

166.2 m2. Type 1 had the largest range in water polygon area (12.5 – 346.2 m2, and this 

is due to its inclusion of pond A, which saw the largest range in water polygon area 

(Figure 2.3B).  
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Figure 2.10 Water polygon area from quadcopter imagery among the different pond types. Black lines 
represent the median values of each boxplot and the black lines represent outliers. N values below the x axis 
represent the number of images included in each boxplot. The different colors represent the different pond 
types. Of the seven ponds studied, two ponds fell into types 1,2, and 3 with one pond in type 4. See Burke et 
al. 2019 for a complete description of each pond type. Results of the Kruskal Wallis ranks sum test are 
displayed as c2 and p values. 

Seasonal variability of pond water area was observed by pond type (Figure 2.10). 

However, water polygon area within a pond type was not found to vary significantly 

(Figure 2.11). Despite this lack of significance, water polygon area does appear to 

increase over the sampling season within pond type 1, while in all other pond types the 

opposite trend is seen. It is important however to note that the lowest number of UAS 

flights were conducted in August (Figure 2.11).  
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Figure 2.11 Water polygon area of differing pond types by month. The black lines represent the median 
values of each boxplot and the black dots represent the outliers. N values below each pond type represent 
the number of images included in each boxplot. The colors represent the different pond types. Results of the 
Kruskal Wallis ranks sum test are displayed as c2 and p values. 

Interannual variability in pond edge area among the different pond types was 

explored using both quadcopter and fixed wing imagery but no significant difference 

was seen between pond edge area and sampling season among the four pond types 

(Figure B.7). However, similarly to the overall lack of significance found between pond 

edge area and sampling season (Figure 2.7), median pond edge area increased 

between 2014 and 2018 in all pond types (Figure B.7).    
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We also explored the relationship between pond edge area and total annual CH4 flux 

and found annual ebullitive flux appears to be largest in ponds with pond edge areas 

ranging between 50 – 150 m2, and ponds that were both smaller and larger in pond 

edge area emitted lower amounts of CH4 on annual basis (Figure 2.12).  

 
Figure 2.12 Median pond edge area (m2) compared to median annual ebullitive flux (mg CH4 m-2 d-1) of the 
seven ponds in this study. Colors represent the pond type of each pond. The Asterix denote which ponds 
show significant differences in annual ebullitive flux with pond edge area (see Figure B.8 in the appendix) 
Median pond edge area includes both quadcopter and fixed wing imagery. Error bars represent 25th and 75th 
percentiles of both pond edge area and annual ebullitive flux. 

Significant relationships among cumulative annual ebullitive flux and pond edge area 

were found among certain ponds. Pond B was found to have a positive relationship, 

 

 

0 100 200 300 400 500

0

2000

4000

6000

8000

10000

Median Pond Edge Polygon Area ( m2)

M
ed

ia
n 

An
nu

al
 E

bu
llt

ive
 F

lu
x 

(m
g 

C
H

4 
m
-2

)

*

*

Pond Types
Type 1
Type 2
Type 3
Type 4



 

 71 

suggesting larger total annual flux was measured when a larger pond edge area was 

measured (t = 0.58, p = 0.02; Figure B.8). Pond E however, showed a negative 

relationship to pond edge, suggesting lower total annual flux was measured from ponds 

with larger pond edge areas (t = -0.57, p = 0.0004; Figure B.8). 

2.4 Discussion 

2.4.1 Using UAS platforms to monitor pond size over time 

Our study found that interannually, all ponds appeared to increase in pond edge 

area between 2014 and 2018 however the magnitude of this change varied between 

ponds (Figure 2.8). While not in permafrost peatland areas, UAS technology has been 

used to measure melt pond area on the surface of Arctic sea ice (Inoue et al., 2008; 

Wang et al., 2018; Tschudi et al., 2008) and on the Lirung Glacier in Nepal (Immerzeel 

et al., 2014, Miles et al., 2016). However, few studies include repeat measurements to 

look at temporal changes (Immerzeel et al., 2014; Miles et al., 2016; Tschudi et al., 

2008). Tschudi et al. (2007) used UAS imagery of sea ice near Barrow, Alaska and 

found the fractional cover of melt ponds to increase from 10% to 40% over the study 

period (Tschudi et al., 2008). In Nepal, Immerzeel et al. (2014) used repeat UAS flights 

during pre- and post- monsoon season in 2013 to identify surficial changes on Lirung 

Glacier. Melt ponds covered only 8% of the study area but were responsible for 24% of 

the melting that occurred during the study season (Immerzeel et al., 2014). Immerzeel 

et al., (2014) further noted the importance of continued long-term monitoring of such 
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features using a UAS in order to better understand the fate of glaciers like Lirung 

Glacier to climate change.  

The importance of long-term monitoring holds true for permafrost peatlands such as 

Stordalen Mire, with the potential for drastic changes in hydrology and peatland 

subtypes in response to permafrost thaw (DelGreco, 2018; Johansson et al., 2006; 

Malmer et al., 2005; O’Donnell et al., 2011; Olefeldt & Roulet, 2012). When the ponds in 

this study are categorized by pond type, water polygon area varied significantly between 

ponds types across the season, with type 1 ponds increasing between June and 

August, and the remaining types appearing to have the opposite relationship (Figure 

2.11). Ponds A and B are both type 1 ponds, positioned upon a palsa plateau (Figure 

2.1), which have high rates of runoff, draining laterally towards more collapsed bog 

areas (O’Donnell et al., 2011; Olefeldt & Roulet, 2012) due to the relatively shallow thaw 

depth (O’Donnell et al., 2011). There is a potential for these ponds to shift to a different 

pond type, as permafrost continues to progress at this site, which could change how the 

ponds water area fluctuates over the season. This could also lead to changes to 

vegetation and hydrology which has already been seen at this site (DelGreco, 2018; 

Johansson et al., 2006; Malmer et al., 2005) and has implications for CH4 flux if these 

ponds transition from Type 1 and 2 to 3 or 4 (Burke et al., 2019).    

UAS technology has been used successfully in permafrost peatlands to monitor 

vegetation changes over time (DelGreco, 2018; Palace et al., 2018; Räsänen et al., 

2019), however there was little focus on monitoring small water bodies. At Stordalen 

Mire, DelGreco (2018) used a four-year dataset of UAS imagery collected over 
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Stordalen Mire (collected in July of 2014 to July 2017) to investigate changes in 

vegetation cover types as permafrost thaws. Through this analysis, DelGreco (2018) 

found that over the four-year study period, Stordalen Mire became overall more wet, 

with intact permafrost areas reducing by almost 10% and semi-wet areas increasing by 

18% resulting in an overall permafrost loss of 20% (DelGreco, 2018). In particular 

regard to open water, DelGreco (2018) found this to vary across the study period, with 

its highest extent occurring in 2015. In our study, we I saw an overall increase in median 

pond edge area of more than 50% between 2014 and 2018 sampling seasons (Figure 

2.7). Most of the ponds in this study increased in pond edge area with each successive 

sampling season, except for pond F which measured its largest pond edge area also in 

2015 (Figure 2.8). DelGreco (2018) suggested the variation in open water she saw was 

related to the presence of submerged vegetation in open water areas, which likely led to 

issues in the classification.  

Due to the presence of submerged vegetation in many ponds in this study, with 

extensive Sphagnum spp. cover throughout, the ponds would likely be included in the 

semi-wet class from DelGreco (2018) and Palace et al. (2018), which further supported 

the need to hand-delineate our ponds. In addition, the high spatial resolution (3 cm) of 

both the fixed wing and quadcopter imagery made distinguishing the thawed edge of 

each pond fairly easy (Figure 2.2). Previous studies have used digital elevation models 

(DEM) to delineate wetlands, ponds and lakes using imagery produced using light 

detection and ranging (LiDAR) technology (e.g. Wu et al., 2019; Wu & Lane, 2017; 

Paine et al., 2015) as well as RGB cameras (Kraaijenbrink et al., 2016). Kraaijenbrink et 
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al. (2016) successfully used a UAS sourced DEM to delineate melt ponds on Lirung 

Glacier in Nepal, however they were likely delineating much deeper ponds than in our 

study (the deepest one measured by Kraaijenbrink et al. (2016) was ~9 m) which made 

the 0.2 m resolution of their DEM better suited. Attempts were made to delineate ponds 

in this study using DEMs created in AgiSoft from the quadcopter imagery, however the 

DEMs were found to be ineffective for the very shallow ponds like pond B (< 20 cm; 

Figure B.1).  

2.4.2 Interannual variability in thaw pond size and its impact on CH4 emissions 

We found the annual CH4 emission from the thaw ponds in this study to vary by 

pond edge area, with the largest annual emissions from ponds between 50 and 150 m2 

(Figure 2.12). Several recent studies have observed an inverse relationship between 

dissolved CH4 concentration with pond size (Shirokova et al., 2013, Polishchuk et al., 

2018, Holgerson & Raymond, 2016) which suggests an increase in emission of CH4 

from permafrost zones due to the potential increase in the number of small thaw ponds 

(Shirokova et al., 2013). Through the use of historical satellite data, Walter et al. (2006) 

found lake area to increase by almost 15% in their study region in Northern Siberia, 

which they estimate to have led to a ~ 60% increase in CH4 from this region. It is 

important to note however that many upscaling studies such as Walter et al. (2006), 

neglect small ponds (areas < 0.001 km2) in their estimates due to the limited spatial 

resolution of satellite platforms (Anderson and Gaston, 2013; Muster et al., 2012).  
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In our study, we saw variability in CH4 emissions with pond size and while our 

largest pond emitted less CH4 per unit area than some of its smaller counterparts, while 

the smallest ponds measured also emitted the least CH4 per unit area (Figure 2.12). 

This difference in emission is likely due to the physical differences between pond types. 

The smallest and lowest emitting ponds are shallow and isolated with little sedge 

present around its edges, while the higher emitting, though not the largest ponds are the 

deepest measured, have more sedge present around their edges (Figure 2.12; Burke et 

al., 2019). We also saw in some ponds an increase in annual ebullitive emission 

between years that did not include a change in pond edge area (e.g. pond F, pond C; 

Figure B.8). These changes in emission could instead be correlated with other physical 

changes in the ponds beyond changes in size, such as changes in vegetation (e.g. an 

increase in sedge presence, a plant that is known to promote CH4 production and 

emission; Chanton et al., 2008; Kutzback et al., 2004; Noyce et al. 2014) or hydrology 

(e.g. ponds becoming more hydrologically connected to nearby fen areas; Johansson et 

al., 2006; Olefeldt & Roulet, 2012). Wik, Varner et al. (2016) reviewed published reports 

of CH4 emissions from lakes above 50°N and found that lake type was an important 

factor in determining emissions potential, though lakes were categorized into broad 

groups which included beaver ponds, thermokarst lakes, glacial lakes and peatland 

ponds. They found CH4 emissions from ponds to also decrease with increasing areal 

extent, though they only reported ebullitive emission from one peatland pond (Wik, 

Varner et al., 2016). 
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The ponds in this study, with spatial areas falling within the range of peatland ponds 

presented in Wik, Varner et al. (2016), also fall within the range of ebullitive emissions 

(22 mg CH4 m-2 d-1; Figure B.9). Kuhn et al. (2018) calculated the net carbon balance 

(NCB) for Stordalen Mire, expanding on previous estimates by Bäckstrand et al. (2005) 

to include small ponds. With the help of areal imagery of the site, they estimated the 

areal extent of thaw ponds to increase from 1% in 2000 to 4% in 2015 and also 

concluded that adding thaw ponds in the NCB for Stordalen would shift the site closer to 

an overall C source, rather than a sink (Kuhn et al., 2018). However, the thaw pond 

area used neglected vegetated ponds completely and only included ponds with open 

water because they could be estimated more easily from areal imagery (Kuhn et al., 

2018). The inclusion of areal estimates and emissions data from the mostly vegetated 

ponds in this study would likely result in a further improved NCB estimate for Stordalen. 

Understanding how ponds are changing in size and their distribution over time is 

essential for accurate modeling of CH4 globally (Holgerson & Raymond, 2016), however 

monitoring the physical characteristics of ponds in tandem with their size is important in 

understanding their changing flux dynamics. 

2.5 Conclusions 

We collected UAS imagery of seven thaw ponds over five growing seasons, hand-

delineating a total of 377 polygons of pond edge and water to assess change in pond 

size. Pond area increased overall across the study period indicating a general increase 

in wetness in this permafrost peatland, though the magnitude of change varied by pond. 

We also found CH4 emissions to vary by pond size, with smaller ponds emitting more 
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CH4 per unit area annually than larger ponds in this study, though we attribute this 

variability to differences in pond type (i.e. differences in vegetation and hydrology). Our 

results suggest that high resolution UAS imagery should be collected multiple times 

during the growing season in order to adequately capture the changing nature of these 

dynamic systems. UASs provide an excellent means of acquiring the necessary high-

resolution imagery needed for the long-term monitoring of thaw ponds and should be 

used more readily in future studies. The importance of monitoring pond size over time 

remains essential for adequate modeling of CH4 across the changing Arctic, however 

our results suggest that monitoring other pond characteristics, like pond type, in 

conjunction with size are important in understanding CH4 emissions, and how they 

might change in the future.   

 

 

 

 

 

 

 



 

 78 

 USING ACOUSTIC TECHNIQUES TO MONITOR CH4 EBULLITION IN 
SUBARCTIC THAW PONDS3 

3.1 Introduction 

Arctic regions, particularly areas where there are significant amounts of organic 

carbon (C) stored in permafrost, are highly vulnerable to climate change. High latitude 

areas are known to be large sources of C to the atmosphere, particularly methane (CH4) 

(Kirschke et al., 2013; Saunois et al., 2016), though how these emissions will change 

with rising global atmospheric temperatures remains unclear. Some suggest there could 

be an increase in overall emissions from arctic peatland areas due to increased thaw 

(Schuur et al, 2008), while other suggest that while the creation of new lakes due to 

thaw will increase CH4 emissions, these emissions will be offset by vegetation, 

particularly in drained lakes (Turetsky et al., 2020). Northern peatlands store ~1000 Pg 

C within the top 3m of ground to be twice the amount originally thought (Hugelius et al., 

2014). When these permafrost peatlands thaw, the OC stored within can be 

anaerobically broken down eventually into CH4 (Stocker et al., 2013; Laurion et al., 

2010; O’Donnell et al., 2011) . Thaw ponds, which develop when permafrost peat thaws, 

slumps, and fills with meltwater (Bouchard et al., 2014; Negandhi et al., 2013; O’Donnell 

et al., 2011), are understood to be significant sources of methane to the atmosphere 

 
 

3 The work in this chapter is currently in prep for submission to a peer-reviewed journal: Burke, S. A., 
Palace, M., Perry, A., Padilla, A., Herrick, C., Contosta, A. R., Weber, T., Crill, P. M., & Varner, R. K. In 
prep. Using acoustic techniques to monitor methane ebullition in subarctic thaw ponds. Hydrology & Earth 
System Science or Environmental Science & Technology.  
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(Negandhi et al, 2013; Walter et al., 2006; Wik, Varner et al., 2016), though there are 

few long-term studies available (Burke et al., 2019).  

Ebullition, or bubbling, is often the dominant transport pathway of CH4 out of anoxic 

environments yet is the least studied (Bastviken et al., 2011; Coulthard et al., 2009; 

Fechner-Levy & Hemond, 1996).  Ebullition in waterbodies has been successfully 

measured using several techniques ranging in complexity and sampling resolution from 

daily manual sampling of floating funnels (Burke et al., 2019; Wik et al., 2013) to 

automated techniques utilizing submersible echo sounders (Jackson et al., 1998; 

Ostrovsky et al., 2008) and pressure sensors (Duc et al., 2019; Maher et al., 2019; 

Varadharajan et al., 2010). Monitoring ebullition is difficult because in addition to steady 

background emissions (Goodrich et al., 2011), ebullitive emission can also be episodic 

both spatially and temporally, making them hard to capture (Rosenberry et al., 2003; 

Varadharajan & Hemond, 2012; Walter et al., 2006). In addition, ebullitive flux is often 

represented as a daily flux measurement (e.g. mg CH4 m-2 d-1) which implies a steady 

rate of emission across the day. However, studies have found significant diurnal 

variation in CH4 emissions from ebullition (e.g. Bastviken et al., 2004; Goodrich et al., 

2011). This suggests that the continuous monitoring of ebullitive emission is essential in 

order to accurately estimate fluxes, yet of the high resolution (sub-daily) studies of 

ebullitive emissions available, many are of one field season duration or less (Maher et 

al., 2019; Varadharajan & Hemond, 2012) or occur in oceanography studies monitoring 

methane seeps in the deep ocean (e.g. Dziak et al., 2018; Greene & Wilson, 2012; 

Wiggins et al., 2015).   
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Passive acoustics, which involves the placement of a listening device near an 

emission site, have been used in research to continuously monitor gas leaks (Bergès et 

al., 2015) as well as bubbling from oceanic methane seeps (Dziak et al., 2018; Greene 

& Wilson, 2012; Wiggins et al., 2015). Active acoustics, which typically is more energy 

intensive (Det Norske Veritas, 2010), involve the use of sonar devices that emit a sound 

pulse and can monitor bubbles moving up through the water column based on the 

returned sound wave or backscatter (Greinert & Nützel, 2004; Jackson et al., 1998; 

Ostrovsky et al., 2008). While hydroacoustic techniques have been successfully used in 

freshwater and ocean environments to understand bubble release and movement 

through the water column (e.g. Bergès et al., 2015; Dziak et al., 2008; Jackson et al., 

1998; Ostrovsky et al., 2008; Wiggins et al., 2015), never has acoustic technology been 

used in tandem with meteorological and emissions data to investigate drivers of 

emission.   

In this study, we describe the first use of a passive acoustic system for continuously 

monitoring CH4 ebullition from two thaw ponds in a subarctic peatland during the 

growing season of 2018. This high-resolution acoustic data allows us to detect ebullitive 

emissions in addition to the collection of trapped gas in a floating trap system. We then 

analyze bubble detections for correlations with high-resolution meteorological data (air 

temperature, incoming solar radiation and wind speed) to investigate possible drivers of 

ebullitive emissions. 

3.2 Methods 
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3.2.1 Field Site 

The Stordalen Mire complex is located 10 km east of Abisko in northernmost 

Sweden (68°21′N, 19°02′E). Since 2000, this region has experienced mean annual 

temperatures above 0°C, leading to thawing and destabilization of permafrost below 

ground (Callaghan et al., 2010). Stordalen is home to several subhabitats typical of 

permafrost peatlands such as palsa plateaus, semi-wet and wet areas containing 

Sphagnum spp. and Eriophorum spp. respectively, as well as collapse features that 

contain meltwater (Johansson et al., 2006, Malmer et al., 2005), referred to in this paper 

as thaw ponds (Christensen, 2004). Previous work by Burke et al. (2019) at this site 

focused on measuring ebullitive CH4 from eight thaw ponds across four growing 

seasons. They found daily ebullitive flux to be highly variable spatially and temporally, 

with the eight ponds falling into four statistically different groups (Burke et al., 2019). 

These groups were examined further and suggested that physical differences such as 

vegetation presence and hydrologic connectivity distinguished the four groups from 

each other (Burke et al., 2019). In this study, we focused on two particular ponds, 

Ponds C and H, that differed in pond type (Figure 3.1; type 2 and type 4 respectively, 

see Burke et al., 2019 for full description of both ponds). 
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Figure 3.1 Modified from Burke et al. (2019) (Figure 1.1). A.) Aerial image of Stordalen Mire with ponds H and 
C outlined in orange. The aerial image was created by Michael Palace, Christina Herrick and Jessica 
DelGreco. The yellow triangles represent the location of the water table loggers. The aerial image does not 
cover the area to the west of pond C, so the water table logger location is approximate. B.) a ground level 
photograph of traps deployed in pond H during the 2019 field season. C.) a ground level photograph of the 
traps deployed in pond C during the 2019 field season. Ground level images were taken by Kathryn Bennett. 

High frequency monitoring of meteorological variables of interest such as air 

temperature (Tair, °C), incoming solar radiation (SWR, W m-2), total precipitation 

(TotPrec, mm), atmospheric pressure (Pair, kPA), relative humidity (Rh, %), wind speed 

(WS, ms-1) were recorded at Stordalen Mire by the Swedish Integrated Carbon 

Observation System (ICOS) Network. They maintain an instrumentation shelter at 

Stordalen Mire, at the top of which (4 m above ground level) a WeatherHawk system 

(WeatherHawk, Logan, UT) records the meteorological variables mentioned above at 10 

min intervals. Measurements of water table depth (WTD, mm) were also measured at 
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logger stations nearby both ponds (Persson et al., 2012) on 2-hr increments during the 

study. Total hydrostatic pressure at the bottom of each pond (Pabs, kPA) at 2-hr intervals 

across the study period was estimated for each pond using the following equation: 

!!"# = ($ × & × ') +	!!$% 

where d is the pond depth (m), p is the density of liquid water (at 25ºC: 997 kg m3), g 

is local gravity (9.82418 m s-2), and Pair (kPA) is the measured air pressure from the 

WeatherHawk system averaged over 2-hr increments.  

3.2.2 Monitoring CH4 ebullition 

Ebullitive CH4 was measured using simple floating funnel systems described in 

Burke et al. (2019). Each pond had two floating funnels deployed during the growing 

season, between 6 June and 8 August 2018 (Figure 3.2).  

 



 

 84 

 
Figure 3.2 Diagram of acoustic bubble trap system deployed in pond C and pond H. a.) the floating bubble 
trap where ebullitive bubbles were captured and could be sampled regularly b.) water temperature loggers 
recorded water temperature every five minutes during the study period  c.) the traps were equipped with a 
hydrophone at the base of each funnel which were plugged into d.) a recorder placed on shore. 

The funnels were sampled for accumulated gas and measured for CH4 

concentration daily, with 100% of measurements collected within 1.5 days or less during 

the 2018 field season. A gas sample was collected only if there appeared to be > 1mL 

of gas accumulated in 60mL syringe at the top of each trap (Figure 3.2). Water 

temperature (Twater) was recorded throughout the field season, at 5-min intervals 

between June and September using data loggers placed in each pond (HOBO Water 

Temp Pro v2, model U22‐001) (Burke et al., 2019). In order to enhance our temporal 

resolution of monitoring ebullition, each funnel was equipped with a hydrophone 

(waterproof microphone; Aquarian Hydrophones H1a Hydrophone, Aquarian Audio & 
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Scientific, Anacortes, WA), positioned at the base of the funnel’s neck (Figure 3.2). This 

allowed for the bubbles entering the funnel to hit the hydrophone before moving up to 

the top of the syringe and displacing the water. The hydrophones were plugged into a 

recorder (ZOOM® H4n recorder, Zoom North America, Hauppauge, NY). Files were 

continuously recorded at 160 kb s-1 in stereo mode (each hydrophone was recorded on 

a separate channel) into .mp3 file format. Though recording in .mp3 format has its 

limitations in terms of audio quality due to signal compression, we chose to record in 

this format to allow us to record for longer time periods (.wav format files would have 

filled up our 32 GB SD cards within 42 hours, while .mp3 files allowed for us to record 

for nineteen days before switching out SD cards).  

3.2.3 Laboratory Testing and Calibration 

In order to investigate this acoustic method in a laboratory environment, we used a 

bubble generator (Rychert & Weber, 2020) that makes bubbles of known size using an 

air tank and a solenoid valve. Placed at the bottom of a freshwater 6m deep tank at the 

University of New Hampshire’s Center for Coastal and Ocean Mapping Join 

Hydrographic Center (CCOM; http://ccom.unh.edu/facilities/test-tanks/engineering-

tank), the bubble generator released bubbles of four different sizes, fifty bubbles each 

released over a twenty-five-minute period. The bubble sizes were created by varying 

the differential pressure (DP) applied to the solenoid value and were between 1 – 5mm 

radii in size at release (Rychert & Weber, 2020). The same floating bubble traps 

equipped with hydrophones used in the field were deployed above the bubble generator 

and recorded continuously as bubbles floated up into the funnel. The laboratory tests 
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were conducted in the evening hours of 3 September 2019 so as to minimize the 

background noise associated with the regular use of the facility. The audio files 

containing bubbles of known size were analyzed using the same code as the field data. 

Since the timing of each bubble release from the bubble generator was known, we 

could focus in on areas of the calibration data when the bubbles hit the hydrophone.  

3.2.4 Acoustic Data Processing and Analysis 

3.2.4.1 MATLAB processing 
Typically, each .mp3 file written to the SD card was 2 GB in size, more than 29 

hours long, and needed to be “chopped” into 6-minute segments before further analysis 

could occur (MP3/WAV Splitter, PistonSoft). Then each six-minute segment was read 

into MATLAB using the ‘audioread’ function. The signal was filtered by applying a 

bandpass filter (butter & filtfilt, Mathworks) using a pre-determined frequency range of 

1500 – 4500Hz (Figure C.1). This frequency range is based on where most of the 

energy within the signal appeared to be concentrated (Figure C.1, panels A and B). The 

data was then transformed into an analytic signal using a Hilbert transform. A mean 

intensity of the acoustic signal of each channel (which corresponds to each trap) was 

then calculated, followed by a signal amplitude threshold, which takes the mean 

intensity of the signal and applies a signal to noise ratio to it, so as to bring the threshold 

up above the noise floor.  

To find peaks associated with bubbles in the acoustic data, the findpeaksG.m 

function was used (O’Haver, 2020a). This function finds peaks by locating positive 

peaks above a given amplitude threshold. This function also fits at Gaussian curve the 
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top part of each detected peak to a Gaussian curve in order to estimate the width, 

height, and area under the curve (O’Haver, 2020b). To ensure the best detection 

parameters (smooth threshold, smooth width, fit width) were used in findpeaksG.m, the 

ipeak.m function was used in conjunction with the four calibration recordings where the 

location of bubble peaks within the files are known. The ipeak.m function allows for the 

interactive exploration of such functions like findpeaksG.m through data visualization 

and the tuning of detection parameters (O’Haver, 2020a, 2020b). A loop function was 

created to scroll through folders containing acoustic files that were created each time an 

SD card was swapped out of a trap. An output file was created for each folder 

containing a list of all the files processed, the peak number, its location within the file in 

seconds, the channel within which the peak was detected and the amplitude threshold 

of the channel. Channels within which no peaks were detected were still listed within the 

output file with a peak number of zero.  

3.2.4.2 Data Filtering in R 
Once processing in MATLAB was complete, further analysis occurred in R 3.6.1 

(The R Foundation for Statistical Computing, 2019). Initial filtering was performed to 

remove all channels where no peaks were detected, leaving only positive detections (n 

= 92,319 detections). The timestamp of each peak detection found in the audio files was 

calculated based on the date and time the recorder was started, the length of each raw 

and chopped file, and the location of each peak detection within the file. Additionally, we 

explored how the number of detections would change if we aggregated detections 

occurring within a set number of seconds from the previous detection as a single 
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detection. Considering the sensitivity of the hydrophone (-190 dB, Aquarian Audio 

Products, 2020), we thought it possible that detections occurring close together in time 

could be from the same bubble passing up through the trap. We calculated the time 

difference between successive detections and then binned the detections into zero, half, 

one, two, three, up to ten second bins, with detections falling in each bin if the time 

difference between it and the previous detection was greater than the time bin in 

seconds. For example, detections that fell into the two seconds bin were detections that 

occurred more than two seconds apart. The zero seconds bin considered all detections 

valid detections. The greatest drops in total detections occurred between the zero and 

half second bins (Trap H1 – H2: 30% drop, Trap C1-C2: 17 – 11% drop respectively, 

Figure 3.3).  
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Figure 3.3 Number of detections across the different time bins (sec) of the detection dataset after initial 
filtering (zero detections removed). The zero bin represents when all detections are considered valid 
detections. Detections were considered in each bin if the difference in time between the detection and the 
one previous was greater than the time bin.  

Due to the large drop in detections between the zero and half bins, detections that 

occurred less than half a second from each other were counted as a single detection (n 

= 68,210 detections remaining).  

Further data filtering was performed to remove potential sources of background 

noise still left after preliminary filtering (e.g. trap sampling sounds and precipitation 

events). Any six-minute file with an amplitude threshold less than 1.2119 ´ 10-6 dB and 
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greater than 4.612 ´ 10-5 dB (the amplitude threshold of the smallest and largest bubble 

size from the laboratory test, respectfully) or occurred within an hour period where the 

weather station on site registered a rain event or a Rh reading of greater than 85% were 

automatically removed. The filtering conditions for TotPrec and Rh above 85% were 

applied due to the instances when the hydrophones detected rain events that were 

registered as well as not registered by the weather station (n = 12,342 detections 

remaining). 

Table 3.1 Summary of acoustic detections from the 2018 sampling season that occurred more than half a 
second apart after filtering out noise due to sampling and precipitation events. 

 

Due to the disproportionate number of bubbles detected in pond H than in pond C 

(Table 3.1), we plotted ten-minute bubble counts across several days with differing 

patterns of WS to check to see if changes in WS were leading to false detections in the 

acoustic data of pond H. Ten-minute bubble counts were determined by summing the 

number of bubbles detected on a ten-minute basis across the acoustic record. On days 

when WS varied on the ten-minute scale, the number of detections counted in pond H 

appeared to mirror the changes in WS more so than in pond C suggesting the wind was 

either causing increased ebullition or false detections in the acoustic data from pond H 

(Figure C.2– Figure C.3). Pond H is positioned in an open area of Stordalen Mire, with a 

large flow-through fen on either side of it while pond C is more wind-protected, with an 

Trap Total detections more than half a second apart  
H1 7324 
H2 3012 
C1 428 
C2 1578 
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intact palsa bank on one side (Figure 3.1, panels B and C). The hydrophones are 

floating just below the surface of the pond and there is a high probability that sounds 

related to increasing windspeed were registered as false detections in the acoustic data. 

Due to the apparent influence of noise from wind at pond H and with no apparent 

approach to filter out the impact of wind on the acoustic data, we chose to focus the 

remaining of our statistical testing on pond C. 

3.2.5 Statistical Analysis 

Statistical analysis was performed in R 3.6.1 (R Core Team, 2019). All bubble 

detection and meteorological data (Tair, Pair, SWR, WS, WTD, Pabs, and Twater) were 

averaged over a two-hour time window considering measurements of WTD had the 

lowest temporal resolution of measurements every two hours. Measurements of 

TotPrec and Rh were used to filter the detections, so they were not included in further 

statistical analysis. We performed initial data exploration, as detailed by Zuur et al. 

(2010), to determine if our data violated any of the assumptions of statistical analysis 

(e.g. collinearly, autocorrelation, normality and equal variance). This process revealed 

that the bubble count data were not normal due to the large number of zero counts in 

the data set and used the fitdistrplus package (Delignette-Muller & Dutang, 2015) to 

determine the data distribution. During initial data exploration, we also investigated 

whether any of the meteorological variables had a lagged effect on bubble detections by 

using the astsa package (Stoffer, 2019) yet the correlation coefficients for all of the 

meteorological variables (Tair, Pair, SWR, WS, WTD, Pabs, and Twater)  were low (< 0.2) 

suggesting the lags found were inconsequential.  
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We then used generalized linear mixed effect modeling (GLMM) to determine the 

influence of trap, month, and the two-hourly means of several meteorological (or sums, 

in the case of precipitation) variables on the occurrence of bubbles in the acoustic 

record. Model selection was determined based on the model with the lowest Bayesian 

Information Criterion (BIC) because BIC tends to penalize complex models with multiple 

parameters more so than Akaike’s Information Criterion (AIC) (Buckland et al., 1997).  

By modeling each variable separately first, we determined that month as well as several 

meteorological variables were not significant predictors of bubble detection (Pair, WTD, 

Pabs, Twater) and were therefore excluded from further modeling. We therefore developed 

five models to explore how bubble detections varied by trap and with changing WS, Tair 

and SWR: 

(1)		,-./01&'% 		~	3 + 4 × 156& 

(2)		,-./01&'% 		~	3 + 4 ×89 

(3)		,-./01&'% 		~	3 + 4 × ;!$% 

(4)		,-./01&'% 		~	3 + 4 × 98= 

(5)				,-./01&'% 	~	3 + 4( ×	;!$% +	4& 	× 	98= 

where BubDet2hr is the total number of bubble detections every two hours, b is the 

model intercept for equations 1-5 and k represents the slope of each parameter variable 

(e.g. trap, WS, Tair, SWR). In order see how well model 5 represented the data, we 

created a linear model: 
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(6)				,-./01&'% 	~	3 + 4( ×	&50$,-./01&'% 

where predBubDet2hr are the bubble detections predicted by model 5, using the 

predict.glmmTMB function via the glmmTMB package (Brooks et al., 2017). Selection of 

singular and additive random effects was performed for each model including the 

influence of day of year (doy), month and trap (note: for model 1, trap was not included 

as a random effect), with the model with the lowest BIC chosen as the best fit. Models 

1-5 were fitted with a negative binomial distribution via the glmmTMB package (Brooks 

et al., 2017). For model 5, backwards selection of fixed effects was performed following 

the protocol set out by Zuur et al. (2010). Although WS was found to be a significant 

predictor of bubble detections on its own (model 2) and was included initially in model 5, 

through the backwards selection process just described it was removed from the final 

model. Since mixed-effects models do not produce a whole-model r2 value, a pseudo-r2 

value was calculated for each GLMM model (Nakagawa & Schielzeth, 2013) using the 

MuMIn package, which provided a marginal pseudo r2 (R2GLMM(m)) describing the 

variance explained by the model’s fixed effects as well as a conditional pseudo r2 

(R2GLMM(c))  describing the variance explained by the model’s fixed and random effects 

(Bartón, 2019). Since model 6 was a linear model, an adjusted model r2 is provided in 

the model output. 

3.3 Results  

3.3.1 Meteorological drivers of CH4 emissions 
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All meteorological variables measured during the study period varied on a daily 

basis (Figure 3.4). Daily average WS, daily TotPrec and Rh peaked during the month of 

June while daily Tair and Tpond were low (Table 3.2). As the study period progressed, air 

and pond temperatures increased with Tair peaking in July and Tpond peaking in August. 

The lowest TotPrec was measured in August however it is important to note that this 

study only extended eight days into August (Table 3.2).  

Table 3.2 Summary of measured meteorological data during the study period: 6 June – 8 August 2018. Pair, 
SWR, Tair, TotPrec, Rh and WS were measured by ICOS-Sweden, WTD was measured by Dr. Andreas 
Persson et al., Tpond was measured by the co-authors. The N value below each month corresponds to the 
number of days within that month that the averages are pulled from. 

 

To explore drivers of bubble emission, we modeled each meteorological variable 

individually against BubDet2hr first, with WS, Tair and SWR returning significant fixed 

effect p values (p < 0.005, Table C.1). All three variables had positive slopes which 

suggest bubble detections increased with increasing WS, Tair and SWR. The pseudo r2 

values suggest however that for all three singular models (models 2 - 4), little of the 

variability in bubble detections is explained by the fixed effects alone (R2GLMM(m) 0.01 – 

0.1). Therefore, it is likely that more of the variability is explained by the random effects 

of the model (trap and doy, R2GLMM(c): 0.84 – 0.87, Table C.1). Based on the significance 
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of WS, Tair and SWR in their individual models, we created an additive model to look at 

the influence of multiple meteorological variables on bubble detections (model 5). 

Through the backwards selection process, WS was removed from the final model, 

leaving only Tair and SWR (model 5). Both Tair and SWR had significantly positive slopes 

(k1 ´ Tair = 0.07, p = 0.0004, k2 ´ SWR = 0.001, p < 0.0001) with Tair potentially playing a 

more important role in driving bubble detections that SWR given the larger slope (Figure 

3.5 panels A & B; Table C.1). However, similarly to the singular models, the R2GLMM for 

model 5 suggests much more of the variability in bubble detections is driven by the 

random effects in the model (trap & doy, Table C.1). Further, we used model 5 to 

predict bubble detections across the sampling period (model 6) and saw again an 

adjusted r2 that is indicative of the fixed effects having a lack of effect on measured 

bubble detections (Figure 3.5 panel C; Table C.2). 

 



 

 

 

Figure 3.4 Time series of two-hour averages (apart from total precipitation, which is two-hour totals) of all meteorological variables measured during 
the sampling season. Each y axis is labeled with their respective measurement units.   
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Figure 3.5 Scatterplots showing the relationship between bubble detections and A.) Tair, B.) SWR, and C.) predicted bubble detections based on the 
additive model that included both Tair and SWR (model 5). Detections from each trap are distinguished by color. The solid black lines in each subplot 
represent the model fit line for model 3, model 4 and model 6 respectively. The dashed line in panel C.) is a 1:1 line for reference.   
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3.3.2 Spatial and Temporal variability in bubble detection by trap 

Daily total bubble detections captured in both traps in pond C varied across the 

study period (Figure 3.6). The lowest number of bubbles we detected on a daily basis 

from both traps was 0, with 0 detections also being the mode for trap C1 (Figure 3.6).  

 
Figure 3.6 Violin plot showing the distribution of bubble detections measured on a daily basis between traps 
C1 and C2 during the 2018 growing season. The black circle and diamond on the violin plots represent the 
mode of daily bubble detections for traps C1 and C2 respectively. N values below each trap represent the 
total number of detections measured across the sampling season. 

The mode for trap C2 was 38 detections (Figure 3.6). The maximum number of 

detections in a day from trap C1 was 84 and was 69 in trap C2 (Table 3.2). This peak in 
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daily detections occurred in June for trap C1 and July for trap C2 (Table 3.2). Similarly, 

the cumulative bubble detections per month for trap C1 occurred in June at 284 

detections, while for trap C2, with 801 detections, this occurred in July (Table 3.2).  

Table 3.3 Summary of the minimum, maximum, mode and cumulative of bubble detections on a daily scale 
for each month in the 2018 sampling season. The numbers with the * for each trap represent the maximum 
daily bubble detections across the whole sampling season. 

 

Both traps had the lowest number of bubble detections on a daily and a cumulative 

basis in August (12 and 37 for trap C2, 44 and 211 for trap C2 respectively; Table 3.2), 

however the study only extended eight days into the month of August. Overall, we 

measured 428 bubble detections in trap C1 and 1567 bubble detections in trap C2 

(Figure C.4).  

Though we counted more bubble detections in trap C2 than in C1, we sampled more 

accumulated gas from trap C1. We collected 72.4 mL of ebullitive gas from trap C1 and 

37.6 mL of ebullitive gas from trap C2, with a daily average volume collected per trap of 

1.14 mL and 0.6 mL respectively (Figure 3.7 & Figure C.4). Bubble detections were 

found to vary significantly by trap (fixed effect p value < 0.0001, model 1; Table C.1), 

however the marginal pseudo r2 value of 0.36 suggests that trap explains only 36% of 

the variability in BubDet2hr while the conditional pseudo r2 (which includes both the fixed 
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and random effects) of 0.83 suggests more of the variability is explained by the random 

effect of doy.  

 
Figure 3.7 Time series of total bubble detections every two hours and the volume of gas collected in mL 
across the 2018 sampling season from trap C1 (A.) & B.) respectively) and from trap C2 (C.) & D.) 
respectively). 

On a diel basis, average bubble detections varied per hour between traps, yet both 

traps appear to peak between the hours of 08:00 and 18:00 local time (Figure 3.8: A – 

B). The average hourly bubble detections in the early hours of the morning and late 

evening is low for both traps. Average hourly Tair, SWR and WS followed a similar 

pattern, all peaking between 12:00 and 16:00 local time, and all reducing to their lowest 
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hourly average in the late evening and early morning hours (Figure 3.8: C – E). Further 

it appears the highest average hourly bubble detections occurred during the time of day 

when Tair, SWR and WS tended to be highest, between 10:00 and 13:00, while the 

lowest hourly detections on average occurred between 22:00 and 01:00 (Figure 3.8).



 

 

 

Figure 3.8  Diel variability in average bubble detections and SWR, Tair, and WS on an hourly basis across the study period for traps C1 and C2 (Traps 
C1 & C2: panels A & B respectively, SWR, Tair, WS: panels C-E respectively). Different traps are distinguished by the color and shape of the points. 
Vertical bars represent ± the standard error associated with each point. 
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3.4 Discussion 

3.4.1 Drivers of CH4 ebullition 

Previous research has established important drivers of ebullitive emission such as 

changes in atmospheric pressure (Tokida et al. 2007; Tokida et al., 2009; Wik et al., 

2013), changes in water table depth (Weyhenmeyer, 1999), and energy inputs (e.g. Tair 

& SWR, Goodrich et al., 2011; Wik et al., 2014). Our results support the importance of 

energy inputs (Goodrich et al, 2011; Wik et al., 2014) however contrary to previous 

work, we did not find Pair, Pabs or WTD to be significant drivers (Tokida et al. 2007; 

Tokida et al., 2009; Weyhenmeyer, 1999; Wik et al., 2013). We found bubble detections 

to be significantly correlated with Tair and SWR (model 5) with bubble detections 

increasing with increasing Tair and SWR. In trap C2, the maximum number of detections 

was measured in July, which follows the peak in daily average Tair for the season. In the 

larger lakes in Stordalen Mire, energy input, in the form of SWR and sediment 

temperature, were found to be very strong predictors of seasonal cumulative ebullitive 

flux (Wik et al., 2014). On a diel scale, Bastviken et al. (2004) saw a 70% increase in 

ebullitive emission from lakes in North American and Sweden during day compared to 

night which agrees with our finding of average hourly bubble detections peaking in the 

middle of the day and reaching their lowest levels at night (Figure 3.8). This is in 

contrast to ebullitive emission rates from automatic chamber data from a temperate 

peatland which peaked in the early morning and late evening. However, in the peatland 

the ebullitive signal is also likely impacted by the plants and microbial communities near 

the surface (Goodrich et al., 2011). All of the GLMM models (1-5) looking at 
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meteorological drivers of bubble detections in this study included spatial (trap) and 

temporal (doy) variability as random affects and each suggested much of the variability 

seen in bubble detections seen within a sub-meter area were due to spatial and 

temporal heterogeneity represented by these random effects (Table C.1). However, the 

importance of meteorological drivers, particularly on the diel scale, could be further 

investigated by including time of day as a fixed effect in further models. This agrees with 

previous research that found ebullitive emissions from lakes and ponds to be highly 

spatially and temporally variable (Burke et al., 2019; Kuhn et al., 2018; Wik et al. 2013; 

Wik et al. 2014). Additionally, substrate quality (e.g. how labile the C is below ground) 

has been shown to affect rates of CH4 production and ebullition as well (Bergman et al., 

1998; Malhotra & Roulet, 2015; Wik et al. 2018). We saw lower number of detections 

from trap C1 than in C2 which could suggest more steady releases below trap C2 and 

more episodic releases below trap C1 (Figure 3.6) indicating some subsurface 

differences in organic matter quality and pore structure between these traps (Coulthard 

et al., 2009). Since we collected more gas from trap C1 overall, these episodic events 

potentially give off larger bubbles or more volume than the steady ebullition from trap 

C2 (Figure 3.7). Coulthard et al. (2009) suggests more ebullitive CH4 could be released 

to the atmosphere via episodic events than steady rates of emission due to the 

bypassing or overwhelming of the CH4 oxidation (consumption) zone.  

Several studies have also found increasing wind speed leads to more ebullitive 

emissions in peatlands (Friborg et al., 1997; Goodrich et al., 2011; Sachs et al., 2008; 

Tokida et al., 2009). In a polygonal tundra area in northern Siberia, Sachs et al. (2008) 
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found near-surface turbulence to account for 60% of the variability in emissions while in 

a temperate peatland, Goodrich et al. (2011) found windspeed (a proxy for turbulence) 

to account for 63% of variability in emissions. We counted the most daily bubble 

detections in June for trap C1, at 84 detections, on June 27, 2018 (Figure C.3). Further 

investigations into the meteorological variability on this day reveals that the daily 

average wind speed was 8.6 m s-1, almost 3 m s-1 higher than the daily average 

windspeed for the month of June (5.7 m s-1, Table 3.3). There was also a high number 

of detections that day in trap C2, though not the highest during the season, of 60 

detections which suggests the increase in windspeed is acting on different areas of the 

pond in a similar way. Further, we found that when WS was modeled against bubble 

detections across the sampling season, WS was deemed a significant fixed effect 

(Table C.1).  

3.4.2 High resolution monitoring of CH4 ebullition 

High-resolution sampling of CH4 ebullition in lakes often involves the use of pressure 

sensors (Duc et al., 2019; Maher et al., 2019; Varadharajan et al., 2010; Varadharajan 

& Hemond, 2012) with fewer studies using acoustic techniques (Ostrovksy, 2003; 

Ostrovsky et al., 2008; Vagle et al., 2010). We continuously recorded bubble emissions 

using a high-resolution passive acoustic system across the growing season and found 

CH4 emissions to vary significantly between bubble traps (Figure 3.7; Table C.1). High-

resolution sampling is useful for ebullitive monitoring as ebullitive emissions are highly 

temporally variable. Teasing out meteorological drivers can also be difficult with daily 

resolution sampling data. Burke et al., (2019) saw very weak correlation between daily 
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average ebullitive flux and meteorological variables (SWR and Twater) and suggested 

this could be due to the sampling frequency. Similarly, we found meteorological 

variables (SWR, Tair and WS) to be significantly correlated with bubble detections yet 

they explained little of the variability seen. Yet, when we look on a diel scale, it appears 

as though bubble detections do correlate with changes in SWR, Tair and WS (Figure 

3.8). Several studies have also noted diurnal variability in CH4 emissions (Bastviken et 

al., 2004; Goodrich et al., 2011, Maher et al., 2019) when sub-daily sampling frequency 

was used.   

Contrary to many passive acoustic systems that place the listening device some 

distance from the emission source (e.g. Dziak et al., 2018; Greene & Wilson, 2012; 

Wiggins et al., 2015), our acoustically equipped bubble traps allows for the close 

proximity and even contact between bubble and hydrophone as the CH4 bubble passes 

up through the funnel (Figure 3.2). Given the shallow depth of our ponds (≤ 41 cm; 

Burke et al., 2019) we were limited by how deep we could place the bubble trap system 

while also avoiding contact with the pond bottom. With this limitation, we exposed the 

sensitive hydrophones to background noise relating to sampling and meteorological 

variables (e.g. rain events, wind), which has potentially led to some false detections. We 

found the acoustic records from traps in pond H were affected by wind noise, given the 

large difference in number of bubble detections found compared to pond C (Table 3.1) 

and the mirroring of increasing and decreasing bubble detections during windy days 

(Figure C.2 & Figure C.3). While ebullitive emissions have been shown to increase with 

increasing wind speed, we cannot confidently separate true ebullitive emissions relating 
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to wind speed changes and false detections due to wind noise within pond H. 

Varadharajan et al. (2010) also recorded wind/wave noise in their pressure data when 

the wind was > 3 kmph though this was typically only an issue when the trap was 

empty. Their bubble systems however were deployed in a much larger lake (0.58 km2; 

Varadharajan & Hemond, 2012) than our ponds. Given the shallow depth of the ponds, 

we were unable to deploy the traps deeper in the water column as was done by 

Varadharajan & Hemond (2012). 

 In the future, caution should be taken when placing these systems in shallow ponds 

so as to avoid potential background noise. For example, sound insulating material could 

be wrapped around the funnel base where the hydrophone is positioned and along the 

sides. This could help not only insulate the hydrophone from wind noise, but also from 

noise associated with trap sampling or with people walking by the traps. In addition, if 

the trap is placed in a pond that has moving water, the trap should be placed 

downstream of any boardwalk or rocks to avoid noise associated with the trap making 

contact with said boardwalk or rocks. 

3.5 Conclusions 

This study presents the use of an acoustic bubble trap system to obtain high 

resolution data of CH4 emissions from subarctic peatland ponds. We found bubble 

detections to correlate with meteorological variables (SWR, Tair and WS) yet more of the 

variability was explained by apparent spatial and temporal heterogeneity within a pond. 

We also saw diel variability in hourly bubble detections in tandem with hourly averages 
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of Tair, SWR and WS. The acoustic data from one pond site, located in an open area 

appeared to be more affected by wind noise than the other more sheltered pond, which 

makes separating false and true detections difficult. Therefore, steps should be taken to 

insulate the acoustic traps from background noise when deploying them in shallow 

ponds as well as avoiding any solid object in the ponds that the traps could be pushed 

into by the wind. Our results show that hydroacoustic monitoring techniques in tandem 

with manual sampling of CH4 emissions aid in our understanding of the drivers of 

ebullitive emission in subarctic peatlands.
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APPENDIX A: CHAPTER 1 SUPPLEMENTARY MATERIALS4 

A.1 Introduction  

This supplemental file contains figures and tables that support the main manuscript. 

In Figure S1 we have provided images of each of the sampled ponds. In Figure S2 we 

show the daily CH4 ebullitive emissions from each pond across all sampling seasons. In 

Figures S3 and S4, we present emissions of CH4 for ponds B, C, E and H (chosen due 

to the statistically significant differences between their fluxes) from 2014 and 2015, 

respectively. Figure S5 shows the variability in ebullitive flux for each month in the 

sampling season. Figure S6 shows the variability in ebullitive flux for each sampling 

season Figure S7 shows the variability in ebullitive flux between ponds for each month. 

Figure S8 shows the variability in ebullitive flux between ponds for each sampling 

season. Table S1 shows measurements of water table depth and dissolved oxygen 

collected during pond surveys in 2013 and 2014. Table S2 shows associations between 

chosen meteorological variables and ebullitive flux. Table S3 and S4 show the pairwise 

comparisons of ebullitive flux between months within each pond and between ponds 

within each month respectively. Table S5 and S6 shows the pairwise comparisons of 

 
 

4 This supplementary material has been published: Burke, S. A., Wik, M., Lang, A., Contosta, A. R., 
Palace, M., Crill, P. M., & Varner, R. K. (2019). Long‐Term Measurements of Methane Ebullition from 
Thaw Ponds. Journal of Geophysical Research: Biogeosciences, 2018JG004786. 
https://doi.org/10.1029/2018JG004786 
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ebullitive flux between sampling seasons within each pond and between ponds within 

each sampling season respectively. 
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Figure A.1 Images of each pond measured in this study with a label corresponding to the pond identifier and 
year in which the photo was taken. In some photos, the bubble traps are visible, in others they are not due to 
them not being deployed yet when the photo was taken. Photos taken in 2013 were all taken by Ruth K. 
Varner. Photos taken in 2014 were taken by Sophia Burke. (Supplementary Figure S1 in Burke et al., 2019). 

 

 

E

2013

D

2013

B

2013

2014

H

C

2014

2013

G

A

2014

F

2014



 

 127 

 
Figure A.2 Measured daily CH4 emissions (mg m-2 d-1) for each pond at the Stordalen Mire, Abisko Sweden. 
(Supplementary Figure S2 in Burke et al., 2019). 
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Figure A.3 Measured daily CH4 flux from ponds B, C, E, and H respectively during the 2014 field season 
compared to pond temperature (°C), and atmospheric pressure (mbar)(ANS, 2017). These ponds were chosen 
to represent the variability in flux compared to meteorological conditions due to their statistically 
significantly different fluxes when compared to each other (see full text). (Supplementary Figure S3 in Burke 
et al., 2019). 
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Figure A.4 Measured daily CH4 flux from ponds B, C, E, and H respectively during the 2015 field season 
compared to pond temperature (°C), and atmospheric pressure (mbar) (ANS, 2017). These ponds were 
chosen to represent the variability in flux compared to meteorological conditions due to their statistically 
significantly different fluxes when compared to each other (see full text). (Supplementary Figure S4 in Burke 
et al., 2019). 
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Figure A.5 Boxplot of variability in daily bubble flux (mg CH4 m-2 d-1) between months. Mean daily ebullitive 
flux per month is represented as solid black triangles over each box plot.  To show true variability in the 
data, the y axis was plotted between 0 and 150 mg CH4 m-2 d-1 and outliers larger than 140 mg CH4 m-2 d-1 
were omitted for clarity. Lowercase letters represent pairwise differences between sampling seasons (Dunn’s 
test, a = 0.05) and results of the Kruskal-Wallis rank sum test is plotted as c2 and p. (Supplementary Figure 
S5 in Burke et al., 2019). 

 

 

June July August September

0
50

10
0

15
0

0
50

10
0

15
0

Month
n = 462 874 517 210

D
ai

ly
 B

ub
bl

e 
Fl

ux
 (m

g 
C

H
4 

m
-2

d-
1 )*

a b b b
c2  = 107.24 p < 0.0001



 

 131 

 
Figure A.6 Boxplot of variability in daily bubble flux (mg CH4 m-2 d-1) between sampling seasons. Mean daily 
ebullitive flux per sampling season is represented as solid black triangles over each box plot. To show true 
variability in the data, the y axis was plotted between 0 and 150 mg CH4 m-2 d-1 and outliers larger than 140 
mg CH4 m-2 d-1 were omitted for clarity. Lowercase letters represent pairwise differences between sampling 
seasons (Dunn’s test, a = 0.05) and results of the Kruskal-Wallis rank sum test is plotted as c2 and p. 
(Supplementary Figure S6 in Burke et al., 2019). 
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Figure A.7 Boxplot of variability in daily bubble flux (mg CH4 m-2 d-1) for each pond within months. Small grey 
circles represent outlier values. Mean daily ebullitive flux of each pond per month is represented as solid 
black triangles over each box plot. To show true variability in the data, the y axis was plotted between 0 and 
200 mg CH4 m-2 d-1 and outliers larger than 190 mg CH4 m-2 d-1 were omitted for clarity. Results of the Kruskal-
Wallis rank sum test is plotted as c2 and p.   (Supplementary Figure S7 in Burke et al., 2019). 
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Figure A.8 Boxplot of variability in daily bubble flux (mg CH4 m-2 d-1) within ponds between sampling 
seasons. Small grey circles represent outlier values. Mean daily ebullitive flux of each pond per sampling 
season is represented as solid black triangles over each box plot. To show true variability in the data, the y 
axis was plotted between 0 and 300 mg CH4 m-2 d-1 and outliers larger than 290 mg CH4 m-2 d-1 were omitted 
for clarity. Results of the Kruskal-Wallis rank sum test is plotted as c2 and p. (Supplementary Figure S8 in 
Burke et al., 2019) 
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Table A.1 Pond water table depth (WTD, cm) and dissolved oxygen (DO, mg L-1) from 22 July 2013 
and from the average of weekly surveys conducted during 2014 field season. In 2013, all ponds 
were surveyed for WTD. In 2014, all ponds except for G, were measured for WTD and DO. 
(Supplementary Table S1 in Burke et al., 2019).  

 

 

 

Table A.2 Association between SWR, Tair, Tpond, and DP5 on ebullitive flux using Kendall’s rank 
correlation test. (Supplementary Table S2 in Burke et al., 2019). 

 

 

 

  

Pond WTD (cm) [DO] mg L-1

Year Measured 2013 2014 2014

A 25 19.5 13.28
B 16 20 12.6
C 41 29.2 11.69
D 52 29.5 12.48
E 91 78 12.53
F 34 51 10.67
G 47 - -
H 47 35.8 13.16

x y z p !
SWR

flux

-3.09 0.001 -0.05
Tair 5.97 < 0.0001 0.09

Tpond -5.86 < 0.0001 -0.13
ΔP5 -3.45 0.0005 -0.05
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Table A.3 Pairwise comparisons across months within each pond from a Dunn’s Test following 
the Bonferroni method (a = 0.05). Significance of p is indicated by *. (Supplementary Table S3 in 
Burke et al., 2019). 

 

 

 

 
 

Pond A p Pond D p Pond G p
June July 1 June July 1 July August 1
June August 1 June August 0.0000* July September 1
July August 1 July August 0.0059* August September 1
June September 1 June September 0.0000*
July September 1 July September 0.0085*

August September 1 August September 1

Pond B Pond E Pond H
June July 1 June July 1 June July 0.0000*
June August 1 June August 0.0899 June August 0.0000*
July August 1 July August 1 July August 1
June September 1 June September 1 June September 0.0000*
July September 1 July September 1 July September 1

August September 1 August September 1 August September 1

Pond C Pond F
August September 1 June July 0.5507

July August 1 June August 1
July September 1 July August 1
June August 0.5703 June September 1
June July 0.0408 July September 0.0000*
June September 1 August September 0.0968
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Table A.4 Pairwise comparisons across ponds within months from a Dunn’s Test following the 
Bonferroni method (a = 0.05). Significance of p is indicated by *. (Supplementary Table S4 in 
Burke et al., 2019). 

 

 

 

 

 

June p July p August p September p
Pond E Pond F 1 Pond E Pond F 1 Pond E Pond F 1 Pond E Pond F 0.2789
Pond E Pond D 0.0000* Pond E Pond D 0.0000* Pond E Pond D 0.0000* Pond E Pond D 0.0017*
Pond F Pond D 0.0000* Pond F Pond D 0.0000* Pond F Pond D 0.0000* Pond F Pond D 1
Pond E Pond A 0.0000* Pond E Pond A 0.0000* Pond E Pond A 0.0000* Pond E Pond A 0.0000*
Pond F Pond A 0.0000* Pond F Pond A 0.0000* Pond F Pond A 0.0000* Pond F Pond A 0.0015*
Pond D Pond A 1 Pond D Pond A 1 Pond D Pond A 0.0057* Pond D Pond A 0.1266
Pond E Pond B 0.0000* Pond E Pond B 0.0000* Pond E Pond B 0.0000* Pond E Pond B 0.0000*
Pond F Pond B 0.0000* Pond F Pond B 0.0000* Pond F Pond B 0.0000* Pond F Pond B 0.0033*
Pond D Pond B 1 Pond D Pond B 1 Pond D Pond B 0.0654 Pond D Pond B 0.2288
Pond A Pond B 1 Pond A Pond B 1 Pond A Pond B 1 Pond A Pond B 1
Pond E Pond H 0.0000* Pond E Pond G 0.0601 Pond E Pond G 0.0000* Pond E Pond G 1
Pond F Pond H 0.0000* Pond F Pond G 0.0001* Pond F Pond G 0.1466 Pond F Pond G 1
Pond D Pond H 1 Pond D Pond G 0.0000* Pond D Pond G 1 Pond D Pond G 1
Pond A Pond H 1 Pond A Pond G 0.0000* Pond A Pond G 0.0000* Pond A Pond G 0.0000*
Pond B Pond H 1 Pond B Pond G 0.0000* Pond B Pond G 0.0000* Pond B Pond G 0.0001*
Pond E Pond C 0.0000* Pond E Pond H 0.6139 Pond E Pond H 0.0001* Pond E Pond H 1
Pond F Pond C 0.0000* Pond F Pond H 0.0005* Pond F Pond H 1 Pond F Pond H 0.0723
Pond D Pond C 1 Pond D Pond H 0.0000* Pond D Pond H 0.0011* Pond D Pond H 0.0001*
Pond A Pond C 1 Pond A Pond H 0.0000* Pond A Pond H 0.0000* Pond A Pond H 0.0000*
Pond B Pond C 1 Pond B Pond H 0.0000* Pond B Pond H 0.0000* Pond B Pond H 0.0000*
Pond H Pond C 1 Pond G Pond H 1 Pond G Pond H 1 Pond G Pond H 1

Pond E Pond C 0.0000* Pond E Pond C 0.0000* Pond E Pond C 0.0000*
Pond F Pond C 0.0000* Pond F Pond C 0.0000* Pond F Pond C 0.0449
Pond D Pond C 0.0197* Pond D Pond C 1 Pond D Pond C 1
Pond A Pond C 0.0107* Pond A Pond C 0.2206 Pond A Pond C 1
Pond B Pond C 0.0003* Pond B Pond C 1 Pond B Pond C 1
Pond G Pond C 1 Pond G Pond C 0.0075* Pond G Pond C 0.0008*
Pond H Pond C 0.0001* Pond H Pond C 0.0000* Pond H Pond C 0.0000*
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Table A.5 Pairwise comparisons across sampling seasons within ponds from a Dunn’s Test 
following the Bonferroni method (a = 0.05). Significance of p is indicated by *. (Supplementary 
Table S5 in Burke et al., 2019). 

 

 

 

Pond A p Pond E p
2013 2015 1 2013 2014 1

2013 2015 1
Pond B 2014 2015 1

2013 2014 1
2013 2015 1 Pond F
2014 2015 1 2013 2014 1

2013 2015 0.58
Pond C 2014 2015 0.0015*
2012 2013 1
2012 2014 0.0407 Pond G
2013 2014 0.0000* 2012 2013 1
2012 2015 0.0000*
2013 2015 0.0000* Pond H
2014 2015 0.658 2012 2013 1

2012 2014 1
Pond D 2013 2014 1

2013 2014 1 2012 2015 0.0000*
2013 2015 0.0000* 2013 2015 0.0000*
2014 2015 0.0000* 2014 2015 0.0000*



 

 

Table A.6 Pairwise comparisons across ponds within sampling seasons from a Dunn’s Test following the Bonferroni method (a = 0.05). 
Significance of p is indicated by *. (Supplementary Table S6 in Burke et al., 2019). 

 

 

2012 p 2013 p 2014 p 2015 p
Pond G Pond C 0.8399 Pond A Pond B 1 Pond B Pond C 1 Pond A Pond B 1
Pond G Pond H 0.4718 Pond A Pond C 0.0000* Pond B Pond H 0.0000* Pond A Pond C 1
Pond H Pond C 0.0000* Pond A Pond G 0.0000* Pond D Pond B 0.4499 Pond A Pond H 0.7458

Pond A Pond H 0.0000* Pond D Pond C 1 Pond B Pond C 1
Pond B Pond C 0.0000* Pond D Pond H 0.0001* Pond B Pond H 0.0223*
Pond B Pond G 0.0000* Pond E Pond B 0.0000* Pond D Pond A 1
Pond B Pond H 0.0000* Pond E Pond C 0.0000* Pond D Pond B 1
Pond D Pond A 0.0000* Pond E Pond D 0.0000* Pond D Pond C 1
Pond D Pond B 0.0010* Pond E Pond F 0.0090* Pond D Pond H 0.0001*
Pond D Pond C 1 Pond E Pond H 0.0006* Pond E Pond A 0.0000*
Pond D Pond G 1 Pond F Pond B 0.0000* Pond E Pond B 0.0000*
Pond D Pond H 0.0000* Pond F Pond C 0.0000* Pond E Pond C 0.0000*
Pond E Pond A 0.0000* Pond F Pond D 0.0000* Pond E Pond D 0.0000*
Pond E Pond B 0.0000* Pond F Pond H 1 Pond E Pond F 1
Pond E Pond C 0.0418 Pond H Pond C 0.0000* Pond E Pond H 0.0000*
Pond E Pond D 0.0000* Pond F Pond A 0.0000*
Pond E Pond F 1 Pond F Pond B 0.0000*
Pond E Pond G 0.0696 Pond F Pond C 0.0000*
Pond E Pond H 1 Pond F Pond D 0.0000*
Pond F Pond A 0.0000* Pond F Pond H 0.0000*
Pond F Pond B 0.0000* Pond H Pond C 0.0075*
Pond F Pond C 0.1424
Pond F Pond D 0.0000*
Pond F Pond G 0.2291
Pond F Pond H 1
Pond G Pond C 1
Pond G Pond H 0.4317
Pond H Pond C 0.2745
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APPENDIX B: CHAPTER 2 SUPPLEMENTARY MATERIALS 

 
Figure B.1 Comparison of Contour line delineation of ponds using digital elevation models created using 
AgiSoft Photoscan. A.). Orthomosaic of Pond D showing 1m contour lines in black. B). the hand-drawn 
delineation of the pond edge of Pond D. C) Orthomosaic of Pond B showing 1m contour lines in black. D). the 
hand drawn delineation of the pond edge of Pond B. 
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Figure B.2 Water polygon area (m2) of each pond in the study compared to the total precipitation 
accumulation (mm) in the eight days leading up to the UAS flight. Only quadcopter imagery is represented. 
Colors represent different ponds. 
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Figure B.3 Relationship between water polygon area and total precipitation accumulation before flight separated by pond. Ponds with significant 
relationships have * by their name. Significant results of nonparametric Kendall correlations are displayed as t and p values. 
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Figure B.4 Water Polygon area of quadcopter imagery collected during the growing season at Stordalen Mire during the 2016, 2017 and 2018 growing 
seasons, separated by month. Ponds with significant differences found between months are marked with a *. The lowercase letters indicate significant 
pairwise differences between months. The results of a Kruskal Wallis rank sums test are displayed as c2 and p values. 
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Figure B.5 Comparison of water polygon area measured from fixed wing imagery collected in July compared 
to the average water polygon area measured from quadcopter imagery collected throughout the growing 
season (A.) or only in July (B.). different symbols represent different sampling seasons, while different colors 
represent different ponds. Results of a Kendall correlation test is presented as t and p values. 
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Figure B.6 Pond edge polygon area from quadcopter imagery among the different pond types. Solid black 
lines represent median values and solid black dots represent outliers. N values below each pond type 
represent the number of images included in each boxplot. The results of a Kruskal Wallis rank sums test are 
displayed as c2 and p values. 
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Figure B.7 Pond edge area of differing pond types by sampling season from imagery collected using the 
quadcopter UAS and fixed wing airplane. Black lines represent median values. N values represent the 
number of images included in each boxplot. 
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Figure B.8 Annual ebullitive flux (mg CH4 m-2) compared to pond edge area (m2) from both quadcopter and fixed wing imagery of the seven ponds in 
this study. The different colors represent the different ponds and the different shapes represent differing sampling seasons. Ponds that show a 
significant relationship have a * by their name. Significant results of a Kendall correlation test are presented as t and p values.
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Figure B.9 Updated boxplots from Burke et al. (2019) to include all of the ebullitive measurements collected 
between 2012-2018 represented as daily bubble flux (mg CH4 · m−2 · day−1). The different colors are used to 
distinguish ponds from each other. To show the real distribution of the data, the y axis was plotted between 
0 and 300 mg CH4 · m−2 · day−1, with outliers greater than 250 mg CH4 · m−2 · day−1 omitted from this figure (n = 
32). The number of measurements collected at each pond over the study period are in bold italics below each 
pond label. Solid triangles represent the mean daily bubble flux of each pond across the study period. Dark 
lines across each box represent median values, and small gray circles represent outliers. Lowercase letters 
represent significant differences between ponds. Results of the Kruskal‐Wallis rank sum test noted as c2 and 
p. Ponds are divided up into types 1 to 4 based on their statistically different fluxes, and these types appear 
to correspond to physical differences (depth, vegetation presence, and hydrology; see Table 1.1 in Burke et 
al. 2019).  
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Figure B.10 Updated boxplots from Burke et al. (2019) of variability in daily bubble flux (mg CH4 m-2 d-1) 
between months collected 2012-2018 sampling seasons. Mean daily ebullitive flux per month is represented 
as solid black triangles over each box plot.  To show true variability in the data, the y axis was plotted 
between 0 and 150 mg CH4 m-2 d-1 and outliers larger than 140 mg CH4 m-2 d-1 were omitted for clarity (n 
=126). Lowercase letters represent pairwise differences between sampling seasons (Dunn’s test,  a = 0.05) 
and results of the Kruskal-Wallis rank sum test is plotted as c2 and p. 
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Figure B.11 Updated boxplots from Burke et al. (2019) showing the variability in daily bubble flux (mg CH4 m-2 
d-1) between sampling seasons. Mean daily ebullitive flux per sampling season is represented as solid black 
triangles over each box plot. To show true variability in the data, the y axis was plotted between 0 and 150 
mg CH4 m-2 d-1 and outliers larger than 140 mg CH4 m-2 d-1 were omitted for clarity (n = 126). Lowercase letters 
represent pairwise differences between sampling seasons (Dunn’s test, a = 0.05) and results of the Kruskal-
Wallis rank sum test is plotted as c2 and p. 
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Table B.1 Table of mean tie point residuals for each image collected with the quadcopter during the 2016,2017 and 2018 field seasons. Bolded values 
denote which image from each year was considered the ‘Best of’ image, to which all other images of the same pond from that sampling season were 
georeferenced to. Italicized values show images that had a lower mean than the ‘Best of’ image, but these images were either distorted in the 
orthorectification process or were incomplete coverage of the pond. 
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Table B.2 Monthly summary of meteorological variables for 2016 - 2018.  

 

Data 
 

June July  August 

P (mm) 
 

50.6 89.1 59 

Tair (°C) 
 

7.77 12.9 10.44 

SWR (W m-2) 
 

200.2 187.4 119.4 

Note: Total precipitation (mm), average air temperature (°C), and average shortwave radiation 

(W m-2) were calculated using data collected at Stordalen Mire by ICOS-Sweden, using their 

WeatherHawk system.  
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APPENDIX C: CHAPTER 3 SUPPLEMENTARY MATERIALS 

Note: Plots for Appendix C continue on the next page.



 

 

 

Figure C.1 MATLAB spectrogram of the raw data (A.) and the magnitude of the 99th quantile (dB) (B.) from a six-minute acoustic file showing the energy 
is concentrated in the lower frequencies. The red rectangles in both subplots represents the filtering window of 1500 – 4500 Hz used to focus the 
MATLAB processing on the portion of the acoustic data where most of the acoustic energy is focused. Note: Energy concentration in spectrograms 
vary between files. 
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Figure C.2 Time series of bubble detected on a ten-minute timescale between 14 June and 16 June, 2018 in traps C1 and C2 (panels A. & B.), C.) trap H1 
and D.) trap H2, distinguished from each other by color and symbol. Measured wind speed (m s-1) is represented in each subplot as a solid black line. 
The volume of gas collected during this time period is represented in each subplot by the color-coded inverted triangles. 
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Figure C.3 Time series of bubble detected on a ten-minute timescale between 27 June and 29, June, 2018 in traps C1 and C2 (panels A. & B.), C.) trap 
H1 and D.) trap H2, distinguished from each other by color and symbol. Measured wind speed (m s-1) is represented in each subplot as a solid black 
line. The volume of gas collected during this time period is represented in each subplot by the color-coded inverted triangles.  
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Figure C.4 Timeseries of cumulative bubble detections (solid line) and cumulative volume collected from 
each bubble trap (dashed line) for trap C1 (panel A.) and trap C2 (panel B.). 
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Figure C.5 Scatterplot showing the relationship between bubble detections and average WS (m s-2). 
Detections from each trap are distinguished by color. The solid black line represents the model fit for model 
2. 
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Table C.1 Generalized linear mixed effects results for models 1-5. R2GLMM(m) is the variance explained by the fixed effects, R2GLMM(c) is the variance 
explained by the entire model (fixed + random effects); lognormal approximation was used (MuMIn package; Bartón, 2019). Values with “em dash” are 
blank due to lack of output for model level p values. 

 

  

 

158  



 
 

 
 

159 

Table C.2 Linear model results for models 6. Values with “em dash” are blank due to lack of output for model 
level estimates or fixed effect level adjusted r2 values. 
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