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ABSTRACT 

A PHYSICS-BASED MODELING FRAMEWORK INCORPORATING 

MICROSTRUCTURAL EVOLUTION FOR PREDICTING DEFORMATION AND 

RECRYSTALLIZATION OF METALLIC MATERIALS 

by 

Miroslav Zecevic 

University of New Hampshire, September, 2018 

Large number of metallic parts is produced from the raw materials by a set of mechanical 

shaping and heating operations. Considering the need for metallic components in the modern 

industry, the field of thermo-mechanical processing of metallic materials is of immense 

importance. Even modest improvements of the existing thermo-mechanical processes could 

potentially result in great savings of time, recourses and energy. Finite element modeling of the 

forming and heating operations introduced in the past decades has allowed for the optimization 

of the thermo-mechanical processes and has thus resulted in significant advancements. However, 

due to the limitations of the presently used constitutive models, certain aspects of the process and 

effects of the process parameters on the component properties cannot be simulated accurately. 

Work presented in this dissertation is a contribution to the development of a physics-based 

crystal plasticity model capable of accurately simulating both the mechanical shaping and 

heating portions of the process and their effect on the microstructure of the component. The well-

established visco-plastic self-consistent polycrystal plasticity (VPSC) model is advanced in 

several aspects in an effort to develop a coupled deformation-recrystallization model. First, 

different numerical implementation of the VPSC constitutive model into the finite element 



ix 

framework is developed. In addition, two methods for the accurate representation of the material 

rate sensitivity within the finite element framework are proposed. The proposed models are 

verified on Taylor impact tests of Zr and Ta cylinders. Next, an algorithm for statistical 

description of intragranular fluctuations of crystallographic orientation is developed. The effects 

of the fluctuations of crystallographic orientation within the grains on the fluctuations of stress 

and rotation rates are considered as well. The developed model is applied to compression and 

plane strain compression of fcc material and verified by direct comparison with experimental 

measurements and full-field predictions. Finally, a physics-based recrystallization model coupled 

with the developed VPSC model capable of predicting intragranular crystallographic orientation 

fluctuations is proposed. The coupled deformation-recrystallization model is applied to the 

recrystallization of fcc and bcc materials and reasonable agreement is observed. Combination of 

different models proposed in this dissertation allows for the simulation of both shaping and 

heating portions of the thermo-mechanical process. 
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INTRODUCTION 

Metal forming has been present for thousands of years and has greatly influenced the 

development of our civilization. Throughout the history, blacksmiths followed a sequence of 

heating and mechanical shaping operations (thermo-mechanical process) in order to successfully 

produce a part of desired shape and properties, without any understanding of the underlying 

physical phenomena. In the past century, due to rapid development of material science and 

mechanics, the microstructural and mechanical consequences of the applied thermo-mechanical 

conditions have been understood. Consequently, the field of metal forming has significantly 

advanced as well and today it represents an important part of the modern manufacturing industry.  

Design of a thermo-mechanical process involves a large number of costly and time 

consuming tests. In the past several decades, computational modeling of the metal forming 

operations resulted in the reduction of the number of actual tests performed during the design 

phase and thus significant savings in time and resources. Furthermore, computational modeling 

allows for determination of the influence of numerous process parameters on the thermo-

mechanical process and thus facilitates its optimization.  

Forming operations of complex metallic parts involve complicated boundary conditions and 

constitutive behavior and thus the initial boundary value problem usually has to be solved 

numerically. Finite element method (FEM) has become the most widely used numerical 

technique for solving the initial boundary value problems in metal forming. The constitutive 

models utilized within the FEM framework are predominantly phenomenological, based on the 

yield surfaces which describe the functional dependence of deviatoric stress and plastic strain 

during plastic deformation in a computationally efficient manner. These models have been quite 

successful in predicting the mechanical behavior of less anisotropic cubic materials which 
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deform by slip only. However, more anisotropic hexagonal and orthorhombic metals deform by 

multiple slip and twinning modes. Modeling of those metals using the phenomenological 

constitutive models based on the yield surfaces is substantially more involved and less accurate. 

In addition, phenomenological constitutive models do not provide any insight into the 

development of the microstructure which directly determines the properties of the finished part. 

Finally, modeling of heating operations of thermo-mechanical process is usually oversimplified 

and reduces to removing the hardening history of the material.  

Crystal plasticity models calculate the constitutive response of the material based on the 

underlying physics of the single crystalline plastic deformation and are thus substantially more 

complex and computationally demanding than the phenomenological models. Each single 

crystalline grain is assumed to deform by a set of slip and twinning systems defined by the 

crystal lattice structure of the material. Consequently, the anisotropic constitutive response of the 

single crystalline grain is determined by the set of activate slip and twinning systems and their 

resistances. The mechanical response of the aggregate of the single crystalline grains is obtained 

by homogenization of the single crystalline responses. Therefore, the crystallographic 

orientations of grains, grain shapes and resistances to slip and twinning within the grains 

completely determine the mechanical response of the polycrystal. Consequently, the anisotropy 

of the material is determined by the single crystal lattice structure and the microstructure of the 

specimen and is thus accurately captured in a physical way. During plastic deformation of a 

polycrystal, the crystallographic orientations of grains rotate, the grain shapes evolve and the slip 

and twin resistances increase. Consequently, the change of the material anisotropy naturally 

follows from the microstructural evolution and there is no need for introduction of a large 

number of fitting parameters as in the phenomenological constitutive models. In addition, since 
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the microstructure of the component determines its properties, the crystal plasticity models 

enable prediction of properties of the finished part and thus allow tailoring of the thermo-

mechanical process for the optimal component properties. Finally, the predicted deformed 

microstructure can serve as an input for the physics based recrystallization model capable of 

predicting the microstructure after the heating operation which in turn affects the following 

forming operation. 

Considering the strengths and weaknesses of the phenomenological and crystal plasticity 

constitutive models, it follows that they complement each other and that both should be used 

jointly for modeling of the thermo-mechanical processes. The phenomenological constitutive 

models are less accurate but very computationally efficient and can thus be used for 

determination of the approximate process parameter values. On the other hand, the crystal 

plasticity constitutive models are far more computationally expensive and should be used for 

verification of the results of the phenomenological models and prediction of the component 

microstructure. 

In this dissertation, a contribution to the development of a polycrystal plasticity model 

capable of simulating an arbitrary thermo-mechanical process is presented. The polycrystal 

plasticity model used as the basis for the development is the widely used vsico-plastic self-

consistent (VPSC) model developed by Ricardo A. Lebensohn and Carlos N. Tomé. The 

dissertation is manuscript based with each chapter representing a research article which describes 

an advancement of the VPSC model with the final goal of developing a unified deformation and 

recrystallization model within implicit finite elements. 

Chapters 1 and 2 present improvements to the implementation of the VPSC into implicit 

finite elements and two methods for accurate description of material rate sensitivity. First, 
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numerical method for coupling of VPSC with implicit finite elements is developed in Chapter 1. 

In addition, an approach for the macroscopic reduction of the artificial rate sensitivity, coming 

from the visco-plastic flow rule, is presented. The proposed model is applied to the Taylor 

impact of Zr cylinder. In Chapter 2 a different method for accurate description of material rate 

sensitivity is explored. The artificial rate sensitivity coming from the visco-plastic flow rule is 

completely removed using the rate insensitive approach and the true rate sensitivity of the 

material is described through the slip resistance. Consequently, an implicit integration of the slip 

resistances had to be implemented. In this case, the proposed model is applied to the Taylor 

impact of Ta cylinder. 

Chapter 3 and 4 present a method for statistical description of intragranular crystallographic 

orientation fluctuations within VPSC which is a prerequisite for subsequent recrystallization 

modeling. First, Chapter 3 describes an algorithm for integration of the fluctuations of rotation 

rates within the grains. The proposed model is verified by comparison with the experiments and 

full field calculations obtained by the VPFFT model. In chapter 4 the effect of the intragranular 

crystallographic orientation fluctuations on the intragranular stress and rotation rate distributions 

at higher strains is added to the model developed in Chapter 3. In addition, a grain fragmentation 

model based in the orientation space is proposed. The predictions are compared with experiments 

and VPFFT calculations and reasonable agreement is achieved. 

Chapter 5 presents a recrystallization model initialized with the deformed state predicted by 

the VPSC model capable of calculating the intragranular crystallographic orientation fluctuations 

(model developed in Chapters 3 and 4). Both grain boundary and transition band nucleation 

mechanisms are considered. The transition band nucleation is assumed to take place in the grains 

with fragmented crystallographic orientation while the grain boundary nuclei form in the grains 
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with highest strain energy. The model predictions are compared with experiments and acceptable 

agreement is observed. 

In conclusion, the improvements of the implementation of VPSC into finite elements and 

methods for accurate representation of rate sensitivity (Chapters 1 and 2) facilitate simulations of 

the mechanical shaping operations. On the other hand, the method for calculation of 

intragranular crystallographic orientation fluctuations (Chapters 3 and 4) and the recrystallization 

model (Chapter 5) enable modeling of the thermal operations of the thermo-mechanical process. 

Therefore, combination of the models proposed in this dissertation would allow modeling of an 

arbitrary thermo-mechanical process. Merging the proposed improvements of the VPSC into a 

single model and application of the combined model to a thermo-mechanical process is left for 

future work. 

In addition to the work presented in this dissertation, I have also worked on two separate 

projects during my PhD studies at University of New Hampshire. The main goal of the first 

project was development of a computationally efficient crystal plasticity finite element model for 

face-centered cubic materials. To this end, the spectral crystal plasticity (SCP) method developed 

by Marko Knezevic and Surya R. Kalidindi was coupled with implicit finite elements. The 

proposed constitutive model successfully simulated several different forming operations 

including rolling and ECAP. Description of the coupling of the SCP with implicit finite elements 

and the main modeling results can be found in the following two publications:  

 Zecevic Miroslav, Rodney J. McCabe, and Marko Knezevic, "A new implementation of 

the spectral crystal plasticity framework in implicit finite elements", Mechanics of 

Materials 84 (2015): 114-126 
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 Zecevic Miroslav, Rodney J. McCabe, and Marko Knezevic, "Spectral database solutions 

to elasto-viscoplasticity within finite elements: application to a cobalt-based FCC 

superalloy", International Journal of Plasticity 70 (2015): 151-165. 

 In the second project, the relation between the slip activity and texture evolution was 

investigated using the self-consistent modeling. Shear rate on a slip system causes a reorientation 

rate of the crystal lattice in the direction perpendicular to the slip plane normal and slip direction. 

Therefore, crystal orientations of grains and the set of activated slip systems determine the 

texture evolution of a polycrystal. By analyzing the reorientation trends of different slip modes 

for crystal orientations present in the initial texture and by comparing the results with the 

measured experimental textures, the slip activity of different modes can be inferred. 

Reorientation trends and slip activity of Uranium and Magnesium under different loading 

conditions were investigated and the results were published in: 

 Zecevic Miroslav, Marko Knezevic, Irene J. Beyerlein, and Rodney J. McCabe, "Texture 

formation in orthorhombic alpha-uranium under simple compression and rolling to high 

strains", Journal of Nuclear Materials 473 (2016): 143-156 

 Zecevic Miroslav, Marko Knezevic, Irene J. Beyerlein, and Rodney J. McCabe, "Origin 

of texture development in orthorhombic uranium", Materials Science and Engineering: A 

665 (2016): 108-124 

 Zecevic Miroslav, Irene J. Beyerlein, and Marko Knezevic, "Activity of pyramidal I and 

II< c+ a> slip in Mg alloys as revealed by texture development", Journal of the 

Mechanics and Physics of Solids 111 (2018): 290-307. 

These two projects represent separate, self-sufficient studies which do not directly contribute to 

the main goal of this dissertation and are hence not included in this dissertation.  
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Chapter 1: Transitioning rate sensitivities across multiple length scales: 
Microstructure-property relationships in the Taylor cylinder impact test on 

zirconium 

This chapter was published as: "Transitioning rate sensitivities across multiple length scales: 

microstructure-property relationships in the Taylor cylinder impact test on zirconium", Zecevic, 

Miroslav, Irene J. Beyerlein, Rodney J. McCabe, Brandon A. McWilliams, and Marko Knezevic, 

International Journal of Plasticity 84 (2016): 138-159. My contribution to this chapter was: 

 development and implementation of a numerical approach for coupling of visco-

plastic self-consistent model with implicit finite elements 

 development and implementation of the approach for reduction of rate sensitivity at 

the macroscopic level 

 finite element modeling of Taylor impact of Zr cylinder using the proposed 

polycrystal plasticity constitutive model and comparison of results with experiments 

 writing the modeling sections in this chapter. 
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Transitioning rate sensitivities across multiple length scales: Microstructure-
property relationships in the Taylor cylinder impact test on zirconium 

Miroslav Zecevica, Irene J. Beyerleinb, Rodney J. McCabec, Brandon A. McWilliamsd, Marko 
Knezevica 

a Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA  
b Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM  87545, USA 

c Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA 
d Weapons and Materials Research Directorate, US Army Research Laboratory, Aberdeen Proving Ground, 

MD 21005, USA  

Abstract 

A finite-element based plasticity model is developed for polycrystals deformed to high-strain-

rates. The model is multiscale, covering from thermally activated dislocation motion on a 

specific crystallographic slip system (nm), to single crystal plasticity (µm), to polycrystalline 

aggregate plasticity (mm), and ultimately heterogeneous deformation of the macroscale test 

sample (m). Within the model, the rate dependence in macroscale response arises solely from the 

microscopic characteristic stress to activate dislocation motion. This is accomplished by 

introduction of a novel methodology, used at the intermediate length scales, to relax the 

extraneous rate dependencies occurring as a result of the visco-plastic rate sensitive flow rule 

commonly associated with single crystal plasticity formulations. The multi-scale model 

developed here also permits simulations to be carried out in stress-imposed, strain-rate imposed, 

and mixed stress/strain-rate-imposed boundary conditions, another advancement over previous 

techniques. Simulation results are presented for the deformation of high-purity Zr in a Taylor 

impact cylinder test. The variation in sample shape changes, texture evolution, and deformation 

twin fraction after the test are experimentally examined. These same quantities are calculated 

with the model and good agreement is achieved in all aspects. We show that without adjustment 

of material parameters that the thermally activated hardening model applies to much higher 
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strain-rates (104 /s-105 /s) than the strain-rates used previously to characterize it. This model can 

be broadly applied to understanding microstructure-property relationships in high-strain-rate 

deformation processes that generate spatially and temporarily heterogeneous mechanical fields. 

Keywords: A Microstructures; B Elastic-viscoplastic material; B Rate-dependent material; C 

Impact testing; C Finite elements  
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1 Introduction 

Zirconium (Zr) and its alloys are of great significance in a number of structural applications 

in the nuclear industry due to its low absorption cross-section of thermal neutrons and excellent 

corrosion resistance (Lemaignan and Motta, 2006; Nielsen, 2000). In the interest of designing 

bulk metal forming and shaping processes for Zr, it is important to understand its deformation 

behavior over a wide range of strain-rates and temperatures. It has been shown in many studies 

that the response of Zr is plastically anisotropic and sensitive to changes in strain-rate and 

temperature (Capolungo et al., 2009). Much of this complication originates from its low-

symmetry crystal structure. Zr has a hexagonal close packed (HCP) crystal structure and it 

plastically deforms via a number of possible slip and twinning modes. Unlike metals with a 

higher symmetry cubic structure, the deformation response cannot be understood or predicted 

without knowledge of the crystallography of the predominant slip and twinning systems, their 

contribution, and the texture. As a result, both elastic and plastic behavior grossly deviate from 

isotropy.  

The deformation response of Zr, like other HCP metals, depends sensitively on which slip 

and twinning modes are activated throughout the history of deformation. Each mode acts on a 

particular slip or twinning plane and in a specific direction. Over the temperature and strain-rate 

regimes of interest, slip is carried by the motion of dislocations, and this motion is thermally 

activated (Knezevic et al., 2015b). Thus, the stresses needed for these mechanisms depend on 

strain-rate and temperature, and evolve with strain level as dislocations interact and become 

stored in the crystal. As the structural characteristics of the dislocations are different, it is known 

that each mode will have its own separate evolution law with strain, strain-rate, and temperature. 
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A Taylor impact cylinder test was first devised for efforts to determine dynamic yield 

stresses of a materials (Taylor, 1948) and later utilized to verify constitutive laws for 

polycrystalline metals over a wide range of strain-rates, strains, and stresses accessible by the 

single test (Hawkyard, 1969; Lee and Tupper, 1954; Maudlin et al., 1999b). This deceptively 

simple test involves propelling a cylindrical specimen at a rigid-as-possible target and measuring 

the changes in sample shape and microstructure after the test. The resulting strain-rate and stress 

fields vary along the cylinder axis and can vary over several orders of magnitude depending on 

the sample size, material, and parameters of the test. Heterogeneous deformation in both time 

and space can result in gradients in the plastic deformation response and underlying 

microstructural evolution. For a metal such as Ta, with a high symmetry body center cubic 

(BCC) crystal structure, a finite element model employing simple constitutive laws based on 

yield surfaces was sufficient to understand and model the shape changes resulting from the test 

(Maudlin et al., 1999a). For a low symmetry HCP metal such as Zr, it was pointed out that 

similar modeling approaches were not sufficient and that it is necessary to account for the 

evolution of texture and the specific deformation mechanisms underlying plastic deformation 

(Maudlin et al., 1999b). They also emphasized the importance of deformation twinning in the 

high-strain-rate response of Zr. Texture and twinning cause the material to be plastically 

anisotropic and to exhibit tension-compression asymmetry. The importance of accounting for 

these effects in Taylor impact tests was recently highlighted in a study on high-purity titanium 

(Ti), another HCP metal (Revil-Baudard et al., 2015). In that work, a continuum anisotropic 

yield surface specifically developed to account for plastic anisotropy and tension-compression 

asymmetry in high-purity Ti was incorporated into a finite element framework rather than 
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explicitly accounting for texture and twinning. The model successfully predicted the deformation 

and geometric changes of the Taylor impact specimens after testing (Revil-Baudard et al., 2015).  

The prediction of which slip and twinning systems are active at any given material point and 

any given time in the deformation path is a complex problem. Determining the predominant slip 

and twinning systems is challenging via experimentation alone. Slip trace analysis of images 

taken in a scanning electron microscope (SEM), electron backscattered diffraction (EBSD) and 

transmission electron microscopy (TEM) is usually performed post-mortem and only indicate 

which dislocations were stored (Akhtar and Teghtsoonian, 1971; Bieler et al., 2014; Obara et al., 

1973). Also, the volume of the material studied is too small to provide statistically significant 

assessment. In-situ X-ray or neutron diffraction can provide data more representative of the 

volume, but de-coupling the activities of different slip and twinning modes is a challenge (Li et 

al., 2012; Lind et al., 2014; Ungár et al., 2007; Ungár et al., 2015). It has been shown in many 

studies that simultaneous experiment and modeling of the constitutive response and 

microstructural evolution is necessary for the determination of active deformation modes 

(Abdolvand et al., 2015; Ardeljan et al., 2014; Carpenter et al., 2015; Fromm et al., 2009; 

Knezevic et al., 2013b; Knezevic and Landry, 2015; Knezevic et al., 2010; Knezevic et al., 

2014e; Knezevic et al., 2015a; Lentz et al., 2015a; Lentz et al., 2015b; Zecevic et al., 2015a). 

The combination allows for a larger representative volume of the material to be probed. This 

method, however, relies on the model to be dependable at multiple scales; that is, to have a 

physically based hardening law, rigorous micromechanics, representative mechanical fields 

across the sample, and the same boundary conditions as in the test. 

Many efforts have been devoted to developing multiscale constitutive models to meet these 

demands. Difficulty can arise when modeling the strain-rate dependency of the constitutive 
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response because rate sensitivity can enter into the calculation via the formulae used at different 

length scales. It is clearly desirable for the rate dependence in the macroscale response to arise 

solely due to the rate dependence of dislocation motion on individual slip systems at the 

microscale (Kocks and Mecking, 2003; Mecking and Kocks, 1981). However, additional rate 

sensitivities can emerge as a result of the implementation or formulation. Oftentimes, for 

instance, a rate-sensitive hardening law is implemented into a polycrystal plasticity code in 

efforts to link the evolution of the macroscopic responses and texture to rate-sensitive dislocation 

motion (Knezevic et al., 2013a; Knezevic et al., 2014a; Knezevic et al., 2014b; Knezevic et al., 

2013e). The polycrystal code is then used to relate the response of the aggregate of grains to the 

response of each constituent grain. The grain response, in turn, is linked with the active slip and 

twinning systems via crystal plasticity theory. This theory may employ a visco-plastic rate-

dependent flow rule to determine which slip and twinning systems are active given the current 

state of stress and strain-rate in the grain. The flow rule has a power-law form that introduces an 

exponent n that is often called or related to the rate sensitivity of the material (Asaro and 

Needleman, 1985; Hutchinson, 1976). In general the power-law expression with fixed exponent 

n can only be accurate for a small range of strain-rates (Kok et al., 2002). Varying this exponent 

from 1 to 100 can have a marked effect on the macroscale response. The value of n selected, 

particularly in the case of HCP materials, would not have an obvious connection to the actual 

material rate sensitivity and could undermine any attempts to develop a reliable, physically based 

rate-sensitive hardening law. 

The objective of this study is to develop a multi-scale finite element (FE) based model for 

the rate-sensitive constitutive response of metals that deform by solely crystallographic slip as 

well as by multiple slip and twinning modes. We introduce a formulation that relaxes the rate 
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sensitivity that enters via the exponent, n, while still retaining the visco-plastic flow rule. As 

such, all the rate sensitivity can be embodied in the characteristic activation stresses for the 

individual slip and twinning systems. The formulation is applied to simulate a Taylor impact test 

on Zr. To this end, experimental post-test specimen geometry and evolution of texture and twin 

volume fraction as a function of axial position are measured and compared with the calculations. 

Very good agreement between the calculations and the experiments is realized in every aspect of 

the comparison. 

2 Visco-plastic polycrystal modeling background 

2.1 Summary of VPSC 

The objective of a polycrystal model, such as visco-plastic self-consistent (VPSC) model, is 

to relate the deformation of an aggregate to the deformation of its constituent grains. In the 

VPSC model, a polycrystal is represented by a number of grains, each with an assigned 

crystallographic orientation, shape and volume fraction. In VPSC, elastic deformation is 

neglected. To calculate its interaction with the other grains in the polycrystal, each grain is 

treated as a visco-plastic inclusion embedded in a homogeneous effective medium (HEM) that 

has the average properties of the polycrystalline aggregate. This elementary inclusion problem is 

solved using a Green’s function approach (Lebensohn and Tomé, 1993; Lebensohn et al., 2016). 

Each inclusion (or representative grain) may deform via a combination of crystallographic slip 

and twinning.  Single crystal visco-plasticity is then used to relate the deformation of the grain to 

its active crystallographic slip and twinning systems. In this framework, active slip or twinning 

systems are selected by the following power-law relationship (Asaro and Needleman, 1985; 

Hutchinson, 1976):  
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𝛾̇௦௖
= 𝛾̇଴ ቆ

ቚ𝛔ᇲ೎
∙ 𝐦ೞ೎

ቚ

ఛ೎
ೞ೎ ቇ

௡

𝑠𝑖𝑔𝑛൫𝛔ᇱ௖
∙  𝐦௦௖

൯ , (1) 

where 𝛾̇௦௖ is the shearing rate on a slip or twin system, s. In Eq. (1), 𝛔ᇱ௖is the Cauchy stress 

deviator of a grain c, 𝜏௖
௦௖ is a slip or twin resistance, 𝛾̇଴ is the reference value of the shearing rate 

usually taken as unity, n is the rate sensitivity exponent, 𝐦௦௖ is the Schmid tensor for slip or 

twinning system, s, calculated as 0.5(𝐛௦௖
⨂ 𝐧௦௖

+ 𝐧௦௖
⨂𝐛௦௖

), where, 𝐛௦௖ is the Burgers vector 

and 𝐧௦௖ is the slip plane normal.  

The deviatoric strain-rate, 𝛆̇௩௣, is related to 𝛔′௖ through the following rate equation:  

𝛆̇௩௣
௖ = 𝛾̇଴ ∑ 𝐦௦௖

ቆ
ቚ𝛔ᇲ೎

∙ 𝐦ೞ೎
ቚ

𝝉೎
ೞ೎ ቇ

௡

௦ 𝑠𝑖𝑔𝑛൫𝛔ᇱ௖
∙  𝐦௦௖

൯. (2) 

Note that, 𝜀̇ = ห𝛆̇௩௣ห, 𝑡𝑟൫𝛆̇௩௣
௖ ൯ = 0, and 𝑡𝑟൫𝛆̇௩௣൯ = 0. For every grain, the nonlinear relation in 

Eq. (2) can be linearized via:  

𝛆̇௩௣
௖ = 𝐌௖ ∙ 𝛔ᇱ௖

+ 𝛆̇଴௖,  (3) 

where 𝐌௖൫𝛔ᇱ௖
൯ and 𝛆̇଴௖ are the grain scale visco-plastic compliance and back-extrapolated 

strain-rate, respectively. In VPSC, different choices are possible for the linearized behavior at the 

grain scale: (1) the upper bound secant approximation, which approaches an iso-strain state 

known to provide a stiff response (the Taylor model) (Hutchinson, 1976; Taylor, 1938), (2) the 

lower bound tangent approximation, which tends to a uniform stress state known to provide a 

compliant response (the Sachs model) (Lebensohn and Tomé, 1993; Sachs, 1929), (3) the affine 

approximation (Masson et al., 2000), and (4) the neff approximation (usually neff =10, which gives 

a similar response to affine) (Lebensohn et al., 2007). The (1) and (2) are rarely used. The latter 

two linearization approaches are usually used and are referred to as intermediate because they are 
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between the bounds. Depending on the chosen linearization assumption, 𝐌௖ and 𝛆̇଴௖ can be 

evaluated differently. For example, making use of the affine approximation:  

𝐌௖ = 𝑛𝛾̇଴ ∑
𝐦ೞ೎

⨂ 𝐦ೞ೎

𝝉೎
ೞ೎ ቆ

ቚ𝛔ᇲ೎
∙ 𝐦ೞ೎

ቚ

𝝉೎
ೞ೎ ቇ

௡ିଵ

௦  and 𝛆̇଴௖ = (1 − 𝑛)𝛆̇௩௣
௖  . (4) 

The solution to Eq. (2) is the deviatoric stress of the Cauchy stress tensor, 𝛔′௖, consisting of five 

independent deviatoric stress components. The deviatoric components can be evaluated by 

solving Eq. (2) using the Newton-Raphson (NR) scheme after applying a strain-rate tensor 𝛆̇௩௣
௖ .  

Arriving at a solution is computationally challenging because of the need to iteratively solve 

the set of highly non-linear, extremely stiff equations (exhibiting poor convergence 

characteristics), for every constituent crystal at each trial strain increment. The higher the 

exponent n in Eq. (1), the numerically stiffer these equations become and hence, the more 

difficult they are to solve. Treating numerical stiffness usually involves modifying the standard 

Newton-Raphson scheme to include a selective reduction of the correction term based on the 

Armijo method (Armijo, 1966) or involves using non-iterative spectral solvers (Al-Harbi et al., 

2010; Kalidindi et al., 2006; Knezevic et al., 2009; Knezevic and Kalidindi, 2007; Knezevic et 

al., 2008a; Knezevic et al., 2008b; Shaffer et al., 2010). 

The behavior of the polycrystalline aggregate takes on a similar linear relationship: 

𝛆̇௩௣ = 𝐌 ∙ 𝛔ᇱ + 𝛆̇଴, (5) 

where 𝛔ᇱ is the effective stress deviator, 𝐌 is the visco-plastic compliance, and 𝛆̇଴ is the back-

extrapolated strain-rate of the polycrystalline aggregate. The SC method then iteratively 

calculates the deviatoric stress and visco-plastic strain-rate for every ellipsoidal grain with 

moduli 𝐌௖ and 𝛆̇଴௖ embedded in a polycrystalline aggregate of moduli 𝐌 and 𝛆̇଴.  
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After the solution procedure, shearing rates 𝛾̇௦௖ are used to calculate the lattice rotation-rates 

associated with each grain. The lattice spin tensor, 𝐖∗௖, is defined as: 

𝐖∗௖ = 𝐖 + 𝚷௖ − 𝐖௣௖ (6) 

where 𝐖 is the applied spin, 𝚷௖ is the contribution from the antisymmetric part of the Eshelby 

tensor per ellipsoidal domain (Lebensohn and Tomé, 1993), and 𝐖௣௖ is the plastic spin in a 

grain due to crystallographic slip. The plastic spin is calculated from the shearing rates as: 

𝐖௣௖
= 0.5 ∑ 𝛾̇௦௖(𝐛௦௖

⨂𝐧௦௖
− 𝐧௦௖

⨂𝐛௦௖)௦ . (7) 

The above anti-symmetric portion of the dyadic product of the two unit vectors is for the Burgers 

vector, 𝐛௦௖, and the slip plane normal, 𝐧௦௖. Equation (6) is used for the evolution of crystal 

orientations with strain.  

2.2 Hardening law 

The constitutive response requires a hardening model for 𝜏௖
௦ that dictates how slip 

resistances evolve. Ideally the slip resistance should evolve with not only strain but also 

temperature (𝑇) and strain-rate (𝜀̇). In all calculations here, we employ a recently developed 

dislocation density-based hardening law where 𝜏௖
௦(𝜀̇, 𝑇) is governed by thermally-activated rate 

laws for dislocation storage. The value of strain rate, 𝜀̇, used in the hardening law is the effective 

norm of the applied strain rate in the current time increment i.e. 𝜀̇ = ට
ଶ

ଷ
|𝛆̇|. The twin resistances 

are not a function of temperature and strain-rate directly but only indirectly through twin-slip 

interactions. The complete details and associated material parameters can be found in (Knezevic 

et al., 2015b) and for completeness of the present paper are repeated here as well. An added 

reason is, since the model presented here differs in handling the rate sensitivity, we found it 



18 

necessary to slightly adjust a few of parameters. Table 1 and 2 show the complete list of material 

parameters. In the interest of space, the parameters are not further discussed. Detailed discussion 

can be found in (Knezevic et al., 2015b), while the main equations of the model are given in the 

appendix. 

Table 1. Slip system characteristics and material parameters for the evolution of slip system 
resistances. 

 𝛼 = 1, {1ത100}〈1ത1ത20〉 𝛼 = 2, {101ത1}〈1ത1ത23〉 𝛼 = 3, {0001}〈1ത1ത20〉 

𝑏ఈ[𝑚] 3.231 x 10
-10 6.0771 x 10

-10 3.231 x 10
-10 

𝜏଴
ఈ[MPa] 𝜏଴

ఈ = 𝐴ఈ ቆ1 + 𝐵ఈ log ቆ
𝜀̇

𝜀௥̇௘௙
ቇቇ exp ൬−

𝑇

𝐶ఈ
൰ ൫1 + 𝐸ఈ𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜎ఈ , 𝜈ఈ)൯ 

𝐻𝑃ఈ 0.1 0.17 0.1 
𝑘ଵ

ఈ[𝑚ିଵ] 5.3 x 10
8 2.0 x 10

9 9.7 x 10
8 

𝑔ఈ 0.002 0.005 0.002 
𝐷ఈ[MPa] 700 1400 1400 
𝑞ఈ 12 log(1 + 𝑇/30) 0.1 12 log(1 + 𝑇/30) 
𝐴ఈ[MPa] 23.5 350 2500 
𝐵ఈ

 0.04 0.02 N/A 
𝐶ఈ[K] 235 190 150 
𝐸ఈ

 6900 36000 N/A 
𝜈ఈ

 7.2 7.45 N/A 
𝜎ఈ

 0.5 0.5 N/A 
 

The possible slip and twinning deformation modes for Zr have been identified previously 

(Akhtar, 1973a, b, 1975a, b), and these same families are made available in the present 

calculations. For slip, these are prismatic {1ത100}〈1ത1ത20〉 slip, pyramidal type I {101ത1}〈1ത1ത23〉 

slip, and basal {0001}〈1ത1ത20〉 slip. These are listed in order of easiest to hardest to activate at 

ambient conditions. The possible twinning modes are {101ത2}〈101ത1ത〉, {112ത2}〈112ത3ത〉, and 
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{101ത1}〈101ത2ത〉. The former is the most commonly observed twin mode in most HCP metals and 

it accommodates extension of the c-axis, whereas the latter two accommodate contraction of the 

c-axis in Zr. Since in the hardening law each slip mode has its own separate dependencies on 

strain, temperature, and strain-rate, the modes are not all expected to act simultaneously or in the 

same relative amounts in all test conditions. The hardening law was validated on compression 

and tension tests over a broad range of strain-rates, from 0.001 /s to 4500 /s, and over a broad 

range of temperatures, from 76 K to 673 K. Particular changes in the flow stress behavior and 

anisotropy with several orders of magnitude increases in strain-rate have been linked to 

transitions in the predominant slip mode and twinning mode (Knezevic et al., 2015b).  

3 A new formulation for relaxing the power-law flow rule imposed strain-rate sensitivity 

In modeling the macroscale deformation response, it is physical and thus desirable to 

account for the strain-rate dependence solely with a functional dependence of 𝜏௖
௦(𝜀̇) on strain-

rate 𝜀̇. However, in visco-plastic single crystal plasticity, rate sensitivity also enters via the 

power-law flow rule and its parameter n in Eq (1). Commonly used values for the exponent, n, 

lie in the range of 1 to 20 in VPSC. With these values, the flow rule can have a significant, 

superfluous effect on the strain-rate sensitivity of the macroscale response (Asaro and 

Needleman, 1985; Hutchinson, 1976; Kalidindi et al., 1992). In principle, the larger the 

exponent, n, the smaller the rate sensitivity. Only in the limit of n approaching infinity (𝑛 → ∞) 

can a power-law rate-insensitive response be achieved, and only then will the rate sensitivity in 

material response be a consequence of solely the rate dependence of the slip resistance 𝜏௖
௦  (𝜀̇ ), 

which is usually desired for metallic materials. In contrast, it is also possible to use slip 

resistance that does not depend on the strain rate and to capture the rate sensitivity solely with 
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exponent n determined from the experimental data for particular material. Achieving this 

numerically is challenging, however, due to the numerical stiffness of the equations involved.  

Table 2. Twin system characteristics and material parameters for the evolution of twin 
resistances. 

 𝛽 = 1, {101ത2}〈101ത1ത〉  𝛽 = 2, {112ത2}〈112ത3ത〉 𝛽 = 3, {101ത1}〈101ത2ത〉 

𝑏ఉ[𝑚] 6.33 x 10
-11 9.24 x 10

-11 3.0796 x 10
-11 

𝑆ఉ 0.167 0.225 0.104 

𝜏௖௥௜௧
ఉ [MPa] 100 230 350 

𝜏௣௥௢௣
ఉ [MPa] 5 230 50 

𝐻𝑃ఉ[MPa√𝑚] 0.135 0.1 0.1 

𝐶ଵఉ 
N/A 

1300 − 100 log ቆ
𝜀̇

𝜀௥̇௘௙
ቇ 

N/A 

𝐶ଶఉ 100  N/A 

𝐶ଷఉ 
N/A 1300 − 100 log ቆ

𝜀̇

𝜀௥̇௘௙
ቇ 

N/A 

 

Figure 1 shows the effect of the exponent n=10 on the stress-strain response of Zr when 

compressed through the thickness of the sheet. The value of n=10 was used in all previous 

reports involving the FE-VPSC calculations (Knezevic et al., 2013d; Segurado et al., 2012). 

These calculations involve repeating the uniaxial test at different strain-rates from 0.001/s to 10/s 

and using the same rate-dependent hardening law for 𝜏௖
௦(𝜀̇). By simply increasing n, the rate 

dependencie is expected to reduce. The values of slip/twin resistance used to generate the stress-

strain curves shown in Fig. 1 were fixed to correspond to deformation at room temperature and a 

strain-rate, 𝜀̇, equal to unity. Therefore there was no contribution to the rate sensitivity from 

𝜏௖
௦(𝜀̇). 

10
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Based on the analysis of material response at different strain-rates it was determined that a 

rate sensitivity of n approximately 400 (m ≈ 0.0025, n=1/m) would be sufficient to reduce the 

rate dependence of stress to a negligible level. 

 

Fig. 1. Effect of n =10 on the room temperature mechanical response of Zr in through-thickness 
compression as a function of imposed strain rate. The rate insensitive strain rate corresponds to 
|𝛆̇| = 1.0 /𝑠.  

This problem has been recognized and two methods are commonly used to remove the 

extraneous rate sensitivity arising from the visco-plastic power-law form (Knezevic et al., 2009; 

Kok et al., 2002). The first method involves simply increasing n to high values. However, this 

method is not efficient because increasing n could result in convergence problems since the non-

linear equations become too stiff and prohibitively challenging for the Newton-Raphson 

numerical schemes to solve.  

The second method involves setting the reference shear rate 𝛾̇଴, equal to the norm of the 

applied macroscopic strain-rate: 𝛾̇଴ = ห𝛆̇௩௣ห, which removes the dependence of grain stresses and 

macroscopic stress upon the norm of the applied strain rate absolutely. To this end, when 𝛆̇௩௣ is 

applied, the relation between 𝛔′௖ and 𝛆̇௩௣
௖  is given by the following rate equation:  
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𝛆̇௩௣
௖ = ห𝛆̇௩௣ห ∑ 𝐦௦௖

ቆ
ቚ𝛔ᇲ೎

∙ 𝐦ೞ೎
ቚ

𝝉೎
ೞ೎ ቇ

௡

௦ 𝑠𝑖𝑔𝑛൫𝛔ᇱ௖
∙  𝐦௦௖

൯.  (8) 

Any applied strain-rate that scales the given value 𝛆̇௩௣ by 𝜆, i.e. 𝜆𝛆̇௩௣, is realized similarly 

through the following rate equation: 

𝜆𝛆̇௩௣
௖ = ห𝜆𝛆̇௩௣ห ∑ 𝐦௦௖

ቆ
ቚ𝛔ᇲ೎

∙ 𝐦ೞ೎
ቚ

𝝉೎
ೞ೎ ቇ

௡

𝑠𝑖𝑔𝑛൫𝛔ᇱ௖
∙  𝐦௦௖

൯௦ . (9) 

Note that 𝜆 only changes the magnitude of the applied strain rate and not the sense of loading. 

The stress 𝛔′௖ will remain unchanged provided that 𝜏௖
௦ does not change with strain-rate making 

the response rate independent. Therefore, this method achieved the complete rate independence. 

In summary, scaling the applied strain rate 𝜆𝛆̇௩௣ will make the grain strain rates also scale since 

𝛆̇௩௣ = 〈𝛆̇௩௣
௖ 〉 → 𝜆𝛆̇௩௣ = 〈𝜆𝛆̇௩௣

௖ 〉, but will not alter the grain stress and the overall polycrystal stress 

provided that 𝛾̇଴ = ห𝜆𝛆̇௩௣ห. In contrast, if the reference value of shear rate was not set to be equal 

to the norm of the scaled applied macroscopic strain rate but kept to be 𝛾̇଴ = ห𝛆̇௩௣ห, scaling the 

applied strain rate would result in scaling the solution grain stress by  𝜆
భ

೙𝛔ᇱ௖ according to:  

𝜆𝛆̇௩௣
௖ = ห𝛆̇௩௣ห ∑ 𝐦௦௖

ቌ
ቤ ఒ

భ
೙𝛔ᇲ೎

∙ 𝐦ೞ೎
ቤ

𝝉೎
ೞ೎ ቍ

௡

𝑠𝑖𝑔𝑛 ൬ 𝜆
భ

೙𝛔ᇱ
௖

∙  𝐦௦௖
൰௦ . Similarly, the overall polycrystal 

stress would also be scaled.  

There is an issue with the second method when it comes to an FE implementation of the rate 

independent Eq. 9. Here, the five-component deviatoric stress, 𝛔′௖, is no longer a function of the 

norm of the applied visco-plastic strain rate, ห𝛆̇௩௣ห, but a function of only four independent 

components of the normalized visco-plastic strain rate. Consequently, the solution for deviatoric 

stress contains five dependent deviatoric stress components. This further implies that the Cauchy 
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stress, required by Abaqus, will only have five independent components, representing a hyper-

surface in six-dimensional stress space. This leads to difficulties when attempting to solve for 

this Cauchy stress within the FE framework since many matrices that need to be inverted within 

the UMAT numerical procedure will be singular.  

In light of the issues faced by the two traditional methods, we propose an alternative method 

to eliminate the power-law rate-sensitivity introduced via the power-law exponent n. To this end, 

we return to the power-law rate-sensitive VPSC where the five deviatoric stress components are 

guaranteed to be independent. The aim is to reduce the power-law rate sensitivity of the 

deviatoric stress as much as possible by increasing n as much as possible. We first modify the 

Newton-Raphson method for solving the visco-plastic Eq. (2) per grain in VPSC by adding a 

loop that will use the solution obtained for a value of 𝑛 = 20 as the initial guess for a higher 

value, say 𝑛 = 50. The scheme can be repeated, such that the solution for 𝑛 = 50 can be used as 

an initial guess for solving for the stress associated with a higher 𝑛 like 80 or 100. With this 

method, the numerical scheme remains stable for every crystal orientation for n<100. We refer to 

this approach as the incremental-n method. As mentioned earlier, we have determined that the 

desired value of n sufficient to relax the rate sensitivity is 400. However, while with the 

incremental-n method we can access higher values of n, we find that this method substantially 

increases the computation time involved in simulations. The power-law equation is solved for 

every crystal at every trial time increment and thus a small increase in the number of iteration to 

solve for grain stress has a significant effect on overall computational time. After performing a 

trade of convergence and computational efficiency study, it was determined that the modified 

Newton-Raphson method works the best for n=50. Here, the added second loop was really 

entered by only a few crystals.  
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The proposed algorithm, called the k-modification method, achieves the best compromise 

between the speed and accuracy. We first define a VPSC rate-sensitive macroscopic constitutive 

function, 𝐠, for relating the macroscopic stress, 𝛔′, and applied macroscopic strain rate, 𝛆̇௩௣
௔௣௣, 

via: 

𝛔′ = 𝐠(𝛆̇௩௣
௔௣௣

).  (10) 

The key idea in this method is to modify the applied strain rate before evaluating the visco-

plastic constitutive function, 𝐠. In place of the original rate 𝛆̇௩௣
௔௣௣, we use a modified strain rate, 

𝛆̇௩௣, whose norm is the (𝑘 + 1)th root of 𝛆̇௩௣
௔௣௣, i.e.: 

𝛆̇௩௣ =
𝛆̇ೡ೛

ೌ೛೛

ቚ𝛆̇ೡ೛
ೌ೛೛

/ఌ̇ೝ೐೑ቚ
ห𝛆̇௩௣

௔௣௣
/𝜀௥̇௘௙ห

భ

ೖశభ.  (11) 

Here, 𝜀௥̇௘௙ represents a reference strain rate, which is used to normalize the applied strain rate 

ensuring that the expression raised to the power is dimensionless. In the current implementation 

𝜀௥̇௘௙ is set to be 𝜀௥̇௘௙ = 1 /s. It can be readily shown that the inverse relationship is:  

𝛆̇௩௣
௔௣௣

= 𝛆̇௩௣ห𝛆̇௩௣/𝜀௥̇௘௙ห
௞
.  (12) 

Finally, the macroscopic visco-plastic constitutive function for the modified 𝛆̇௩௣ is evaluated as: 

𝛔ᇱ = 𝐠൫𝛆̇௩௣൯. (13) 

Relationships 11 and 12 assure that ห𝛆̇௩௣ห approaches unity with increasing k. Macroscopic 

stress, 𝛔ᇱ, can now be calculated after imposing the applied strain rate, 𝛆̇௩௣, which is less rate 

sensitive than the original 𝛆̇௩௣
௔௣௣, provided that we set 𝑘 > 0. As a result, the rate sensitivity is 

now characterized by both the power-law exponent, 𝑛, and the additional exponent 𝑘. By 

analogy to Eq. 9, suppose that the applied strain rate, 𝛆̇௩௣
௔௣௣, is scaled such that 𝜆𝛆̇௩௣

௔௣௣ is applied.  
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Then from Eq. 11 the k-modified imposed strain rate would be 𝜆
భ

ೖశభ𝛆̇௩௣. Similar to the discussion 

after Eq. 9, the grain strain rate changes according to: 𝛆̇௩௣ = 〈𝛆̇௩௣
௖ 〉 → 𝜆

భ

ೖశభ𝛆̇௩௣ = 〈𝜆
భ

ೖశభ𝛆̇௩௣
௖ 〉. 

Finally, the grain stress and macroscopic stress change according to: 𝛔ᇱ = 〈𝛔′௖〉 → 𝜆
భ

(ೖశభ)೙𝛔ᇱ =

〈𝜆
భ

(ೖశభ)೙𝛔′௖〉. The power-law exponent is now multiplied by 𝑘 + 1, which has the direct effect of 

decreasing the overall rate sensitivity effect (m=1/((k+1)n)), provided again that k > 0. Removing 

the rate dependence introduced by the power-law exponent n is the key achievement of the k-

modification method. A notable advantage is that this method does not increase the 

computational time of VPSC calculations.  

To demonstrate the effect, Fig. 2 compares the stress-strain response for the same conditions 

as presented in Fig. 1.It can be seen that the k-modification method for n = 50 and k+1=8 

effectively relaxes the power-law imposed rate sensitivity. Therefore, the rate sensitivity can be 

embedded solely in 𝜏௖
௦(𝜀̇). 

The k-modification method is effective at removing the rate sensitivity introduced by n, 

while still enabling the formulation to retain the visco-plastic power-law flow rule. We will use 

the k-modification method with a value of n(k+1) = 400 in all remaining calculations of the FE-

VPSC model. This value added negligible small computational cost compared to calculations 

with k=0. 
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Fig. 2. Effect of a combination of 𝑛 = 50 and 𝑘 + 1 = 8 on removing the power-law imposed 
strain-rate sensitivity of the mechanical response of Zr in through-thickness compression as a 
function of imposed strain rate. The legend here is the same as the one in Fig. 1.  

It should be noted that there is a fundamental difference between the proposed k-

modification approach and the approach that involves solely increasing the exponent n when 

arriving at the grain stress solution. The effect of increasing n is illustrated on the Fig. 3, where a 

shear stress tensor has been applied to a Zr single crystal oriented in such a way as to activate 

only one prismatic slip system. A relative contribution of each deformation system has been 

calculated and the normalized values (𝛾̇௦/ ∑ 𝛾̇௦
௦) plotted versus the exponent n. Figure 3 shows 

that the relative contribution of individual slip/twin systems changes the n, which in turn will 

cause changes in both the magnitude and direction of the macroscale plastic strain rate. Low 

values of n cause the slip and twinning systems to be active over a relatively wide range of 

stresses, making the results smooth with respect to a change in stress. As illustrated, even if the 

stress tensor is favorable for slip on only one system, several systems can be active for low 

values of the exponent n. In contrast, high values of n bring the resolved shear stress closer to the 

critical resolved shear stress for each active system making the range of stresses to reduce and 

correspond to a particular slip system. In addition to making the activation threshold sharper, it 

also makes the direction of strain rate very sensitive to changes in stress.  
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Fig. 3. Predicted activity of deformation systems in a single crystal of Zr oriented to activate 
only (01ത10)[21ത1ത0] slip system during pure shear as a function of the exponent n. 

While the magnitude of strain rate is defined by both n and k, the increase in k does not 

affect the relative contribution of deformation systems that are active but only affects the scaling 

of the norm of strain rate with the norm of stress. As a result, the direction of strain rate is 

defined solely by n meaning that the unrealistic smoothing associated with lower values of n can 

be present in the k-modification approach. However smoothing is not expected to cause any 

appreciable differences in the response and especially in the macroscopic-level response, as long 

a sufficiently high value of n is used. For example, the macroscopic stresses in the compression 

test of Zr calculated using n=400, on one hand, and using the k-modification approach with k=7 

and n=50, on the other hand, are predicted to be about 1% different from each other. 

4 FE formulation of the power-law relaxed strain-rate sensitivity VPSC capable of 

handling the strain-rate imposed boundary conditions  

Elastic and plastic strain rates can develop heterogeneously in a mechanical test. 

Furthermore, bulk metal forming processes typically impose non-monotonic boundary conditions 

on the sample (Bhattacharyya et al., 2015; Hosford and Caddell, 2011; Jahedi et al., 2015b; 

Jahedi et al., 2015c; Jahedi et al., 2014; Smith et al., 2016; Zecevic et al., 2016c). For these 
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reasons, a polycrystal code, like VPSC, has been integrated into an FE framework, where every 

integration point is a VPSC polycrystal. A strategy for embedding the VPSC model at the meso-

scale level in an implicit FE analysis tools was first described in (Segurado et al., 2012) and later 

advanced in (Knezevic et al., 2013d). Since then, the FE-VPSC model has been successfully 

applied to simulate bi-metallic tube extrusion (Knezevic et al., 2014d), bending of beams 

(Knezevic et al., 2013c), rolling of sheets (Zecevic et al., 2016a, b) and integrity of structural 

components (Knezevic et al., 2016). However, while stand-alone VPSC works for strain-rate-

imposed, stress-imposed, or mixed boundary conditions, the earlier versions of the FE-VPSC 

techniques were based on stress-imposed boundary conditions. This approach caused the model 

to be numerically unstable as n increases above 10. To resolve this problem and test the 

convergence properties in strain rate space, we formulate below an alternative version of FE-

VPSC, which is based on strain-rate-imposed boundary conditions.  

Within the former FE-VPSC UMAT algorithm with stress-imposed boundary conditions, 

the VPSC model begins under the Sachs assumption of a uniform stress enforced on all its 

constituent grains, i.e., 𝛔′௖ = 𝛔′.  From this initial guess, the corresponding single crystal visco-

plastic strain-rate, 𝛆̇௩௣
௖ , as well as the single crystal viscoplastic compliance, 𝐌௖, and back-

extrapolated strain-rate, 𝛆̇଴௖, can be readily calculated. Next, initial guesses for the polycrystal 

compliance, 𝐌, and the polycrystal back-extrapolated strain-rate, 𝛆̇଴, are obtained by assuming 

that they are equal to simple volume averages of the local moduli. With these initial guesses, and 

the applied stress, 𝛔′, the initial guess for the polycrystal strain-rate, can be obtained using Eq. 

(5). At this point, the Eshelby tensor can be computed and the rest of the standard self-consistent 

(SC) iterative procedure can be performed (Eshelby, 1957; Lebensohn and Tomé, 1993; 

Lebensohn et al., 2007). In the SC iterations, new estimates of the grain stress and strain-rate are 
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calculated as well as the average polycrystalline values. The procedure continues until the 

recalculated average grain stresses are within a certain tolerance of the input values at the 

beginning of every iteration. 

In the proposed FE-VPSC UMAT algorithm for the strain-rate-imposed boundary 

conditions, the VPSC model in the first increment starts with an initial guess for grain stresses 

derived from an iso-strain or Taylor model, where a uniform strain-rate is imposed over all 

constituent grains embedded at an FE integration point, i.e., 𝛆̇௩௣
௖  = 𝛆̇௩௣, from which the 

corresponding single crystal stresses, 𝛔′௖, are calculated. From this point onward, the SC 

iterations run as described above. In every subsequent increment, the initial guess is the solution 

from the previous increment. An added benefit of a strain-rate-imposed boundary conditions FE-

VPSC implementation is that it can run with a Taylor-type homogenization through, which is 

faster than the SC homogenization. The new FE-VPSC model can also run as the CPFE code 

(Ardeljan et al., 2015b; Jahedi et al., 2015a; Knezevic et al., 2014c), where every integration 

point represents a single crystal. All the results reported in this paper are obtained using the SC 

homogenization. 

4.1 Constitutive equation and its time integration procedure within the UMAT 

To couple the new FE-VPSC framework in the implicit FE framework, we rely on the rate 

constitutive equation for stress and integration procedure used in (Zecevic et al., 2015b, c). Here, 

the rate of Cauchy stress (Asaro, 1979; Asaro and Needleman, 1985; Asaro and Rice, 1977; Hill, 

1966; Hill and Rice, 1972; Peirce et al., 1982a; Peirce et al., 1982b) is defined at every FE 

integration point as a time derivative of the stress averaged over the polycrystal (Hill’s 

condition 𝛔 = 〈𝛔௖〉) in the global frame as: 
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𝛔̇ = 〈𝛔̇௖〉 = 〈𝛔ෝ௖〉 + 〈𝐖∗௖𝛔௖ − 𝛔௖𝐖∗௖〉 = 〈𝐂௖ ∙ 𝛆̇௘௟
௖ 〉 + 〈𝐖∗௖𝛔௖ − 𝛔௖𝐖∗௖〉, (14) 

where 〈∙〉 denotes the volumetric average, 𝛔ෝ௖ is the Jaumann stress rate for each crystal rotating 

with the lattice, and 𝐖∗௖ is the lattice spin as defined in Eq. 6. Next we proceed with the 

integration of the rate form of the constitutive equation following (Hughes and Winget, 1980; 

Zecevic et al., 2015b, c) as: 

𝛔௧ା∆௧ − 𝛔௧ = 〈𝐂௖ ∙ ∆𝛆௘௟
௖ 〉 + ∫ 〈𝐖∗௖𝛔௖ − 𝛔௖𝐖∗௖〉𝑑𝜏

௧ା∆௧

௧
. (15) 

We decouple the self-consistent determination of the polycrystalline elastic and visco-plastic 

responses as done in (Mercier and Molinari, 2009), thus neglecting the elastic anisotropy of 

individual grains. This means that we can separately treat the elastic properties of the polycrystal 

without consideration of the visco-plastic properties and assume that we have applied a ∆𝜺௘௟ to 

an elastic polycrystal. This permits calculation of the self-consistent elastic stiffness of the HEM 

satisfying: 〈𝐂௖ ∙ ∆𝛆௘௟
௖ 〉 = 𝐂 ∙ ∆𝛆௘௟. The integrated constitutive equation then becomes: 

𝛔௧ା∆௧ = 𝐂 ∙ ∆𝛆௘௟ + 〈𝛔௖,௧ + ∫ (𝐖∗௖𝛔௖ − 𝛔௖𝐖∗௖)𝑑𝜏
௧ା∆௧

௧
〉 = 𝐂 ∙ ∆𝛆௘௟ + 〈∆𝐑∗𝒄𝛔௖,௧∆𝐑∗𝒄்〉, (16) 

where ∆𝐑∗௖ = (𝐈 − 𝛽𝐖∗ୡ∆𝑡)ିଵ(𝐈 + (1 − 𝛽)𝐖∗௖∆𝑡) (Hughes and Winget, 1980). ∆𝐑∗௖ is 

evaluated explicitly based on the spin, 𝐖∗௖, at the start of the time increment. The integration 

parameter, 𝛽, can be selected in the range from zero to one. In our calculations, it is taken to be 

0.5. Due to the explicit integration procedure chosen in evaluating ∆𝐑∗௖, the time step should be 

carefully chosen since it can have some small influence on the solution for cases involving large 

rotations. Since the hydrostatic stress, 𝜎௠
௧ , is invariant to rotation we can separate it and express 

Eq. (16) as follows:  

𝛔௧ା∆௧ = 𝐂 ∙ ∆𝛆௘௟ + 〈∆𝐑∗௖൫𝛔′௖,௧ + 𝐈𝜎௠
௖,௧൯∆𝐑∗௖்〉 = 𝐂 ∙ ∆𝛆௘௟ + 〈∆𝐑∗𝒄𝛔′௖,௧∆𝐑∗௖்〉 + 𝐈𝜎௠

௧ . (17) 
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As an aside, the elastic strain increment is readily determined if 𝛆̇௩௣ is known, that is, ∆𝛆௘௟ =

∆𝛆 − 𝛆̇௩௣
௧ା∆௧∆𝑡. The rate 𝛆̇௩௣

௧ା∆௧ (in what follows we drop the superscript 𝑡 + ∆𝑡: 𝛆̇௩௣
௧ା∆௧ = 𝛆̇௩௣), in 

turn, is related to the deviatoric stress of the polycrystalline aggregate through the visco-plastic 

self-consistent formalism. Finally, the expression for stress that is returned to Abaqus is: 

𝛔௧ା∆௧ = 𝛔௧,௥௢௧ + ∆𝛔 (18) 

where ∆𝛔 = 𝛔ෝ∆𝑡 = 𝐂 ∙ (∆𝛆 − 𝛆̇௩௣∆𝑡) and  𝛔௧,௥௢௧ = 〈∆𝐑∗௖𝛔′௖,௧∆𝐑∗௖்〉 + 𝐈𝜎௠
௧ . 

It is worth noting that Eqs. (17) and (18) are different than those presented in a prior FE-

VPSC implementation (Knezevic et al., 2013d; Segurado et al., 2012).  The difference lies in the 

use of ∆𝐑∗௖ in the current formulation.  In contrast, in the previous one, this was not considered. 

There, the rate form of the constitutive equation was defined in the corrotational material frame 

(subscript mat) rotating with the material spin, 𝐖, as 𝛔ෝ௠௔௧  = 𝐂௠௔௧ ∙ (𝛆̇௠௔௧ − 𝛆̇௩௣,௠௔௧), then 

integrated in the corrotational frame as 𝛔௠௔௧
௧ା∆௧ = 𝐂௠௔௧ ∙ ൫∆𝛆௠௔௧ − 𝛆̇௩௣,௠௔௧∆𝑡൯ + 𝛔௠௔௧

௧ . In the 

global frame this equation corresponds to: 𝛔௧ା∆௧ = 𝐂 ∙ ൫∆𝛆 − 𝛆̇௩௣∆𝑡൯ + ∆𝐑𝛔௧∆𝐑், where 

𝛔௧ = 𝐑௧𝛔௠௔௧
௧ 𝐑௧்

.  

4.2  Solution procedure 

The above defined system of equations (Eq. 16 or 17) is solved using Newton’s method. We 

define a residue in the vector form as follows. The final expression for stress (Eq. 17) is first 

decoupled into its deviatoric, 𝐬௧ା∆௧, and hydrostatic , σ௠
௧ା∆௧, portions and then written in a vector 

form as:  

𝐬௧ା∆௧ − 𝐬௧,௥௢௧ − 𝐂ᇱ
ହ୶଺ ቀ∆𝛆 − ห𝛆̇௩௣/𝜀௥̇௘௙ห

௞
𝐏଺௫ହ𝐞̇௩௣∆𝑡ቁ = 0, (19a) 

σ௠
௧ା∆௧ − σ௠

௧ −
ଵ

ଷ
tr ቂ𝐂 ቀ∆𝛆 − ห𝛆̇௩௣/𝜀௥̇௘௙ห

௞
𝐏଺௫ହ𝐞̇௩௣∆𝑡ቁቃ = 0. (19b) 
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In doing so, we organize the variables in Eq. (19) in a vector form to consist of five independent 

deviatoric components as 𝐞̇௩௣ = ൛𝜀௩̇௣,ଵଵ, 𝜀௩̇௣,ଶଶ, 𝜀௩̇௣,ଵଶ, 𝜀௩̇௣,ଵଷ, 𝜀௩̇௣,ଶଷൟ and 𝐬௧ା∆௧ =  ൛σᇱ
ଵଵ
௧ା∆௧

, σᇱ
ଶଶ
௧ା∆௧

,

σᇱ
ଵଶ
௧ା∆௧

, σᇱ
ଵଷ
௧ା∆௧

, σᇱ
ଶଷ
௧ା∆௧

ൟ. 𝐬௧,௥௢௧ is a vector representation of 〈∆𝐑∗௖𝛔′௖,௧∆𝐑∗௖்〉. Note that ∆𝛆 is 

imposed by Abaqus as a six dimensional vector i.e. ∆𝛆 = {∆𝜀ଵଵ, ∆𝜀ଶଶ, ∆𝜀ଷଷ, 2∆𝜀ଵଶ, 2∆𝜀ଵଷ, 2∆𝜀ଶଷ}. 

Additionally, 𝐂ᇱ
ହ୶଺ is a matrix representation (with removed third row) of 𝐶′௜௝௞௟ = 𝐶௜௝௞௟ −

ଵ

ଷ
𝐶௠௡௞௟𝛿௠௡𝛿௜௝, which is the fourth-rank elastic stiffness tensor that gives the deviatoric stress 

increment when multiplied by the elastic strain increment tensor. 𝐏଺௫ହ is defined as the matrix 

that transforms a five dimensional 𝐞̇௩௣ vector form of the 𝛆̇௩௣ tensor into a six dimensional vector 

form as dictated by ∆𝛆:   

𝐏଺×ହ =

⎣
⎢
⎢
⎢
⎢
⎡

1 0 0 0 0
0 1 0 0 0

−1 −1 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2⎦

⎥
⎥
⎥
⎥
⎤

 (20) 

The elastic stiffness tensor, 𝐂, is calculated based on texture and the invariant elastic single 

crystal constants (Fast et al., 2008; Landry and Knezevic, 2015; Wu et al., 2007). For Zr, these 

are: 𝐶ଵଵ = 143,500 MPa, 𝐶ଷଷ = 164,900 MPa, 𝐶ଵଶ = 72,500 MPa, 𝐶ଵଷ = 65,400 MPa, 𝐶ସସ =

32,100 MPa and 𝐶଺଺ = 35,500 MPa (Meyers and Chawla, 1998). 

Equation (19a) represents a system of five equations and five unknowns, where the 

unknowns are the five components of the visco-plastic strain rate 𝐞̇௩௣. The rate 𝐞̇௩௣ is the 

solution at the UMAT level, which is used to interrogate VPSC operating with the strain-rate-

imposed boundary conditions. VPSC returns the deviatoric stress, which enables calculation of 

𝐬௧ା∆௧ and σ௠
௧ା∆௧ and finally 𝛔௧ା∆௧ for Abaqus.  
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To solve for 𝐞̇௩௣ in the UMAT, we define the following residual in the vector form: 

𝐅൫𝐞̇௩௣൯ = 𝐬௧ା∆௧൫𝐞̇௩௣൯ − 𝐬௧,௥௢௧ − 𝐂ᇱ
ହ୶଺ ቀ∆𝛆 − 𝐏଺௫ହ𝐞̇௩௣ห𝛆̇௩௣/𝜀௥̇௘௙ห

௞
∆𝑡ቁ = 0, (21) 

where 𝐬௧ା∆௧൫𝐞̇௩௣൯ represents the stress calculated based on the VPSC model (where VPSC 

essentially represents a function 𝐬௧ା∆௧൫𝐞̇௩௣൯ at this level). This system of equations is then solved 

iteratively using Newton’s method, where the Jacobian is: 

ப𝐅൫𝐞̇ೡ೛൯

ப𝐞̇ೡ೛ ହ௫ହ

=
ப𝐬೟శ∆೟

ப𝐞̇ೡ೛
+ 𝐂ᇱ

ହ୶଺𝐏଺௫ହ ฬ
𝛆̇ೡ೛

ఌ̇ೝ೐೑
ฬ

௞

∆𝑡 + 𝐂ᇱ
ହ୶଺൫𝐏଺௫ହ𝐞̇௩௣൯∆𝑡𝑘 ฬ

𝛆̇ೡ೛

ఌ̇ೝ೐೑
ฬ

௞ିଶ

𝐞̇௩௣
் 𝐐଺௫ହ

் 𝐏଺௫ହ, (22) 

where: 
ப𝐬೟శ∆೟

ப𝐞̇౬౦
= 𝐌ିଵ and 𝐐଺௫ହ is analogous to 𝐏଺௫ହ only without doubling the shears. Starting 

from an initial guess for 𝐞̇௩௣ (which is usually taken as the solution of the previous time 

increment), every subsequent value of 𝐞̇௩௣ is iteratively obtained using:  

𝐞̇௩௣
௜ାଵ = 𝐞̇௩௣ −௜ ቆ

ப𝐅

ப𝐞̇ೡ೛
൫ 𝐞̇௩௣

௜ ൯ቇ

ିଵ

𝐅൫ 𝐞̇௩௣
௜ ൯. (23) 

Recall that the old FE-VPSC based on the stress-imposed boundary condition involves a 

solution procedure at the UMAT level for total stress (six components) and not visco-plastic 

strain rate (five components). Therefore, the corresponding residual equation is different than 

that given in Eq. (20) (Knezevic et al., 2013d; Segurado et al., 2012).  

4.3 Jacobian for global FE solver 

As a very last step, we define the Jacobian matrix required by the Abaqus global solver 

(2013) for the UMAT level constitutive equation: 𝛔௧ା∆௧ = 𝐂 ቀ∆𝛆 − ห𝛆̇௩௣/𝜀௥̇௘௙ห
௞

𝛆̇௩௣∆𝑡ቁ + 𝛔௧,௥௢௧, 

where ∆𝛆 is an independent and 𝛔௧ା∆௧ is a dependent variable. After differentiation of the 

constitutive equation, the fully analytical expression for the Jacobian is:   
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ப𝛔೟శ∆೟

ப∆𝛆 ଺௫଺
= ቊ𝐈଺௫଺ + 𝐂 ቈ𝐈଺௫଺ ฬ

𝛆̇ೡ೛

ఌ̇ೝ೐೑
ฬ

௞

∆𝑡 + 𝐏଺௫ହ𝐞̇௩௣∆𝑡𝑘 ฬ
𝛆̇ೡ೛

ఌ̇ೝ೐೑
ฬ

௞ିଶ

𝐞̇௩௣
் 𝐐଺௫ହ

் ቉ 𝐏଺௫ହ𝐌
ப𝐬

ப𝛔
ቋ

ିଵ

𝐂. (24) 

The size of the last three matrices within the curly brackets in the chain are 6x5, 5x5, and 

5x6. The only undefined term is 
ப𝐬

ப𝛔
, which is the derivative of the Cauchy deviatoric stress with 

respect to the Cauchy stress and is defined as 

ப𝐬

ப𝛔
=

⎣
⎢
⎢
⎢
⎡

2/3 −1/3 −1/3 0 0 0
−1/3 2/3 −1/3 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1⎦

⎥
⎥
⎥
⎤

, (25a) 

with, 

𝛔ᇱ
ଵଵ =

ଶ

ଷ
𝛔ଵଵ −

ଵ

ଷ
𝛔ଶଶ −

ଵ

ଷ
𝛔ଷଷ, 𝛔ᇱ

ଶଶ =
ଶ

ଷ
𝛔ଶଶ −

ଵ

ଷ
𝛔ଵଵ −

ଵ

ଷ
𝛔ଷଷ, 𝛔ᇱ

ଵଶ = 𝛔ଵଶ,  

 𝛔ᇱ
ଵଷ = 𝛔ଵଷ, 𝛔ᇱ

ଶଷ = 𝛔ଶଷ (25b) 

The elastic stiffness 𝐂 is calculated at the beginning of each deformation increment, meaning 

that texture changes are taken into account. If the deformation is elastic, the stress tensor and the 

Jacobian for Abaqus are directly available from the elastic SC response without the need to 

determine a visco-plastic strain rate, which in this case is zero. The procedure is fully implicit in 

terms of the stress-strain measures, where internal equilibrium is checked at every iteration. 

However, the plastic spin used for the integration of stress rotation is calculated based on shear 

rates from the previous time increment and is assumed to be constant in the iterations for solving 

current visco-plastic strain rate. The internal variables such as grain orientations, dislocation 

densities, etc. are updated at the end of the increment. It should also be noted that the new 

UMAT facilitates that each FE integration point in an FE mesh can be associated with either a 

single crystal or a polycrystalline VPSC material point. In the former case, the overall response 
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of the polycrystalline material is obtained by the micromechanical FE homogenization while in 

the latter case is multiscale and involves a combination of the mesoscale VPSC homogenization 

followed by the FE overall homogenization.  

5 Results 

5.1 Validation of FE-VPSC using a single-element model  

Before moving forward to the application of a Taylor impact test, we first test the FE-VPSC 

UMAT to make sure that it is capable of exactly reproducing results attainable using a stand-

alone VPSC code (SA-VPSC). Toward this end, we compare results of texture and stress-strain 

response in a sheet of Zr from the FE-VPSC code with the corresponding predictions from the 

SA-VPSC. We consider two types of tests: compression in one of the in-plane directions of the 

sheet (called IPC2) under a strain rate of 3500/s and in-plane simple shear (in the in-

plane/through-thickness directions) under a strain rate of 0.001/s. The former is chosen in order 

to check if twinning is treated properly while the latter is selected to make sure the 

macroscopically imposed spin due to simple shear deformation is accounted for correctly. Figure 

4 presents the stress–strain curves and pole figures at the end of deformation for both tests. The 

agreement is excellent and provides confidence in the UMAT developed here, such that we can 

progress to the more complex problem of a Taylor impact test for which stand-alone VPSC 

would not apply.   

In addition to the validation against the SA VPSC code, we have performed a simple shear 

test on a single crystal by imposing 𝜀ଶ̇ଷ as shown in Fig. 3 to further test the validity of our 

rotation treatment. As illustrated, only one prismatic slip system (01ത10)[21ത1ത0] is active for 

values of n greater than 20 and the crystal orientation remains stable during deformation to large 
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strain levels. The hardening was turned off since the slip resistance of the active slip system 

would increase, allowing for unphysical activation of other slip systems.  

 

Fig. 4. (a) Predictions for the stress-strain response and (b) texture development at the end of 
deformation for Zr from the FE-VPSC UMAT developed here and the stand-alone VPSC code 
(SA-VPSC) for in-plane compression in the IPC2 direction under a strain rate of 3500/s and 
simple shear in IP2-TT direction under a strain rate of 0.001/s. Results from the two codes are 
indistinguishable. 

5.2 Application case study: the Taylor impact test of Zr 

The FE-VPSC model is applied to calculate the deformation of high-purity Zr in a Taylor 

impact test. It is known that the strain rate distribution generated during this test is highly 

heterogeneous, giving rise to variation in the plastic deformation response and microstructural 

evolution throughout the sample (Maudlin et al., 1999a). This test has been a challenge to model 

comprehensively and across many scales from the macroscale response to the underlying 

microscopic deformation mechanisms (Maudlin et al., 1999b). We show here that the new multi-

scale FE-VPSC is well suited to model such a test and in turn, this test represents a good check 

for the model.   
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Fig. 5. Pole figures showing the initial texture of the clock-rolled and recrystallized zirconium 
plate: (a) measured by X-ray diffraction and (b) approximated measure texture using 150 
weighted orientations used in modeling.  

The material used is the same one that has been examined in several prior studies and the 

complete details can be found in (Ardeljan et al., 2015a; Bingert et al., 2002; Kaschner and Gray 

III, 2000; Knezevic et al., 2015b). It is a clock-rolled and fully recrystallized plate of Zr with the 

following chemical composition (wt. ppm): O < 50, C < 22, N < 20, Fe < 50, Al < 20, V < 50, Hf 

35, Ti<25 and Zr balance. As a result of the clock rolling process, the material has a strong in-

plane isotropic basal texture. The initial texture is presented using pole figures in Fig. 5a. Figure 

5b shows an approximated texture to the texture shown in Fig. 5a that is represented using 150 

weighted orientations. It achieves reasonable consistency. Some second-order differences are 

seen. Particularly, some asymmetries in the experimental texture are not captured by the 

approximate texture. Nonetheless, the important strong basal pole alignment with the normal 

direction of the sheet and the nearly random in-plane distribution of the prismatic poles are 

captured. The approximated texture is used in the FE simulations where every FE integration 

point is initialized by embedding the same 150 weighted orientations. Figure 6 shows 

comparisons of true stress-true strain compressive response under several deformation conditions 

along the in plane (IPC) and through-thickness (TTC) between measurements and predictions 

using the measured texture (Fig. 6a) and the approximated texture (Fig. 6b). It can be seen that 

texture in Fig. 5b is representative in terms of capturing the material response.  
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Fig. 6. Predictions based on the parameters in Table 1 and 2 and using: (a) the full measured 
texture containing many orientations and (b) approximated texture using 150 weighted 
orientations. The solid lines represent experimentally measured stress strain curve while the 
dashed lines represent the predictions. 

Taylor cylinder specimens were machined from the clock-rolled Zr plate such that the 

cylinder axis aligned with the IP2 direction of the plate. The length and diameter of the 

cylindrical specimens were 50.8 mm and 7.62 mm, respectively. The cylinders are launched as a 

projectile toward a steel target. The velocity of the shot studied here was 100 m/s. More 

experimental details on the Taylor impact cylinder test method can be found in (Maudlin et al., 

1999a; Maudlin et al., 1999b).  

Figure 7 shows the 3D FE model set up for simulating the Taylor impact cylinder test. As 

shown, only one-quarter of the cylinder is modeled, taking advantage of symmetry in the model 
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geometry, material response and boundary conditions. This quarter cylinder model used 405 

elements of the type C3D8. The element aspect ratio varied from being approximately 1 in the 

foot region to approximately 2.8 at the tail of the cylinder. There was no appreciable effect of the 

mesh on the results according to mesh sensitivity study performed. An initial velocity field of 

100 m/s was applied to the cylinder. The wall was modeled as a fixed rigid plane.  

 

Fig. 7. Simulation set up for the Zr Taylor impact simulation. The initial FE model is the ¼ 
cylinder, which consists of 405 C3D8 (continuum 3D 8 node) elements.  

To perform the dynamic impact simulation, we use the dynamic implicit FE code called 

ABAQUS STANDARD dynamic. A density value for Zr of ρ = 6520 kg/m3 was used to account 

for inertia effects in simulating the impact tests. In the literature an explicit solver is generally 

used for conducting FE simulations in the dynamic regime (Cerreta et al., 2013; Maudlin et al., 

1999b). Within the implicit dynamic analyses an acceleration that balances the residual force is 

calculated on the nodes while enforcing the linear momentum balance equation. The difference 

between the implicit and explicit dynamic analysis is that the former analyses assume that the 

stress waves have communicated information across multiple elements whereas the latter 
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analyses propagate information over a distance that is less than one element per time step. 

Therefore, to more accurately simulate the change in shape of the Zr specimen and the evolution 

 

Fig. 8. Contours of the equivalent plastic strain-rate over the sample cross-sectional area at times 
indicated in the figure during the impact test. 

 of texture and twin volume fraction during the impact, we decided to use the implicit solver for 

which we developed the new UMAT. As described above, every FE integration point was 

represented by a VPSC polycrystal with 150 orientations, which is a smaller number than is 

typically used in stand-alone VPSC calculations.  However, in FE, there is the additional concern 

that computational time increases with number of orientations (Knezevic et al., 2016), which can 
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be relaxed by reducing the number of orientations embedded at integration points or by the 

development of high-performance applications (Knezevic and Savage, 2014; Mihaila et al., 

2014; Savage and Knezevic, 2015). The former approach is used here.  

 

Fig. 9. Cross-sections of the Zr Taylor cylinder after the impact as a function of the distance 
from the foot predicted by FE-VPSC along with the experimentally measured points 
superimposed over the FE mesh. The initial cross-sectional geometry is shown to illustrate the 
extend of plastic deformation from the foot towards the tail. It can be seen that the cross-sections 
40 mm and 45.1 (the actual tail cross-section) from the foot do not show any permanent shape 
change.  

Figure 8 shows the time evolution of the equivalent plastic strain rate that develops during 

the simulation over the time period simulated (1.01E-4 s). The calculations indicate that the 

strain rate develops heterogeneously along the sample length, with peak rates rising substantially 

to excess of 104/s. The peak position travels from the foot, where impact first occurs, to the tail 

of the sample. During its excursion, the sample deforms elasto-plastically until the peak 

decreases in intensity to cause only elastic deformation to no deformation.  



42 

 

Fig. 10. Comparison between measured and simulated geometrical changes of the Zr Taylor 
cylinder after the impact. An elliptical cross-sectional shape from the foot to about 40 mm from 
the foot is evident from the major and minor radial strain plot. The R-value plot presents the ratio 
between the major radial strain and the minor radial strain. The aspect ratio plot depicts the ratio 
between the major and minor axis of the cylinder. 

When such variable plastic deformation occurs, it can be expected that the sample will have 

incurred non-uniform plastic distortions. Three-dimensional post-impact specimen shapes were 

digitized using the procedure described in (Maudlin et al., 1999b) in order to estimate the 

distribution of strains. The cylinder cross-section changed shape from a circle to an ellipse and  

for Zr, these changes typically vary non-linearly along the cylinder axis. Figure 9 shows the 

cross-sections for the sample at different points from the foot of the sample. Such permanent 

distortions are commonly quantified as the radial strains in the major and minor axes, their ratio 

or the so-called r-value, and the aspect ratio of the ellipse. Figure 10 presents these quantities as 
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a function of position from the foot of the sample. From the comparison between the calculations 

and the corresponding measurements, we observe that the model is capable of capturing 

reasonably well the variation in the radial strains, r-values, and aspect ratios. It is also worth 

noting that these good predictions indicate that the rate-sensitive dislocation hardening model, 

previously developed and validated on mechanical testing and microstructural data collected 

over strain rates of 0.001 /s to 4500 /s, applies to much higher strain rates without adjusting the 

parameters.  The agreement suggests that thermally activated glide and deformation twinning are 

still controlling mechanisms of plastic deformation.  

The variations in distortions along the length are a signature of differences in microstructural 

evolution. The calculated textures at different points along the cylinder are compared with 

experimental measurements made by EBSD. Specifically five different points along the cylinder 

were examined located at: 0.1 µm, 2 mm, 8 mm, 14 mm, and 44 mm from the foot of the sample. 

Figure 11 presents side-by-side the calculated and measured basal and prismatic pole figures 

using the same multiples of random distribution (MRD) scale. The comparison indicates that the 

model achieves good agreement with the measurements in both the main components and their 

variation along the length of the cylindrical sample. The vertical twinning fiber predicted on 

{101ത0} simulation pole figures appears not as distributed as in the experimental pole figures. 

Also, the weakening from the tail towards the foot of the strong {0001} peak along the TT 

direction seems to be over predicted. Texture differences between the first portion of the cylinder 

(from 0 to 14 mm) and the end at 44 mm, can easily be attributed to variances in twinning 

activity. EBSD was used to detect deformation twinning, including the type activated and its 

volume fraction, at these same points along the cylinder. The scans were taken around the 
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Fig. 11. Texture evolution in the cylinder after the impact: (a) 0.1 µm, (b) 2 mm, (c) 8 mm, (d) 
14 mm, and (e) 44 mm from the foot. Texture is measured by EBSD.  

centerline of the cylinder. Figure 12 presents the maps, where reoriented twin domains that are 

several tens of nm in thickness are visible. These measurements show that amount of twinning 

varies substantially along the cylinder. At the foot, twinning is profuse and consists 

predominantly of tensile {101ത2} twinning and less than 5% of the compression {112ത2} twin. The 
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twin fraction appears to not vary much from 0.1 µm to 14 mm from the foot. Farther away the 

twin fraction decreases. Figure 13 indicates a good agreement between the model predictions and 

measurement of twin volume fraction. 

 

Fig. 12. EBSD maps showing microstructure in the cylinder after the impact at: (a) 0.1 µm, (b) 2 
mm, (c) 8 mm, (d) 14 mm, and (e) 44 mm distance from the foot.  

 

Fig. 13. Comparison of measured and predicted twin volume fraction in the cylinder after the 
impact as a function of distance from the foot. The twin volume fraction was determined by 
counting % of twin boundaries, which is regarded as an upper bound estimate.   
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6 Conclusions  

In this work, we have presented a finite element based multi-scale constitutive model for the 

high-rate deformation of polycrystals that deform by multiple slip and twinning systems. The 

model enables treatment of strain-rate sensitivities of a material response to be a consequence of 

dislocation motion on active crystallographic slip systems. This is a significant achievement 

because the prior approaches to single crystal visco-plasticity intrinsically include some rate 

sensitivity through the power-law flow rule. Here, the rate sensitivities enter from choices of the 

exponent n, which is typically selected to be well below 100 and this does not adequately 

represent the strain-rate sensitive plastic deformation behavior of a material. We develop a 

methodology that relaxes the rate sensitivities that are introduced by the power-law exponent and 

still retain use of the visco-plastic power-law formulation. This method enables us to indirectly 

increase values of n, achieving the desired effect of embedding the rate sensitivity into the 

evolution of resistance to slip and slip-slip and slip-twin interactions. We have developed a 

UMAT, which integrates this new methodology for treating the strain-rate sensitivity and also 

allows for imposing the strain-rate boundary conditions over a polycrystal in VPSC. The latter, 

along with other implemented improvements, overcomes the limitation of prior FE-VPSC 

approaches that were capable of handling solely stress-imposed boundary conditions and were 

less numerically stable. Through these two chief advancements, the scale transitions from crystal 

plasticity to polycrystalline plasticity and from polycrystalline plasticity to the FE UMAT are 

effectively treated enabling simulations of dynamic tests. With the model, the shape changes, 

texture evolution, and twin fractions are calculated for Zr in a Taylor impact cylinder test and all 

aspects achieve very good agreement with measurements. Another significant outcome was the 

fact that the thermally activated hardening law for Zr apply to much higher strain-rates than the 
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quasi-static ones under which it was characterized. It suggests that dislocation motion at the high 

strain-rates generated by the Taylor impact test (104 /s - 105 /s) is still dominated by thermal 

activation.  

More generally, the modeling of microstructure-property relationships in mechanical tests 

can be significantly improved by allowing only the strain-rate dependencies of material behavior 

due to the physics of dislocation motion to enter into the formulation. Particularly, when the test 

generates spatially and temporally varying mechanical fields varying widely in strain-rate, it is 

also desirable that the FE formulation and UMAT are sufficiently flexible to replicate the actual 

boundary conditions. 
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Appendix 

We present a summary of the main equations for the evolution of slip and twin resistances. 

The slip resistances per slip system evolve using: 

𝜏௖
௦ = 𝜏଴

ఈ + 𝜏଴,ு௉
ఈ + 𝜏௙௢௥

௦ + 𝜏ௗ௘௕
ఈ .  (A1) 

The initial slip resistances per slip mode are:   

𝜏଴
ఈ = 𝐴ఈ ൬1 + 𝐵ఈ log ൬

ఌ̇

ఌ̇ೝ೐೑
൰൰ exp ቀ−

்

஼ഀ
ቁ ൫1 + 𝐸ఈ𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜎ఈ, 𝜈ఈ)൯, (A2) 
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where 𝐴ఈ, 𝐵ఈ, and 𝐶ఈ are constants and T and 𝜀̇ are the current temperature and strain rate, 

respectively. The constant 𝐸ఈ and lognormal terms, 𝜎ఈ and 𝜈ఈ, are used to capture the saturation 

of the resistances at high temperatures seen experimentally. The grain size barrier term is: 

𝜏ு௉
௦ = 𝜇ఈ(𝑇)𝐻𝑃ఈට

௕ഀ

ௗ೒
,  (A3) 

where b  is the magnitude of the Burgers vector, 𝑑௚ is the initial grain size, 𝜇ఈ(𝑇) = 40.06 −

0.022𝑇 is the effective shear modulus taken to be the same for all shear directions and 𝐻𝑃ఈ is 

the Hall-Petch parameter. The evolution of the forest and the debris terms are governed by the 

evolution of the forest 𝜌௙௢௥
௦ (𝜀̇, 𝑇) and debris 𝜌ௗ௘௕(𝜀̇, 𝑇) dislocation densities: 

𝜏௙௢௥
௦ (𝜀̇, 𝑇) = 𝑏ఈ𝜇ఈ(𝑇)ට𝜒௦௦ 𝜌௙௢௥

௦ᇱ (𝜀̇, 𝑇),  (A4) 

𝜏ௗ௘௕
ఈ (𝜀̇, 𝑇) = 𝑘ௗ௘௕𝜇ఈ(𝑇)𝑏ఈඥ𝜌ௗ௘௕(𝜀̇, 𝑇) log ൬

ଵ

௕ഀඥఘ೏೐್(ఌ̇,்)
൰.  (A5) 

The evolution of the stored forest density is governed by competition between the rate of 

storage/generation and the rate of dynamic recovery/removal: 

డఘ೑೚ೝ
ೞ

డఊೞ
=

డఘ೒೐೙,೑೚ೝ
ೞ

డఊೞ
−

డఘೝ೐೘,೑೚ೝ
ೞ

డఊೞ
= 𝑘ଵ

௦ට𝜌௙௢௥
௦ − 𝑘ଶ

௦(𝜀̇, 𝑇)𝜌௙௢௥
௦ .  (A6) 

The rate of debris development is coupled to the rate of recovery of all active dislocations 

through:  

𝑑𝜌ௗ௘௕ = 𝑞ఈ𝑏ఈඥ𝜌ௗ௘௕

డఘೝ೐೘,೑೚ೝ
ೞ

డఊೞ
|𝑑𝛾௦|.  (A7) 

𝑘ଵ
௦ is a rate-insensitive coefficient for dislocation storage by statistical trapping of mobile 

dislocations and 𝑘ଶ
௦ is a rate-sensitive coefficient that accounts for dynamic recovery by 

thermally activated mechanisms calculated using: 
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௞మ
ೞ

௞భ
ೞ =

ଵ

ඨ(ఞషభ)ೞೞᇲ ഓೞೌ೟
ೞᇲ

್ഀᇲ
ഋഀᇲ

, 𝜏௦௔௧
௦ =

஽ഀ(௕ഀ)య௚ഀఓഀ

஽ഀ(௕ഀ)యି௞் ୪୭୥ቀ
ഄ̇

ഄ̇బ
ቁ
 . (A8) 

Here, 𝑘, 𝜀̇଴, 𝑔ఈ, 𝜒௦௦ᇱ, and 𝐷ఈ

 
are the Boltzmann constant, a reference strain rate taken to be 109 

/s, an effective activation enthalpy, anisotropic dislocation interaction coefficient, and a drag 

stress, respectively.  

The evolution of twin resistances follows: 

𝜏௖
ఉ

= 𝜏଴
ఉ

+ 𝜏଴,ு௉
௧ + 𝜏௦௟௜௣

ఉ .  (A9) 

Here, the twin activation stress accounts for a temperature-independent friction term 𝜏଴
ఉ, a Hall-

Petch-like term 𝜏଴,ு௉
௧ , and a latent hardening term that couples slip and twin systems. 

𝜏଴
ఉ

= 𝜏௣௥௢௣
ఉ

+ ቀ𝜏௖௥௜௧
ఉ

− 𝜏௣௥௢௣
ఉ

ቁ exp ൬−
∑ ఘ೑೚ೝ

ೞ

௡ഀఘೞೌ೟
ೞ ൰   (A10) 

where 𝜏௖௥௜௧
ఉ  and 𝜏௣௥௢௣

ఉ  are the nucleation and propagation stresses, whose contribution to twin 

activation is leveraged by the probability term 
∑ ఘ೑೚ೝ

ೞ

௡ഀఘೞೌ೟
ೞ . The Hall-Petch-like term and the latent 

hardening term are: 

𝜏଴,ு௉
௧ =

ு௉ഁ

ඥௗ೒
 , (A11) 

𝜏௦௟௜௣
ఉ

= ∑ 𝐶ఈఉ𝑏ఉ𝜇ఈ(𝑇)𝑏ఈ𝜌௙௢௥
௦

௦ ,  (A12) 

where 𝜇ఉ is the elastic shear modulus on the twin system, 𝑏ఉ is the Burgers vector of a given 

twin system, and  𝐶ఉఈ is the latent hardening matrix in function of strain rate.  
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Chapter 2: A new visco-plastic self-consistent formulation implicit in 
dislocation-based hardening within implicit finite elements: Application to 

high strain rate and impact deformation of tantalum 

This chapter was published as: “A new visco-plastic self-consistent formulation implicit in 

dislocation-based hardening within implicit finite elements: Application to high strain rate and 

impact deformation of tantalum”, Miroslav Zecevic and Marko Knezevic, Computer Methods in 

Applied Mechanics and Engineering 341 (2018): 888-916. My contribution to this chapter was: 

 development and implementation of implicit integration of slip resistances within the 

rate insensitive visco-plastic self-consistent model coupled with implicit finite 

elements 

 implementation of the remeshing procedure and the algorithm for interpolation of the 

model state variables 

 calibration of the hardening parameters for Ta 

 finite element modeling of Taylor impact of Ta cylinder and comparison of 

predictions with experimental measurements 

 writing the first draft of the paper.  
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impact deformation of tantalum 
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Abstract 

Modeling deformation processes of materials under high strain rate and impact conditions in 

which the strain rates vary spatiotemporally over several orders of magnitude is challenging, 

especially in terms of constitutive description. Visco-plastic power-law flow rule, commonly 

used within crystal plasticity constitutive models, usually introduces superfluous strain rate 

effects, entering numerically via the slip activation criterion, which result in artificially high flow 

stress predictions under high strain rate deformation conditions. This paper presents a novel, 

implicit finite element implementation of a visco-plastic self-consistent polycrystal model that is 

implicit in dislocation-based hardening with removed strain rate sensitivity introduced by the 

power-law flow rule. In the model, the strain rate dependence of the flow stress is defined solely 

by the rate sensitivity of Peierls stress and the evolution of dislocation density within the 

hardening law, enabling the prediction of high strain rate and impact deformation. As a result, 

the predicted flow stress is accurate in its magnitude. The physically based strain rate and 

temperature sensitive model also features, in addition to Schmid, the non-Schmid activation 

contribution for slip, which is necessary for understanding and modeling the plastic deformation 

of body-centered cubic metals. The model is calibrated to simulate the strain rate- and 

temperature-sensitive monotonic deformation of tantalum and is subsequently applied to a 

Taylor impact test of the same material. Since the impact simulation required remeshing and 

interpolation of state variables, the spherical linear interpolation algorithm in the space of 
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quaternions is implemented to facilitate the interpolation of texture. Predictions of the simulation 

were found to compare favorably with experimental measurements of post-test geometrical 

changes and texture evolution. The implementation and insights from these predictions are 

presented and discussed in the paper. 

Keywords: Microstructures; Anisotropic material; Crystal plasticity; Finite elements; Impact 

testing  
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1 Introduction 

Body-centered-cubic (BCC) refractory metals often operate under extreme mechanical and 

thermal conditions in applications such as anti-armor systems, missile bodies, space vehicle 

components (including vanes and nozzles that guide propulsion in rocket motors), aircraft 

structural components (including aircraft engines and engine parts), particle accelerators, 

electronic heat sinks, and heat treating and glass-melting furnaces [1-4]. Tantalum (Ta) belongs 

to the group of the refractory metals, which are known to exhibit strong temperature and strain 

rate dependent mechanical behavior [5-8]. 

Crystal plasticity constitutive theories have been developed and utilized over the past several 

decades to physically describe the behavior of metals by accounting for the details of their 

microstructure and the crystallography of the prevalent grain-scale deformation mechanisms [9-

13]. Such theories facilitate a deeper understanding of the deformation behavior of 

polycrystalline metals and allow more accurate simulations of metal fabrication processes, when 

compared to the commonly used phenomenological plasticity models [14-18]. The predictions of 

the mechanical response and concomitant microstructure evolution of metallic materials under 

high strain rate and impact are critically important for the evaluation of metallic components in 

service and during their fabrication on a computer rather than the shop floor. The present paper is 

concerned with the development of more accurate descriptions of the deformation behavior of 

materials under high strain rate and high temperature, as well as the integration of such 

descriptions into the finite element (FE) framework to facilitate predictions of microstructure and 

deformed geometries. The stress needed to activate crystallographic slip depends on strain-rate 

and temperature and evolves with strain as dislocations interact and become stored in the crystal. 

Therefore, the deformation response under high strain rate and temperature conditions can be 
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better understood and predicted with knowledge of crystallography of the deformation 

mechanisms and their contribution to microstructure evolution. 

Taylor impact testing is used for determining dynamic yield stresses of polycrystalline 

metals [19]. The same test was useful in validating various constitutive laws for high strain rate 

deformation of metals because the metal undergoes a wide range of strain rates and strain levels 

during the test [20-22]. The test involves propelling a cylindrical specimen at a rigid target. The 

shape changes, and the microstructure can be characterized. As a result of the cylinder’s highly 

heterogeneous deformation, the underlying microstructure can substantially vary throughout the 

cylinder. 

Several classical plasticity models have been developed to describe the temperature and 

strain rate dependent behaviors of various metals, including BCC. In the Johnson-Cook model, 

the von Mises flow stress is expressed as a function of strain rate and temperature [23]. Later, 

Zerilli and Armstrong proposed a different strain rate and temperature sensitive analytical 

expression for flow stress, motivated by dislocation mechanics, and they applied the model 

specifically to simulate Ta behavior [24, 25]. However, both formulations are largely empirical. 

Models known as the internal state variables (ISV) models, with parameters therein as a function 

of the strain-rate and temperature, have also been used in large deformation of metals [26]. 

However, accuracy of ISV models depends on the expense of a laborious tabulation of model 

parameters from experiments. More advanced models accounting for thermal activation of 

dislocations in a largely phenomenological manner, known as the Steinberg-Guinan [27] and 

Preston-Tonks-Wallace [28] models, have reproduced the behavior of Ta at a broad range of 

temperatures and strain rates. However, these models rely on fitting to macroscopic data while 

not explicitly considering the deformation physics at the level of crystallographic slip systems. 



63 

The mechanical threshold stress (MTS) model, originally proposed by Follansbee and Kocks 

[29], was used for modeling dynamic deformation of Ta [6, 30]. The main drawback of the 

above-described models is that they only capture the rate and temperature sensitive behavior of 

flow stress. The shape of the yield surface remains constant throughout the deformation process 

regardless of the microstructural changes happening within the material (e.g. texture evolution, 

twinning), which can greatly affect the anisotropy of the response. Continuum anisotropic yield 

surfaces, which evolve during deformation, specifically developed to account for plastic 

anisotropy and tension-compression asymmetry incorporated into a FE framework, represent an 

attractive alternative mainly due to their computational efficiency and accuracy [31, 32]. These 

models have been successfully applied to predict the deformation and geometric changes of the 

Taylor impact specimens. However, evolution of the yield surface is captured for only one strain 

path while the deformation within the Taylor cylinder is very heterogeneous. Therefore, the 

evolution of the yield surface will be inappropriate for large number of points because their 

strain history is different from the one to which the yield surface was fitted. Alternatively, the 

models for the evolution of flow stress can be implemented into crystal plasticity models. The 

MTS model has been implemented in crystal plasticity models to operate at the slip system level 

in [7, 33], where the MTS is the slip resistance at 0 °K and the flow rule is an exponential 

function. While predictive, the model has a large number of fitting parameters. Physics-based 

constitutive model relying on the Orowan’s equation and transition state theory with a Taylor 

type full-constraint homogenization has been applied to simulate constitutive behavior and 

microstructural evolution of Ta in [34]. Good agreement with the experiments was achieved. 

The strain-rate and temperature sensitivity of metals can be well described by models that 

are based on thermally activated glide kinetics within crystal plasticity [35]. The activation stress 
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for dislocation glide usually relies solely on the Schmid law. In this law, slip is activated when 

the stress tensor projected onto the glide plane in its glide direction reaches a value of slip 

resistance [36]. However, the glide in BCC metals, such as Ta, is known to violate the Schmid 

law. The behavior manifests in tension-compression asymmetry and plastic anisotropy [37-42]. 

The behavior is referred to as non-Schmid and has been attributed to the motion of the non-

planar core of screw dislocations and the role that non-glide stresses play in the movement of the 

dislocation through the lattice [43-48]. Specifically, in addition to the Schmid tensor, there are 

other stress components resolved in the remaining two shear directions and the three normal 

components [49]. A visco-plastic self-consistent (VPSC) polycrystal model for BCC metals that 

includes the local non-Schmid effects has recently been developed in [50, 51] and will be used in 

the present work. 

It is desirable for rate dependence in the macroscale response to arise solely due to the rate 

dependence of dislocation motion on individual slip systems at the slip system level [10, 52]. 

However, difficulty can arise from power-law, rate-sensitive, hardening law crystal visco-

plasticity models [53]. The visco-plastic rate-dependent flow theory is used to uniquely 

determine the set of independent slip systems accommodating the imposed plastic strain [54]. 

The flow rule in this theory involves a power-law relation whose exponent n represents the 

inverse of material rate sensitivity [11, 55]. Hence, the flow rule introduces undesirable rate 

sensitivity, which can have a marked effect on macroscale response, making it unrealistic. 

The objective of this study is to develop a multi-level model that links dislocation-crystal- 

polycrystal-component-scale within an FE framework for simulating the rate- and temperature-

sensitive deformation response of metals (where the rate sensitivity is coming solely from slip 

resistance) and thermally activated glide. The new formulation uses the visco-plastic flow rule at 
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a single crystal level, with removed rate sensitivity coming from the visco-plastic power-law 

relation. The hardening law used is dislocation density-based [56] relying on both Schmid and 

non-Schmid activation stresses for dislocation glide [50]. Self-consistent method is used for 

homogenization and the overall procedure is formulated as implicit in hardening. Therefore, the 

proposed polycrystal plasticity model is a modification of the widely used VPSC model [57]. 

The comprehensive formulation is calibrated to simulate high strain rate- and temperature-

sensitive deformation of Ta and subsequently applied to simulate a Taylor impact test of the 

same material. The predictions in terms of geometry and evolution of texture are compared with 

experiments. The implementation and results are presented and discussed in this paper.  

2 Modeling framework  

This section presents details of the multi-level modeling framework aimed at simulating the 

microstructure-property relationships in a BCC polycrystal during high strain rate and impact 

deformation conditions. At the macro scale, the implicit FE solver is used for solving initial 

boundary value problem. Local constitutive response at FE integration points is solved by self-

consistent homogenization of visco-plastic polycrystal (VPSC model) [57], which integrates a 

dislocation density-based hardening law [58, 59]. In the proposed model, the slip resistances are 

evolved implicitly while all the other state variables (crystal orientations, grain shape, 

temperature, etc) are evolved explicitly. In addition, the macroscopic constitutive equation is also 

integrated implicitly. 

The Taylor impact test of Ta cylinder was previously modeled in [30, 34, 60]. First, Bingert 

et al. employed a multisurface algorithm [61] to describe the yield surface of Ta obtained by 

Taylor-Bishop-Hill polycrystal calculations. The yield surface was only allowed to expand with 

the evolution of yield stress described by the MTS model [6], while the shape of the yield surface 
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remained constant during deformation. Consequently, the texture evolution and heterogeneous 

hardening during deformation had no influence on the shape of the yield surface. Despite these 

simplifications model predicts the post-test geometry well. Subsequently, Plunkett et al. used a 

more sophisticated model capable of predicting effects of texture evolution and twinning on the 

shape of the yield surface to simulate Taylor impact tests of zirconium and tantalum cylinders 

[60]. In the case of zirconium cylinder, the evolution of the yield surface was predicted using the 

VPSC model. Next, the predicted evolution of the yield surface was fitted with the macroscopic 

yield criterion (CPB06). As noted before, the main drawback of this approach is that the yield 

surface evolution is recorded for only one specific strain history. It is clear that during Taylor 

impact simulation strain histories of different points are quite heterogeneous. Consequently, the 

predicted yield surface will deviate from the actual yield surface for points that experience strain 

history different from the one used during the fitting procedure. In addition, both of the modeling 

approaches are incapable of predicting microstructural evolution. On the other hand, Kothari and 

Anand proposed a sophisticated polycrystal plasticity model for simulating deformation of Ta 

and successfully predicted the mechanical response and microstructural evolution as a function 

of strain rate and temperature, including the Taylor impact tests at two different strain rates and 

temperatures [34]. Single crystal response was modeled using the equation of Orowan, which 

relates the slip system shear rates with a density of mobile dislocations and an average value of 

dislocation velocity [62]. The average dislocation velocity was defined in terms of the resolved 

shear stress, critical resolved shear stress, and temperature using the transition-state theory [63]. 

A homogenized response at every integration point was obtained by the full-constraint Taylor 

type homogenization. 
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In summary, the models developed by Bingert et al. and Plunkett et al. rely on fitting the 

yield surfaces predicted by polycrystal plasticity models. On the other hand, the model 

developed by Kothari and Anand as well as the model presented in this work directly use the 

polycrystal plasticity constitutive law at each integration point of the finite element model 

facilitating more accurate predictions at a higher computational cost. As mentioned above, the 

work of Kothari and Anand utilized the physics-based Orowan’s equation as the single crystal 

flow rule, while the work presented here relies on the power-law flow rule. While the former 

work utilized a simple empirical hardening law, the work presented here relies on a rate and 

temperature sensitive dislocation density-based hardening law. Moreover, the self-consistent 

homogenization method utilized in the present model is more advanced than the full constraint 

Taylor approach. In summary, we show that the widely used visco-plastic flow rule when 

appropriately modified, in combination with a physics-based dislocation density hardening law, 

can successfully predict a complex strain rate and temperature dependent response of Ta. 

We begin by describing the kinematics, the single crystalline constitutive response and the 

hardening law (sections 2.1, 2.2 and 2.3). Subsequently, we describe the homogenization 

procedure and finite element implementation (sections 2.4 and 2.5). In our notation, tensors will 

be denoted by bold letters, while scalars and tensor components will be italic and not bold. The 

dyadic and contracted product between two tensors will be denoted by ⨂ and ∙ , respectively. 

2.1 Kinematics 

In what follows we briefly describe the kinematics of a purely plastic crystal plasticity 

model [57, 64]. Polycrystal is assumed to consist of a set of grains undergoing plastic 

deformation, meaning that the elasticity of the individual grains is neglected. As a result, the 
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effective behavior of a plastic polycrystal is evaluated first. Next, the purely plastic effective 

medium is coupled with elasticity in an average manner [65, 66], as discussed later.  

Deformation gradient of grain 𝑟 is given by: 

𝐅(௥) =
డ𝐱

డ𝐗
, (1) 

where 𝐱 and 𝐗 are coordinates of a material point in the current and initial configurations. 

Velocity gradient of grain 𝑟, in the current configuration, is defined as: 

𝐋(௥) =
డ𝐯

డ𝐱
, (2) 

where 𝐯 is the velocity in the current configuration. Velocity gradient can be decomposed into 

symmetric, 𝐃(௥), and anti-symmetric, 𝐖(௥), parts. The relation between the velocity gradient and 

the deformation gradient is given by: 

𝐅̇(௥) = 𝐋(௥)𝐅(௥). (3) 

Polar decomposition allows us to decompose the total deformation gradient into pure rotation, 

𝐑(௥), and plastic distortion, 𝐅௣
(௥): 

𝐅(௥) = 𝐑(௥)𝐅௣
(௥). (4) 

The plastic distortion is assumed to shear the lattice without rotation or stretch. Next the rotation 

tensor rotates the lattice into final configuration. In the elasto-plastic formulation the total 

deformation gradient is decomposed into elastic and plastic deformation gradients. Since the 

elasticity is neglected the elastic deformation gradient is replaced with pure rotation. By solving 

Eq. (3) for velocity gradient and substituting Eq. (4) we obtain: 

𝐋(௥) = 𝐅̇(௥)𝐅(௥)ିଵ
= 𝐑̇(௥)𝐑(௥)ିଵ

+ 𝐑(௥)𝐅̇௣
(௥)

𝐅௣
(௥)ିଵ

𝐑(௥)ିଵ
. (5) 
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Term 𝐑̇(௥)𝐑(௥)ିଵ
 is the lattice spin, 𝐖∗,(௥), in the current configuration associated with the pure 

rotation. Term 𝐅̇௣
(௥)

𝐅௣
(௥)ିଵ

 is the plastic velocity gradient in the configuration before rotation, 

which can be expressed as superposition of slip system shear rates: 

𝐋௣
௜,(௥)

= ∑ 𝛾̇௦,(௥)𝐛௦,௜,(௥)⨂𝐧௦,௜,(௥)
௦ , (6) 

where 𝐛௦,௜,(௥) and 𝐧௦,௜,(௥) are Burgers vector and slip plane normal in the configuration before 

rotation. Substituting Eq. (6) into Eq. (5) and noting that Burgers vector and slip plane normal in 

current configuration are given by 𝐛௦,(௥) = 𝐑(௥)𝐛௦,௜,(௥) and 𝐧௦,(௥) = 𝐑(௥)𝐧௦,௜,(௥), allows us to 

write the velocity gradient in current configuration as: 

𝐋(௥) = 𝐖∗,(௥) + ∑ 𝛾̇௦,(௥)𝐛௦,(௥)⨂𝐧௦,(௥)
௦ . (7) 

From here the symmetric part of the velocity gradient and the lattice spin are: 

𝐃(௥) = ∑ 𝛾̇௦,(௥)𝐦௦,(௥)
௦ , (8) 

𝐖∗,(௥) = 𝐖(௥) − ∑ 𝛾̇௦,(௥)𝛂௦,(௥)
௦ , (9) 

where 𝐦௦,(௥) and 𝛂௦,(௥) are symmetric and anti-symmetric parts of Schmid tensor for slip system 

𝑠 calculated as 
ଵ

ଶ
൫𝐛௦,(௥)⨂𝐧௦,(௥) + 𝐧௦,(௥)⨂𝐛௦,(௥)൯ and 

ଵ

ଶ
൫𝐛௦,(௥)⨂𝐧௦,(௥) − 𝐧௦,(௥)⨂𝐛௦,(௥)൯. The 

lattice spin is used for incremental updating of crystallographic orientations, while the total 

deformation gradient within the grain is used for calculation of grain shape. In VPSC, the tensor 

𝐃 which is based on the finite kinematic structure, is replaced with a strain rate tensor, 𝛆̇௩௣, 

which is based on the infinitesimal kinematic structure, as will be discussed later. In the next 

section the relation between the instantaneous rate of deformation and stress is derived. 
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2.2 Single crystal constitutive relation 

The functional relationship between the slip system shear rate, stress and the microstructural 

state represents the constitutive equation [67], which are either phenomenological or physically 

based. The former constitutive models relate the shear rate on slip system 𝑠 with the resolved 

shear stress, 𝜏௦, and the critical resolved shear stress of system 𝑠, 𝜏௖
ୱ. The first such constitutive 

model was the rate independent slip criterion. According to this model, once the resolved shear 

stress reaches the critical resolved shear stress, the slip system becomes active and the shear rate 

on that system can take any value: 

𝛾̇௦ = 0 if |𝜏௦| < 𝜏௖
ୱ, (10) 

𝛾̇௦ ≠ 0 if |𝜏௦| > 𝜏௖
ୱ. (11) 

The main drawback of the rate independent slip criterion is the difficulty and non-uniqueness 

involved in determination of active slip systems. The visco-plastic regularization of the rate 

independent slip criterion was introduced to alleviate those problems [11, 68]: 

𝛾̇௦ = 𝛾̇଴ ቀ
ఛೞ

ఛ೎
ೞ 

ቁ
௡

, (12) 

where 𝑛 is the inverse of rate sensitivity and 𝛾̇଴ is the reference shear rate. The visco-plastic 

regularization resolves the non-uniqueness issue and provides continuous functional relationship 

between shear rates and stress. However, it also introduces a dependence of the magnitude of 

shear rate on the magnitude of stress defined by the rate exponent 𝑛. 

Physics-based constitutive models use the Orowan equation to relate the shear rate on slip 

system 𝑠 with the dislocation density of mobile dislocations on slip systems 𝑠, 𝜌௠
௦  [62]: 

𝛾̇௦ = 𝜌௠
௦ 𝑏௦𝑣௦, (13) 
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where 𝑏௦ is the magnitude of Burgers vector and 𝑣௦ is the average velocity of mobile 

dislocations. The dislocation density of mobile dislocations can be related to the statistically 

stored dislocation density through the temperature dependent scaling law [69]. The average 

velocity of mobile dislocations can be expressed as a complex function of resolved shear stress, 

critical resolved shear stress and temperature [34, 67, 69].  

In the present model, we adopt the visco-plastic constitutive relation at the single crystal 

level. The visco-plastic regularization provides sufficiently accurate selection of slip system 

activity and continues functional relationship between stress and strain rate, which results in 

stable convergence properties of the overall procedure. In addition, the visco-plastic formulation 

with dislocation density-based hardening law has been previously successfully used for modeling 

of high rate deformation [56, 70, 71]. As will be seen in the next section, in the modified visco-

plastic flow rule, the rate sensitivity is defined solely through the rate dependence of slip 

resistance, while the rate exponent 𝑛 only determines the accuracy of slip system selection. 

Therefore, the slip system selection is not influenced by the material rate sensitivity. The Orowan 

equation approach [34] couples the slip system selection and rate sensitivity and, as a result, the 

increase in the rate sensitivity causes damping in the relation between shear rate and resolved 

shear stress, which is similar to reducing the rate exponent n in Eq. (12). Since the rate sensitivity 

increases with temperature at higher rates, the damping effect increases as well. As a result, it is 

possible to have shifts in active slip systems with increase of temperature, which cannot happen 

in simulations using the modified power-law flow rule, where the slip system selection and rate 

sensitivity are separated. In the modified visco-plastic flow rule, the slip system activation is 

determined solely by a constant rate exponent, while the slip resistances scale with strain rate and 

temperature and, in turn, determine the rate sensitivity. Physically, at elevated temperature, the 
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Peierls barrier decreases equally for all slip systems and the activity of slip systems is not 

expected to change from that at lower temperature, unless different slip modes activate. Finally, 

it is important to describe advances in the visco-plastic flow rule formulation since a large 

number of model developments relying on it can take the advantage of any new advances. In the 

next section, consequences of the adopted visco-plastic flow rule on the rate sensitivity and the 

necessary modifications to the flow rule are discussed. Subsequently, the functional relationship 

between the resolved shear stress and the applied stress is derived for the case of BCC Ta. 

2.2.1 Accurate representation of strain rate sensitivity with visco-plastic power-law flow rule  

Follansbee and Kocks define two rate effects within polycrystalline materials [29]. The first 

rate effect is the rate sensitivity of stress at constant structure (dislocation density). For FCC 

materials this rate effect is fairly small [29]. On the other hand, in BCC materials very high rate 

sensitivity at constant structure and low temperatures is observed and attributed to rate 

dependence of Peierls barrier [6, 72]. At elevated temperatures the rate sensitivity of BCC 

materials diminishes. The second rate effect is the rate dependence of structure evolution. 

Essentially, the rate of dislocation accumulation depends on the rate at which deformation 

happens [29, 56]. Both of these rate effects influence the macroscopic stress only through the 

resistance to slip. The rate sensitivity of the material at constant structure, 𝑚, is thus defined as: 

𝑚 =
డ ୪୬|𝛔|

డ ୪୬|𝛆̇|
= ∑ ∑

డ ୪୬|𝛔|

డఛ೎
ೞ,(ೝ)

డఛ೎
ೞ,(ೝ)

డ ୪ |𝛆̇|௦௥ ൫𝜌(௥) = const൯, (14) 

where 𝜌(௥) is total dislocation density within the grain 𝑟. Therefore, it is physical and thus 

desirable to describe the rate sensitivity of the material solely through the rate dependence of slip 

resistance and its evolution. 
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The adopted visco-plastic flow rule with the rate sensitive slip resistance displays a serious 

issue. The visco-plastic constitutive relation at the grain level (Eq. (12)) introduces an additional, 

artificial and unphysical rate sensitivity of the stress at constant structure. This rate sensitivity is 

an undesirable consequence of the adopted power-law flow rule used for the slip system 

selection. Consequently, the expression for the rate sensitivity of the material at constant 

structure contains an additional term arising due to the power-law flow rule: 

𝑚 =
డ ୪୬|𝛔|

డ ୪୬|𝛆̇|
=

డ ୪୬|𝛔|

డ ୪ |𝛆̇|
ቀ𝜏௖

௦,(௥)
= constቁ

ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ
ଵ/௡

+ ∑ ∑
డ ୪୬|𝛔|

డఛ೎
ೞ,(ೝ)

డఛ೎
ೞ,(ೝ)

డ ୪୬|𝛆̇|
൫𝜌(௥) = const൯௦௥ . (15) 

Next, we consider two methods for removal of the artificially introduced rate sensitivity caused 

by the power-law flow rule [33, 73]: increase of rate exponent 𝑛 and rate insensitive approach.  

 

Fig. 1 Effect of the power-law exponent n on the mechanical response in simple compression as 
a function of imposed strain rate. 

The rate sensitivity arising due to the adopted power-law relation at slip system level is 

inversely proportional to the rate exponent 𝑛. Therefore, increase of rate exponent 𝑛 results in 

decrease of rate sensitivity and the limiting case when 𝑛 goes to infinity (𝑛 → ∞) results in a 

rate-insensitive response. However, with the increase of rate exponent 𝑛 the visco-plastic 
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equation becomes very stiff and difficult to solve. Numerical considerations limit the rate 

exponent to values 𝑛 ≤ 100 [11, 55, 74]. Consequently, the rate sensitivity due to the power-law 

flow rule cannot be completely removed using this method. Considering that strain rates during 

the Taylor impact vary over several orders of magnitude the retained rate sensitivity when 

𝑛 = 100 is unacceptable. Fig. 1 shows the rate dependence of stress over a wide range of strain 

rates for different values of rate exponent. The magnitude of stress is normalized by the stress 

magnitude at reference strain rate of 1.0 𝑠ିଵ. Figure 1 indicates that the rate exponent in the 

range 𝑛 ≤ 400 results in artificial rate sensitivity affecting the stress. The effect is enhanced with 

the magnitude of applied strain rate.  

In the second method, the reference shear rate, 𝛾̇଴, is set to the norm of the applied 

macroscopic strain rate, 𝜀̇ = ห𝛆̇௩௣ห = ቚ〈𝛆̇௩௣
(௥)

〉ቚ, where 〈 〉 denotes volume average over all grains. 

By moving the reference shear rate to the left side of the expression for strain rate we get: 

𝛆̇௩௣
(௥)

/ቚ〈𝛆̇௩௣
(௥)

〉ቚ = ∑ ൬
ఛೞ,(ೝ)

ఛ೎
ೞ,(ೝ)

 
൰

௡

𝐦௦,(௥)
௦ . (16) 

The grain strain rate is thus normalized with the macroscopic strain rate magnitude. The 

magnitude of the grain stress is then affected only by the ratio of the grain strain rate magnitude 

and the macroscopic strain rate magnitude. Since the deviation of grain strain rates from the 

macroscopic strain rate is not large in BCC polycrystals, this effect on grain stress is fairly small. 

Consequently the effect of the grain strain rate magnitude on the grain stress is minimized and 

the direction of grain strain rate determines both the magnitude and the direction of the grain 

stress. Macroscopically, the rate sensitivity of stress due to the power-law flow rule is completely 

removed and magnitude of the applied strain rate has absolutely no effect on the macroscopic 

stress magnitude or direction. The rate insensitive approach has been used in numerous studies to 
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effectively remove the artificial rate sensitivity of macroscopic stress due to the power-law flow 

rule [33, 56, 75-80]. In the present study we adopt the rate insensitive approach for removal of 

unphysical rate sensitivity arising due to the power-law flow rule. 

The expression for the rate sensitivity of the polycrystal with the rate insensitive visco-

plastic flow rule is given by Eq. (14). Let us consider the effect of the integration procedure for 

the slip resistances on the material rate sensitivity in the context of implicit finite elements. In a 

large number of implicit finite element crystal plasticity codes the slip resistances and other state 

variables are held constant while the stress state is calculated implicitly [65, 67, 81-83]. Next the 

state variables are updated explicitly. Consequently, the expression for the slip resistance at the 

current time increment is defined solely in terms of the quantities from the previous time 

increment. As a result of the adopted integration procedure, the slip resistance at the current 

increment is independent on the currently applied visco-plastic strain rate. Consequently, the 

derivatives of slip resistance with the strain rate vanish, 
డఛ೎

ೞ,(ೝ)

డ ୪୬|𝛆̇|
= 0, and the material behaves as 

completely rate insensitive regardless of the functional relation between the slip resistance and 

strain rate. The explicit integration of hardening variables would be suitable if used within an 

explicit finite element formulation. In implicit finite elements, the expression for slip resistance 

should be a function of the currently applied strain rate. While an improved explicit method, in 

which the slip resistances are first updated using the current strain rate and strain increment and 

subsequently used for the calculation of stress, would suffice, we adopt an implicit method for 

the evolution of slip resistances. The implicit integration of the slip resistances results in the most 

accurate solution. Shears at each slip system are integrated using an implicit Euler backward 

method, while the slip resistances are integrated as function of the shear using an implicit Crank–

Nicolson method [84]. The slip resistance at the current increment is thus defined based on the 
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quantities from the current increment. Any change of the currently applied strain rate will result 

in the change of the slip resistance and thus the stress. Therefore, the rate sensitivity of stress at 

constant structure is solely defined through the rate dependence of the slip resistance which is the 

desired behavior. Also, note that the rate sensitivity of the stress due to rate sensitive structure 

evolution will be captured as well: ∑ ∑ ∑
డ ୪୬|𝛔|

డఛ೎
ೞ,(ೝ)

డఛ೎
ೞ,(ೝ)

డఘೞᇲ,(ೝ)௦ᇱ௦
డఘೞᇲ,(ೝ)

డ ୪ |𝛆̇|௥ . 

In summary, in the adopted rate insensitive power-law flow rule with implicit integration of 

slip resistances, the rate sensitivity is defined by the functional relationship between slip 

resistance and strain rate. The rate exponent, 𝑛, does not affect the rate sensitivity and only 

determines the accuracy of the slip system selection. 

2.2.2 Non-Schmid activation  

Slip resistance, 𝜏௖
௦,(௥), in Eq. (12) physically represents the resistance to motion of 

dislocation on slip system 𝑠 while the stress projection in Eq. (12), 𝜏௦,(௥) = 𝐦௦,(௥) ∙ 𝛔ᇱ(௥), 

represents the shear stress in the dislocation glide plane and in the direction of slip. According to 

the Schmid law, the system becomes active when resolved shear stress reaches or exceeds the 

resistance of the dislocation motion [36]. However, the glide in BCC metals is known to violate 

the Schmid law. The non-Schmid effects on the dislocation motion are introduced by adding the 

contribution of the non-Schmid stress projections to the Schmid resolved shear stress [45, 49, 50, 

85]: 

𝜏௦,(௥) = 𝐦௦,(௥) ∙ 𝛔ᇱ(௥) + 𝐦௡ௌ
௦,(௥)

∙ 𝛔ᇱ(௥) = 𝐦௧௢௧
௦,(௥)

∙ 𝛔ᇱ(௥), (17) 

where 𝐦௧௢௧
௦,(௥)

= 𝐦௦,(௥) + 𝐦௡ௌ
௦,(௥) and 𝐦௡ௌ

௦,(௥) represents a non-Schmid tensor given as 

weighted sum of the following dyads: 
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𝐦௡ௌ
௦,(௥)

= 𝑐ଵ(𝐭௦⨂𝐛௦) + 𝑐ଶ(𝐭௦⨂𝐧௦) + 𝑐ଷ(𝐧௦⨂𝐧௦) + 𝑐ସ(𝐭௦⨂𝐭௦) − (𝑐ଷ + 𝑐ସ)(𝐛௦⨂𝐛௦), (18) 

where 𝐭௦ is unit vector in the glide plane perpendicular to the slip direction, 𝐭௦ = 𝐧௦ × 𝐛௦ and 𝑐௜ 

are non-Schmid coefficients. The coefficients, 𝑐௜, for Ta at room temperature reported in [45] are 

used: 𝑐ଵ = −0.15, 𝑐ଶ = 0.13, 𝑐ଷ = −0.07, 𝑐ସ = 0.04.  

The non-Schmid effects are a complicated function of strain, strain rate and temperature [45, 

86-88]. However, in the present study, we assume that the non-Schmid effects do not vary with 

strain rate due to lack of reliable experimental data in literature. An expression for non-Schmid 

tensor as a function of temperature and strain is given by [86, 88]: 

𝐦௡ௌ
௦,(௥)

൫𝑇, 𝜀௘௤൯ = exp ቀ−
ఌ೐೜

ఌబ
ቁ ቄ𝑐ଵ(𝐭௦⨂𝐛௦) + ቀ1 −

்ିଷ଴଴

೎்ିଷ଴଴
ቁ

ୱ୥୬( ೎்ି்)ାଵ

ଶ
[𝑐ଶ(𝐭௦⨂𝐧௦) +

𝑐ଷ(𝐧௦⨂𝐧௦) + 𝑐ସ(𝐭௦⨂𝐭௦) − (𝑐ଷ + 𝑐ସ)(𝐛௦⨂𝐛௦)]ቅ, (19) 

where 𝜀଴ is a fitting constant and 𝑇௖ is a temperature at which non-Schmid effects vanish. For 

simplicity, the same Eq. (19) is assumed to hold for both {11ത0}〈111〉 and {112ത}〈111〉 slip 

modes, although much more is known (by MD work) for the 110 systems. Temperature and 

strain dependence of non-Schmid effects given by Eq. (19) is an approximation based on the 

modeling efforts of other authors. We have conducted a detailed study of the effects of the fitting 

parameters in Eq. (19) on results. It was observed that strong presence of non-Schmid effects 

leads to unreasonable texture predictions at higher strains indicating that their effect likely 

quickly diminishes with strain which is in agreement with [86]. With straining of a crystal, 

dislocations accumulate and dislocation-dislocation interactions diminish the effect of non-

Schmid stresses [86]. The constant 𝜀଴ determining the rate at which non-Schmid effects decay 

with strain was thus set to 0.07. The temperature at which non-Schmid effects vanish, 𝑇௖, was 

approximated as 700 K for Ta [88]. The decay of non-Schmid effects with temperature was 
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approximated as linear. The chosen values for the fitting parameters in Eq. (19) are quite 

conservative, limiting the influence of the non-Schmid effects only to small strains where the 

non-Schmid effects are experimentally observed and measured. 

2.3 Dislocation density-based hardening law 

Hardening law defines the slip resistance and its evolution as a function of strain rate, 

temperature and accumulated shear. Phenomenological hardening laws are still predominantly 

used in crystal plasticity models [67, 89-91]. However, in the past decades several dislocation 

density-based hardening laws have been developed and successfully used for constitutive 

modeling of materials at different strain rates and temperatures. We adopt dislocation density-

based hardening law developed by Beyerlein and Tome [56], which was previously used 

numerous times for modeling of constitutive behavior at high rates and temperatures. In what 

follows, the quantities from the start of the time increment will be explicitly denoted with 

superscript 𝑡, while all the other variables will be understood to be at the end of the time 

increment. The slip resistance of slip mode 𝛼 is defined as [56]: 

𝜏௖
ఈ = 𝜏଴

ఈ + 𝜏௙௢௥
ఈ ൫𝜌௙௢௥

ఈ ൯ + 𝜏ௗ௘௕
ఈ ൫𝜌ௗ௘௕൯. (20) 

where 𝜏଴
ఈ is an initial value of slip resistance, 𝜏௙௢௥

ఈ  is a contribution to the slip resistance due to 

accumulation of forest dislocations, 𝜌௙௢௥
ఈ , and 𝜏ௗ௘௕

ఈ  is a contribution to the slip resistance due to 

accumulation of debris dislocations, 𝜌ௗ௘௕. The initial slip resistance, 𝜏଴
ఈ, represents resistance to 

intrinsic barriers (such as the Peierls stress), and it is dependent on strain rate and temperature 

[70-72, 92]. We use the following empirical function to model the dependence (no summation 

over repeated indices): 
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𝜏଴
ఈ = 𝐺ఈ + 𝐴ఈ exp ቀ−

்೟

஻ഀ
ቁ ൬

ఌ̇

ఌ̇ೝ೐೑
൰

஼ഀ

, (21) 

where 𝐴ఈ, 𝐵ఈ, 𝐶ఈ, and 𝐺ఈ are constants, 𝜀̇ = ඥ2/3ห𝛆̇௩௣ห is macroscopic equivalent plastic strain 

rate, and 𝑇௧ is temperature. 𝜀௥̇௘௙ = 1 𝑠ିଵ is a reference strain rate, which normalizes the applied 

strain rate and makes the quantity raised to power dimensionless. As the temperature increases 

and the strain rate decreases, 𝜏଴
ఈ conveniently approaches the value of 𝐺ఈ for high temperature 

deformation under quasi-static conditions. Exponential decay of initial slip resistance with 

temperature is often reported in literature [50, 56, 70]. The power law dependence of initial slip 

resistance with strain rate provides the best fit to the initial yield stresses. The initial slip 

resistance does not evolve with strain.  

The force required to move a dislocation increases with the increase of the dislocation 

density within the grain because the dislocations which intersect the slip plane of gliding 

dislocation act as barriers for the dislocation motion. The forest and debris contributions to slip 

resistance, dependent on forest (𝜌௙௢௥
ఈ ) and debris (𝜌ௗ௘௕) dislocation densities, are given by (no 

summation over repeated indices): 

𝜏௙௢௥
ఈ = 𝑏ఈ𝜇ට∑ 𝜒ఈఈᇱ𝜌௙௢௥

ఈᇲ

ఈᇱ , (22) 

𝜏ௗ௘௕
ఈ = −𝑘ௗ௘௕𝜇𝑏ఈට𝜌ௗ௘௕ log ቆ𝑏ఈට𝜌ௗ௘௕ቇ, (23) 

where 𝑏ఈ is the Burgers vector of mode 𝛼 (which is 2.8579 × 10ିଵ  m), 𝜒ఈఈ  is the interaction 

between mode 𝛼 and 𝛼′, and 𝑘ௗ௘௕ is a material-independent constant determined to be 0.086, 

which ensures that the extended law Eq. (23) converges to the conventional law (i.e. Eq. (22)) 
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when 𝜌ௗ௘௕ is sufficiently small. The interaction matrix is 0.9, if 𝛼 = 𝛼ᇱ and 0, if 𝛼 ≠ 𝛼ᇱ. Shear 

modulus, 𝜇, is assumed to be a function of temperature [72]: 

𝜇(𝑇௧) = 𝜇଴ −
஽

ୣ୶୮ቀ
೅బ
೅೟ቁିଵ

, (24) 

with 𝜇଴ = 65250 𝑀𝑃𝑎, 𝐷 = 380 𝑀𝑃𝑎, and 𝑇଴ = 40𝐾. Resistance to the short range obstacles 

(forest dislocations) was observed to be rate sensitive [29, 72]. However, considering that this 

dependence is fairly weak, it was neglected [56].  

During deformation, the dislocation generation mechanisms increase the density of the 

forest dislocations while the temperature and rate sensitive dislocation removal mechanisms 

reduce it. As a result, the forest dislocation density quickly increases with strain and saturates at 

higher strains. A fraction of the removed dislocations become debris dislocations. The forest and 

debris dislocation densities are evolved with shear using the implicit Crank–Nicolson method 

[84] (no summation over repeated indices): 

𝜌௙௢௥
ఈ = 𝜌௙௢௥

ఈ,௧ +
ଵ

ଶ
൤

డఘ೑೚ೝ
ഀ

డఊഀ
൫𝜌௙௢௥

ఈ,௧ ൯ +
డఘ೑೚ೝ

ഀ

డఊഀ
൫𝜌௙௢௥

ఈ ൯൨ ∑ |𝛾̇௦|௦(ఈ) ∆𝑡, (25) 

𝜌ௗ௘௕ = 𝜌ௗ௘௕
௧ + ට𝜌ௗ௘௕ ∑ ൜𝑞ఈ𝑏ఈ ଵ

ଶ
൤

డఘೝ೐೘,೑೚ೝ
ഀ

డఊഀ
൫𝜌௙௢௥

ఈ,௧ ൯ +
డఘೝ೐೘,೑೚ೝ

ഀ

డఊഀ
൫𝜌௙௢௥

ఈ ൯൨ ∑ |𝛾̇௦|௦(ఈ) ∆𝑡ൠఈ , (26) 

where 𝑠(𝛼) denotes a set of slip systems within slip mode 𝛼. The increments in shears on slip 

systems are calculated using the implicit Euler backward method. The rate of change of forest 

dislocations with shear strain on mode 𝛼 is given by (no summation over repeated indices): 

డఘ೑೚ೝ
ഀ

డఊഀ
=

డఘ೒೐೙,೑೚ೝ
ഀ

డఊഀ
−

డఘೝ೐೘,೑೚ೝ
ഀ

డఊഀ
= 𝑘ଵ

ఈට𝜌௙௢௥
ఈ − 𝑘ଶ

ఈ(𝜀̇, 𝑇௧)𝜌௙௢௥
ఈ . (27) 
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The coefficient 𝑘ଵ
ఈ accounts for dislocation storage, while rate and temperature sensitive 

coefficient 𝑘ଶ
ఈ accounts for the dislocation removal through thermally activated mechanisms and 

is given by (no summation over repeated indices): 

𝑘ଶ
ఈ =

௞భ
ഀ

ඨ∑ (ఞషభ)ഀഀᇲ
ቆ

ഓೞೌ೟
ഀᇲ

್ഀᇲഋ
ቇ

మ

ഀᇲ

;  𝜏௦௔௧
ఈᇱ =

஽ഀ(௕ഀ)య௚ഀఓ

஽ഀ(௕ഀ)యି௞்೟ ୪୭୥ቀ
ഄ̇

ഄ̇బ
ቁ
, (28) 

where 𝐷ఈ is drag stress, 𝑔ఈ is the effective activation enthalpy, 𝑘 is Boltzmann constant, and 𝜀଴̇ 

is the reference strain rate (taken to be 10଻𝑠ିଵ) [56]. 

At constant structure, the rate and temperature sensitivity is defined by the resistance to 

intrinsic barriers, 𝜏଴
ఈ. During straining, the accumulation of dislocations reduces the relative 

contribution of 𝜏଴
ఈ to total slip resistance, 𝜏௖

ఈ. Consequently, the rate and temperature sensitivity 

will change during straining. Since the evolution of dislocation densities is strain rate and 

temperature dependent, attempting to capture the complicated strain rate sensitivity of metals 

such as Ta using the power-law exponent 𝑛 (or 𝑚) would be inappropriate. Therefore, we aim at 

using the power-law, rate-insensitive visco-plastic flow rule in combination with the rate and 

temperature sensitive dislocation density-based hardening law, along with the initial slip 

resistance to describe the strain rate and temperature sensitive deformation of Ta. As a result, 

dislocation glide while the structure is evolving governs the material behavior. The next section 

presents homogenization procedure of the visco-plastic polycrystal with the implicit integration 

of slip resistances. 

2.4 Self-consistent homogenization of visco-plastic polycrystal 

Homogenization procedure links the response of the constituent grains to the macroscopic 

response of the polycrystal. Taylor full-constraint, self-consistent and grain cluster 
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homogenization schemes are most frequently used in the polycrystal plasticity models [67]. In 

the present model, the self-consistent homogenization method is used. In what follows, the self-

consistent homogenization of the visco-plastic polycrystal proposed by Lebensohn and Tome is 

presented along with the necessary modifications for implicit slip resistance evolution [57]. The 

non-linear constitutive relation at the grain level is given by the visco-plastic equation with non-

Schmid activation: 

𝛆̇௩௣
(௥)

= 𝛾̇଴ ∑ ቊ∑ ൬
𝐦೟೚೟

ೞ,೟,(ೝ)
∙𝛔ᇲ(ೝ)

ఛ೎
ഀ,(ೝ) ൰

௡

𝐦௦,௧,(௥)
௦(ఈ) ቋఈ . (29) 

The rate exponent is set to 𝑛 = 20. This value allows accurate selection of slip systems. 

Increasing the value of n does not change the results predicted by the rate insensitive visco-

plastic flow rule in any appreciable way. Note that 𝜏௖
ఈ,(௥) is calculated at the end of the time 

increment, 𝑡 + ∆𝑡, using the implicit integration rule. The increments in shear are calculated 

using the Euler backward method while the slip resistance is integrated as a function of the shear 

using the implicit Crank–Nicolson method [84]. Hence, 𝜏௖
ఈ,(௥) is a function of ห𝛾̇௦,(௥)ห, where the 

exact functional relationship is defined by the adopted hardening law. The linearized form of the 

constitutive relation at the grain level is: 

𝛆̇௩௣
(௥)

= 𝐌(௥)𝛔ᇱ(௥) + 𝛆̇௩௣
଴,(௥), (30) 

where 𝐌(௥) and 𝛆̇௩௣
଴,(௥) are visco-plastic compliance and back extrapolated strain rate [93]. For the 

affine linearization, the derivation of 𝐌(௥) and 𝛆̇௩௣
଴,(௥) in the case of implicit hardening is given 

next.  
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First, it should be noted that slip resistance, 𝜏௖
ఈ,(௥), represents a function of deviatoric stress, 

defined by the hardening law, through the shear rates, which are functions of deviatoric stress. 

Next we introduce a function, 𝐟, that maps deviatoric stress directly to visco-plastic strain rate: 

𝛆̇௩௣
(௥)

ቀ𝛔ᇱ(௥), 𝜏௖
ఈ,(௥)

൫𝛔ᇱ(௥)൯ቁ = 𝐟൫𝛔ᇱ(௥)൯. (31) 

Taylor expansion of strain rate around reference stress value, 𝛔଴
ᇱ,(௥), is then given by: 

𝛆̇௩௣
௟௜௡,(௥)

൫𝛔ᇱ(௥)൯ = 𝐟ቀ𝛔଴
ᇱ(௥)

ቁ +
డ𝐟

డ𝛔ᇲ(ೝ)ቚ
𝛔బ

ᇲ(ೝ)
ቀ𝛔ᇱ(௥) − 𝛔଴

ᇱ(௥)
ቁ. (32) 

Then the grain compliance and back-extrapolated strain rate are: 

𝐌(௥) =
డ𝐟

డ𝛔ᇲ(ೝ)ቚ
𝛔బ

ᇲ(ೝ)
, (33) 

𝛆̇௩௣
଴,(௥)

= 𝐟ቀ𝛔଴
ᇱ(௥)

ቁ −
డ𝐟

డ𝛔ᇲ(ೝ)ቚ
𝛔బ

ᇲ(ೝ)
𝛔଴

ᇱ(௥)
. (34) 

The derivatives of the function, 𝐟, w.r.t. deviatoric stress are given by: 

𝐌(௥) =
డ𝐟

డ𝛔ᇲ(ೝ) =
డ𝛆̇ೡ೛

(ೝ)

డ𝛔ᇲ(ೝ)ถ
୘ୣ୰୫ (ଵ)

+
డ𝛆̇ೡ೛

(ೝ)

డఛ೎
ഀ,(ೝ)

ᇣᇤᇥ
୘ୣ୰୫ (ଶ)

డఛ೎
ഀ,(ೝ)

డ𝛔ᇲ(ೝ)ᇣᇤᇥ
୘ୣ୰୫ (ଷ)

. (35) 

The individual terms are provided in appendix A. 

The macroscopic response of the homogenized linear polycrystal will also be linear: 

𝛆̇௩௣ = 𝐌𝛔ᇱ + 𝛆̇௩௣
଴ , (36) 

where 𝐌 and 𝛆̇௩௣
଴  are macroscopic visco-plastic compliance and back extrapolated strain rate. In 

the case of self-consistent homogenization, every grain is treated as an ellipsoidal inhomogeneity 

within the effective medium, which has the properties of macroscopic homogenized polycrystal. 

The interaction law is given by [57, 94]: 
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𝛆̇෨௩௣
(௥)

= −𝐌෩ 𝛔෥ᇱ(௥), (37) 

where 𝛆̇෨௩௣
(௥) and 𝛔෥ᇱ(௥) are strain rate and stress deviations with respect to macroscopic strain rate 

and stress, and 𝐌෩  is interaction tensor calculated as: 

𝐌෩ = (𝐈 − 𝐒)ିଵ𝐒𝐌, (38) 

where 𝐒 is the Eshelby tensor. The macroscopic moduli are calculated as: 

𝐌 = 〈𝐌(௥)𝐁(௥)〉, (39) 

𝛆̇௩௣
଴ = 〈𝐌(௥)𝐛(௥) + 𝛆̇௩௣

଴,(௥)
〉, (40) 

where 𝐁(௥) and 𝐛(௥) are stress localization tensors given by [57]: 

𝐁(௥) = ൫𝐌(௥) + 𝐌෩ ൯
ିଵ

൫𝐌 + 𝐌෩ ൯, (41) 

𝐛(௥) = ൫𝐌(௥) + 𝐌෩ ൯
ିଵ

ቀ𝛆̇௩௣
଴ − 𝛆̇௩௣

଴,(௥)
ቁ.  (42) 

The lattice spin is given by: 

𝐖∗(௥) = 𝐖 + 𝚷(௥) − 𝐖௣,(௥), (43) 

where 𝐖 is the macroscopic spin, 𝚷(௥) is the spin associated with the ellipsoidal inclusion and 

𝐖௣,(௥) is the plastic spin calculated as: 

𝐖௣,(௥) = ∑ 𝛾̇௦,(௥)𝛂௦,௧,(௥)
௦ . (44) 

The equations are solved numerically by adjusting the grain stresses, 𝛔ᇱ(௥), iteratively using 

a fixed point method [57]. The procedure starts with the initial guess for grain stresses, 𝛔ᇱ(௥),଴, 

obtained using a full constraint (Taylor) approximation (𝛆̇௩௣
(௥),଴

= 𝛆̇௩௣). Subsequently, grain 

compliances, 𝐌(௥),଴, and back-extrapolated strain rates, 𝛆̇௩௣
଴,(௥),଴, can be calculated based on the 
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initial guess for stress, 𝛔ᇱ(௥),଴. The last superscript on the right denotes the iteration number 

within the loop over grain stresses (0 for initial guess). Table 1 summarizes the procedure for the 

calculation of new guess for grain stresses (𝛔ᇱ(௥),௜ାଵ) from the previous guess (𝛔ᇱ(௥),௜). The 

algorithm iteratively corrects the grain stresses until the convergence is reached. The tolerances 

for the convergence of grain stresses, tol, appearing in Table 1 are set to 0.001. 

Table 1. Numerical procedure for the implicit hardening in VPSC – outer iterative loop for 
solving for stress in grains.  

1) Solve the self-consistent equations and calculate macroscopic compliance and back-
extrapolated strain rate: 
𝐌௜ = 〈𝐌(௥),௜𝐁(௥),௜〉 

𝛆̇௩௣
଴,௜ = 〈𝐌(௥),௜𝐛(௥),௜ + 𝛆̇௩௣

଴,(௥),௜〉 

2) Calculate macroscopic stress, 𝛔ᇱ௜, from the applied strain rate: 

𝛔ᇱ௜ = 𝐌௜ିଵ
൫𝛆̇௩௣ − 𝛆̇௩௣

଴,௜൯ 

3) Solve the interaction equation for each grain and obtain a new guess for grain stresses, 
𝛔ᇱ(௥),௜ାଵ: 

 𝛆̇௩௣ − 𝛾̇଴ ෍ ൭
𝐦௧௢௧

௦,௧,(௥)
∙ 𝛔ᇱ(௥),௜ାଵ

𝜏௖
ఈ,(௥),௜ାଵ

൱

௡

𝐦௦,௧,(௥)

௦
= −𝐌෩ ௜൫𝛔ᇱ௜ − 𝛔ᇱ(௥),௜ାଵ൯ 

where slip resistance at the end of the time increment is also a function of the stress: 

𝜏௖
ఈ,(௥),௜ାଵ

= 𝑔 ቀቚ𝛾̇௦ ቀ𝛔ᇱ(௥),௜ାଵ, 𝜏௖
ఈ,(௥),௜ାଵ

൫𝛔ᇱ(௥),௜ାଵ൯ቁቚቁ. 

4) Calculate the grain compliances, 𝐌(௥),௜ାଵ, and back-extrapolated strain rates, 𝛆̇௩௣
଴(௥),௜ାଵ. 

5) Test for convergence: 

   if ቌ
ට∑ ∑ ቀఙೖ

ᇲ(ೝ),೔శభ
ିఙೖ

ᇲ(ೝ),೔
ቁ

మ
௪(ೝ)

ೖೝ

ห𝛔ᇲ೔ห
< tolቍ and  ቆ

ห𝛔ᇲ೔ି〈𝛔ᇲ(ೝ),೔శభ〉ห
భ

మ
ห𝛔ᇲ೔ା〈𝛔ᇲ(ೝ),೔శభ〉ห

< tolቇ and 

   ቆ
ቚ𝛆̇ೡ೛ି〈𝛆̇ೡ೛

(ೝ),೔శభ〉ቚ

భ

మ
ቚ𝛆̇ೡ೛ା〈𝛆̇ೡ೛

(ೝ),೔శభ〉ቚ
< tolቇ: exit 

   else: go to 1) 
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Table 2. Solution procedure for the interaction equation – inner iterative loop for solving for slip 
resistance in grains.  

1) Solve the interaction equation for stress, 𝛔ᇱ(௥),௜ାଵ௝ାଵ , using Newton’s method: 

 𝛆̇௩௣ − 𝛾̇଴ ෍ ൭
𝐦௧௢௧

௦,௧,(௥)
∙ 𝛔ᇱ(௥),௜ାଵ௝ାଵ

𝜏௖
ఈ,(௥),௜ାଵ௝

൱

௡

𝐦௦,௧,(௥)

௦
= −𝐌෩ ௜൫𝛔ᇱ௜ − 𝛔ᇱ(௥),௜ାଵ௝ାଵ

൯ 

2) Calculate new guess for slip resistance 

𝜏௖
ఈ,(௥),௜ାଵ௝ାଵ

= 𝑔 ቀቚ𝛾̇௦ቀ 𝛔ᇱ(௥),௜ାଵ௝ାଵ
, 𝜏௖

ఈ,(௥),௜ାଵ௝
ቁቚቁ. 

3) Test for convergence: 

   if ቌඨ
∑ ቂ ఛ೎

ഀ,(ೝ),೔శభೕశభ
ି ఛ೎

ഀ,(ೝ),೔శభೕ
ቃ

మ

ഀ

∑ ቂ
భ

మ
ఛ೎

ഀ,(ೝ),೔శభೕశభ
ା

భ

మ
ఛ೎

ഀ,(ೝ),೔శభೕ
ቃ

మ

ഀ

< tolቍ: exit 

   else: go to 1) 

 

From the numerical procedure outlined in Table 1, it follows that for each iteration, 𝑖, of the 

outer loop over the grain stresses, the interaction equation (step 3 in Table 1) has to be solved 

numerically. In the case of explicit hardening, the interaction equation is simply solved for the 

grain stress using a Newton’s method. On the other hand, in the case of implicit hardening the 

slip resistance becomes a function of the grain stress through the shear rates and the hardening 

law. We have found that a two level numerical procedure is the most stable and computationally 

efficient approach. The slip resistances, 𝜏௖
ఈ,(௥), are iteratively adjusted using a fixed point 

method. During each iteration over slip resistances the interaction equation has to be solved for 

stress using the Newton’s method. The initial guess for the slip resistances is the value from a 

previous iteration of the outer loop for grain stresses, 𝜏௖
ఈ,(௥),௜଴ . Here, the superscript on the left 

side denotes the iteration within the inner loop over slip resistances, while superscript on the 

right side denotes the outer iteration loop over grain stresses. Table 2 outlines the procedure for 
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the calculation of new guess for slip resistance, 𝜏௖
ఈ,(௥),௜ାଵ௝ାଵ , based on the previous guess, 

𝜏௖
ఈ,(௥),௜ାଵ௝ . The tolerance for convergence of slip resistances, tol, in Table 2 is set to 0.0005. 

2.5 Finite element implementation of VPSC implicit in hardening 

The implementation of VPSC within implicit finite elements code ABAQUS STANDARD  

termed FE-VPSC follows the approach presented in [82]. At each integration point of the FE 

model, the stress rate in global frame, 𝛔̇, is given by [11, 95]: 

𝛔̇ = 〈𝛔̇(௥)〉 = 〈𝐂(௥)𝛆̇௘௟
(௥)

〉 + 〈𝐖∗(௥)𝛔(௥) − 𝛔(௥)𝐖∗(௥)〉, (45) 

where 𝐂(௥) is elastic stiffness of a grain 𝑟 and 𝛆̇௘௟
(௥) is the elastic strain rate within the grain 𝑟. The 

single crystal elastic constants for Ta are taken as 𝐶ଵଵ = 267 𝐺𝑃𝑎, 𝐶ଵଶ = 161 𝐺𝑃𝑎 and 𝐶ସସ =

82.5 𝐺𝑃𝑎. After the integration of the constitutive equation and decoupling of elastic and plastic 

properties [65, 66], we obtain: 

𝛔 = 𝐂௧∆𝛆௘௟ + 𝛔௧,௥௢௧, (46) 

where 𝐂௧ is the self-consistent estimate of elastic stiffness and 𝛔௧,௥௢௧ is stress from the beginning 

of the time increment rotated to the current configuration given by: 

𝛔௧,௥௢௧ = 〈∆𝐑∗௧,(௥)𝛔௧,(௥)∆𝐑∗௧,(௥)்
〉. (47) 

The incremental rotation, ∆𝐑∗௧,(௥), is calculated as ∆𝐑∗௧,(௥) = ൫𝐈 − 𝛽𝐖∗௧,(௥)∆𝑡൯
ିଵ

൫𝐈 +

(1 − 𝛽)𝐖∗௧,(௥)∆𝑡൯, with 𝛽 = 0.5 [96]. The elastic increment is given by: 

∆𝛆௘௟ = ∆𝛆 − 𝛆̇௩௣∆𝑡, (48) 

where ∆𝛆 is the total strain increment and ∆𝑡 is the time increment. Equation (46) is decomposed 

into deviatoric and hydrostatic parts, which can be expressed in the vector form as: 
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𝐬 − 𝐬௧,௥௢௧ − 𝐂ହ×଺
ᇱ௧ ൫∆𝐞 − 𝐏଺×ହ𝐞̇௩௣∆𝑡൯ = 𝟎, (49) 

𝜎௠ − 𝜎௠
௧ −

ଵ

ଷ
trൣ𝐂଺×଺

௧ ൫∆𝐞 − 𝐏଺×ହ𝐞̇௩௣∆𝑡൯൧ = 0 (50) 

where 𝐬, 𝐬௧,௥௢௧, 𝐞̇௩௣, and ∆𝐞 are the vector representation of tensors 𝛔′, 𝛔′௧,௥௢௧, 𝛆̇௩௣ and ∆𝛆 as: 

𝐬 =

⎩
⎪
⎨

⎪
⎧

𝜎ଵଵ
ᇱ

𝜎ଶଶ
ᇱ

𝜎ଵଶ
ᇱ

𝜎ଵଷ
ᇱ

𝜎ଶଷ
ᇱ ⎭

⎪
⎬

⎪
⎫

, 𝐬௧,௥௢௧ =

⎩
⎪
⎨

⎪
⎧

𝜎ଵଵ
ᇱ௧,௥௢௧

𝜎ଶଶ
ᇱ௧,௥௢௧

𝜎ଵଶ
ᇱ௧,௥௢௧

𝜎ଵଷ
ᇱ௧,௥௢௧

𝜎ଶଷ
ᇱ௧,௥௢௧

⎭
⎪
⎬

⎪
⎫

, 𝐞̇௩௣ =

⎩
⎪
⎨

⎪
⎧

𝜀௩̇௣,ଵଵ

𝜀௩̇௣,ଶଶ

𝜀௩̇௣,ଵଶ

𝜀௩̇௣,ଵଷ

𝜀௩̇௣,ଶଷ⎭
⎪
⎬

⎪
⎫

, ∆𝐞 =

⎩
⎪
⎨

⎪
⎧

∆𝜀ଵଵ

∆𝜀ଶଶ

∆𝜀ଷଷ

2∆𝜀ଵଶ

2∆𝜀ଵଷ

2∆𝜀ଶଷ⎭
⎪
⎬

⎪
⎫

.  (51) 

𝐏଺×ହ is a transformation matrix that transforms the five-dimensional vector 𝐞̇௩௣ into a six-

dimensional representation compatible with ∆𝐞 [97, 98]. The 𝐂ହ×଺
ᇱ௧  matrix representation of 

elastic stiffness produces a five-dimensional deviatoric stress vector when multiplied with six-

dimensional strain increment vector ∆𝐞. It is a matrix representation of tensor 𝐶௜௝௞௟
ᇱ௧ = 𝐶௜௝௞௟

௧ −

ଵ

ଷ
𝐶௠௡௞௟

௧ 𝛿௠௡𝛿௜௝ with the third row removed. 𝜎௠ and 𝜎௠
௧  are the hydrostatic portions of the stress 

tensors 𝛔 and 𝛔௧,௥௢௧, and 𝐂଺×଺
௧  is the matrix representation of the elastic stiffness tensor 

consistent with the definition of strain increment ∆𝐞. 

For a given strain increment, ∆𝐞, Eq. (49) can be solved for visco-plastic strain rate, 𝐞̇௩௣, 

using Newton’s method. The residual and its Jacobian are: 

𝐅൫𝐞̇௩௣൯ = 𝐬൫𝐞̇௩௣൯ − 𝐬௧,௥௢௧ − 𝐂ହ×଺
ᇱ௧ ൫∆𝐞 − 𝐏଺×ହ𝐞̇௩௣∆𝑡൯ = 𝟎, (52) 

డ𝐅

డ𝐞̇ೡ೛
=

డ𝐬

డ𝐞̇ೡ೛
+ 𝐂ହ×଺

ᇱ௧ 𝐏଺×ହ∆𝑡, (53) 

where the derivative 
డ𝐬

డ𝐞̇ೡ೛
 can be approximated as 

డ𝐬

డ𝐞̇ೡ೛
≈ 𝐌ିଵ [65, 83]. The Newton iterations 

are facilitated using: 
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𝐞̇௩௣
௜ାଵ = 𝐞̇௩௣

௜ − ቆ
డ𝐅

డ𝐞̇ೡ೛
ฬ

𝐞̇ೡ೛
೔

ቇ

ିଵ

𝐅൫𝐞̇௩௣
௜ ൯. (54) 

The iterative procedure over 𝐞̇௩௣
௜  terminates when the norm of the residual becomes smaller than 

the tolerance conveniently defined with respect to the current von Mises stress: ห𝐅൫𝐞̇௩௣
௜ ൯ห <

0.001𝜎௩ெ. The deviatoric stress, 𝐬, is available once the visco-plastic strain rate has converged 

and the hydrostatic portion, 𝜎௠, can be calculated from Eq. (50). 

In addition to the total stress at the end of the time increment, 𝛔, the FE solver also requires 

the Jacobian matrix obtained by differentiating the constitutive equation, i.e. Eq. (46): 

ቀ
డ𝛔

డ∆𝛆
ቁ

଺×଺
= ቂ𝐈଺×଺ + 𝐂଺×଺

௧ 𝐏଺×ହ𝐌 ቀ
డ𝐬

డ𝛔
ቁ

ହ×଺
∆𝑡ቃ

ିଵ

𝐂଺×଺
௧ , (55) 

where ቀ
డ𝐬

డ𝛔
ቁ

ହ×଺
 is the derivative of five-dimensional deviatoric stress with respect to the six 

independent components of stress tensor ordered analogously to the strain increment [82]. 

After the convergence of Newton’s method, the texture is updated for plastic spin and 

inclusion spin. In addition, the shape of the ellipsoid is updated for the applied plastic 

deformation. Note that the texture and ellipsoid are already rotated for the macroscopic spin 

provided by the FE solver at the beginning of the time increment to ensure that they are in the 

same configuration as the strain increment and other quantities. 

As was noted before, in a large number of implicit finite element implementations of crystal 

plasticity codes the state variables are held constant while the stress is updated implicitly [65, 67, 

82, 83]. The state variables are subsequently updated explicitly. Consequently, the magnitude of 

the current strain increment does not affect the current slip resistances and thus does not 

influence the current deviatoric stress magnitude, 
డ|𝛔ᇱ|

డ|∆𝛆|
= ∑ ∑

డ|𝛔ᇱ|

డఛ೎
ೞ,(ೝ),೐ೣ೛೗

డఛ೎
ೞ,(ೝ),೐ೣ೛೗

డ|∆𝛆|
= 0௦௥ . 
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Therefore, the stress magnitude cannot increase regardless of the magnitude or direction of 

currently applied strain increment since it is bound to a constant yield surface defined by the slip 

resistances from the beginning of the time increment. There can be no loading and the stress can 

only move along the constant yield surface (neutral loading) or to the interior of the yield surface 

(unloading) [99]. On the other hand, the implicit evolution of slip resistances employed here 

causes the expansion of the yield surface with the increase of the currently applied strain 

increment and thus an increase in the stress magnitude. It should also be noted that an explicit 

evolution of the slip resistances before the evaluation of stress would achieve similar results as 

the implicit integration. 

2.6 Conversion of plastic work to heat 

During plastic deformation there is conversion of plastic work to heat known as adiabatic 

heating, which causes an increase in the sample temperature. At low strain rates (below 

10ିଷ 𝑠ିଵ) the generation of heat is small since any heat is quickly conducted away from the 

specimen. Therefore, behavior is approximately isothermal. At higher strain rates (above 10 𝑠ିଵ) 

there is no sufficient time for the generated heat to be conducted away. Therefore almost all 

plastic work is transferred into heat, and the conditions are adiabatic. For the strain rates between 

these two limiting values, the conditions are in-between adiabatic and isothermal. In what 

follows we define the expressions for the calculation of temperature increase due to adiabatic 

heating during high strain rate compression and impact simulations.  

The governing equation for calculating the temperature at the end of the time increment, 𝑇, 

during compression test is given by the explicit Euler forward update [100]: 

𝑇 = 𝑇௧ + 𝜂(𝜀̇)𝜉
ௐ̇೛

ఘ஼೛
∆𝑡, (56) 
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where 𝜉 is the fraction of plastic work converted into heat, 𝜌 is density of Ta (taken for pure Ta 

as 16640 𝑘𝑔/𝑚ଷ [30]), and 𝐶௣ is the specific heat given as a function of temperature for Ta [72]: 

𝐶௣ = 𝐴଴ + 𝐴ଵ𝑇௧ +
஺మ

(்೟)మ
, (57) 

with 𝐴଴ = 145.5
௃

௞௚௄
, 𝐴ଵ = 0.009544

௃

௞௚௄మ
, and 𝐴ଶ = −68900

௃

௞௚
𝐾. 𝑊̇௣ is the plastic work rate 

calculated as: 

𝑊̇௣ = 𝛔ᇱ ∙ 𝛆̇௩௣.  (58) 

𝜂 is the adiabatic correction factor and represents a fraction of the heat retained within the 

compression specimen for the rates between 10ିଷ 𝑠ିଵ and 10 𝑠ିଵ when the compression test 

conditions are neither isothermal nor adiabatic [100]. It is calculated as: 

𝜂 = ቐ

0, if 𝜀̇ < 10ିଷ𝑠ିଵ

0.25(log 𝜀̇ + 3), if 10𝑠ିଵ < 𝜀̇ < 10ିଷ𝑠ିଵ

1, if 𝜀̇ > 10𝑠ିଵ

. (59) 

The fraction of plastic work converted into heat, 𝜉, is usually taken between 0.8 and 0.95. 

However, 𝜉 varies with the material [101], and for Ta this value was measured to be close to 1.0 

[102, 103], which is what we used in all the simulations.  

In the impact tests, the strain rates are well above 10 𝑠ିଵ, requiring the consideration of the 

adiabatic conditions (Eq. (56)). In the case of forming processes where strain rates are such that 

the process cannot be considered neither adiabatic nor isothermal, it is recommended that the 

heat conduction be considered in coupled temperature-displacement FE analysis.   
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3 Remeshing and interpolation procedures for state variables including texture 

During the FE simulations to large strains, the elements can become severely distorted, 

requiring remeshing. When the ratio of the longest edge to the shortest edge of the most distorted 

element reaches a value 7, the remeshing is triggered. The deformed part is imported as 

geometry into ABAQUS/CAE and completely remeshed using the ABAQUS Mesh module. 

After remeshing all variables defining the current state of the part require mapping/interpolation. 

Most of the state variables can be interpolated linearly except for the variables defining grain 

orientations. The latter will be interpolated using the spherical linear interpolation (Slerp) in the 

space of quaternions. Additionally, the deformation gradients, because they consist of both 

rotation and deformation, will be interpolated using a combination of the Slerp method and the 

linear shape functions method. In what follows, we describe the adopted interpolation procedures 

for field variables, grain orientations, and deformation gradients. 

Fields of strain, stress, temperature, velocity, slip resistance within each grain, and 

dislocation densities within each grain are interpolated linearly using the finite element shape 

functions [104]. Shape functions of linear 3D elements can be viewed as a linear interpolation 

technique that can be easily applied to quantities available at both nodes and integration points. 

Figure 2 illustrates the interpolation procedure in the Taylor impact simulation for the velocity 

component 𝑣௭, which is parallel to the cylinder axis. For a given integration point or node of the 

new mesh, the algorithm is: 

1. Determine the element of the old mesh to which the point belongs and calculate natural 

coordinates, (𝑔, ℎ, 𝑟), of the point within the element. 

2. Interpolate the variable value at the point of new mesh using nodal variables of the old mesh, 

𝑥௜, and shape functions, 𝑁௜(𝑔, ℎ, 𝑟),: 
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𝑥 = 𝐍 ∙ 𝐱. (60) 

 

Fig. 2. Schematic showing the interpolation procedure, based on the finite element shape 
functions, for the calculation of the velocity component 𝑣௭ at a point of new mesh using the 
velocity components (𝑣௭)௜ at the element vertices from the old mesh. The contour plots verify 
accuracy of the interpolated field over the new mesh against the original field from the old mesh.  

Figure 2 also shows the old (deformed) and new mesh upon remeshing, along with the 

contours of velocity fields. The similarity between the fields in two meshes demonstrates the 

accuracy of the interpolation procedure for field variables. Due to interpolation and remeshing 

the stress equilibrium will be violated at the macro (FEA) and meso (VPSC) level. However, 

considering the similarity between meshes before and after remeshing the interpolated state is 

very close to the equilibrium. The equilibrium is enforced in the first increment after remeshing. 

The difference between equilibrated stress fields before and after remeshing is negligible. Some 

small discrepancy in the equivalent plastic strain rate fields before and after remeshing is 
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observed for several nodes close to the center of the foot, which can be expected considering a 

very high gradient of the equivalent plastic strain rate in that region.  

The crystal orientations of grains are interpolated using the spherical linear interpolation 

(Slerp) algorithm in the quaternion space [105, 106]. Expression for spherical linear interpolation 

between two quaternions, 𝐪ଵ and 𝐪ଶ, with parameter 𝑢 going from 0 to 1 is given by: 

Slerp(𝐪ଵ, 𝐪ଶ; 𝑢) =
ୱ୧୬(ଵି௨)ఏ

ୱ୧୬ ఏ
𝐪ଵ +

ୱ୧୬ ௨ఏ

ୱ୧୬ ఏ
𝐪ଶ (61) 

where 𝐪ଵ ∙ 𝐪ଶ = cos 𝜃. Since the orientation of each grain within the polycrystal is interpolated 

separately, texture of the polycrystal is also indirectly interpolated. Figure 3 shows three textures 

obtained by interpolating orientation of each grain between its initial orientation and final 

orientation after compression to a high strain, for three different values of the parameter u. The 

Slerp method imposes two constraints: (1) textures must be represented by the same number of 

discrete orientations and (2) pairing between the orientations from the discrete sets must be 

assumed. Due to these limitations the Slerp method is limited when compared to other 

probability distribution interpolation techniques [107-112]. However, it is quite convenient for 

the interpolation between textures of two polycrystals with the same initial texture after similar 

strain history. Other texture interpolation techniques are not investigated here since they would 

likely yield similar results considering that the texture does not vary appreciably within one 

element. In addition, there is an additional complication associated with the texture interpolation 

methods that are not based on the direct pairing of discrete orientations. Once the texture is 

interpolated and represented by the discrete set of orientations, the interpolation of grain 

properties becomes an issue since there is no longer a natural pairing between the grains, which 

is preserved with the Slerp method. 
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Fig. 3. Texture interpolation between two integration points using the Slerp algorithm. Three 
interpolated textures weighted between the two textures used in the interpolation are shown. 

The average grain shape is defined by the deformation gradient tensor. The interpolation of 

deformation gradient follows the algorithm given in [105]. The deformation gradient, 𝐅, is 

decomposed into a stretching tensor, 𝐔, and a rotation tensor, 𝐑, using the polar decomposition: 

𝐅 = 𝐑𝐔. (62) 

Each component of the stretch tensor, 𝐔, is independently interpolated using shape functions as 

described above. The rotation tensor, 𝐑, represents pure rotation and is thus transferred to 

quaternion form and interpolated using the Slerp algorithm. 
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4 Material and model calibration for strain rate and temperature sensitive deformation 

The hardening parameters for commercially pure Ta were calibrated on a set of stress strain 

curves reported in [30, 72, 113]. The Ta plate was prepared by melting ingots with the following 

composition (in weight ppm): C 12, O<50, N<10, H<5, W 60, Nb 250, and Ta balance [113]. 

The quasi-static and dynamic compression tests were performed at various temperatures on the 

cylindrical samples machined from the Ta plate. The cylindrical specimens had their axes in the 

through-thickness (TT) direction. Orientation distribution function (ODF) of the plate was 

derived from the experimental X-ray pole figures. {111} and {100}, pole figures of the derived 

ODF, are plotted on Fig. 4. The ODF was then approximated with 200 weighted orientations for 

simulations (Fig. 4b). 

 

Fig. 4. {111} and {100} equal area projection-type pole figures showing initial texture of the 
tantalum plate: (a) measured data and (b) representation of the measured data using 200 weighted 
orientations for simulations. TT direction of the plate is in the center of the pole figures.  

In the simulations, we assume grains are initially spherical and deform by {11ത0}〈111〉 and 

{112ത}〈111〉 slip modes. The initial slip resistance and hardening parameters of both modes are 

assumed to be the same. Constants for initial slip resistance are determined first from the initial 

yield stresses at different temperatures and strain rates (Table 3). Next, the hardening parameters 

are calibrated and presented in Table 3. The predictions of the model are compared to the 

experimental stress strain curves in Fig. 5, and good agreement is achieved.  
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Table 3. Calibrated parameters of the dislocation density-based hardening model for tantalum.  

 
𝛼 = 1, {11ത0}〈111〉 

and 
𝛼 = 2, {112ത}〈111〉 

𝑘ଵ
ఈ[𝑚] 3.75 × 10଻ 
𝑔ఈ 0.005 

𝐷ఈ[𝑀𝑃𝑎] 1200 
𝑞ఈ 5 

𝐴ఈ[𝑀𝑃𝑎] 233.93 
𝐵ఈ[𝐾] 209.03 

𝐶ఈ 0.14 
𝐺ఈ[𝑀𝑃𝑎] 71.25 

 

 

Fig. 5. Comparison between experimental (full line) and predicted (dashed line) compressive 
true stress-true strain curves for tantalum in the TT direction at various strain rates and 
temperatures. 

5 Verification of VPSC with implicit hardening and application of FE-VPSC to impact  

We begin by presenting the results, verifying the implicit hardening model within VPSC, 

and then present the predictions of the Taylor impact simulation by FE-VPSC.  
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5.1 Verification of the implicit hardening implementation within VPSC 

Predictions of the VPSC model with implicit and explicit hardening are compared for the 

case of room temperature, quasi-static deformation to a true strain of 0.4. The strain increment 

was set to 0.001. Figure 6a compares the stress strain curves, while Fig. 6b compares the 

deformed textures. Good agreement is achieved, which is expected for any sufficiently low strain 

increment. Figure 7 shows the influence of the strain increment on the results of the implicit 

hardening VPSC model. The decay in non-Schmid effects with strain is removed so that the 

differences in hardening behavior can be better observed. Negligible dependence of the stress-

strain response on the magnitude of strain increment is observed. This is caused predominantly 

by the implicit updating of the dislocation densities (Eqs. (25) and (26)).  

 

Fig. 6. Comparison of (a) texture evolution and (b) true stress-true strain response, calculated 
using explicit and implicit implementation of the dislocation density-based hardening law within 
VPSC for simple compression at room temperature under a strain rate of 𝜀̇ = 0.001 𝑠ିଵ.  
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Fig. 7. Effect of the strain increment size used in predicting compressive true stress-true strain 
response of tantalum at room temperature under a strain rate of 𝜀̇ = 0.001 𝑠ିଵ with implicit 
hardening implementation in VPSC.   

5.2 Taylor impact simulations 

We use the FE-VPSC model calibrated for Ta to simulate the Taylor impact test of Ta 

cylinder reported in [20, 30]. Taylor impact specimens were made from the Ta plate with the 

cylinder axis parallel to one of the in-plane directions. The length of the cylinder was 38.1 mm 

and the diameter was 7.62 mm, while the impact velocity was 175 m/s. Geometric profiles of the 

cylinder after testing were reported for three different tests. In addition, texture was measured 

using X-rays at several axial positions for one of the cylinders after testing. 

Simulation setup is given on Fig. 8a. ABAQUS STANDARD dynamic FE code is used. Due 

to symmetry of the process, only ¼ of the cylinder is modeled and meshed with 384 full 

integration brick elements (C3D8 – continuum 3D eight nodal). The symmetry boundary 

conditions are applied to the faces, along which cuts are made. A mesh sensitivity study was 

performed to exclude any appreciable effect of the mesh and element size on the results. Further 

refinement of the mesh leaves the results unchanged and only increases the computational time 

involved. The anvil target is modeled as a discrete rigid surface, and the friction between the 
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cylinder and anvil is neglected. Consistent with the experiment, the initial velocity of the 

cylinder was 175 m/s. The initial texture embedded at each integration point plotted in the global 

frame of the FE model is given on Fig. 8b.  

 

Fig. 8. (a) Finite element model of the Taylor impact test and (b) the initial texture of tantalum 
plotted in the global frame of the FE model (this texture is the same as the one in Fig. 3b but 
rotated to the global frame). The texture in (b) is embedded and evolved during deformation at 
each finite element integration point.  

The equivalent plastic strain rate, 𝜀௘̇௤, fields developing in the cylinder during the simulation 

are shown in Fig. 9. Since the strain rate changes dramatically over the course of the simulation, 

it is not possible to facilitate the comparison between the distributions of equivalent plastic strain 

rate in the plots using the same scale. Hence, the fields were normalized with the maximal value 

of 𝜀௘̇௤ present in the cylinder at that time. At the beginning of the impact, the highest 𝜀௘̇௤ 

develops at the center of the foot and reaches values above 90000 𝑠ିଵ. As the deformation 

progresses, the 𝜀௘̇௤ at the center of the foot decreases, and regions that are away from the foot 

and cylinder axis start deforming. Finally, at the end of the simulation, the plastic wave 

propagates toward the tail of the cylinder. 

Figure 10 compares the side profile and footprint of the simulated cylinder after the impact 

with photographs of the cylinder geometry after the test. The plastic deformation is highly 

heterogeneous, with the highest equivalent plastic strains occurring at the center of the foot and 
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reaching values above 3.6. On the other hand, the tail of the cylinder is not experiencing any 

plastic deformation. In addition, the shape of the footprint is ellipsoidal, indicating that the 

deformation in lateral directions is also non-uniform.  

 

Fig. 9. Evolution of equivalent plastic strain rate field during the impact simulation at instants of 
time t. The strain rates used for the normalization are indicated in the figure for each contour 
plot.  

The deformed major and minor profiles are compared with the experimental measurements 

on Fig. 11a. Radial strains are calculated based on the profiles as 𝜀௥ = ln
ௗ

ௗబ
 and plotted as a 
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function of axial position on Fig. 11b. The difference between major and minor profiles is 

quantified with the R-value, calculated as 𝜀௥
௠௔௝௢௥

/𝜀௥
௠௜௡௢௥. The results are plotted in Fig. 11c as a 

function of axial position. The observed difference between major and minor profiles is driven 

by the initial texture and subsequent texture evolution. The TT is the hard direction, which is 

along the minor profile of the cylinder. Due to the texture evolution, the anisotropy of the 

material changes, and at higher strains, the TT direction actually becomes the softest. 

 

Fig. 10. Comparison of measured and predicted cylinder geometry after the test with the 
superimposed contours of equivalent plastic strain over the latter. 

Figure 12 compares the predicted and measured footprints. The initial footprint is plotted 

with dashed line as a reference to easier assess the amount of plastic deformation at the foot.  

The large heterogeneity of plastic distortions in the axial direction induces a variation of 

microstructural evolution. The texture variation along the axis of the cylinder is compared with 

the experimental measurements at four axial locations: 9.2 mm, 6.5 mm, 1.6 mm, and 0.5 mm 

from the impact surface in Fig. 13. At location furthest away from the foot, the texture resembles 

the initial one since plastic deformation is negligible. As we move toward the foot we see devel- 



103 

 

Fig. 11. Predicted by FE-VPSC (solid line) and experimentally measured (dots) post-test 
geometrical characteristics of the cylinder - (a) radius, (b) radial strains, and (c) R-values - 
plotted as functions of axial distance from the foot, z.  

opment of BCC compression texture with {111} and {001} parallel to the compression direction 

[114, 115]. Agreement of the main texture features between simulation and experiment is good. 

However, it is noted that simulated textures close to the foot display very high intensities. This is 
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likely caused by the fact that in the VPSC model, each grain is represented with only one 

orientation: uniform within the grain domain, which causes the predicted textures to be 

consistently stronger than the measured ones [9, 116]. Accounting for intragranular 

misorientation distributions using a second order moments within VPSC is aimed at relaxing 

typically predicted texture intensities by VPSC [117, 118]. 

 

Fig. 12. Comparison of predicted and measured footprint geometry. As a reference, the initial 
cross-section geometry is plotted using the dashed line. 

Very high strain rates and adiabatic heating are two competing mechanisms that influence 

flow stress, especially at the foot of the cylinder. The very high strain rate causes an increase in 

the resistance to intrinsic barriers, giving rise to a higher flow stress, while the increase in 

temperature lowers it. It is found that the temperature effects are stronger than the strain rate 

effects and the deformation, particularly at the center of the foot, is extremely high. Temperature 

at this region reaches almost 1000 °C which is still considerably below the melting temperature 

of Ta (3017 °C). Complex dependence of the flow stress on temperature and strain rate is 

accounted for using the thermally activated glide. The anisotropic plastic flow of Ta during the 

impact is primarily governed by the evolution of crystallographic texture, while the non-Schmid  
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Fig. 13. Comparison of measured (by X-ray diffraction) and predicted texture evolution in the 
cylinder after the impact at (a) 9.2 mm, (b) 6.5 mm, (c) 1.6 mm, and (d) 0.5 mm away from the 
foot. 

effects do not contribute appreciably mainly due to large plastic strain levels. Since the model 

developed here is texture-sensitive, evolves texture, and captures the rate and temperature 

dependence of flow stress, it is able to successfully capture the geometrical changes of the 
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cylinder in a numerically stable manner. Future work will concentrate on incorporating damage 

criteria to facilitate coupled plasticity-damage simulations under high strain rate deformation.  

6 Conclusions 

This work presented an implementation of VPSC with removed rate sensitivity coming from 

the single crystal power-law flow rule into implicit finite elements (FE-VPSC) to enable the 

prediction of high strain rate and impact deformation of polycrystals. The implementation 

permits the description of the complex strain rate sensitivity of a material solely through the 

thermally activated dislocation density-based hardening law. As a result, magnitudes of flow 

stress can be accurately calculated during high strain rate deformation. The implementation 

required the development of an implicit numerical scheme for the hardening law within VPSC to 

enable the prediction of high strain rate and impact deformation. Moreover, deformation of 

individual single crystals in the model is activated not only from the resolved shear stress along 

the direction of slip (Schmid law), but also from shear stresses resolved along directions 

orthogonal to the slip direction and the three normal stress components (non-Schmid effects). 

Therefore, the model is capable of predicting the coupled texture and non-Schmid effects on 

anisotropic flow of BCC polycrystals. The developed model was used for the prediction of 

deformation behavior of Ta during high strain rate conditions, including the Taylor impact of a 

cylindrical specimen. Since the impact simulations required remeshing and interpolation of state 

variables, the spherical linear interpolation algorithm in the space of quaternions is implemented 

to facilitate the interpolation of texture. Adiabatic heating was also considered by the model. The 

predicted deformed shape of the cylinder is compared to the corresponding experimental 

measurements, and good agreement is achieved. Furthermore, the predicted texture evolution at 

several locations along the cylinder axis is also compared with measurements, and good 
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agreement is achieved. It is found that the anisotropic plastic flow of Ta during impact is 

primarily governed by the evolution of crystallographic texture, while the non-Schmid effects do 

not contribute appreciably, mainly due to the large plastic strain levels and temperature increase. 

The developed FE-VPSC model can be broadly applied to understanding and predicting 

microstructure-property relationships in high strain rate deformation processes that generate 

spatially and temporarily heterogeneous mechanical fields. 

Appendix A  

Below, we present the derivation of individual terms of Eq. (35). The superscript denoting 

grain number, 𝑟, is dropped for simplicity. 

Term (1): 

డ𝛆̇ೡ೛

డ𝛔ᇱ
= 𝛾̇଴ ∑ ቊ∑ 𝑛 ൬
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ഀ ൰

௡ିଵ
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Term (2): 
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ഀ 𝐦௦,௧

௦(ఈ)  (A2) 

Term (3): 

We assume there is a function 𝜏௖
ఈ that maps deviatoric stress directly to slip resistance at the 

end of the time increment given by the implicit equation: 

𝜏௖
ఈ(𝛔′) = 𝑔൫ห𝛾̇௦൫𝛔′, 𝜏௖

ఈ(𝛔′)൯ห൯. (A3)  
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Function 𝑔 maps the absolute shear rates to slip resistance at the end of the time increment and is 

defined by the hardening law. In order to obtain derivatives of slip resistance w.r.t. deviatoric 

stress, we differentiate both sides of the equation: 

డఛ೎
ഀ

డ𝛔ᇱ
=

డ௚

డ|ఊ̇ೞᇲ|

డหఊ̇ೞᇲห

డ𝛔ᇱ
+

డ௚

డ|ఊ̇ೞᇲ|

డหఊ̇ೞᇲห

డఛ೎
ഀᇲ

డఛ೎
ഀ

డ𝛔ᇱ
 (A4) 

If we consider slip resistance and shear rates as vectors with length equal to number of slip 

modes and systems, respectively, we get: 

డ𝛕೎

డ𝛔ᇱ
=

డ𝐠

డ|𝛄̇|

డ|𝛄̇|
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డ|𝛄̇|

డ|𝛄̇|

డ𝛕೎

డ𝛕೎

డ𝛔ᇱ
 (A6) 

where | | denotes the absolute value. From here we can calculate the derivatives of slip 

resistance w.r.t. stress as: 

డ𝛕೎

డ𝛔ᇱ
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−
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ିଵ డ𝐠

డ|𝛄̇|

డ|𝛄̇|

డ𝛔ᇱ
 (A7)  

where 𝐈௡ഀ×௡ഀ
 is an identity matrix with dimensions defined by the number of slip modes 𝑛ఈ. The 

derivatives appearing in the above equation are calculated as: 

డ|ఊ̇ೞ|

డ𝛔ᇱ
= 𝛾̇଴𝑛 ൬

ห𝐦೟೚೟
ೞ,೟ ∙𝛔ᇱห

ఛ೎
ഀ  ൰

௡ିଵ
ଵ

ఛ೎
ഀ 𝐦௦,௧ (A8) 

డ|ఊ̇ೞ|

డఛ೎
ഀ = ቐ−𝛾̇଴𝑛 ൬

ห𝐦೟೚೟
ೞ,೟ ∙𝛔ᇱห

ఛ೎
ഀ  ൰

௡ିଵ
ห𝐦೟೚೟

ೞ,೟ ∙𝛔ᇱห

ఛ೎
ഀమ ; if 𝑠 ∈ 𝛼

0; if 𝑠 ∉ 𝛼

 (A9) 

The term 
డ𝐠

డ|𝛄̇|
 represents the derivative of slip resistance w.r.t. absolute shear rates, and it is 

defined separately for different hardening laws. We use dislocation-based hardening law, where 

only forest and debris terms depend on the shear rates through the dislocation densities (Eq. 20). 

The derivatives of the slip resistance are: 
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డఛ೎
ഀ

డ|ఊ̇ೞ|
=

డఛ೑೚ೝ
ഀ

డఘ೑೚ೝ
ഀᇲ 

డఘ೑೚ೝ
ഀᇲ

డ|ఊ̇ೞ|
+

డఛ೏೐್
ഀ

డఘ೏೐್

డఘ೏೐್

డ|ఊ̇ೞ|
 (A10) 

where the individual terms are (no summation over repeated indices): 

డఛ೑೚ೝ
ഀ

డఘ೑೚ೝ
ഀᇲ = 𝑏ఈ𝜇

ଵ

ଶ

ଵ

ට∑ ఞഀഀ ఘ೑೚ೝ
ഀᇲ 

ഀᇲ

𝜒ఈఈᇱ (A11) 

𝜕𝜌௙௢௥
ఈ

𝜕|𝛾̇௦|
=

⎩
⎨

⎧

1 −
1

2

⎣
⎢
⎢
⎡
1

2
𝑘ଵ

1

ට𝜌௙௢௥
ఈ

− 𝑘ଶ

⎦
⎥
⎥
⎤

෍ |𝛾̇௦|
௦(ఈ)

∆𝑡

⎭
⎬

⎫
ିଵ

1

2
 ቈ

𝜕𝜌௙௢௥
ఈ

𝜕𝛾ఈ
൫𝜌௙௢௥

ఈ,௧ ൯ +
𝜕𝜌௙௢௥

ఈ

𝜕𝛾ఈ
൫𝜌௙௢

ఈ ൯቉ ; 

with 𝑠 ∈ 𝛼 (A13) 

డఛ೏೐್
ഀ

డఘ೏೐್

= −𝑘ௗ௘௕𝜇𝑏ఈ ቈlog ቆ𝑏ఈට𝜌ௗ௘௕ቇ + 1቉
ଵ

ଶ

ଵ

ටఘ೏೐್

 (A14) 

డఘ೏೐್

డ|ఊ̇ೞ|
= ൤1 −

ଵ

ଶ

∆ఘ೏೐್

ఘ೏೐್

൨
ିଵ

ቊ
ଵ

ଶ
ට𝜌ௗ௘௕𝑞ఈᇱ𝑏ఈᇱ𝑘ଶ

డఘ೑೚ೝ
ഀᇲ

డ|ఊ̇ೞ|
∑ |𝛾̇௦|௦(ఈ) ∆𝑡 + ඥ𝜌ௗ௘௕𝑞ఈᇱ𝑏ఈᇱ0.5𝑘ଶൣ𝜌௙௢௥

ఈᇱ,௧ +

𝜌௙௢௥
ఈᇱ ൧∆𝑡ቋ ; with 𝑠 ∈ 𝛼′ (A15) 

where  

∆𝜌ௗ௘௕ = ට𝜌ௗ௘௕ ∑ 𝑞ఈ𝑏ఈ ଵ

ଶ
൤

డఘೝ೐೘,೑೚ೝ
ഀ

డఊഀ
൫𝜌௙௢௥

ఈ,௧ ൯ +
డఘೝ೐೘,೑೚ೝ

ഀ

డఊഀ
൫𝜌௙௢௥

ఈ ൯൨ ∑ |𝛾̇௦|௦(ఈ) ∆𝑡ఈ . (A16) 
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Chapter 3: Predicting intragranular misorientation distributions in 
polycrystalline metals using the viscoplastic self-consistent formulation 

This chapter was published as: "Predicting intragranular misorientation distributions in 

polycrystalline metals using the viscoplastic self-consistent formulation", Zecevic Miroslav, 

Wolfgang Pantleon, Ricardo A. Lebensohn, Rodney J. McCabe, and Marko Knezevic, Acta 

Materialia 140 (2017): 398-410. My contribution to this chapter was: 

 development and implementation of two methods for calculation of intragranular 

misorientation distributions (Taylor expansion approximation and discrete 

approximation) from the intragranular rotation rate distributions within the visco-

plastic self-consistent model  

 simulation of tension and plane-strain compression of fcc polycrystal using the 

proposed VPSC model and the full-field VPFFT model 

 processing of the simulation and experimental results and their comparison 

 writing the first draft of the paper. 
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Abstract 

In a recent paper, we reported the methodology to calculate intragranular fluctuations in the 

instantaneous lattice rotation rates in polycrystalline materials within the mean-field viscoplastic 

self-consistent (VPSC) model. This paper is concerned with the time integration and subsequent 

use of these fluctuations to predict orientation-dependent misorientation distributions developing 

inside each grain representing the polycrystalline aggregate. To this end, we propose and assess 

two approaches to update the intragranular misorientation distribution within the VPSC 

framework. To illustrate both approaches, we calculate intragranular misorientations in face-

centered cubic polycrystals deformed in tension and plane-strain compression. These predictions 

are tested by comparison with corresponding experiments for polycrystalline copper and 

aluminum, respectively, and with full-field calculations. It is observed that at sufficiently high 

strains some grains develop large misorientations that may lead to grain fragmentation and/or act 

as driving forces for recrystallization. The proposed VPSC-based prediction of intragranular 

misorientations enables modeling of grain fragmentation, as well as a more accurate modeling of 

texture using a computationally efficient mean-field approach, as opposed to computationally 

more expensive full-field approaches. 

Keywords: Micromechanics; Crystal plasticity; Second order moments; Misorientation; Texture 
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1 Introduction 

During forming operations, polycrystalline metals are subjected to shape changes and plastic 

deformation that result in highly heterogeneous micromechanical fields (stress and strain fields) 

in the material [1]. It is well known that dislocation glide accommodates most of the imposed 

plastic deformation at the level of single grains. Crystallographic slip is potentially associated 

with local lattice rotations, which in turn induce anisotropy in the mechanical response by texture 

evolution and microstructure formation. Additionally, intra- and intergranular heterogeneities 

develop in the material, playing an important role in determining the deformation and hardening 

behavior, as well as the subsequent grain fragmentation and recrystallization of the deformed 

microstructure.  

Intragranular orientation spreads have been related to the formation of transition bands, 

which are favorable places for recrystallization nucleation [2, 3]. In addition, recrystallization 

nuclei forming near grain boundaries may have quite different crystallographic orientation 

compared to the average grain orientation due to large orientation variations developed across 

the grains [3, 4]. Therefore, accurate predictions of intragranular orientation distributions are 

crucial to model recrystallization processes. Furthermore, such misorientation predictions can 

improve the modelling of deformation textures and provide a physical basis for grain 

fragmentation.  

Plastic deformation of polycrystalline metals is usually modeled using either full-field or 

mean-field approaches. Full-field models, for example, can be based on the crystal plasticity 

finite element (CPFE) method [5-9] or on the spectral fast Fourier transform (FFT)-based 

approach of Moulinec and Suquet [10], extended to polycrystals by Lebensohn [11]. These 

models are able to predict local micromechanical fields, including intragranular orientation 
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gradients, resulting from grain-to-grain interactions, at the expense of a relatively high 

computational cost. Among mean-field models, self-consistent schemes, originally conceived for 

linear problems [12] and later extended to non-linear material’s behavior [13-16], are widely 

used for simulating plastic deformation of polycrystalline materials considering grain interaction 

in an average sense. These non-linear homogenization-based models are computationally 

efficient, but most of them use information on first moments of the intragranular fields only, for 

the definition of a material with linearized behavior on which the self-consistency is actually 

imposed. In the last two decades, improved homogenization techniques have been developed that 

also take into account second moments of the micromechanical fields to define an optimized 

linearization [17, 18]. However, until very recently this available information on second 

moments of the intragranular fields had not been used in calculations of intragranular 

misorientation spreads. 

There have been numerous phenomenological attempts to predict the development of 

intragranular orientation spreads without the use of computationally expensive full-field 

approaches. Berveiller et al. [19] divided grains into homogeneous regions where plastic 

deformation occurred by single or multiple slip. They showed that these regions developed quite 

different orientations upon plastic deformation, indicating the formation of an orientation spread. 

Bolmaro et al. [20] represented each grain within the viscoplastic self-consistent (VPSC) model 

by two fragments to which random neighbors were assigned. Co-rotation of grain fragments and 

their respective neighbors was assumed, resulting in the development of local misorientation 

between fragments. This model was later used to initialize the local states to drive a 

recrystallization model [21]. The idea of co-rotation in VPSC was further extended by [22], 

representing each grain by six fragments, each one co-rotating with its own neighbor. In a similar 
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approach developed by Toth et al. [23], a Taylor-type polycrystal model was used, in which each 

grain was divided into two regions, one at the center of the grain and another close to grain 

boundaries. In the latter, rotation was impeded by “friction” with the surrounding medium. Due 

to the difference in rotation between the two regions, lattice curvature was predicted and in turn 

used in a fragmentation model. Raabe [24] estimated the intragranular misorientation by 

assuming one part of the grain was next to a hard grain and thus deformed according to the 

Taylor model, while another part had a soft neighbor and consequently deformed according to 

the Sachs model. In [2] rotation rate fields were analyzed to determine the divergent and 

convergent orientations under different applied strains. A similar idea was developed by Raabe et 

al. [25] where the divergence of the rotation rate field was used to determine which orientations 

would be prone to develop strong orientation differences. Lee and Duggan [26] used an 

intragranular deformation banding model within the Taylor framework to simulate rolling 

textures of copper. A similar model was later used by Leffers [27] for simulating microstructure 

development in rolled aluminum. Butler and McDowell [28] introduced additional plastic 

rotations within the Taylor model to account for accumulation of geometrically necessary 

dislocations related to grain subdivision. In recent work Guo and Seefeldt [29] have used VPSC 

to model formation of reorientation bands and resulting grain fragmentation, caused by slip 

bands in neighboring grains. Slip rate within slip band for slip system s was assumed to be 

proportional to mean slip rate value within grain and the coefficient of proportionality was 

assumed to be a fitting parameter. A majority of the described approaches have been introduced 

to improve texture predictions and to allow incorporation of the effect of grain fragmentation. 

Detailed analysis of the orientation spreads for a large number of grains and comparison with 

experimental measurements were generally missing in the aforementioned approaches. 
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In this work, the widely-used VPSC model [15] is extended to calculate intragranular 

misorientation spreads. The VPSC model is able to provide intragranular second moments of 

stress and strain rate fields [30, 31]. In turn, this information can be used to calculate second 

moments of the rotation rates within individual grains [32]. In this paper, the latter information is 

further utilized to calculate corresponding intragranular misorientation spreads. In doing so, we 

formulate two algorithms to predict accumulation of intragranular misorientations based on time 

integration of first and second moments of the rotation rate fields. The two approaches are 

applied to uniaxial tension of copper and plane-strain compression of aluminum. The predictions 

are compared with experimental measurements and also with predictions using the full-field 

viscoplastic FFT-based (VPFFT) model. Considering the approximations involved in the 

formulation of the proposed mean-field model, reasonable agreement with experiments and the 

VPFFT model predictions is demonstrated for both approaches. 

2 Modeling framework 

In what follows we provide a short summary of the VPSC model, including the expressions 

to calculate second moments of the micromechanical fields in the grains. In our notation, tensors 

are denoted by bold letters while scalars and tensor components are indicated in italics and not 

bold. The contracted product and the tensor product between two tensors are denoted by “:” and 

“⊗”, respectively. The constitutive relationship between the viscoplastic strain rate, 𝛆̇, and the 

deviatoric stress, 𝛔, at material point 𝐱 is given by the rate-sensitivity equation: 

𝛆̇(𝐱) = ∑ 𝛾̇௦(𝐱)𝐦௦(𝐱) =௦ 𝛾̇଴ ∑ ቀ
𝛔(𝐱)∶𝐦ೞ(𝐱)

ఛ೎
ೞ(𝐱)

ቁ
௡

sign൫𝛔(𝐱): 𝐦௦(𝐱)൯௦ 𝐦௦(𝐱). (1) 
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The constitutive parameters 𝜏ୡ
௦, 𝛾̇଴, and 𝑛 are the critical resolved shear stress of slip system 

𝑠, a reference shear rate, and the inverse of the rate sensitivity; 𝛾̇௦ is the shear rate and 𝐦௦ is the 

symmetric part of the Schmid tensor, given by: 

𝐦௦(𝐱) =
ଵ

ଶ
൫𝐛௦(𝐱) ⊗ 𝐧௦(𝐱) + 𝐧௦(𝐱) ⊗ 𝐛௦(𝐱)൯, (2) 

with 𝐧௦ and 𝐛௦ denoting, respectively, the slip plane normal and the Burgers vector of slip 

system 𝑠.   

The plastic spin, 𝛚̇௣, at material point 𝐱 is given by: 

𝛚̇௣(𝐱) = ∑ 𝛾̇௦(𝐱)𝛂௦(𝐱)௦ , (3) 

where 𝛂௦(𝐱) =
ଵ

ଶ
൫𝐛௦(𝐱) ⊗ 𝐧௦(𝐱) − 𝐧௦(𝐱) ⊗ 𝐛௦(𝐱)൯ is the antisymmetric part of the Schmid 

tensor of slip system s. By performing linearization of the nonlinear constitutive relationships, 

we obtain the following expressions: 

𝛆̇(𝐱) = 𝐌(௥) ∶  𝛔(𝐱) + 𝛆̇଴(௥), (4) 

𝛾̇௦(𝐱) = 𝜂௦(௥)𝜏௦(𝐱) + 𝑔̇଴௦(௥), (5) 

where 𝜏௦(𝐱) = 𝐦௦(𝐱): 𝛔(𝐱) is the resolved shear stress on slip system 𝑠. 𝐌(௥) and 𝛆̇଴(௥) are the 

linearized compliance and the back-extrapolated strain rate for grain 𝑟, respectively, while 𝜂௦(௥) 

and 𝑔̇଴௦(௥) are the linearized compliance and the back-extrapolated shear rate of slip system 𝑠 in 

grain 𝑟, respectively. These moduli depend on the adopted linearization procedure. In what 

follows, we assume an affine linearization [33]. 

In order to obtain the macroscopic response of the linear polycrystal, we perform a self-

consistent homogenization, which implies a similar linear constitutive relation for the effective 

medium: 
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𝐄̇ = 𝐌ഥ ∶ 𝚺 + 𝐄̇଴, (6) 

𝐄̇ and 𝚺 are the macroscopic strain rate and stress and 𝐌ഥ  and 𝐄̇଴ are the macroscopic compliance 

and back-extrapolated strain rate, respectively. Within the self-consistent scheme every grain 𝑟 is 

treated as an ellipsoidal inhomogeneity embedded in the effective medium. This problem is 

solved using the equivalent inclusion approach [34] and the following interaction equation can 

be derived [15]: 

𝛆̇෨(௥) = −𝐌෩ ∶ 𝛔෥(௥), (7) 

where 𝛆̇෨ and 𝛔෥ are the deviations of strain rate and stress in grain 𝑟 from the macroscopic values. 

The interaction tensor 𝐌෩ = (𝐈 − 𝐒)ିଵ ∶  𝐒 ∶  𝐌ഥ  is a function of the classical (symmetric) Eshelby 

tensor, 𝐒, and the unknown macroscopic compliance can be derived from the self-consistent 

equations: 

𝐌ഥ = 〈𝐌(௥)𝐁(௥)〉, (8) 

𝐄̇଴ = 〈𝐌(௥)𝐛(௥) + 𝛆̇଴(௥)〉, (9) 

where 𝐁(௥) and 𝐛(௥) are the stress localization tensors, which are functions of the microscopic 

and macroscopic moduli. The self-consistent equations are, therefore, implicit in  𝐌ഥ  and 𝐄̇଴ and 

need to be solved iteratively using a fixed-point method based on Eqs. (8-9). The reorientation 

rate of the ellipsoid is given by:  

𝛚̇෩ (௥) = 𝚷 ∶ 𝐒ିଵ ∶  𝛆̇෨(௥), (10) 

where 𝚷 is the antisymmetric Eshelby tensor. Assuming that the applied macroscopic rigid body 

rotation rate is equal to zero (as is the case for all of the performed simulations in this work) the 

total rate of lattice rotation at the material point can be written as: 
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𝛚̇(௥)(𝐱) = 𝛚̇෩ (௥) − 𝛚̇௣(𝐱). (11) 

Once the self-consistent scheme converges, second moments of stress within each grain 𝑟 

can be calculated as [30]: 

〈𝛔⨂𝛔〉(௥) =
ଶ

௖(ೝ)

డ௎෩೅

డ𝐌(ೝ), (12) 

where 𝑐(௥) is the grain volume fraction and 𝑈෩் represents the effective potential given by: 

𝑈෩் =
ଵ

ଶ
𝐌ഥ ∶∶ (𝚺⨂𝚺) + 𝐄̇଴: 𝚺 +

ଵ

ଶ
𝐺̅. (13) 

The additional term 𝐺̅ is the energy under zero applied stress. The second moment of the lattice 

rotation-rate within grain 𝑟 can be calculated as [32]: 

〈𝛚̇⨂𝛚̇〉(௥) = 〈𝛚̇௣⨂𝛚̇௣〉(௥) + 𝛚̇෩ (௥)⨂𝛚̇෩ (௥) − 𝛚̇෩ (௥)⨂〈𝛚̇௣〉(௥) − 〈𝛚̇௣〉(௥)⨂𝛚̇෩ (௥). (14) 

Eq. (5) implies linearity between the plastic spin and stress. As a result, an expression for the 

second moment of plastic spin, 〈𝛚̇௣⨂𝛚̇௣〉(௥) can be obtained as a function of the first and second 

moments of stress [32]: 

〈𝛚̇௣⨂𝛚̇௣〉(௥) = ൛∑ ൫𝜂௞(௥)𝜂௞ᇱ(௥)൯൫𝛂௞(௥)⨂𝛂௞ᇱ(௥)൯⨂൫𝐦௞(௥)⨂𝐦௞ᇱ(௥)൯௞,௞ᇱ ൟ ∷ 〈𝛔⨂𝛔〉(௥)  

+൛∑ ൫𝛂௞(௥)⨂𝛂௞ᇱ(௥)൯⨂ൣ൫𝜂௞(௥)𝑔̇଴௞ᇱ(௥)൯𝐦௞(௥) + ൫𝜂௞ᇱ(௥)𝑔̇଴௞(௥)൯𝐦௞ᇱ(௥)൧௞,௞ᇱ ൟ: 〈𝛔〉(௥)  

+ ∑ ൫𝛂௞(௥)⨂𝛂௞ᇱ(௥)൯൫𝑔̇଴௞(௥)𝑔̇଴௞ᇱ(௥)൯௞,௞ᇱ . (15) 

Since 〈𝛚̇௣〉(௥) = 𝛚̇௣(௥) is calculated based on the mean value of stress, the remaining terms 

in Eq. (14) can be readily evaluated. The covariance [35] of lattice rotation rate fluctuations is 

given by: 

〈𝛿𝛚̇⨂𝛿𝛚̇〉(௥) = 〈𝛚̇⨂𝛚̇〉(௥) − 〈𝛚̇〉(௥)⨂〈𝛚̇〉(௥) = 〈𝛚̇௣⨂𝛚̇௣〉(௥) − 〈𝛚̇௣〉(௥)⨂〈𝛚̇௣〉(௥), (16) 
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where 𝛿𝛚̇(𝐱) = 𝛚̇(௥)(𝐱) − 〈𝛚̇(௥)〉 represents the fluctuation of the lattice rotation rate. 

Consequently, the fluctuation of the rotation rate within a grain is determined by the fluctuation 

of plastic spin since the reorientation rate of the ellipsoid does not vary within the grain. 

Finally, we turn our attention to the problem of incrementally updating the orientation field 

within grain 𝑟 using the available expressions for the moments of the rotation rate field. We 

assume that the orientation field within grain 𝑟 at the beginning of the current time increment, 𝑡, 

is known. In order to obtain the expression for the first and second moments of the orientation 

field at the end of the time increment, 𝑡 + ∆𝑡, two approaches are considered: (1) a Taylor 

expansion approximation of misorientations and (2) a discrete approximation of misorientations. 

The two approaches will be compared with each other, with experiments and full-field 

simulation results. 

2.1 Taylor expansion approximation of misorientations  

In what follows, we use (unit) quaternion representation of crystal orientations and rotations.  

Quaternions are represented in matrix form [36], so that matrix algebra and notation can be used 

in the derivations. The matrix representation of quaternions is recalled in Appendix A. The 

orientation update at a material point 𝐱 is given by: 

𝐪௧ା∆௧(𝐱) = 𝐪௜௡௖
௧ (𝐱)𝐪௧(𝐱),   (17a) 

𝑞௜௝
௧ା∆௧(𝐱) = (𝑞௜௡௖

௧ )௜௞(𝐱)𝑞௞௝
௧ (𝐱)  (in index notation, with indices going from 1 to 4), (17b) 

where 𝐪௜௡௖
௧ (𝐱) represents the active incremental rotation (expressed in sample frame) at time 𝑡 

and 𝐪௧(𝐱) and 𝐪௧ା∆௧(𝐱) represent the active rotations (also expressed in sample frame) that 

rotate the sample frame into alignment with the crystal frame at times 𝑡 and 𝑡 + ∆𝑡, respectively. 

Next, we express the crystal orientation at each material point 𝐱 composing the mean rotation of 
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grain 𝑟 to which the material point belongs and the local misorientation with respect to this 

average: 

𝐪௧ା∆௧(𝐱) = 𝛿𝐪௧ା∆௧(𝐱)𝐪ഥ௧ା∆௧(௥), (18) 

where the bar over a quaternion denotes the mean rotation of the grain and the 𝛿 in front of a 

quaternion denotes the misorientation with respect to that mean. By assuming analogous 

relations for 𝐪௜௡௖
௧ (𝐱) and 𝐪௧(𝐱) we get: 

𝛿𝐪௧ା∆௧(𝐱)𝐪ഥ௧ା∆௧(௥) = ቀ𝛿𝐪௜௡௖
௧ (𝐱)𝐪ഥ௜௡௖

௧(௥)
ቁ൫𝛿𝐪௧(𝐱)𝐪ഥ௧(௥)൯. (19) 

Assuming that 𝐪ഥ௧ା∆௧(௥) ≈ 𝐪ഥ௜௡௖
௧(௥)

𝐪ഥ௧(௥) and right multiplying both sides of Eq. (19) by 

𝐪ഥ௧ା∆௧(௥)ିଵ
 leads to: 

𝛿𝐪௧ା∆௧(𝐱) = 𝛿𝐪௜௡௖
௧ (𝐱)𝛿𝐪௧,௥௢௧(𝐱), (20) 

where 𝛿𝐪௧,௥௢௧(𝐱) = 𝐪ഥ௜௡௖
௧(௥)

𝛿𝐪௧(𝐱)𝐪ഥ௜௡௖
௧(௥)ିଵ

 is the rotated misorientation at time t. The misorientation 

at time t, 𝛿𝐪௧(𝐱), represents a physical quantity: the rotation from the mean orientation to the 

orientation at material point 𝐱. The operation 𝐪ഥ௜௡௖
௧(௥)

(… )𝐪ഥ௜௡௖
௧(௥)ିଵ

 rotates the quantity in parenthesis 

by 𝐪ഥ௜௡௖
௧(௥). Hence, the rotated misorientation, 𝛿𝐪௧,௥௢௧(𝐱), represents the misorientation at time t, 

𝛿𝐪௧(𝐱), rotated in space by the mean increment in rotation, 𝐪ഥ௜௡௖
௧(௥). The misorientation angle with 

respect to the mean orientation of the grain associated to the quaternion 𝛿𝐪௧(𝐱) will not change 

during this rotation to 𝛿𝐪௧,௥௢௧(𝐱). However, the misorientation axis associated to the rotated 

quaternion 𝛿𝐪௧,௥௢௧(𝐱) is physically rotated in space by the mean increment in rotation when 

compared to misorientation axis of 𝛿𝐪௧(𝐱). 
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To simplify the notation, in what follows we shall not explicitly write the spatial dependence 

of the quaternions with the material point 𝐱. According to Eq. (20), 𝛿𝐪௧ା∆௧  is a function of two 

independent variables, 𝛿𝐪௜௡௖
௧  and 𝛿𝐪௧,௥௢௧, whose distributions, defined by their first and second 

moments, can be calculated. Explicit expressions for first and second moments of a function in 

terms of first and second moments of the corresponding variables are available only for linear 

functions of those variables. Therefore, we perform a first-order Taylor expansion of 𝛿𝐪௧ା∆௧ with 

respect to the variables 𝛿𝐪௜௡௖
௧  and 𝛿𝐪௧,௥௢௧ so that we can derive explicit expressions for first and 

second moments of 𝛿𝐪௧ା∆௧. The natural choice of the reference points for this Taylor expansion 

are the mean values of variables 𝛿𝐪௜௡௖
௧  and 𝛿𝐪௧,௥௢௧, which leads to the following linearized 

expression [37]: 

𝛿𝐪௧ା∆௧ ≈ 〈𝛿𝐪௜௡௖
௧ 〉(௥)〈𝛿𝐪௧,௥௢௧〉(௥) +

డఋ𝐪೟శ∆೟

డఋ𝐪೔೙೎
೟ ฬ

〈ఋ𝐪೔೙೎
೟ 〉(ೝ),〈ఋ𝐪೟,ೝ೚೟〉(ೝ)

: ൫𝛿𝐪௜௡௖
௧ − 〈𝛿𝐪௜௡௖

௧ 〉(௥)൯  

+
డఋ𝐪೟శ∆೟

డఋ𝐪೟,ೝ೚೟
ቚ

〈ఋ𝐪೔೙೎
೟ 〉(ೝ),〈ఋ𝐪೟,ೝ೚೟〉(ೝ)

: ൫𝛿𝐪௧,௥௢௧ − 〈𝛿𝐪௧,௥௢௧〉(௥)൯. (21) 

The volume average of misorientations defined with respect to the mean orientation amounts to 

the identity rotation [38]: 〈𝛿𝐪௜௡௖
௧ 〉(௥) = 〈𝛿𝐪௧,௥௢௧〉(௥) = 𝐈, where 𝐈 represents the identity matrix 

(Kronecker delta) in 4-D. The derivatives evaluated around the mean misorientation lead to (in 

index notation, with indices from 1 to 4): 

డఋ௤೔ೕ
೟శ∆೟

డ൫ఋ௤೔೙೎
೟ ൯

ೖ೗

ฬ
〈ఋ௤೔೙೎

೟ 〉(ೝ),〈ఋ௤೟,ೝ೚೟〉(ೝ)

= 𝐼௜௞𝐼௠௟〈𝛿𝑞௠௝
௧,௥௢௧〉 = 𝐼௜௞𝐼௝௟, (22) 

డఋ௤೔ೕ
೟శ∆೟

డఋ௤ೖ೗
೟,ೝ೚೟ฬ

〈ఋ௤೔೙೎
೟ 〉(ೝ),〈ఋ௤೟,ೝ೚೟〉(ೝ)

= 〈(𝛿𝑞௜௡௖
௧ )௜௠〉𝐼௠௞𝐼௝௟ = 𝐼௜௞𝐼௝௟ . (23) 

Substitution into Eq. (21) leads to: 



131 

𝛿𝐪௧ା∆௧ ≈ 𝛿𝐪௜௡௖
௧ + 𝛿𝐪௧,௥௢௧ − 𝐈. (24) 

Therefore, the linearized expression based on first-order Taylor expansion of Eq. (20) is a simple 

summation of unit quaternions. Starting with Eq. (20) and assuming that the misorientations with 

respect to the mean are infinitesimal rotations, the same expression (Eq. (24)) can be derived. 

Since only three independent parameters are required to fully describe an arbitrary rotation 

and  the vector parts of misorientation quaternions can be used for quantification of orientation 

spreads [38], we re-write the above equation (replacing " ≈ " by " = ") in terms of the vector 

parts of the misorientation quaternions (see Appendix A): 

𝛿𝐫௧ା∆௧ = 𝛿𝐫௜௡௖
௧ + 𝛿𝐫௧,௥௢௧. (25) 

The identity quaternion present in Eq. (24) vanishes since the vector part of identity quaternion is 

zero. Finally, the expressions for the first and second moments of the vector parts of 

misorientation quaternion are given as: 

〈𝛿𝐫௧ା∆௧〉(௥) = 〈𝛿𝐫௜௡௖
௧ 〉(௥) + 〈𝛿𝐫௧,௥௢௧〉(௥) = 𝟎 (26) 

〈𝛿𝐫௧ା∆௧⨂𝛿𝐫௧ା∆௧〉(௥) = 〈𝛿𝐫௜௡௖
௧ ⨂𝛿𝐫௜௡௖

௧ 〉(௥) + 〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௜௡௖
௧ 〉(௥) + 〈𝛿𝐫௜௡௖

௧ ⨂𝛿𝐫௧,௥௢௧〉(௥) +  

+〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௧,௥௢௧〉(௥). (27) 

The first moments of the vector parts of misorientation quaternions vanish because of our 

choice for the mean orientation value, which implies that the second moment is already centered. 

Consequently, the second moment of the vector parts of misorientation quaternions is a suitable 

quantity for characterization of the orientation spread [38].  
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As it was noted before, the quaternion 𝛿𝐪௧,௥௢௧ is obtained by rotation of the quaternion 𝛿𝐪௧ 

in space by the mean increment in rotation 𝐪ഥ௜௡௖
௧(௥). Since we are now dealing with 3-dimensional 

Cartesian vectors, this rotation can be written compactly as: 

𝛿𝐫௧,௥௢௧ = 𝐑ഥ ௜௡௖
௧,(௥)

𝛿𝐫௧ (28) 

where 𝐑ഥ ௜௡௖
௧  stands for the rotation matrix representation of the mean incremental rotation 𝐪ഥ௜௡௖

௧(௥). 

Then, the second moments appearing in expression (27) are given by: 

〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௧,௥௢௧〉(௥) = 𝐑ഥ ௜௡௖
௧,(௥)

〈𝛿𝐫௧⨂𝛿𝐫௧〉(௥)𝐑ഥ ௜௡௖
௧,(௥)்

 (29) 

〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௜௡௖
௧ 〉(௥) = 𝐑ഥ ௜௡௖

௧,(௥)
〈𝛿𝐫௧⨂𝛿𝐫௜௡௖

௧ 〉(௥) (30) 

In Eq. (27), the rotated second moment of misorientation at time 𝑡, 〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௧,௥௢௧〉(௥), is 

calculated by rotating the available second moments of misorientation at time 𝑡  by the mean 

increment in rotation, while the second moment of misorientation increments, 〈𝛿𝐫௜௡௖
௧ ⨂𝛿𝐫௜௡௖

௧ 〉(௥), 

can be calculated based on the first and second moments of the spin, 〈𝛚̇〉(௥) and 〈𝛚̇⨂𝛚̇〉(௥) (see 

Appendix B). It is important to note that these second moments are already centered and thus are 

equivalent to covariance matrices [38].  

The term 〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௜௡௖
௧ 〉(௥) represents the cross-covariance between misorientations and 

misorientation increments at time 𝑡, and it is unknown at this point. We propose an 

approximation of cross-covariance term 〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௜௡௖
௧ 〉(௥) based on full-field VPFFT 

simulations for a face-centered cubic (FCC) polycrystal under tension assuming {111}〈11ത0〉 slip, 

a viscoplastic exponent of n=10, and no strain hardening. Thirty different Voronoi polycrystals 

of 400 grains initialized with exactly the same 400 random orientations, deformed in tension to a 

strain of 24%, were simulated for this purpose. 
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The following calculations are performed at three different strain levels (2%, 13% and 24% 

tensile strain) for each grain within each realization of the Voronoi polycrystal. We begin by 

calculating the eigenvectors 𝐯௜,௧,௥௢௧ and 𝐯௜௡௖
௜,௧  and eigenvalues 𝜆௜,௧,௥௢௧ and 𝜆௜௡௖

௜,௧  of 

〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௧,௥௢௧〉(௥) and 〈𝛿𝐫௜௡௖
௧ ⨂𝛿𝐫௜௡௖

௧ 〉(௥), respectively. In both cases, the eigenvalues essentially 

represent variances (i.e. the squares of the standard deviations, SDi) along corresponding 

eigenvectors, which, due to the symmetry of the above matrices, form an orthonormal basis of 

principal axes. The eigenvector corresponding to the largest eigenvalue represents the direction 

of greatest variation, while the eigenvector corresponding to smallest eigenvalue represents the 

direction of least variation. The eigenvalues are ordered in descending order and the 

corresponding eigenvectors are stacked as columns into matrices that transform (note these are 

not active rotation tensors but coordinate transformation matrices) from principal axes to sample 

axes: 𝐐௧,௥௢௧ = [𝐯ଵ,௧,௥௢௧, 𝐯ଶ,௧,௥௢௧, 𝐯ଷ,௧,௥௢௧] and 𝐐௜௡௖
௧ = ൣ 𝐯௜௡௖

ଵ,௧ , 𝐯௜௡௖
ଶ,௧ , 𝐯௜௡௖

ଷ,௧ ൧. The cross-covariance term 

〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௜௡௖
௧ 〉 can now be written as: 

〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௜௡௖
௧ 〉(௥) = 𝐐௧,௥௢௧〈𝛿𝐫௣,௧,௥௢௧⨂𝛿𝐫௜௡௖

௣,௧ 〉(௥)(𝐐௜௡௖
௧ )், (31) 

where 𝛿𝐫௣,௧,௥௢௧ and 𝛿𝐫௜௡௖
௣,௧  represent the misorientation and the increment in misorientation, 

respectively, expressed in the corresponding principal axes associated with their respective 

covariance matrices.  

The cross-correlation matrix can then be expressed as: 

〈𝛿𝑟௜
௣,௧,௥௢௧

൫𝛿𝑟௜௡௖
௣,௧

൯
௝
〉(௥) = 𝜌௜௝

(௥)
√𝜆௜,௧,௥௢௧ට 𝜆௜௡௖

௝,௧
 (no sumation over 𝑖 or 𝑗). (32) 

The cross-correlation coefficient 𝜌௜௝
(௥) represents the strength of linear dependence between 

variables. The maximal value of 𝜌௜௝
(௥) is 1 and indicates perfect correlation while the minimal 
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value of -1 represents a prefect anti-correlation. Uncorrelated variables will have a correlation 

coefficient of 0.  

The cross-correlation matrices 𝜌௜௝
(௥) for a grain r of specific orientation were averaged over 

the thirty different realizations of the Voronoi polycrystals. These matrices turned out to be 

strongly diagonal after averaging, with fairly similar diagonal values for the entire set of grains. 

This implies that a strong positive cross-covariance exists between misorientations and 

increments of misorientation along the corresponding principal directions of largest variation. 

Analogously, there is also a strong positive cross-covariance between misorientations and 

increments of misorientation along the corresponding principal directions of medium variation 

and least variation. 

 

Fig. 1. Correlation parameter 𝜌 derived from VPFFT simulation of 30 realizations of Voronoi 
polycrystals with 400 grains as an average over all grains at three different strain levels fitted 
with linear function. 

We simplify our analysis even further by averaging cross-correlation matrices over all grains 

of all orientations and diagonal elements to define the cross-correlation at each strain level by a 

single value 𝜌. A linear dependence of 𝜌 on the von Mises strain was observed at low strains in 

the VPFFT simulations and approximated as: 
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𝜌 ≈ 𝜌଴ − 𝜌ଵ𝜀௏ெ (33) 

where 𝜌଴ = 1 represents the cross-correlation coefficient at the beginning of deformation and 

𝜌ଵ = 1.3 represents the strength of the cross-correlation decay with strain (Figure 1).  

In the full-field simulations outlined above, a strong correlation between 𝛿𝐫௧,௥௢௧ and 𝛿𝐫௜௡௖
௧  is 

evident. Neglecting the cross-covariance term in the mean-field model would hence result in 

poor correspondence between the VPFFT and VPSC simulations. With the approximation of the 

cross-correlation coefficient, 𝜌(𝜀௏ெ), we can easily calculate the cross-covariance 

〈𝛿𝐫௧,௥௢௧⨂𝛿𝐫௜௡௖
௧ 〉(௥) at any given strain level within the VPSC model. 

2.2 Discrete approximation of misorientations 

For this approximation, we start from the equation for the local orientation update (Eq. 17). 

As we noted before, orientation, 𝐪௧(𝐱), and rotation increment, 𝐪௜௡௖
௧ (𝐱), at time t vary within the 

grain. Thus, there are certain distributions associated with the orientations and rotation 

increments at time t within each grain. Consequently, there is a distribution associated with the 

updated orientations, 𝐪௧ା∆௧(𝐱), as well. If we assume each one of these distributions is 

represented by a discrete set, we obtain a discretized form of Eq. (17): 

𝐪௧ା∆௧,௜ = 𝐪௜௡௖
௧,௜ 𝐪௧,௜ ;  𝑖 = 1, 𝑛  (no summation over i). (34) 

The discrete set of n orientations, 𝐪௧,௜, representing the distribution of orientations within the 

grain at time 𝑡 is assumed to be known. 27 discrete values within a set are used to describe any 

distribution assuming that the orientation distribution can be described as multivariate normal 

distribution (see Appendix C). The discrete set of 27 rotation increments, 𝐪௜௡௖
௧,௜ , representing the 

distribution of rotation increments within the grain at time 𝑡 can be calculated based on the first 

and second moments of rotation rates, 〈𝛚̇〉(௥) and 〈𝛚̇⨂𝛚̇〉(௥), given by Eq. (11) and (14) in the 
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following way. First, we assume that the distribution associated with the rotation rates, 𝛚̇, is also 

a multivariate normal distribution. Next, using the first and second moments of rotation rates, we 

construct a discrete set of values, 𝛚̇௧,௜, which represents the associated distribution (details are 

given in Appendix C). Finally, a discrete set of rotation increments is calculated as:  

𝐪௜௡௖
௧,௜ = ൞

cos ቀ
ห𝛚̇೟,೔ห∆௧

ଶ
ቁ

sin ቀ
ห𝛚̇೟,೔ห∆௧

ଶ
ቁ

𝛚̇೟,೔

ห𝛚̇೟,೔ห

ൢ. (35) 

Once both sets 𝐪௧,௜ and 𝐪௜௡௖
௧,௜  are known, the cross-correlation between the rotation 

increments and orientations needs to be determined. Specifically, we must determine which 

increment of rotation, 𝐪௜௡௖
௧,௜ , from the set representing the distribution of rotation increments, 

corresponds to which orientation, 𝐪௧,௜, from the orientation set. Only then we can calculate the 

discrete set of n updated orientations, 𝐪௧ା∆௧,௜, using Eq. (34). Note that we needed to 

approximate a similar type of cross-correlation in the previous approach. In what follows, a 

specific pairing between the elements of two sets 𝐪௧,௜ and 𝐪௜௡௖
௧,௜  will be proposed. 

The number of possible pairings between two sets 𝐪௧,௜ and 𝐪௜௡௖
௧,௜  with n elements is n!. Each 

one of these pairings corresponds to a different cross-correlation between the increments in 

rotation and the orientations. If we approximate the cross-correlation based on the results of the 

VPFFT simulations (as we did for the Taylor expansion approximation) then we have to find the 

pairing that would result in the resolved cross-correlation. This becomes a difficult task when we 

consider the number of possible pairings for n=27.  

In order to choose a paring between sets 𝐪௧,௜ and 𝐪௜௡௖
௧,௜  we make the following assumption: if 

the orientation of a point within the grain reorients in a certain way during the current increment, 
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then that same point will reorient in a similar manner in the next increment. This implies that a 

strong positive cross-correlation exists between increments in rotation from two subsequent time 

steps (𝐪௜௡௖
௧,௜  and 𝐪௜௡௖

௧ି∆௧,௜). Therefore, we adopt such pairing between discrete increments in rotation 

from current, 𝐪௜௡௖
௧,௜ , and previous increment, 𝐪௜௡௖

௧ି∆௧,௜, that results in the strongest possible positive 

cross-correlation. Finding such a pairing is not difficult, since these two sets are quite similar 

considering that they correspond to two subsequent increments. Consequently, we have also 

defined the pairing between 𝐪௜௡௖
௧,௜  and 𝐪௧,௜, since the pairing between 𝐪௜௡௖

௧ି∆௧,௜ and 𝐪௧,௜ is available 

from the previous increment. Therefore, the achieved correlation between the rotation 

increments, 𝐪௜௡௖
௧,௜ , and orientations, 𝐪௧,௜, is a consequence of the assumed correlation between 

rotation increments from two subsequent steps 𝐪௜௡௖
௧,௜  and 𝐪௜௡௖

௧ି∆௧,௜.  

Once the updated set of orientations 𝐪௧ା∆௧,௜ is obtained, the mean orientation, 

misorientations with respect to the mean orientation, and their second moments can be easily 

calculated [38]. In the discrete approach the updating of orientations is done in the proper way 

(Eq. (34)), while in the Taylor expansion approach we used a first order Taylor approximation 

(Eq. (21)). Certain errors will come from the fact that all of the distributions are represented with 

only a finite number of points (27 in our simulations). However, the biggest issue of the discrete 

approach is related to the fact that the cross-correlation of rotation increments between two 

subsequent time steps is always assumed as the strongest possible. Consequently, we should 

expect to obtain large orientation spreads along largest principal direction.  

In both approaches the intragranular stress distributions drive the development of 

intragranular misorientation. On the other hand, in the previous attempts for prediction of 

intragranular misorientation implemented within VPSC, different reorientations of grains from 
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co-rotation with their respective neighbors was considered as driving force for the misorientation 

evolution, interpreting the developing intergranular misorientation distribution between grains of 

same initial orientation simply as intragrain misorientation distribution of grains with this initial 

orientation [20, 22]. As the reorientation is completely determined by the grains neighborhood 

defined usually in a random manner, the predicted misorientation distributions were practically 

independent of the particular grain orientation and completely unrelated to existing intragranular 

distributions of micromechanical fields. 

3 Results and discussion 

In what follows, we exercise the two developed models on two FCC materials and compare 

the results to experiments and simulation results obtained by the full-field VPFFT model [11, 

39]. In all the simulations, it is assumed that the grains deform by {111}〈11ത0〉 slip with a 

viscoplastic power-law exponent of n=10 without any strain hardening. For every grain, the 

mean orientation and second order moment of misorientation distribution are calculated as 

described above. The Taylor expansion approximation provides these quantities as an output. 

The dominant axis of rotation is defined as the principal direction of misorientation covariance 

matrix corresponding to the largest standard deviation [38, 40]. As a measure of the magnitude 

of the misorientation spread, we use the equivalent isotropic spread calculated as the geometrical 

mean of the three standard deviations  𝑆𝐷 = √𝑆𝐷1 × 𝑆𝐷2 × 𝑆𝐷3
య  [41]. The specific case studies 

considered are uniaxial tension of Cu and plane-strain compression of Al. 

3.1 Tension of polycrystalline copper 

We simulate tension of polycrystalline Cu to a strain of 11% with the VPSC model 

accounting for intragranular misorientation evolution using the Taylor expansion approximation 
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and the discrete approximation of misorientations, on the one hand; and with VPFFT, on the 

other hand. The initial texture of the recrystallized Cu sample is represented by 400 grains 

(Figure 2). These grains are assumed to be initially spherical for the VPSC simulations and to be 

arranged in a Voronoi tessalation microstructural cell in case of the VPFFT model. Predictions of 

the intragranular misorientation distributions are compared with experimental results published 

in [39]. 

 

Fig. 2. Inverse pole figures for the crystallographic direction along the tensile axis illustrating the 
measured initial texture (a) and the initial textures used in VPFFT (b) and VPSC (c) simulations. 

For the experimental results obtained by EBSD, only grains with more than 350 indexed 

scan points (corresponding to an apparent area larger than 1400 μm2) are considered, to facilitate 

comparisons. Small grains in two-dimensional EBSD scans could correspond to sections close to 

the center of mass of small grains within the sample or they could represent sections far away 

from the center of mass of larger grains. In the former case, the obtained misorientation 

distribution might not be representative, since the deformation within small grains might be 

influenced greatly by its larger neighbors [39]. In the latter case, the misorientation distribution is 

not representative since we have sampled only small and localized number of points within a 

large grain. In addition, the evolution in small parts of a large grain is also affected by the 

neighbors. 
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Table 1. Shapes of the misorientation distribution classified according to the ratios between 
standard deviations along principal directions. This classification is a variation of the one 
proposed by [41]. 

 

 

The shapes of the misorientation distributions are classified into three categories (see Table 

1) according to the ratios of the standard deviations along principal directions. This classification 

is a variation of the one proposed by [41] with the classes "ellipsoid" and "prolate" merged into a 

single "prolate" category. Figure 3 compares the dependence between shapes of misorientation 

distributions and orientation for all of the considered cases. Whereas EBSD and VPFFT results 

show variations of the shape for similar orientations, VPSC subdivides the triangle into certain 

regions preferring a singular type. This is expected since in VPSC there is no neighborhood 

effect and behavior of every grain is defined solely by its orientation. Table 2 indicates that 

fractions of different distribution shapes are similar between all cases. In the EBSD and VPFFT 

results, spherical shapes develop in regions close to [111] and [001], while in VPSC spherical 

shapes concentrate only around [111]. Prolate shapes seem to be spread out over the entire IPF in 

the EBSD and VPFFT results. VPSC predicts relatively similar trends but with special regions, 

where no prolates are found. Oblate shapes also seem to be distributed evenly for the EBSD and 
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VPFFT results, while VPSC predictions of oblates are concentrated around [111], [001] and 

[114] to [112]. 

 

Fig 3. Shapes of misorientation spreads at 11% tensile strain categorized according to Table 1 
plotted as inverse pole figures for (a) EBSD data, (b) full-field VPFFT results, (c) Taylor 
expansion approximation and (d) discrete approximation approaches. For better visualization, 
plots of simulation results are for 100 grains randomly picked from the simulated polycrystals. 
For the both VPSC simulations the same 100 grains are used. 

Figure 4 compares the direction of the dominant rotation axes of grains with oblate and 

prolate misorientation distribution shapes plotted in the sample frame. The dominant rotation 

axes predominantly lie in a plane perpendicular to the tension direction in the simulation results. 

On the other hand, the experimental results show a considerably weaker trend of the dominant 

rotation axes to align perpendicular to the tension direction, with much more scatter.  
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Table 2. Fractions of different distribution shapes after 11% tensile deformation of copper 
obtained from experimental data, VPFFT simulation, Taylor expansion approximation and 
discrete approximation approach. 

 EBSD VPFFT Taylor expan-
sion approx. 

Discrete  
approx. 

Prolate 42% 40% 50% 50% 

Oblate 23% 17% 24% 24% 

Sphere 35% 43% 26% 26% 

 

The evolution of misorientation spread is determined by the plastic spin distribution which is 

in turn caused by the stress distribution within the grain. We can examine the sensitivity of the 

plastic spin components to fluctuations in stress by calculating the derivatives of plastic spin with 

respect to stress [42]: 

డ𝛚̇೛

డ𝛔
= ∑

డఊ̇ೞ

డఛೞ
𝛂௦ ⊗ 𝐦௦

௦ . (36) 

These calculations are performed using the VPSC model. The stress tensor and the symmetric 

Schmid tensor are represented as five dimensional vectors of the form [43]: 

𝛔 = √2 ቀ
(ఙయయିఙభభ)ା(ఙయయିఙమమ)

ଶ√ଷ
,

ఙమమିఙభభ

ଶ
, 𝜎ଶଷ, 𝜎ଵଷ, 𝜎ଵଶቁ. The derivative of i-th component of plastic 

spin with respect to stress vector, 
డఠ̇೔

೛

డ𝛔
, represents a gradient vector in stress space, which defines 

the rate of change of i-th plastic spin component with respect to changes in stress. By examining 

the gradient vectors of each plastic spin component within the grains we find that the length of 

the gradient vector of the plastic spin component along the tension direction is considerably 

smaller than the lengths of the other two gradient vectors. Therefore, the plastic spin component 

in the tension direction is less sensitive to the fluctuations in stress than the other two 

components. Consequently, for isotropic fluctuations in stress, the fluctuations in plastic spin 
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will have only a small component in the tension direction which in turn causes the dominant 

rotation axes to lie in the plane perpendicular to the tension direction. In addition, an anisotropic 

shape of the stress distribution also affects the plastic spin distribution. However, the fact that the 

dominant rotation axes are perpendicular to the tension direction in the simulations is 

predominantly caused by the insensitivity of plastic spin component in the tension direction to 

fluctuations in stress. 

 

Fig. 4. Dominant rotation axes for oblate and prolate shapes plotted in the sample frame and 
color-coded according to magnitude of standard deviation along this direction for (a) EBSD data, 
(b) VPFFT results, (c) Taylor expansion approximation and (d) discrete approximation approach 
at 11% tensile strain. Tension direction (TD) is in the center of pole figures.  

Figure 5 shows the predicted and experimental probability density functions (pdf) of the 

standard deviations along the principal directions and the equivalent isotropic spreads. The pdfs 

for the first two standard deviations match quite well for all considered cases. Both, VPFFT and 
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experimental pdfs of the smallest standard deviation display a single characteristic peak around 

0.01. On the other hand, the VPSC pdfs of the smallest standard deviation develop an additional 

peak close to 0 indicating that the spread is almost two-dimensional within a certain number of 

grains. The occasionally small magnitude of the third standard deviation significantly reduces the 

magnitude of the corresponding equivalent isotropic spread and therefore the VPSC predictions 

for the pdfs of the equivalent isotropic spread also develop two peaks while corresponding pdfs 

from the VPFFT simulations and the experiment develop only one. In addition, we have also 

performed simulations up to a strain of 25% and compared the misorientation distribution shapes 

with experimental results published in [41] (Table 3). Prolate shapes dominate the region near 

[011] and other regions away from [001] or [111] both in the simulations and experimental 

results. According to Dillamore and Katoh (Dillamore and Katoh, 1974), grains with tensile axis 

on the line connecting [114] and [011] show divergent re-orientations and large orientation 

spreads within them are expected to develop along a particular axis. Due to such a strong 

orientation spread developing around a preferred axis, grains from divergent regions should 

develop prolate shapes of misorientation distribution which is in agreement with both simulation 

results and experiment (see the region near [110] and the remaining region away from [011] and 

[111] in Table 3). The regions near [001] and [111] are convergent and hence should develop 

lower orientation spreads [2]. While the experimental results reveal a rather high fraction of 

prolates above 50% even for these regions, the predictions of the simulations are significantly 

lower. In particular, a quite low fraction of prolates is expected from the simulations for the 

[111] region.   

In summary, we observe a reasonable agreement between the simulations and the 

experimental results, with some peculiar differences between VPFFT and VPSC, but no 
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significant difference between the two developed VPSC models for updating of misorientation 

spreads at lower strain levels in FCC metals. 

 

Fig. 5. Probability density functions of the standard deviations along the principal axis of the 
misorientation distribution (a) SD1, (b) SD2, (c) SD3 and (d) equivalent isotropic spread for 
experimental results and simulation predictions for copper after 11% tensile strain.  

Table 3. Fractions of prolate shapes for different texture components after 25% tensile 
deformation of copper obtained from experimental data[41], VPFFT simulation, Taylor 
expansion approximation and discrete approximation approach. 

Fraction of 
prolates 

Exp. VPFFT 
Taylor expansion 

approx. 
Discrete 
approx. 

[001] 10o 56% 19% 41% 39% 

[011] 20o 86% 76% 91% 91% 

[111] 15o 55% 19% 13% 14% 

Remaining 68% 64% 80% 79% 
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3.2 Plane-strain compression of polycrystalline aluminum 

In addition to uniaxial deformation, we also simulate plane-strain compression of fcc 

polycrystal to 38% reduction and compare the predictions to results obtained after cold-rolling of 

aluminum [44]. The initial texture was represented by 400 randomly oriented grains of equal 

volume fraction. 

 

Fig. 6. Dominant rotation axes plotted in the sample frame and color-coded according to 
magnitude of standard deviation along this direction for (a) EBSD data [44], (b) VPFFT results, 
(c) Taylor expansion approximation and (d) discrete approximation approach for aluminium after 
38% plane strain compression or rolling reduction. 

The orientations of the dominant rotation axes are shown in Fig. 6. The dominant rotation 

axes are predominantly aligned with the transverse direction in both, simulations and experiment. 

Clustering of the dominant rotation axes around the transverse direction is considerably stronger 

in the VPSC predictions. Similar trends were observed for hot rolled aluminum at lower 

reductions [42]. 
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Figure 7 shows the probability density functions of the equivalent isotropic spreads which 

all show only a single peak and no second peak at lower equivalent isotropic spreads is observed. 

It is seen that the simulations overpredict the magnitudes of the equivalent isotropic spread. The 

discrete approximation approach displays the largest values for the equivalent isotropic spread, 

since in this model a strong correlation between subsequent misorientation increments is 

enforced. This corroborates the statement that the main difference between the two approaches 

lies in the approximation of the cross-correlation term. The simulated equivalent orientation 

spreads are in all cases too large in comparison to the experimental results. This discrepancy can 

be attributed to a number of reasons. At higher strains, certain grains in the VPFFT simulation 

will develop a quite large misorientation spread along the dominant rotation axis. Closer 

inspection reveals that the sign-carrying misorientation distribution along this direction is 

actually bimodal, which indicates that grain has fragmented into two parts [45, 46]. By not 

considering the fragmented grains separately we have indirectly increased the values of 

equivalent isotropic spread. Similarly, in a VPSC simulation some grains develop very large 

spreads in a certain direction indicating that they should be fragmented and considered 

separately. In addition, the threshold angle used for identification of individual grains in the 

orientation maps was 8° which also affects the evaluation of the experimental results. During 

deformation, deformation-induced boundaries are forming within the grains causing their 

subdivision [47]. Some of these boundaries will have misorientation angles greater than 8°. 

Therefore, fragments of initially one grain will be treated as separate grains in the experimental 

results, when entirely separated by such a deformation-induced boundary with an angle above 8°. 

This procedure of treating fragments individually as seperate grains reduces, in general, the 

magnitude of the misorientation spread within the grains. 
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Fig 7. Probability density functions of equivalent isotropic spread for experimental results and 
simulation predictions for aluminum after 38% plane strain compression or rolling reduction. 

The predicted intragranular misorientation spreads obtained here show the need for further 

development of the VPSC model to include grain fragmentation towards more accurate mean-

field simulations of deformation and recrystallization texture evolution. As noted above, the 

grains with largest standard deviations in VPFFT results develop bimodal sign-carrying 

misorientation distributions along the dominant rotation axis. Analogously, we could assume that 

the grains with the largest standard deviations in the VPSC model go through a similar type of 

fragmentation. The parent grain would be divided into two children grains whose mean 

orientations and misorientation spreads would be defined based on the mean orientation and the 

anisotropic misorientation spread of the parent, for instance by replacing the parent grain by two 

children having a misorientation between their mean orientations along the dominant 

misorientation axis. The misorientation spreads could also be used for identifying grains that 

have a tendency to develop transition bands which is a prerequisite for modeling of 

recrystallization dominated by nucleation at transition bands. Even in cases where the nucleation 

occurs at existing grain boundaries, the information about the misorientation spreads could 

improve recrystallization texture predictions. 
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4 Conclusions 

In this work, we have extended existing algorithms to obtain second moments of the 

micromechanical fields already implemented in VPSC to include the calculation of intragranular 

misorientations. Two approaches were presented for updating the intragranular misorientation 

distributions. It was found that the Taylor expansion approach was simpler, required less 

calculations and realized more freedom in the approximation of the cross-correlation term 

between misorientations and rotation-rates than the discrete approximation. The predictive 

characteristics of the proposed models were evaluated on the deformation of two FCC 

polycrystalline materials (Cu deformed in tension and Al deformed in plane-strain 

compression/rolling), and compared with corresponding experiments and appropriate full-field 

VPFFT simulation results. Acceptable predictions of orientation spreads were achieved using 

VPSC, with tremendous computational advantages over full-field models (by approximately 

three orders of magnitude). It was observed that at higher strains, some of the grains develop 

quite large misorientation spreads suggesting fragmentation into individual parts. Development 

of models for grain fragmentation and recrystallization taking advantage of the proposed 

algorithms, and extensions for metals other than FCC such as hexagonal metals will be pursued 

in future efforts. 

Appendix A 

Unit quaternion representation of rotations  

Rotations can be represented as unit quaternions in the following form: 

𝐪 = ቐ
cos

ఏ

ଶ

𝑛௜ sin
ఏ

ଶ

ቑ = ቊcos
ఏ

ଶ
𝑟௜

ቋ = ቐ

𝑎
𝑏
𝑐
𝑑

ቑ (1) 
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where 𝑛௜ and 𝜃 represent rotation axis and angle, respectively. The vector part of the unit 

quaternion 𝑟௜ is defined as 𝑟௜ = 𝑛௜ sin
ఏ

ଶ
. There are several different matrix representations of unit 

quaternions, we have adopted the following [36]: 

𝐪 = ൦

𝑎 𝑐 𝑏 𝑑
−𝑐 𝑎 𝑑 −𝑏
−𝑏 −𝑑 𝑎 𝑐
−𝑑 𝑏 −𝑐 𝑎

൪ (2) 

Consequently, we can deal with matrices and matrix algebra instead of quaternion algebra. 

Product of two unit quaternions can then be expressed as simple matrix multiplication: 

𝑞௜௝ = 𝑞௜௞
஺ 𝑞௞௝

஻  (3) 

The matrix representation of unit quaternions was used only in derivations of certain equations. 

The actual implementation of final equations was not done in matrix form due to computational 

inefficiency of this formulation. 

Appendix B 

Incremental rotations 

Incremental rotations and their first and second moments can be directly calculated from 

first and second moments of spin. First we define incremental rotation at material point using 

small angle approximation: 

𝐪௜௡௖(𝐱) = ቐ
cos

∆ఏ(𝐱)

ଶ

sin
∆ఏ(𝐱)

ଶ
 𝐧(𝐱)

ቑ ≈ ቐ
1 −

ଵ

଼
∆𝜃ଶ(𝐱)

ଵ

ଶ
∆𝜃(𝐱) 𝐧(𝐱)

ቑ (4) 

First moment of incremental rotation is: 
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〈𝐪௜௡௖〉 = ቐ
1 −

ଵ

଼
〈∆𝜃ଶ〉

ଵ

ଶ
〈∆𝜃𝐧〉

ቑ (5) 

The mean incremental rotation can then be calculated as: 𝐪ഥ௜௡௖ = 〈𝐪௜௡௖〉/|〈𝐪௜௡௖〉|. The dyadic 

product of incremental rotations can be written as: 

𝐪௜௡௖(𝐱)⨂𝐪௜௡௖(𝐱) = ቎
1 −

ଵ

ସ
∆𝜃ଶ(𝐱)

ଵ

ଶ
∆𝜃(𝐱) 𝐧்(𝐱)

−𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 −
ଵ

ସ
∆𝜃ଶ(𝐱)𝐧(𝐱)⨂𝐧(𝐱)

቏ + O(∆𝜃ଷ(𝐱)) (6) 

The second moment is then simply: 

〈𝐪௜௡௖⨂𝐪௜௡௖〉 = ቎
1 −

ଵ

ସ
〈∆𝜃ଶ〉

ଵ

ଶ
〈∆𝜃𝐧்〉

−𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 −
ଵ

ସ
〈∆𝜃ଶ𝐧⨂𝐧〉

቏ (7) 

After substitution of spin into the above expression we get: 

〈𝐪௜௡௖〉 = ቐ
1 −

ଵ

଼
𝐈: 〈𝛚̇⨂𝛚̇〉∆𝑡ଶ

ଵ

ଶ
〈𝛚̇〉∆𝑡

ቑ (8) 

〈𝐪௜௡௖⨂𝐪௜௡௖〉 = ቎
1 −

ଵ

ସ
𝐈: 〈𝛚̇⨂𝛚̇〉∆𝑡ଶ ଵ

ଶ
〈𝛚̇〉்∆𝑡

−𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 −
ଵ

ସ
〈𝛚̇⨂𝛚̇〉∆𝑡ଶ

቏ (9) 

The second moment of misorientation 〈𝛿𝐪௜௡௖⨂𝛿𝐪௜௡௖〉 can be calculated using the first and 

second moments of total increments in rotation. 
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Appendix C 

Discrete representation of multivariate distribution 

The spin distribution is defined by first, 〈𝛚̇〉, and second, 〈𝛚̇⨂𝛚̇〉, moments from which 

covariance matrix can be calculated as 〈𝛚̇⨂𝛚̇〉 − 〈𝛚̇〉⨂〈𝛚̇〉. We shall assume that the 

distribution associated with the spin field within the phase 𝑟 is multivariate normal distribution. 

First, the principal values and directions of covariance matrix are calculated. The 

multivariate normal distribution implies that distributions associated with the principal directions 

are univariate normal. Next each one of these univariate distributions is approximated by certain 

number, 𝑚, of discrete values with equal probability [48]. In all of the simulations we have used 

three (m=3) points along each principal direction, one as a mean and the other two were 

symmetric for + and - angle. 

Next the approximation of multivariate distribution is constructed from discrete univariate 

distributions as follows. In the principal frame of covariance matrix there is no correlation 

between different components of spin vector: 

〈𝜔̇௜
௣

𝜔̇௝
௣〉 − 〈𝜔̇௜

௣〉⨂〈𝜔̇௝
௣〉 = 0, for 𝑖 ≠ 𝑗 (11) 

where superscript 𝑝 denotes a variable expressed in the principal frame. In the case of 

multivariate normal distribution this implies independence of the spin components. The discrete 

approximation of the multivariate normal distribution is then defined by combining the discrete 

values of the univariate distributions associated with each spin component in principal frame, 

giving in total 𝑛 = 𝑚ଷ discrete vectors (27 in our simulations). Finally, we transfer the spin 

vectors to the global frame and obtain a discrete representation of the spin distribution given by a 

set of n discrete values 𝛚̇௜. 
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Chapter 4: Modeling of intragranular misorientation and grain fragmentation 
in polycrystalline materials using the viscoplastic self-consistent formulation 

This chapter was published as: "Modeling of intragranular misorientation and grain 

fragmentation in polycrystalline materials using the viscoplastic self-consistent formulation", 

Zecevic Miroslav, Ricardo A. Lebensohn, Rodney J. McCabe, and Marko Knezevic, 

International Journal of Plasticity (2018). My contribution to this chapter was: 

 development and implementation of the approach for calculation of the effects of the 

intragranular misorientation distributions on the intragranular stress and rotation rate 

distributions within VPSC 

 development and implementation of the grain fragmentation model based in the 

orientation space 

 simulation of the plane-plane strain compression of Al specimen using the proposed 

VPSC model and the full-field VPFFT model 

 processing of the model and experimental results and their comparison 

 development of the method for identification of transition bands based on the shapes 

of the intragranular misorientation distributions 

 writing the first draft of the paper. 
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Modeling of intragranular misorientation and grain fragmentation in 
polycrystalline materials using the viscoplastic self-consistent formulation  

Miroslav Zecevica, Ricardo A. Lebensohnb, Rodney J. McCabeb, and Marko Knezevica, 

a Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA 
b Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87544, USA 

Abstract 

The recently established methodology to use known algorithmic expressions of the second 

moments of the stress field in the grains of a polycrystalline aggregate for calculating average 

fluctuations of lattice rotation rates and the associated average intragranular misorientation 

distributions using the mean-field viscoplastic self-consistent (VPSC) formulation is extended to 

solve the coupled problem of considering the effect of intragranular misorientations on stress and 

rotation rate fluctuations. In turn, these coupled expressions are used to formulate and implement 

a grain fragmentation (GF) model in VPSC. Case studies, including tension and plane-strain 

compression of face-centered cubic polycrystals are used to illustrate the capabilities of the new 

model. GF-VPSC predictions of intragranular misorientation distributions and texture evolution 

are compared with experiments and full-field numerical simulations, showing good agreement. 

In particular, the inclusion of misorientation spreads reduced the intensity of the deformed 

texture and thus improved the texture predictions. Moreover, considering that intragranular 

misorientations act as driving forces for recrystallization, the new GF-VPSC formulation is 

shown to enable modeling of microstructure evolution during deformation and recrystallization, 

in a computationally efficient manner. 

Keywords: A Microstructures; B Crystal plasticity; B Viscoplastic material; C Numerical 

algorithms; GF-VPSC.  
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1 Introduction 

Mean-field polycrystal plasticity models provide a balance between computational 

efficiency and accuracy. One of such models is the widely-used viscoplastic self-consistent 

(VPSC) formulation (Lebensohn and Tomé, 1993). In VPSC, each single crystal grain is 

represented as an ellipsoidal inclusion within a matrix that has the averaged properties of all 

grains. The state of each inclusion/grain is described by the average values of the 

micromechanical (stress and strain rate), and microstructural (slip resistance and orientation) 

fields inside the grain, which evolve during deformation. Consequently, the effect of 

intragranular misorientation developing in the grains as deformation accumulates is not 

accounted for (Winther et al., 2017).  

Accurate predictions of the intragranular misorientation distributions at high strains are 

important for simulation of deformation textures and necessary for modeling of recrystallization. 

Mean-field models tend to predict sharper deformation textures than experimental measurements 

and those predicted by full-field models, because the orientation distribution of each grain is 

described only by one mean orientation (Knezevic et al., 2012; Lebensohn, 2001). Therefore, 

incorporation and consideration of intragranular misorientation spreads in mean-field models can 

improve texture predictions, reducing peak intensities in orientation space. Moreover, modeling 

of recrystallization of deformed polycrystals also requires accurate predictions of intragranular 

misorientations. Misorientation distributions can be used as indicators of whether a given grain 

has developed deformation and transition bands, and the trends of the crystal orientations 

developing within those bands can be identified as well. Transition bands are regions of high 

orientation gradients between deformation bands and, therefore, are favorable places for 

nucleation of recrystallization (Dillamore and Katoh, 1974; Humphreys and Hatherly, 2004). 
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Recrystallization nuclei are observed to develop from the subgrains already present in the 

transition band (Humphreys and Hatherly, 2004; Ridha and Hutchinson, 1982). Hence, 

prediction of transition bands and the crystallographic orientations present in them is crucial for 

the prediction of recrystallization textures. 

In the last decade, the VPSC formulation was extended to calculate intragranular second 

moments of stress, which statistically describe the stress fields inside the grains, beyond their 

average values (Lebensohn et al., 2004; Lebensohn et al., 2007). These second moments can be 

used to obtain a better linear approximation of the grain’s non-linear constitutive behavior 

(Castañeda, 2002; Doghri et al., 2011; Liu and Castañeda, 2004). In our recent work, we have 

utilized these second moments of stress to obtain average fluctuations of the lattice rotation rate 

field in each grain (Lebensohn et al., 2016). Moreover, a time integration procedure of the latter 

for updating the average intragranular misorientations was developed in (Zecevic et al., 2017), 

and used for the prediction of intragranular misorientation spreads at moderate strains.  

In order to accurately predict the intragranular misorientation spreads at higher strains, the 

current model must be improved to include grain fragmentation and the mutual influence of 

intragranular misorientations, and stress and rotation rate fluctuations. The intragranular 

orientation distribution may become quite large at higher strains (Jahedi et al., 2015; Jahedi et 

al., 2017; Liu et al., 1998) and thus it cannot be represented accurately with only one mean value 

and one second moment (Ardeljan et al., 2015; Buchheit et al., 2015; Kanjarla et al., 2010; Quey 

et al., 2012). Therefore, a grain fragmentation criterion becomes necessary at those high strains. 

Several ad-hoc grain fragmentation models have been developed within mean-field frameworks, 

and were capable of predicting the reduction in grain size and the increase in high-angle 

boundaries with strain (Beyerlein et al., 2003; Butler and McDowell, 1998; Jahedi et al., 2014; 
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Kumar and Mahesh, 2013; Lee and Duggan, 1993; Ostapovets et al., 2012; Tomé et al., 2002; 

Toth et al., 2010). However, none of these approaches utilize the micromechanically consistent 

intragranular stress fluctuations as the driving force for the fragmentation. It is important to note 

that VPSC provides only a statistical description (i.e. average) of fluctuations within the grains. 

Hence, the actual spatial distribution of the fluctuations within the grains remains unknown. 

Consequently, the approach cannot directly predict the increase in high-angle boundaries, 

reduction of grain size and formation of intragranular orientation gradients. However, additional 

assumptions describing the spatial correlation of the intragranular misorientation spread can be 

introduced. Moreover, cumulative misorientation within grains causes additional fluctuations of 

stress and lattice rotation rates, and these become significant as the magnitude of misorientation 

spread increases. These corrections need to be accounted for, since they are essential for 

predicting the development of intragranular fluctuations at higher strains.  

In this paper, the standard VPSC model is extended to calculate intragranular misorientation 

distributions at high strains. First, the second moments of intragranular stresses calculated with 

VPSC (Lebensohn et al., 2004; Lebensohn et al., 2007) are extended to include the influence of 

the intragranular misorientations. Next, the second moments of lattice rotation rate calculated 

based on the second moment of stress (Lebensohn et al., 2016), are also extended to include the 

influence of the intragranular misorientation. The second moments of lattice rotation rate are 

then accounted for in the calculation of intragranular misorientation spreads (Zecevic et al., 

2017). These improvements allow more accurate predictions of intragranular misorientations 

developing at high strains. Finally, a grain fragmentation (GF) model is formulated in orientation 

space. This GF-VPSC model is applied to simulate tension and plane-strain compression (PSC) 

of face-centered cubic (fcc) polycrystals. The predicted intragranular misorientation distributions 
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and texture evolution are compared with experimental data taken from (Quey et al., 2010) for 

rolled Al, and full-field calculations obtained using the viscoplastic Fast Fourier Transform-

based (VPFFT) micromechanical model (Lebensohn, 2001; Lebensohn et al., 2008). 

Additionally, the GF-VPSC model is shown to enable modeling of evolution of microstructural 

features necessary for subsequent recrystallization modeling in a computationally efficient 

manner.  

2 Modeling framework 

This section summarizes the standard VPSC formulation (Lebensohn and Tomé, 1993) and 

then describes the algorithms to calculate intragranular stress and lattice rotation rate 

fluctuations, and intragranular misorientation distributions (Lebensohn et al., 2004; Lebensohn et 

al., 2016; Zecevic et al., 2017). These developments are combined in the new grain 

fragmentation model implemented in VPSC, which is termed GF-VPSC.  

In the adopted notation, the inner products between two vectors or tensors are denoted by “.” 

(summation over one contracted index), “:” (summation over two contracted indices) and “::” 

(summation over four contracted indices). The outer product of two tensors is denoted by “⨂”. 

2.1 Standard VPSC formulation 

The viscoplastic strain rate, 𝛆̇(𝐱), at single crystal material point 𝐱 deforming by dislocation 

glide is given by: 

𝛆̇(𝐱) = ∑ 𝛾̇௦(𝐱)𝐦௦(𝐱)௦ , (1) 

where 𝐦௦(𝐱) =
ଵ

ଶ
൫𝐛௦(𝐱) ⊗ 𝐧௦(𝐱) + 𝐧௦(𝐱) ⊗ 𝐛௦(𝐱)൯ is the symmetric part of the Schmid tensor 

and 𝐛௦ and 𝐧௦ are the Burgers vector and slip plane normal of slip system 𝑠. 𝛾̇௦(𝐱) is the shear 

rate on slip system 𝑠 at material point 𝐱 given by: 
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𝛾̇௦(𝐱) = 𝛾̇଴ ቀ
|ఛೞ(𝐱)|

ఛ೎
ೞ(𝐱)

ቁ
௡

sign൫𝜏௦(𝐱)൯,  (2) 

where 𝜏௦(𝐱) = 𝐦௦(𝐱): 𝛔(𝐱) is the resolved shear stress on slip system 𝑠, 𝛾̇଴ is the reference 

shear rate, 𝑛 is the inverse of rate sensitivity, and 𝜏௖
௦ is the critical resolved shear stress.  

Substituting Eq. (2) in Eq. (1) gives the non-linear relation (i.e. the rate-sensitive constitutive 

equation) between strain rate and stress: 

𝛆̇(𝐱) = 𝛾̇଴ ∑ ቀ
|𝛔(𝐱)∶𝐦ೞ(𝐱)|

ఛ೎
ೞ(𝐱)

ቁ
௡

sign൫𝛔(𝐱): 𝐦௦(𝐱)൯௦ 𝐦௦(𝐱).  (3) 

The non-linear relationship at the slip system level (Eq. 2) can be linearized as: 

𝛾̇௦(𝐱) = 𝜂௦(௥)𝜏௦(𝐱) + 𝑔̇଴௦(௥),  (4) 

where 𝜂௦(௥) and 𝑔̇଴௦(௥) are the linearized compliance and the back-extrapolated shear rate of slip 

system 𝑠 in grain 𝑟. Consequently, the linearized behavior at the grain level is given by: 

𝛆̇(𝐱) = 𝐌(௥) ∶  𝛔(𝐱) + 𝛆̇଴(௥),  (5)  

where 𝐌(௥) and 𝛆̇଴(௥) are the linearized compliance and the back-extrapolated strain rate for 

grain 𝑟. The grain moduli are defined by the linearization procedure. In this work, we adopt the 

affine linearization (Masson et al., 2000). 

Since the grain behavior is now approximated by a linear relation, self-consistent 

homogenization can be performed, resulting in an analogous linear relation at the macroscopic 

level: 

𝐄̇ = 𝐌ഥ ∶ 𝚺 + 𝐄̇଴,  (6) 

where 𝐄̇ and 𝚺 are the macroscopic strain rate and stress; 𝐌ഥ  and 𝐄̇଴ are the macroscopic 

compliance and back-extrapolated strain rate. In the self-consistent scheme, each single crystal 
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grain is assumed to be an ellipsoidal inhomogeneity embedded in an infinite matrix, to which the 

boundary conditions are applied and whose macroscopic properties need to be determined from 

weighted averages over the grain’s moduli. Consequently, the spatial arrangement of the grains 

in the polycrystal has no effect on the predictions of the model. The solution for the strain rate 

and stress in the inhomogeneity representing each grain orientation is obtained by means of the 

equivalent Eshelby’s inclusion approach (Eshelby, 1957).  

The interaction equation, relating the deviations in strain rate, 𝛆̇෨(௥), and in stress, 𝛔෥(௥), in the 

inhomogeneity with respect to the macroscopic values is (Lebensohn and Tomé, 1993): 

𝛆̇෨(௥) = −𝐌෩ ∶ 𝛔෥(௥),  (7) 

where the interaction tensor, 𝐌෩ , is calculated as: 

𝐌෩ = (𝐈 − 𝐒)ିଵ ∶  𝐒 ∶  𝐌ഥ ,  (8) 

where 𝐒 is the symmetric Eshelby tensor. The macroscopic properties are calculated via the self-

consistent equations: 

𝐌ഥ = 〈𝐌(௥): 𝐁(௥)〉,  (9) 

𝐄̇଴ = 〈𝐌(௥): 𝐛(௥) + 𝛆̇଴(௥)〉,  (10) 

where 𝐁(௥) and 𝐛(௥) are stress localization tensors relating the macroscopic stress and stress in 

grain 𝑟, given by: 

𝐁(௥) = ൫𝐌(௥) + 𝐌෩ ൯
ିଵ

: ൫𝐌ഥ + 𝐌෩ ൯,  (11) 

𝐛(௥) = ൫𝐌(௥) + 𝐌෩ ൯
ିଵ

: ൫𝐄̇଴ − 𝛆̇଴(௥)൯.  (12) 
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and where 〈 〉 denotes volume average. The self-consistent equations are implicit in 

macroscopic moduli, 𝐌ഥ  and 𝐄̇଴, and are thus solved numerically using a fix-point method. 

In the absence of an applied macroscopic rigid-body rotation, the total lattice rotation rate at 

a material point 𝐱 belonging to grain r is given by: 

𝛚̇(௥)(𝐱) = 𝛚̇෩ (௥) − 𝛚̇௣(𝐱),  (13) 

where 𝛚̇෩ (௥) = 𝚷 ∶ 𝐒ିଵ ∶  𝛆̇෨(௥) is the rigid-body rotation rate of the ellipsoidal inclusion and 𝚷 is 

the anti-symmetric Eshelby tensor. 𝛚̇௣(𝐱) is the lattice rotation rate at material point 𝐱 of grain 𝑟 

calculated as: 

𝛚̇௣(𝐱) = ∑ 𝛾̇௦(𝐱)𝛂௦(𝐱)௦ ,  (14) 

where 𝛂௦(𝐱) =
ଵ

ଶ
൫𝐛௦(𝐱) ⊗ 𝐧௦(𝐱) − 𝐧௦(𝐱) ⊗ 𝐛௦(𝐱)൯ is the antisymmetric part of the Schmid 

tensor of slip system s. 

2.2 Stress fluctuations 

After convergence of the self-consistent scheme at time t, the mean values of 

micromechanical fields in the grains and the effective properties of the polycrystal are known, 

and the average fluctuations (second moment of the distribution) of the stress field within each 

grain can be determined, as well (Lebensohn et al., 2007). Since the grain volume average of 

intragranular fluctuations of any field variable is zero, the fluctuations do not affect the mean 

values in any way. In what follows, we represent the symmetric deviatoric second-rank tensors 

as five-dimensional vectors (Lebensohn and Tomé, 1993; Lequeu et al., 1987) and antisymmetric 

second-rank tensors as three-dimensional dual vectors.  
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Let us first assume a homogeneous orientation within each grain 𝑟, given by the active 

rotation quaternion at time 𝑡, 𝐪ഥ௧(௥), which brings the sample frame into alignment with the 

crystal frame. Spatial variations of mean grain properties from grain to grain cause fluctuations 

in stress, δ𝛔௧(௤ത)(𝐱), within each grain (Bobeth and Diener, 1986): 

𝛔௧(𝐱) = 𝛔௧(௥) + δ𝛔௧(௤ത)(𝐱).  (15) 

The second moment of stress within each grain can be calculated as (Lebensohn et al., 

2004): 

〈𝛔௧ ⊗ 𝛔௧〉(௥) = 𝛔௧(௥) ⊗ 𝛔௧(௥) + 〈δ𝛔௧(௤ത) ⊗ δ𝛔௧(௤ത)〉(௥) =
ଶ

௖೟(ೝ)

డ௎෩೅
೟

డ𝐌೟(ೝ),  (16) 

where 𝑈෩்
௧  is the effective stress potential given by: 

𝑈෩்
௧ =

ଵ

ଶ
𝐌ഥ ௧  ∶ (𝚺௧⨂𝚺௧) + 𝐄̇଴௧ ∙ 𝚺௧ +

ଵ

ଶ
𝐺̅௧.  (17) 

𝐺̅௧ is the energy under zero applied stress. This second moment of stress statistically describes 

the average stress fluctuations within the grain in the absence of the intragranular misorientation. 

Since the effective properties in Eq. 17 are calculated by the self-consistent procedure, the spatial 

arrangement of grains in the polycrystal has no influence on the effective stress potential and the 

stress fluctuations. 

We now introduce a misorientation quaternion field, δ𝐪௧(𝐱), inside of each grain at time 𝑡, 

which is defined with respect to the mean orientation quaternion of the corresponding grain, 

𝐪ഥ௧(௥) (Pantleon, 2005). The crystal orientation, 𝐪௧(𝐱), at each material point is then obtained 

composing the mean orientation of the grain containing the point and the misorientation at that 

point: 

𝐪௧(𝐱) = δ𝐪௧(𝐱)𝐪ഥ௧(௥).  (18) 



167 

Since three independent variables are enough to fully define a misorientation (or an orientation), 

we describe the misorientation field with the vector part, δ𝐫௧(𝐱), of the misorientation 

quaternion, δ𝐪௧(𝐱) (Pantleon, 2005). The volume average of the vector part of the quaternion 

misorientation field within each grain vanishes, 〈δ𝐫௧〉(௥) = 𝟎, meaning that the misorientation 

field does not alter the mean grain orientation, 𝐪ഥ௧(௥) (Pantleon, 2005). Consequently, the 

misorientation field will not affect the mean grain properties and thus it will not influence the 

existing stress fluctuation δ𝛔௧(௤ത)(𝐱) in any way. However, since the stress is a function of 

orientation and thus misorientation (Eq. 3), the misorientation field will cause additional 

fluctuations of the stress field, δ𝛔௧(ఋ௥)(𝐱), at each material point, 𝐱, which should be 

superimposed to the existing stress fluctuations: 

𝛔௧(𝐱) = 𝛔௧(௥) + δ𝛔௧(௤ത)(𝐱) + δ𝛔௧(ఋ௥)(𝐱).  (19) 

As was noted before, the fluctuations within the grains will be described by the 

corresponding second moments. Calculation of the second moment of a nonlinear function 

requires knowledge of the higher order moments of the corresponding independent variables, 

which are not available in our approach. In order to work only with second moments, we perform 

linearization of each function that depends on variables that vary within the grain (Ang and 

Tang, 1975). To this end, we approximate the fluctuation of stress due to misorientation variation 

within the grain, 𝛿𝛔௧(ఋ௥), with a linear relation between stress fluctuation and the misorientation 

vector by performing a first order Taylor expansion of the nonlinear Eq. (3) around the mean 

grain values: 

 δ𝛔௧(ఋ௥)(𝐱) =
డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

δ𝐫௧(𝐱),  (20) 
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where 
డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

 represents rate of change of stress with misorientation, with the strain rate held 

constant at the mean grain value, and is given in Appendix A. The fluctuations of stress due to 

misorientation are hence assumed to be linearly proportional to the misorientation vectors, where 

the linear map is defined by the derivative of stress with respect to misorientation vector. Eq. 

(19) implies that there are two fundamental sources of stress fluctuations within each grain: the 

spatial variation of grain properties within the polycrystal, and the intragranular misorientation 

field.  

Upon consideration of the intragranular misorientations, the second moment of stress in 

grain 𝑟 (i.e. Eq. 16) becomes:  

〈𝛔௧ ⊗ 𝛔௧〉(௥) = 𝛔௧(௥) ⊗ 𝛔௧(௥) + 〈δ𝛔௧(௤ത) ⊗ δ𝛔௧(௤ത)〉(௥) + 〈δ𝛔௧(ఋ௥) ⊗ δ𝛔௧(ఋ௥)〉(௥) +  

+〈δ𝛔௧(௤ത) ⊗ δ𝛔௧(ఋ௥)〉(௥) + 〈δ𝛔௧(ఋ௥) ⊗ δ𝛔௧(௤ത)〉(௥).  (21) 

The term 〈δ𝛔௧(ఋ௥) ⊗ δ𝛔௧(ఋ௥)〉(௥) represents the second moment of stress fluctuations caused 

solely by the misorientation field within the grain, and is given by: 

〈δ𝛔௧(ఋ௥) ⊗ δ𝛔௧(ఋ௥)〉(௥) =
డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧
〈δ𝐫௧ ⊗ δ𝐫௧〉(௥) ൬

డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

൰
்

.  (22) 

where 〈δ𝐫௧ ⊗ δ𝐫௧〉(௥) represents the second moment of the vector part of the misorientation 

quaternions in grain 𝑟. The last two terms of Eq. (21) are transposed relative to each other and 

represent the cross-covariance between two stress fluctuations caused by different sources, and 

are calculated as: 

〈δ𝛔௧(௤ത) ⊗ δ𝛔௧(ఋ௥)〉(௥) = 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) ൬
డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

൰
்

,  (23) 
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where 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) represents the cross-covariance between the stress fluctuation caused by 

variation of the mean grain properties in the polycrystal, and the misorientation. The approach 

for calculation of cross-covariance 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) will be given at the end of this section. 

2.3 Lattice rotation rate fluctuations 

Once the stress fluctuations have been defined and characterized with second moments, the 

lattice rotation rate (or lattice spin) fluctuations at time 𝑡 can be calculated as follows. Eq. (13) 

and (14) define lattice rotation rate as a nonlinear function of stress and orientation. In order to 

derive the second moment of the lattice spin as a function of the first and second moments of 

stress and misorientation, we approximate the fluctuation of the lattice spin within grain 𝑟 with a 

first order Taylor expansion around the mean grain value with respect to stress and the vector 

part of the misorientation quaternion: 

𝛚̇௧(𝐱) = 𝛚̇௧(௥) +
డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

δ𝛔௧(𝐱) +
డ𝛚̇

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

δ𝐫௧(𝐱),  (24) 

where 
డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

 and 
డ𝛚̇

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

 are derivatives of the lattice spin with respect to stress and the 

vector part of the misorientation quaternion given in Appendix A. Eq. (24) can be rewritten as: 

𝛚̇௧(𝐱) = 𝛚̇௧(௥) + δ𝛚̇௧(ఋఙ)(𝐱) + δ𝛚̇௧(ఋ௥)(𝐱),  (25) 

where δ𝛚̇௧(ఋఙ)(𝐱) =
డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

δ𝛔௧(𝐱) is the lattice spin fluctuation caused by the stress 

fluctuation (Lebensohn et al., 2016) and δ𝛚̇௧(ఋ௥)(𝐱) =
డ𝛚̇

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

δ𝐫௧(𝐱) is the lattice spin 

fluctuation caused by the misorientation fluctuation. Note that the stress fluctuation, δ𝛔௧(𝐱), 

contains the effect of the misorientation fluctuation and thus the term δ𝛚̇௧(ఋఙ)(𝐱) also includes 

the effects of the misorientation fluctuation through the stress.  
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The second moment of lattice spin is calculated as: 

〈𝛚̇௧ ⊗ 𝛚̇௧〉(௥) = 𝛚̇௧(௥) ⊗ 𝛚̇௧(௥) + 〈δ𝛚̇௧(ఋఙ) ⊗ δ𝛚̇௧(ఋఙ)〉(௥) + 〈δ𝛚̇௧(ఋ௥) ⊗ δ𝛚̇௧(ఋ௥)〉(௥) + 

+〈δ𝛚̇௧(ఋఙ) ⊗ δ𝛚̇௧(ఋ௥)〉(௥) + 〈δ𝛚̇௧(ఋ௥) ⊗ δ𝛚̇௧(ఋఙ)〉(௥).  (26) 

Expressions for terms on the right hand side are: 

〈δ𝛚̇௧(ఋఙ) ⊗ δ𝛚̇௧(ఋఙ)〉(௥) =
డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧
〈δ𝛔௧ ⊗ δ𝛔௧〉(௥) ൬

డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

൰
்

  (27) 

〈δ𝛚̇௧(ఋ௥) ⊗ δ𝛚̇௧(ఋ௥)〉(௥) =
డ𝛚̇

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧
〈δ𝐫௧ ⊗ δ𝐫௧〉(௥) ൬

డ𝛚̇

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

൰
்

  (28) 

〈δ𝛚̇௧(ఋఙ) ⊗ δ𝛚̇௧(ఋ௥)〉(௥) =
డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧
〈δ𝛔௧ ⊗ δ𝐫௧〉(௥) ൬

డ𝛚̇

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

൰
்

,  (29) 

where the cross-covariance 〈δ𝛔௧ ⊗ δ𝐫௧〉(௥) is given by: 

〈δ𝛔௧ ⊗ δ𝐫௧〉(௥) = 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) +
డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧
〈δ𝐫௧ ⊗ δ𝐫௧〉(௥) .  (30) 

2.4 Misorientation fluctuations 

Next, an algorithm for integration of lattice spin fluctuations and updating of second 

moments of misorientation vectors from time 𝑡 to time 𝑡 + ∆𝑡 is described (Zecevic et al., 2017). 

The updated orientation at material point 𝐱 and time, 𝑡 + ∆𝑡, is given by: 

𝐪௧ା∆௧(𝐱) = 𝐪௜௡௖
௧ (𝐱)𝐪௧(𝐱),  (31) 

where 𝐪௜௡௖
௧ (𝐱) represents the increment in rotation at material point 𝐱 and time 𝑡 and 𝐪௧(𝐱) and 

𝐪௧ା∆௧(𝐱) are the active rotations rotating the sample frame to local crystal frame at 𝑡 and 𝑡 + ∆𝑡.  

The orientations 𝐪௧(𝐱) and 𝐪௧ା∆௧(𝐱) can be written as composition of the corresponding mean 
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grain orientations, 𝐪ഥ௧(௥) and 𝐪ഥ௧ା∆௧(௥), and the local misorientations at those material points with 

respect to the corresponding mean orientation of the corresponding grain, δ𝐪௧ା∆௧(𝐱) and δ𝐪௧(𝐱): 

𝐪௧(𝐱) = δ𝐪௧(𝐱)𝐪ഥ௧(௥), (32A) 

𝐪௧ା∆௧(𝐱) = δ𝐪௧ା∆௧(𝐱)𝐪ഥ௧ା∆௧(௥). (32B) 

In addition, the increment in rotation can also be decomposed into the mean increment in 

rotation, 𝐪ഥ௜௡௖
௧(௥), and the increment in misorientation defined with respect to that mean increment 

in rotation, δ𝐪௜௡௖
௧ (𝐱): 

𝐪௜௡௖
௧ (𝐱) = δ𝐪௜௡௖

௧ (𝐱)𝐪ഥ௜௡௖
௧(௥). (33) 

By substituting Eq. 33 into Eq. 31 we obtain: 𝐪௧ା∆௧(𝐱) = δ𝐪௜௡௖
௧ (𝐱)𝐪ഥ௜௡௖

௧(௥)
𝐪௧(𝐱). 

Consequently, the orientation update can be decomposed into two separate steps illustrated on 

Fig. 1 (Zecevic et al., 2017): 1) Update for the mean increment in rotation, 𝐪ഥ௜௡௖
௧(௥), which is 

constant within the grain, 2) Update for the increment in misorientation, δ𝐪௜௡௖
௧ (𝐱). Figure 1 

shows the evolution of mean grain orientation, 𝐪ഥ௧(௥), and misorientation at time 𝑡, δ𝐪௧(𝐱), during 

the two step update of the orientation. In the first step, the mean increment in rotation is applied 

to the orientation of every material point within the grain. Consequently, the mean orientation of 

the grain becomes: 𝐪ഥ௜௡௖
௧(௥)

𝐪ഥ௧(௥). Since the same increment in rotation, 𝐪ഥ௜௡௖
௧(௥), is applied to the 

orientation of every material point of the grain, 𝐪௧(𝐱), and to the mean orientation of the grain, 

the misorientations between the orientations at material points and the mean orientation 

physically rotate in the sample frame for 𝐪ഥ௜௡௖
௧(௥): δ𝐪௧,௥௢௧(𝐱) = 𝐪ഥ௜௡௖

௧(௥)
δ𝐪௧(𝐱)𝐪ഥ௜௡௖

௧(௥)ିଵ
. 

In the second step, the increments in misorientation, δ𝐪௜௡௖
௧ (𝐱), are applied to the orientation 

of every material point. It is assumed that the increments in the misorientation do not affect the 
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mean orientation of the grain since their mean value corresponds to the identity rotation 

quaternion. Therefore, the mean orientation after the second step remains the same: 𝐪ഥ௧ା∆௧(௥) ≈

𝐪ഥ௜௡௖
௧(௥)

𝐪ഥ௧(௥). Since the mean orientation remains the same, and since the orientation at each 

material point is updated for the δ𝐪௜௡௖
௧ (𝐱), the misorientation between the mean orientation and 

orientation at material point becomes δ𝐪௧ା∆௧(𝐱) = δ𝐪௜௡௖
௧ (𝐱)δ𝐪௧,௥௢௧(𝐱) (Zecevic et al., 2017).  

Note that in the first step, the mean increment in the misorientation is applied resulting in the 

evolution of the mean grain orientation while the misorientations only physically rotate in the 

sample frame. In contrast, in the second step the increments in misorientation are applied and the 

mean orientation of the grain remains unaltered while the misorientations evolve to their final 

values. 

 

Fig. 1 Evolution of: (1) the mean grain orientation, (2) the orientation at a material point x and 
(3) the misorientation at the material point x during orientation update from time 𝑡 to time 𝑡 +
∆𝑡. The increment in rotation is decomposed into two rotations: the mean increment in rotation, 

𝐪ഥ௜௡௖
௧(௥), and the increment in misorientation, δ𝐪௜௡௖

௧ (𝐱), which are applied sequentially in two steps. 
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By performing a first order Taylor expansion of the expression for the misorientation 

update, δ𝐪௧ା∆௧(𝐱) = δ𝐪௜௡௖
௧ (𝐱)δ𝐪௧,௥௢௧(𝐱), around the mean grain values with respect to δ𝐪௜௡௖

௧ (𝐱) 

and δ𝐪௧,௥௢௧(𝐱), the linearized expression for orientation update is obtained (Zecevic et al., 2017): 

δ𝐪௧ା∆௧(𝐱) ≈ δ𝐪௜௡௖
௧ (𝐱) + δ𝐪௧,௥௢௧(𝐱) − 𝐈௤ ,  (34) 

where 𝐈௤ is the identity rotation quaternion. Eq. (34) can be rewritten in terms of the vector parts 

of the misorientation quaternions: 

δ𝐫௧ା∆௧(𝐱) = δ𝐫௧,௥௢௧(𝐱) + δ𝐫௜௡௖
௧ (𝐱).  (35) 

The vector part of the rotated misorientation quaternion at time 𝑡 can be written as 

δ𝐫௧,௥௢௧(𝐱) = 𝐑ഥ ௜௡௖
௧(௥)

δ𝐫௧(𝐱), where 𝐑ഥ ௜௡௖
௧(௥) is the mean increment in rotation written in the rotation 

matrix representation. The vector part of the incremental rotation quaternion is approximated as: 

δ𝐫௜௡௖
௧ (𝐱) ≈

ஔ𝛚̇೟(𝐱)

|ஔ𝛚̇೟(𝐱)|
sin ቀ

หஔ𝛚̇೟(𝐱)ห∆௧

ଶ
ቁ .  (36) 

By assuming a small angle approximation, sin 𝜃 ≈ 𝜃, the above equation can be simplified to: 

δ𝐫௜௡௖
௧ (𝐱) ≈ δ𝛚̇௧(𝐱)

∆௧

ଶ
.  (37) 

The second moment of the vector part of the misorientation quaternion at time 𝑡 + ∆𝑡 is given 

by: 

〈δ𝐫௧ା∆௧ ⊗ δ𝐫௧ା∆௧〉(௥) = 〈δ𝐫௜௡௖
௧ ⊗ δ𝐫௜௡௖

௧ 〉(௥) + 〈δ𝐫௧,௥௢௧ ⊗ δ𝐫௜௡௖
௧ 〉(௥) + 〈𝐫௜௡௖

௧ ⊗ δ𝐫௧,௥௢௧〉(௥) 

+〈δ𝐫௧,௥௢௧ ⊗ δ𝐫௧,௥௢௧〉(௥),  (38) 

where the individual terms on the right hand side are: 

〈δ𝐫௜௡௖
௧ ⊗ δ𝐫௜௡௖

௧ 〉(𝒓) =
∆௧మ

ସ
〈δ𝛚̇௧ ⊗ δ𝛚̇௧〉(௥) (39) 
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〈δ𝐫௧,௥௢௧ ⊗ δ𝐫௧,௥௢௧〉(௥) = 𝐑ഥ ௜௡௖
௧(௥)

〈δ𝐫௧ ⊗ δ𝐫௧〉(௥)𝐑ഥ ௜௡௖
௧(௥)்

 (40) 

〈δ𝐫௧,௥௢௧ ⊗ δ𝐫௜௡௖
௧ 〉(௥) = 𝐑ഥ ௜௡௖

௧(௥)
〈δ𝐫௧ ⊗ δ𝛔௧〉(௥) ൬

డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

൰
்

∆௧

ଶ
+  

𝐑ഥ ௜௡௖
௧,(௥)

〈δ𝐫௧ ⊗ δ𝐫௧〉(௥) ൬
డ𝛚̇

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧

൰
்

∆௧

ଶ
 .  (41) 

2.5 Approximation of the cross-covariance 〈𝛿𝝈௧(௤ത) ⊗ 𝛿𝒓௧〉(௥) 

Term 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) represents the cross-covariance between two fundamental sources 

of fluctuations: stress fluctuations caused by the spatial variation of the mean crystal properties 

from grain to grain, δ𝛔௧(௤ത), and the intragranular misorientation fluctuations, δ𝐫௧. Consequently, 

the cross-covariance terms appearing in the expressions for second moments of stress, lattice 

spin and misorientation vectors can be written in terms of 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) (Eqs. (23), (29), 

(30) and (41)). Hence, the cross-covariance 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) is the only unknown term in the 

algorithm outlined above. Let us assume the cross-covariance 〈δ𝛔௧ି∆௧(௤ത) ⊗ δ𝐫௧ି∆௧〉(௥) at time 

𝑡 − ∆𝑡 is known. We propose an algorithm for calculation of the cross-covariance 〈δ𝛔௧(௤ത) ⊗

δ𝐫௧〉(௥) at time 𝑡 based on an incremental update of the cross-covariance at time 𝑡 − ∆𝑡. 

First, let us assume a linear relation between stress fluctuations at times 𝑡 − ∆𝑡 and 𝑡: 

δ𝛔௧(௤ത)(𝐱) = 𝐙(௥)δ𝛔௧ି∆௧(௤ത)(𝐱),  (42) 

where matrix 𝐙(௥) defines the relation between stress fluctuations from two subsequent time 

increments in grain 𝑟. Calculation of matrix 𝐙(௥) is given in Appendix B. By using Eq. (24), (36) 

and (35), the misorientation at time 𝑡 can be written as a linear function of δ𝛔௧ି∆௧(௤ത) and δ𝐫௧ି∆௧: 

δ𝐫௧(𝐱) = 𝐘(ఋ௥)(௥)δ𝐫௧ି∆௧(𝐱) + 𝐘(ఋఙ)(௥)δ𝛔௧ି∆௧(௤ത)(𝐱), (43) 
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where matrices 𝐘(ఋ௥)(௥) and 𝐘(ఋఙ)(௥) are given by: 

𝐘(ఋ௥)(௥) =
∆௧

ଶ

డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧ି∆௧ డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧ି∆௧

+
∆௧

ଶ

డ𝛚̇

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧ି∆௧

+ 𝐑௜௡௖
௧ି∆௧(௥),  (44) 

𝐘(ఋఙ)(௥) =
∆௧

ଶ

డ𝛚̇

డ𝛔
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)

௧ି∆௧

.  (45) 

Eq. (43) illustrates the previous observation that an intragranular fluctuation of any variable 

stems from the two fundamental sources: intragranular fluctuations of stress due to variation of 

mean grain properties within the polycrystal, δ𝛔௧ି∆௧(௤ത)(𝐱), and intragranular fluctuations of 

misorientation, δ𝐫௧ି∆௧(𝐱). Substituting Eq. (42) and (43) into cross-covariance 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) 

yields: 

〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) = 𝐙(௥)〈δ𝛔௧ି∆௧(௤ത) ⊗ δ𝐫௧ି∆௧〉(௥)𝐘(ఋ௥)(௥)்
+  

𝐙(௥)〈δ𝛔௧ି∆௧(௤ത) ⊗ δ𝛔௧ି∆௧(௤ത)〉(௥)𝐘(ఋఙ)(௥)்
.  (46) 

Eq. (46) defines the cross-covariance 〈δ𝛔௧(௤ത) ⊗ δ𝐫௧〉(௥) as a function of cross-covariance from 

time 𝑡 − ∆𝑡.  

2.6 Grain fragmentation model 

Let us consider one grain with a given mean orientation, 𝐪ഥ(௥), and associated second 

moment of misorientation vectors, 〈δ𝐫 ⊗ δ𝐫〉(௥). During deformation, the misorientation spread 

will generally increase and, at a certain strain, it may become so large that it cannot be 

represented accurately with only one mean value and one second moment. In addition, the spread 

may become so large that it is no longer reasonable to assume that the behavior of the grain is 

defined solely by the mean orientation of the grain. Furthermore, the Taylor expansion with 

respect to the misorientation vectors around the mean grain orientation, holds only for reasonably 
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small misorientation vectors. Therefore, a grain fragmentation model becomes necessary when 

considering deformation to higher strains.  

 

Fig. 2. Fragmentation of the parent grain into two child grains when the standard deviation, 𝑆𝐷ଵ, 
along the direction of largest variation, 𝐯ଵ, reaches the threshold value, 𝑆𝐷௧௛. The orientations of 

the child grains, 𝐪ഥ௙భ

(௥) and 𝐪ഥ௙మ

(௥), are defined based on the parents mean orientation, 𝐪ഥ(௥), and 

misorientation distribution, 〈δ𝐫 ⊗ δ𝐫〉(௥) (Appendix C). Mean orientations of the children grains 
are misoriented with respect to the mean orientation of the parent around the axis aligned with 
the vector 𝐯ଵ. The misorientation distributions are represented by iso-density ellipsoids.  

In order to quantify the magnitude of the misorientation spread, we calculate the principal 

values, 𝜆௜, and directions, 𝐯௜, of the misorientation distribution, 〈δ𝐫 ⊗ δ𝐫〉(௥), and sort them in 

descending order (Pantleon, 2005). The matrix 〈δ𝐫 ⊗ δ𝐫〉(௥) is a covariance matrix and thus has 

to be positive-semidefinite by definition, implying that the eigenvalues are non-negative: 𝜆௜ ≥ 0. 

The maximum principal value, 𝜆ଵ, represents the variance along the corresponding principal 

direction of largest variation, 𝐯ଵ. The standard deviations along principal directions are defined 

as 𝑆𝐷௜ = √𝜆௜. For the purposes of the fragmentation model, the misorientation distribution is 

assumed to be multivariate normal.  
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Misorientation vectors along the direction 𝐯ଵ are the largest in the misorientation 

distribution and thus the Taylor expansion of stress and spin (Eq. 20 and 24) might not be 

sufficiently accurate for these misorientation vectors. In addition, the additive accumulation of 

misorientation vectors (Eq. 35) holds only for relatively small misorientations. Therefore, when 

the largest standard deviation, 𝑆𝐷ଵ, reaches a critical value, 𝑆𝐷௧௛, further evolution of the 

intragranular distributions becomes inaccurate. One solution to this problem is division of the 

grain into two child grains once 𝑆𝐷ଵ reaches critical value (Fig. 2). The mean orientations of the 

children grains, 𝐪ഥ௙భ

(௥) and 𝐪ഥ௙మ

(௥), are calculated by misorienting the mean orientation of the parent 

grain, 𝐪ഥ(௥), around the direction of largest variation, 𝐯ଵ, for an angle calculated based on the 𝑆𝐷ଵ 

(see Appendix C). The misorientation distributions of children grains are calculated by dividing 

the parent’s misorientation distribution along the direction of largest variation, 𝐯ଵ (see Appendix 

C). From all the possible divisions of the parent’s misorientation distribution, division along the 

direction of largest variation gives the fragmented distributions with the smallest maximal 

standard deviations, 𝑆𝐷ଵ
௙భ and 𝑆𝐷ଵ

௙మ. Consequently, the Taylor expansion around the mean 

orientation and the additive accumulation of misorientation vectors hold again for the children 

grains. The misorientation distributions of the parent grain and children grains are illustrated by 

iso-density ellipsoids in Fig. 2. Points on the surface of the iso-density ellipsoid have the same 

probability density. For illustration purposes, the semi axes of iso-density ellipsoids are chosen 

to correspond to the standard deviations, 𝑆𝐷௜. Since the slip resistance is assumed constant 

within the grain, the children grains inherit the parent’s slip resistance. The mean stress and 

strain rate within the children are also assumed same as parent’s and they only serve as initial 

guesses for the next time increment when they will be calculated by means of the self-consistent 

procedure. 
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The threshold value for 𝑆𝐷ଵ is suitably chosen so that the angle between the mean 

orientations of the children grains is 15o at the moment of fragmentation. On one hand, higher 

threshold value for 𝑆𝐷ଵ might result in reduced accuracy, while on the other hand lower 

threshold value for 𝑆𝐷ଵ would give more accurate result but would also cause more excessive 

fragmentation and very large number of fragments at higher strains. The chosen value is a 

compromise that yields  accurate results and manageable number of grains even at higher strains. 

3 Results and discussion 

The GF-VPSC model for prediction of intragranular misorientation spreads is applied to 

tension of an fcc polycrystal at room temperature, and PSC of an fcc polycrystal at elevated 

temperature. The predictions are compared to VPFFT full-field (Lebensohn, 2001; Lebensohn et 

al., 2008) simulation results for the case of tension, and to both VPFFT and experimental results 

(Quey et al., 2010 for rolled Al) in the case of PSC. In addition, coupling of deformation and 

recrystallization modeling is discussed at the end of this section. 

3.1 Uniaxial tension of an fcc polycrystal 

Uniaxial tension of a polycrystal consisting of 400 spherical, randomly oriented grains is 

simulated to 40% strain using the GF-VPSC model and compared with full-field VPFFT 

predictions. The initial microstructure for full-field VPFFT simulation was created by assigning 

the 400 random orientations used in GF-VPSC simulations to 400 approximately equiaxed and 

equal-volume grains within a periodic Voronoi unit cell. The grains are assumed to deform by 

{111}〈11ത0〉 slip with a power-law exponent in Eq. (2) of 𝑛 = 10, and no strain hardening. In 

addition, the same deformation is simulated with the VPSC model used in (Zecevic et al., 2017). 

The grain fragmentation scheme described in section 2.6 was implemented in this earlier model 

as well, in order to facilitate the comparison. The VPSC model reported in (Zecevic et al., 2017) 
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calculates intragranular misorientation distributions based on the second moments of lattice 

rotation rates (Lebensohn et al., 2016) in a similar manner to the GF-VPSC model, but does not 

include the effects of the misorientation distributions on the stress and lattice spin fluctuations. 

Consequently, the difference between the results of the two grain fragmentation predictions 

shows the importance of considering the effects of the misorientation on the fluctuations of stress 

and lattice spin.  

The magnitude of the orientation spread for each grain within the polycrystal can be 

quantified with one scalar parameter: equivalent isotropic spread. Consequently, a discrete set of 

grain equivalent isotropic spreads can be created for a polycrystal and a probability density (pdf) 

function of the equivalent isotropic spreads can be defined. Figure 3 shows the pdfs of the 

equivalent isotropic spreads calculated over the polycrystal for GF-VPSC, GF-VPSC without 

misorientation effects on fluctuations, and VPFFT. The equivalent isotropic spread, SD, is 

calculated as the geometric mean of the standard deviations, 𝑆𝐷௜, along the principal directions 

of the intragranular misorientation spread: 𝑆𝐷 = ඥ𝑆𝐷ଵ × 𝑆𝐷ଶ × 𝑆𝐷ଷ
య  (Krog-Pedersen et al., 

2009). The standard deviations, 𝑆𝐷௜ , can be used for construction of iso-density ellipsoids around 

the mean grain value of misorientation vectors, 〈𝛿𝐫〉(௥) = 𝟎. Misorientation vectors pointing to 

the surface of the iso-density ellipsoid are exactly one standard deviation away from the grain’s 

mean of the misorientation vectors, and their probability density is the same. Equivalent isotropic 

spread represents a radius of a sphere which has the same volume as the defined iso-density 

ellipsoid and thus represents standard deviation of the isotropic spread defined based on the 

anisotropic misorientation distribution. A majority of grains in the VPFFT model develop 

equivalent isotropic spreads around 0.045 with relatively high dispersion. On the other hand, 

both GF-VPSC models predict strong concentration of equivalent isotropic spreads around 0.04 
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and weaker concentration around 0.02. The presence of an additional peak in the GF-VPSC pdf 

predictions is caused by the disc shaped misorientation distributions in the grains with tensile 

axis close to [001]. Very small magnitude of standard deviation along the direction of smallest 

variation, 𝑆𝐷ଷ, results in an unreasonably small magnitude of the equivalent isotropic spreads 

within those grains (Zecevic et al., 2017). Main cause for development of such misorientation 

distributions is the insensitivity of spin component along the tension direction to the fluctuations 

in stress, as will be detailed below. Considering the discrepancy between the GF-VPSC and 

VPFFT, we conclude that the Taylor expansion of spin with respect to stress  becomes inaccurate 

for orientations with the tensile direction (TD) close to [001]. 

 

Fig. 3. Probability density functions (pdf) of equivalent isotropic spreads calculated using GF-
VPSC, GF-VPSC without misorientation effects, and VPFFT, for an fcc polycrystal deformed in 
tension to 40% strain.  

The direction of the misorientation distribution of each grain in the polycrystal can be 

quantified with one vector pointing in the direction of the largest variation, i.e.  the dominant 

rotation axis. Figure 4 compares the equal-area projections of dominant rotation axes between 

GF-VPSC, GF-VPSC without misorientation effects on fluctuations, and VPFFT, for all of the 
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grains in the polycrystal. The largest variation of intragranular misorientation spread is about the 

dominant rotation axis, aligned with the direction of the eigenvector, 𝐯ଵ, corresponding to largest 

eigenvalue, 𝜆ଵ, of the second moment of misorientation, 〈δ𝐫௧ ⊗ δ𝐫௧〉(௥) (Bachmann et al., 2010; 

Pantleon, 2005). Physically, the orientations from the grain’s orientation spread which are the 

most misoriented with respect to the mean grain orientation have the axis of misorientation 

aligned with the dominant rotation axis. For VPFFT, large portion of dominant rotation axes 

tends to align perpendicular to the tension direction while the remaining portion is randomly 

spread out around TD. Similarly, GF-VPSC predicts strong alignment of the dominant rotation 

axes perpendicular to TD. In addition, GF-VPSC predicts a certain portion of dominant rotation 

axes relatively close to TD but in a ring about 30 degrees away from the tension direction. On 

the other hand, the GF-VPSC model without effects of misorientation on fluctuations predicts all 

the axes to be perpendicular to the tension direction. In addition, the magnitudes of SD along the 

dominant rotation axes in the GF-VPSC simulations without effects of misorientation are 

generally smaller than the magnitudes observed in the GF-VPSC and VPFFT simulations. In 

both GF-VPSC and VPFFT simulations, grains with the dominant rotation axis perpendicular to 

TD tend to develop higher SD in comparison to the grains with the dominant rotation axis 

parallel to TD. 

Figure 5 shows the orientation dependence of the angle between the dominant rotation axis 

and TD for GF-VPSC, GF-VPSC without misorientation effects on fluctuations, and VPFFT. For 

VPFFT, the axes displaying the smallest angles are for orientations close to the stable 

orientations, [001] and [111]. On the other hand, GF-VPSC predicts the smallest angle only in 

the region close to [111] but not directly at [111]. The GF-VPSC without misorientation effects 

on fluctuations predicts an angle close to 90 degrees for all of the grains, as expected based on 
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Fig. 4.  Therefore, the rotation of dominant rotation axes toward TD in GF-VPSC is likely 

caused by the introduced effects of misorientation on the stress and lattice spin fluctuations. The 

observed behavior for VPFFT and GF-VPSC is analyzed in detail next. 

 

Fig. 4. Comparison of dominant rotation axes calculated using GF-VPSC, GF-VPSC without 
misorientation effects, and VPFFT, after tension to 40% strain, color-coded according to 
magnitude of standard deviation along dominant rotation axis. 

During the initial stages of tensile loading, grains develop misorientation spreads 

perpendicular to TD both in GF-VPSC and VPFFT (Zecevic et al., 2017). Lattice spin 

fluctuations can be decomposed into fluctuations caused by: i) intragranular stress fluctuations, 

and ii) intragranular misorientation. The fluctuations of lattice spin at lower strains are 

predominantly driven by the stress fluctuations, since intragranular misorientations are fairly 

small. The component of lattice spin along TD is less sensitive to stress fluctuations than the 

other two components lying in the plane perpendicular to the TD, which causes intragranular 

misorientation spreads to develop perpendicular to TD (Zecevic et al., 2017). This behavior is 

especially pronounced for orientations with TD within 15 degrees from [001] and 5 degrees from 

[111] in the GF-VPSC results, for which variations of intragranular misorientation spreads along 

TD are very small.  
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At higher strains, the influence of the intragranular misorientation on lattice spin fluctuations 

becomes dominant due to large misorientation spreads. When a grain with a certain orientation 

spread reaches either the [001] || TD or [111] || TD stable fibers, the lattice spin fluctuations of 

the orientations within the spread that are away from the fiber cause reorientation toward the 

fiber, since the region around the fiber is convergent. On the other hand, lattice spin fluctuations 

of orientations of the spread that are on the fiber cause very small total reorientations since these 

intragranular orientations have reached a stable position. Therefore, orientation spreads of these 

grains tend to assume the shape of the fiber. Similar behavior was observed during PSC of fcc 

polycrystals (Quey et al., 2015). Consequently, as the grains approach [001] and [111] regions, 

they start developing misorientation spread with dominant rotation axis parallel to TD because 

their orientation spread tends to align with the stable fiber. This behavior is observed in VPFFT 

and is more pronounced around [111] than in the [001] region because orientations tend to 

converge to [111] faster than to [001] (Lebensohn et al., 2016). 

In GF-VPSC, orientations that are initially close to the stable regions [111] and [001] 

develop very small spreads along TD, as was noted before. The lattice spin fluctuations caused 

by the intragranular misorientation tend to shrink the spread in the plane perpendicular to TD and 

thus bring all the orientations of the spread to the fiber. However, regardless of this effect, the 

dominant rotation axis will remain perpendicular to TD because variations of the intragranular 

misorientation spread along TD are very small. Only orientations with [111] about 10 degrees 

away from TD develop sufficiently large components of misorientation spread along TD. 

Consequently, only these orientations show the dominant rotation axis close to TD as they 

reorient toward the [111] due to the effect of the plastic spin fluctuations caused by the 

intragranular misorientation (Fig. 5).  
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Fig. 5. Inverse pole figures after tension to 40% strain for GF-VPSC, GF-VPSC without 
misorientation effects, and VPFFT. The poles represent the orientation of TD in the crystal frame 
of each grain, and their colors represent the angles between the dominant rotation axis and the 
tensile direction. 

3.2 PSC of fcc polycrystal at elevated temperature 

Quey et al (Quey et al., 2010) performed PSC of recrystallized Al-0.1wt%Mn at 400oC to a 

final rolling strain of 1.2. The same region of the sample was scanned using EBSD at strain 

levels of 0.0, 0.42, 0.77 and 1.2. The grains present in the EBSD scan of the initial 

microstructure were identified in the subsequent scans taken at each strain level. Therefore, the 

intragranular orientation spread of this subset of grains is available at each strain level. In 

addition, crystal plasticity finite element (CPFE) modeling of the experiment and analysis of 

misorientation spreads was performed in (Quey et al., 2012; Quey et al., 2015). 

We simulated Quey et al.’s PSC experiment using the GF-VPSC and VPFFT models, using 

the orientations of 207 grains present in the initial EBSD scan, along with 193 random 

orientations as the initial texture. The orientations from the initial texture were sorted according 

to the volume fraction and assigned to the grains within the periodic Voronoi unit cell that was 

used as the initial microstructure for the VPFFT simulation. The orientation with the largest 

volume fraction within the initial texture was assigned to the grain with the largest volume 

fraction within the Voronoi unit cell, etcetera. This method of orientation assignment ensures the 
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smallest difference between the initial texture of the Voronoi unit cell for VPFFT simulations 

and the initial texture used in GF-VPSC simulations. There was no intragranular misorientation 

spread within the initial microstructure. At elevated temperature, the slip resistances of non-

octahedral slip systems may drastically decrease resulting in their activation (Bacroix and Jonas, 

1988). The slip on non-octahedral planes is interpreted as cross-slip from the plane {111}. 

Perocheu and Driver measured the stress strain response of Al-1wt%Mn single crystals at 400-

500 oC and at different strain rates (Perocheau and Driver, 2002). The orientations of single 

crystals were chosen to favor different slip systems and slip trace analysis revealed activation of 

non-octahedral slip systems. The ratios of flow stresses between the {111}〈01ത1〉, {011}〈01ത1〉 

and {100}〈01ത1〉 slip modes were determined to be: 1.0-0.9-1.4, respectively. Consequently, in 

both GF-VPSC and VPFFT models we assume same slip systems with the measured ratio of slip 

resistances. The rate sensitivity of the flow stress was measured to be between 0.07 and 0.11 

(Perocheau and Driver, 2002). In both models we assume rate exponent in the rate-sensitive 

constitutive equation as 𝑛 = 10 and no strain hardening. The same slip modes and slip resistance 

ratios and similar rate exponent (𝑛 ≈ 8) were used for the CPFE modeling performed in (Quey 

et al., 2012; Quey et al., 2015). Comparisons of intragranular misorientation distributions were 

performed for the subset of grains represented in the EBSD scans with at least 500 points at each 

strain level, resulting in 119 grains. Since the highly deformed grains are more difficult to index 

during EBSD scanning at higher strains, the highly deformed grains with relatively small area 

are less likely to be included in the defined subset of grains which thus might be biased toward 

less deformed grains. However, since the main purpose of this study is comparison of the model 

predictions with the experiment for the defined subset of grains, this effect can be neglected.  
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During deformation, certain grains in the divergent regions of the orientation space 

subdivide into two distinct portions. Due to different slip activity, one portion of the grain 

reorients toward one stable region while the other portion of the grain reorients towards a 

different stable region. These highly misoriented portions of the grain are called deformation 

bands. Thin regions between the deformation bands are called transition bands, and large 

orientation difference between the deformation bands is accommodated within them (Dillamore 

and Katoh, 1974; Hansen and Jensen, 1999). Orientation spread of such grain is bi-modal and 

consists of orientations clustered around two distinct modes which lie in different stable regions 

of the orientation space (Quey et al., 2012). Since the grain’s misorientation spread simply 

represents the grain’s orientation spread defined with respect to the mean orientation, the 

misorientation distribution is bi-modal as well (Fig 6a). The dominant rotation axis of the bi-

modal grain describes the misorientation axis between the two modes of the misorientation 

distribution. The pdf of the misorientation vector components along the dominant rotation axis is 

again bi-modal and can be used for identification of the bi-modal grains, Fig. 6b (Quey et al., 

2012). The misorientations clustered around different modes of the misorientation distribution 

correspond to different deformation bands (Fig 6b). On the other hand, the misorientations from 

the region between the modes of the misorientation distributions correspond to the transition 

band (Fig 6b). Therefore, by examining the intragranular misorientation spreads, we can identify 

grains that developed transition bands and the orientations present in transition bands. The 

calculated fractions of bi-modal grains at each strain level in the experiment and the simulations 

are compared in Fig. 7. VPFFT over-predicts the number of bi-modal grains, while GF-VPSC 

under-predicts it. The CPFE simulations performed in (Quey et al., 2012) predicted a similar 

fraction of bi-modal grains as VPFFT. 
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Fig. 6. (a) Scatter plot of misorientation vectors for a bi-modal grain  predicted with VPFFT for 
plane-strain compression, and (b) probability density function of misorientation vector 
projections along the dominant rotation axis. The principal vectors of misorientation distribution 
are denoted as 𝐯௜. 

Grains with bi-modal orientation distributions usually have quite large misorientations 

between the individual modes, and thus should not be treated as a single grain. As noted above, 

the dominant rotation axis of the bi-modal grains essentially describes the misorientation axis 

between the two modes, while the equivalent isotropic spread describes the magnitude of 

misorientation between the two modes. The misorientation spreads developing around the 

individual modes have completely different dominant rotation axes and equivalent isotropic 

spreads. Consequently, the dominant rotation axes and equivalent isotropic spreads of the 

misorientation distributions are compared only for the grains with unimodal orientation 

distribution, as was done in (Quey et al., 2015).  



188 

 

Fig. 7. Comparison between measured (rolled Al) and predicted (GF-VPSC and VPFFT) 
fractions of bi-modal grains at different strain levels for plane-strain compression. 

Figure 8 compares the simulated and experimental pdfs of equivalent isotropic spreads 

calculated over the entire polycrystal at each strain level. The GF-VPSC tends to over-predict the 

concentration of equivalent isotropic spreads around certain values, in comparison to the 

experiment. On the other hand, VPFFT displays too much variation of equivalent isotropic 

spreads, especially at higher strains, which is consistent with the CPFE simulations performed by 

(Quey et al., 2015). Initially, the magnitudes of equivalent isotropic spreads increase rapidly with 

strain in both simulations and experiment. Grains that are initially in divergent regions rapidly 

develop large misorientation spreads, while grains that are in the stable regions develop 

misorientation spreads at considerably slower rate. Since initially there is a relatively small 

number of grains in stable convergent regions, the misorientation spreads develop rapidly for a 

significant fraction of grains. At higher strains, the equivalent isotropic spreads saturate and do 

not increase significantly with further deformation, an observation which is especially 

pronounced in the experimental results (Quey et al., 2010). This is because a majority of grains 

have reached stable convergent orientations, where the misorientation spreads evolve slowly. 
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Fig. 8. Experimental (rolled Al) and predicted (GF-VPSC and VPFFT) probability density 
functions of equivalent isotropic spreads during plane-strain compression at different strain 

levels. 𝜀ே஽ is the strain in the normal direction while the 𝑆𝐷തതതത =
ଵ

௡
∑ 𝑆𝐷(௥)

௥  represents the average 

value of equivalent isotropic spread over the polycrystal. 

Figure 9 shows the directions of dominant rotation axes after applying the rolling symmetry 

for simulations and experiment, at each strain level. At lower strains, the dominant rotation axes 

tend to align with TD in both simulations and experiment, in agreement with (Pantleon et al., 

2008). This tendency is weaker in VPFFT predictions, compared to experiment and GF-VPSC 

results. As the strain increases, the dominant rotation axes start rotating toward RD in the 

experimental results. A similar trend, though noticeably weaker, is predicted with GF-VPSC. On 

the other hand, VPFFT predicts a significant fraction of the axes aligned with ND and in the TD-

ND plane at higher strains, which is not observed in experiment or GF-VPSC. Similar alignment 

of the dominant rotation axes with ND was also observed in the CPFE simulations (Quey et al., 
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2015). This behavior was attributed to the alignment of the misorientation spread with the 

direction of the fiber to which the mean grain orientation belongs (Quey et al., 2015). 

 

Fig. 9. Dominant rotation axes for experiment (rolled Al) and simulations (GF-VPSC and 
VPFFT) for plane-strain compression at different strain levels. 

Considering the complexities involved in the physics of grain fragmentation, the GF-VPSC 

predictions are good. Moreover, the model is much more computationally efficient than the full-

field models. The GF-VPSC model without the misorientation effects on the stress and lattice 

spin fluctuations predicts almost zero bi-modal grains, even at 1.2 strain. In addition, the 

dominant rotation axes remain strongly aligned with the TD throughout the deformation. These 
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results corroborate our previous assertion, in the sense that field fluctuations caused by the 

intragranular misorientation become dominant at higher strains. 

Both GF-VPSC and VPFFT are three-dimensional (3-D) models, while only two-

dimensional (2-D) sections of grains were analyzed in the experiment. Consequently, certain 

discrepancy between the predictions and measurements is expected (Quey et al., 2015). In 

addition, the 3-D unit cell used for the VPFFT was generated randomly, solely based on the grain 

orientations and volume fractions obtained from one 2-D scan of the actual microstructure. 

Therefore, the generated 3-D unit cell does not correspond to the actual unknown 3-D 

microstructure of the sample. In the GF-VPSC model, every grain interacts with the effective 

medium which has the averaged properties of the polycrystal. Consequently, the response of the 

GF-VPSC model is determined only by the discrete set of grain orientations and volume 

fractions, while the actual 3-D microstructure corresponding to that set of grains has no influence 

on the results. In a sense, GF-VPSC gives an averaged response over all possible 3-D 

microstructures for a defined set of grain orientations and volume fractions (Lebensohn et al., 

2004). This statistical representativity can be the explanation for the better agreement of the GF-

VPSC model with the experimental results in comparison to the VPFFT. In the absence of the 

actual 3-D microstructure, averaged response seems to be closer to the experimental 

measurements than the response of an assumed 3-D microstructure used in VPFFT. 

Finally, Fig. 10 compares the textures after deformation in the form of {111} pole figures. 

The same features are present in both simulations and experiment, but the intensities differ. GF-

VPSC predicts a weaker texture than experimentally measured, while VPFFT predicts a peak 

intensity very close to the experimental value. As a reference, the texture predicted by the VPSC 

model without the extension for calculation of intragranular misorientation spreads is given in 
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Fig. 10 as well. The predicted peak intensity is considerably higher than the experimentally 

measured intensity, as was observed in (Lebensohn, 2001), confirming that the incorporation of 

intragranular misorientation spreads and grain fragmentation improves texture predictions. 

 

Fig. 10. {111} pole figures measured (rolled Al) and predicted by GF-VPSC, VPFFT, and 
standard VPSC, for plane-strain compression after 1.2 strain. 

3.3 Coupled modeling of deformation and recrystallization 

In closing this section, we show that the new GF-VPSC model is not only able to predict 

grain fragmentation in a micromechanically-consistent fashion, and validated by comparison 

with experiments, but it also enables coupled modeling of microstructure evolution during 

deformation and recrystallization. As already mentioned, intragranular orientation spreads have 
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been related to the formation of transition bands. These high orientation gradient regions 

between deformation bands favor recrystallization nuclei, which may have quite different 

crystallographic orientation compared to the average grain orientation, due to large orientation 

variations developed in the grains (Humphreys and Hatherly, 2004; Knezevic et al., 2014; 

McCabe et al., 2015). Therefore, even though the GF-VPSC provides only statistical description 

of intragranular misorientation distributions, in the special case of bi-modal orientation 

distributions, it can be assumed that the orientations between the modes of the orientation 

distribution (transition band orientations) spatially neighbor the orientations from the modes of 

the orientation distribution (deformation band orientations). Consequently, the orientation 

gradients for these grains become high. 

Let us consider the recrystallization of heavily rolled copper, which results in a strong cube 

texture. It was found that during rolling of copper, certain grains develop transition bands with 

the cube orientation present within the center of the transition band (Dillamore and Katoh, 1974; 

Hjelen et al., 1991; Ridha and Hutchinson, 1982). These cube-oriented nuclei grow and consume 

the deformed microstructure resulting in cube recrystallization texture. In order to simulate this 

process, GF-VPSC and VPFFT were used to model PSC of copper to a reduction of 78 %. The 

initial microstructure consists of 400 randomly oriented spherical grains deforming by 

{111}〈01ത1〉 slip with no strain hardening. The grains that have developed bi-modal orientation 

distributions, and thus formed transition bands, were flagged at the end of deformation, and a 

transition-band ODF was defined by assembling the orientations present within the transition 

bands of all bi-modal grains. If nucleation at transition bands is accepted as the likely nucleation 

mechanism, then the transition-band ODF defines possible orientations of recrystallization 

nuclei. The transition-band ODFs are plotted on Fig. 11 in the form of {111} pole figures as 
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predicted by GF-VPSC and VPFFT. A cube texture is predicted in both cases,  in accordance 

with the previous experimental observations and theoretical considerations and interpretations 

(Dillamore and Katoh, 1974; Ridha and Hutchinson, 1982). 

 

Fig. 11. {111} pole figures corresponding to transition band ODF for plane-strain compression 
of fcc polycrystal after 78 % reduction predicted by GF-VPSC and VPFFT. 

4 Conclusions 

In this work, we have developed a formulation and the associated algorithms for the 

calculation of intragranular misorientation spreads during plastic deformation at high strains. The 

effect of the misorientation on the stress and lattice spin fluctuations has been included, by 

assuming linear relations between these fluctuations and misorientation. In addition, a grain 

fragmentation model, formulated in orientation space, was proposed and implemented in VPSC. 

The model was applied to tension of an fcc polycrystal and compared to the full-field simulation 

results obtained by VPFFT. It was observed that the dominant rotation axes tend to rotate toward 

the tensile direction, for grains that have reached stable [001] and [111] regions. This behavior 

was attributed to the effect of the lattice spin fluctuations caused by large intragranular 

misorientation spreads. In addition, PSC of fcc polycrystal at 400oC to a strain of 1.2 was also 

simulated and compared with corresponding experiments and full-field simulations. It was 
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observed that the dominant rotation axes at higher strains tend to align with RD. The magnitude 

of the spread evolves rapidly at lower strain and saturates at intermediate and high strains. The 

inclusion of misorientation spreads reduces the intensity of the deformed texture and thus 

improves texture prediction. Considering the complexity of the physical problem, satisfactory 

agreement between the proposed model and full-field simulations and experiment was found. 

Finally, it was shown that the new GF-VPSC model can be used to predict microstructure 

evolution during deformation and recrystallization. Further development and applications of this 

novel modeling capability is on-going work, and will be reported in due time. 
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Appendix A 

The derivative of stress with respect to misorientation, 𝛿𝐫, can be obtained by taking the 

derivative of the rate-sensitive constitutive equation (Eq. 3), holding the strain rate constant: 

డ𝛔

డఋ𝐫
= − ቂ∑ 𝐦௦⨂

డఊ̇ೞ

డ𝛔௦ ቃ
ିଵ

ቄ∑ ቂ𝐦௦⨂ ቀ
డఊ̇ೞ

డ𝐦ೞ

డ𝐦ೞ

డఋ𝐫
ቁ + 𝛾̇௦ డ𝐦ೞ

డఋ𝐫
ቃ௦ ቅ. (A1) 

The derivatives of lattice reorientation rate (Eq. 13) with respect to stress and misorientation are 

given by: 

డ𝛚̇

డ𝛔
= −

డ𝛚̇೛

డ𝛔
= − ∑ 𝛂௦⨂

డఊ̇ೞ

డ𝛔௦ , (A2) 
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డ𝛚̇

డஔ𝐫
= −

డ𝛚̇೛

డஔ𝐫
= − ∑ ቂ𝛂௦⨂ ቀ

డఊ̇ೞ

డ𝐦ೞ

డ𝐦ೞ

డఋ𝐫
ቁ + 𝛾̇௦ డ𝛂ೞ

డఋ𝐫
ቃ௦ . (A3) 

Note that the reorientation rate of ellipsoid is assumed to be constant in the grain. Consequently, 

derivatives of rotation rate are equal to the negative derivatives of the lattice spin given by Eq. 

(14). 

Next, the expressions for derivatives 
డఊ̇ೞ

డ𝛔
, 

డఊ̇ೞ

డ𝐦ೞ
, 

డ𝐦ೞ

డఋ𝐫
 and 

డ𝛂ೞ

డఋ𝐫
 appearing in the 3 previous 

equations are provided. First, the derivatives of the shear rate (Eq. 2) with respect to stress and 

the symmetric part of Schmid tensor are given by: 

డఊ̇ೞ

డ𝛔
= 𝛾̇଴𝑛 ቀ

|𝛔∙𝐦ೞ|

 ఛ೎
ೞ ቁ

௡ିଵ ଵ

 ఛ೎
ೞ 𝐦௦. (A4) 

డఊ̇ೞ

డ𝐦ೞ
= 𝛾̇଴𝑛 ቀ

|𝛔∙𝐦ೞ|

ఛ೎
ೞ ቁ

௡ିଵ ଵ

ఛ೎
ೞ 𝛔. (A5) 

The derivative of symmetric Schmid tensors with respect to misorientation vector is given by the 

chain rule: 

డ௠೔ೕ
ೞ

డஔ௥೘
=

డ௠೔ೕ
ೞ

డஔோೖ೗

డஔோೖ೗

డஔ௥೘
, (A6) 

where the δ𝑅௞௟ is rotation matrix representation of the rotation defined by the misorientation 

vector, δ𝑟௠. The derivative 
డ௠೔ೕ

ೞ

డஔ௥೘
 is evaluated at the mean orientation which implies zero 

misorientation. First, the derivative 
డ௠೔ೕ

ೞ

డஔோೖ೗
 evaluated at the mean orientation is: 

డ௠೔ೕ
ೞ

డఋோೖ೗
= 𝐼௜௞〈𝑚௟௝

௦ 〉 + 𝐼௝௞〈𝑚௜௟
௦ 〉. (A7) 

In order to obtain the derivative 
డஔோ೔ೕ

డஔ௥೗
, we write the misorientation matrix, δ𝑅௜௝, as a function of 

misorientation vector, δ𝑟௞ (Morawiec, 2004): 
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δ𝑅௜௝ =

൦

1 − 2δ𝑟ଶ
ଶ − 2δ𝑟ଷ
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2൫δ𝑟ଵδ𝑟ଷ − ඥ1 − δ𝑟௜δ𝑟௜δ𝑟ଶ൯ 2൫ඥ1 − δ𝑟௜δ𝑟௜δ𝑟ଵ + δ𝑟ଶδ𝑟ଷ൯ 1 − 2δ𝑟ଵ
ଶ − 2δ𝑟ଶ

ଶ

൪ (A8) 

The derivatives of the misorientation matrix, δ𝑅௜௝, with respect to misorientation vector, δ𝑟௞, 

evaluated at the mean orientation are: 

డஔோ೔ೕ

డஔ௥భ
= ൥

0 0 0
0 0 −2
0 2 0

൩ ; 
డஔோ೔ೕ

డஔ௥మ
= ൥

0 0 2
0 0 0

−2 0 0
൩ ; 

డஔோ೔ೕ

డஔ௥య
= ൥

0 −2 0
2 0 0
0 0 0

൩. (A9) 

The expressions for derivatives of the antisymmetric Schmid tensor are analogous to those of the 

symmetric Schmid tensor. 

Appendix B 

Let us consider two average intragranular stress fluctuation distributions at two subsequent 

time increments. The linear mapping of the stress fluctuation vectors at time 𝑡 − ∆𝑡 to the 

corresponding statistical descriptor at time 𝑡, defined by matrix 𝐙(௥), is needed. Let us assume 

both distributions are normal and perform a Cholesky decomposition of the stress fluctuations at 

times 𝑡 − ∆𝑡 and 𝑡: 

〈δ𝛔௧ି∆௧(௤ത) ⊗ δ𝛔௧ି∆௧(௤ത)〉(௥) = 𝐋௧ି∆௧(𝐋௧ି∆௧)்  (A10) 

〈δ𝛔௧(௤ത) ⊗ δ𝛔௧(௤ത)〉(௥) = 𝐋௧(𝐋௧)் ,  (A11) 

where 𝐋௧ and 𝐋௧ି∆௧ are lower triangular matrices. The matrix 𝐋௧ maps random five-dimensional 

vectors with zero mean and unit variance, to random vectors with zero mean and second moment 

defined by 〈δ𝛔௧(௤ത) ⊗ δ𝛔௧(௤ത)〉(௥) (Press, 2007). Analogously, the matrix 𝐋௧ି∆௧ performs similar 
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mapping, but to random vectors with zero mean and second moment defined by 〈δ𝛔௧ି∆௧(௤ത) ⊗

δ𝛔௧ି∆௧(௤ത)〉(௥). We can write the mapping 𝐋௧ as composition of mapping 𝐋௧ି∆௧ and mapping 𝐙(௥): 

𝐋௧ = 𝐙(௥)𝐋௧ି∆௧.  (A12) 

From here the matrix 𝐙(௥) can be calculated as: 

𝐙(௥) = 𝐋௧(𝐋௧ି∆௧)ିଵ.  (A13) 

Further, let us map the stress fluctuations δ𝛔௧ି∆௧(௤ത)(𝐱) defined by the second moment 

〈δ𝛔௧ି∆௧(௤ത) ⊗ δ𝛔௧ି∆௧(௤ത)〉(௥) using matrix 𝐙(௥) and show that the resulting distribution has second 

moment equal to 〈δ𝛔௧(௤ത) ⊗ δ𝛔௧(௤ത)〉(௥): 

𝐙(௥)〈δ𝛔௧ି∆௧(௤ത) ⊗ δ𝛔௧ି∆௧(௤ത)〉(௥)൫𝐙(௥)൯
்

=  

= 𝐋௧ (𝐋௧ି∆௧)ିଵ𝐋௧ି∆௧ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
𝐈

(𝐋௧ି∆௧)்((𝐋௧ି∆௧)ିଵ)்ᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
𝐈

(𝐋௧)் = 〈δ𝛔௧(௤ത) ⊗ δ𝛔௧(௤ത)〉(௥) .  (A14) 

𝐙(௥) represents the mapping of stress fluctuations from time 𝑡 − ∆𝑡 to 𝑡 when the cross-

correlation between two stress fluctuations is perfect. However, in reality the cross-correlation is 

most likely very strong but not perfect. In the case of two correlated scalar variables, the 

proportionality between them is defined by the cross-correlation coefficient, 𝜌 (Papoulis, 1991). 

We assume analogous relation for the multivariate case: 𝐙(௥)(𝜌) = 𝜌𝐙(௥)(𝜌 = 1). The cross-

correlation between five-dimensional stress fluctuations from two subsequent time increments is 

defined by the cross-correlation coefficient matrix but we approximate the strength of cross-

correlation with only one scalar number 𝜌. We assume cross-correlation coefficient, 𝜌, is a 

function of strain increment given by:  

𝜌 = 1.0 − 2.5 × ∆𝜀௩௠.  (A15) 
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𝐙(௥)(𝜌 = 1) is linear mapping between stress fluctuation distributions when the cross-correlation 

is perfect (Eq. (A13) of the Appendix).  

Appendix C 

The three-dimensional parent’s misorientation distribution described by the mean value, 

〈δ𝐫〉(௥) = 𝟎, and the second moment, 〈δ𝐫 ⊗ δ𝐫〉(௥), needs to be divided into two distributions, 

each described by its own mean value, 〈δ𝐫〉௙೔

(௥), and second moment, 〈δ𝐫 ⊗ δ𝐫〉௙೔

(௥). First, we 

calculate the eigenvectors and eigenvalues of the parent’s misorientation distribution and sort 

them in the descending order: 𝐕 = [𝐯ଵ, 𝐯ଶ, 𝐯ଷ] and 𝐄 = [𝜆ଵ, 𝜆ଶ, 𝜆ଷ]. Next, we assume that the 

misorientation distribution is a multivariate normal distribution which implies that the 

distributions along the principal directions are normal and independent. Due to the independence 

of distributions along the different principal directions, the distribution along the direction of 

largest variation, 𝐯ଵ, can be divided completely separately from the other two principal 

distributions. The three dimensional distributions of fragments are then created by combining the 

corresponding divided distributions along the direction of largest variation and the two other 

principal distributions. 

The mean value of the left interval for one dimensional normal distribution is calculated as 

(Miller and Rice, 1983; Vazquez-Leal et al., 2012): 

〈𝑥〉௟௘௙௧ =
ଵ

ி(଴)ିி(ିஶ)
∫ 𝑥𝑓(𝑥)𝑑x

଴

ିஶ
= −2ට

ఒ

ଶగ
, (A16) 

where 𝑓 and 𝐹 denote probability density function and cumulative distribution function of 

normal distribution and 𝜆 is the variance. The variance of the left interval is calculated as (Miller 

and Rice, 1983; Vazquez-Leal et al., 2012): 
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〈𝛿𝑥ଶ〉௟௘௙௧ =
ଵ

ி(଴)ିி(ିஶ)
∫ 𝑥ଶ𝑓(𝑥)𝑑x

଴

ିஶ
− (〈𝑥〉௟௘௙௧)ଶ = 𝜆 ቀ1 −

ଶ

గ
ቁ. (A17) 

The mean value and variance of the right interval are 〈𝑥〉௥௜௚௛௧ = −〈𝑥〉௟௘௙௧ and 〈𝛿𝑥ଶ〉௥௜௚௛௧ =

〈𝛿𝑥ଶ〉௟௘௙௧. Using these expressions, the mean misorientations of the fragments with respect to the 

mean orientation of the parent are given by:  

〈δ𝐫〉௙భ

(௥)
= −2ට

ఒభ

ଶగ
𝐯ଵ;  〈δ𝐫〉௙మ

(௥)
= 2ට

ఒభ

ଶగ
𝐯ଵ. (A18) 

The mean orientations of fragments are then given by: 

𝐪ഥ௙భ

(௥)
= 〈δ𝐪〉௙భ

(௥)
𝐪ഥ(௥);  𝐪ഥ௙మ

(௥)
= 〈δ𝐪〉௙మ

(௥)
𝐪ഥ(௥), (A19) 

where misorientations of fragments 〈δ𝐪〉௙భ

(௥) and 〈δ𝐪〉௙మ

(௥) are given by: 

 〈δ𝐪〉௙భ

(௥)
= ቐ

ට1 − 〈δ𝐫〉
௙భ

(௥)
∙ 〈δ𝐫〉

௙భ

(௥)

〈δ𝐫〉௙భ

(௥)
ቑ ; 〈δ𝐪〉௙మ

(௥)
= ቐ

ට1 − 〈δ𝐫〉
௙మ

(௥)
∙ 〈δ𝐫〉

௙మ

(௥)

〈δ𝐫〉௙మ

(௥)
ቑ. (A20) 

The centered second moments of the fragments in the principal frame of the parent’s distribution 

are: 

〈δ𝐫 ⊗ δ𝐫〉௙భ

(௥),௣
= 〈δ𝐫 ⊗ δ𝐫〉௙మ

(௥),௣
= ቎

𝜆ଵ ቀ1 −
ଶ

గ
ቁ 0 0

0 𝜆ଶ 0
0 0 𝜆ଷ

቏. (A21) 

The centered second moments of the fragments in sample frame are then obtained by simple 

coordinate transformation: 

〈δ𝐫 ⊗ δ𝐫〉௙భ

(௥)
= 〈δ𝐫 ⊗ δ𝐫〉௙మ

(௥)
= 𝐕〈δ𝐫 ⊗ δ𝐫〉௙భ

(௥),௣
𝐕். (A22) 
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Chapter 5: Modelling recrystallization textures driven by intragranular 
fluctuations implemented in the viscoplastic self-consistent formulation 

This chapter was submitted to Acta Materialia as: “Modelling recrystallization textures 

driven by intragranular fluctuations implemented in the viscoplastic self-consistent formulation”, 

Miroslav Zecevic, Ricardo A. Lebensohn, Rodney J. McCabe, and Marko Knezevic. My 

contribution to this chapter was: 

 development and implementation of the approach for calculation of average 

orientation gradients within the grains using the viscoplastic self-consistent 

predictions of intragranular misorientation distributions  

 development and implementation of the grain boundary and transition band 

nucleation rules 

 development of the functional relation of the nucleation probability in terms of the 

time increment and the grain weight 

 implementation of the boundary migration model 

 simulation of the static recrystallization of fcc material after tension and plane-strain 

compression and comparison with corresponding experiments 

 simulation of the static recrystallization of bcc material after compression and plane-

strain compression and comparison with corresponding experiments 

 writing the first draft of the paper. 
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implemented in the viscoplastic self-consistent formulation  

Miroslav Zecevica,b, Ricardo A. Lebensohnb, Rodney J. McCabec, and Marko Knezevica 

a Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA 
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Abstract 

This paper presents a recrystallization model driven by intragranular orientation gradients and 

strain energy fields calculated by means of the viscoplastic self-consistent (VPSC) formulation. 

The VPSC model is extended for the calculation of the coupling between intragranular stress 

fluctuations with corresponding second moments of lattice spin and misorientation fields in the 

grains. Access to these quantities allows modelling of transition bands and nucleation kinetics. In 

the proposed recrystallization model, grain growth is assumed to be proportional to the 

difference between the stored energy of each grain and that of the effective medium. 

Recrystallization textures for several cubic metals are simulated, showing good agreement with 

corresponding experiments. The model reveals the importance of considering appropriate, 

microstructurally-based and orientation-dependent recrystallization nucleation mechanisms. The 

recrystallization texture of heavily rolled copper with a strong cube texture component is found 

to be a consequence of nucleation at transition bands, which is also the cause of the 

recrystallization textures in compressed iron and drawn copper wire. In contrast, the 

recrystallization texture of rolled interstitial-free steel is found to be caused by grain boundary 

nucleation occurring in the grains with the highest strain energy. 

Keywords: Microstructures; Texture; Crystal plasticity; Recrystallization; Numerical algorithms 
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1 Introduction 

Manufacturing processes of metallic components commonly consist of a sequence of 

shaping operations with intermediate anneals at appropriate temperatures [1, 2]. During the 

annealing process, dislocation content, grain size and texture change due to recovery and 

recrystallization, which in turn affects the mechanical properties of the metallic component, and 

thus the material response during subsequent shaping operations. Therefore, understanding and 

predicting the microstructural changes occurring during the recrystallization of metallic material 

is of great practical importance. 

Recrystallization nuclei are experimentally observed at deformation induced 

inhomogeneities such as grain boundaries, transition bands, shear bands, as well as second phase 

particles [1]. During grain boundary nucleation, a subgrain that has reached critical radius bulges 

out into the neighboring grain and becomes a nucleus [3]. The driving force for the growth of the 

nuclei is the difference in the energy stored during the deformation between two sides of the 

moving boundary [4]. Hu, and Walter and Koch have first observed formation of nuclei at 

transition bands [5, 6], which are locations of high orientation gradient and thus stored energy as 

well [7]. Transition band nucleation has been investigated in detail in [8-11]. Shear band 

nucleation has also been observed in numerous studies [9, 12-15]. However, the details of the 

shear band nucleation mechanism are still unknown [1]. Considering the experimental 

observations of recrystallization, it is clear that the recrystallization process is greatly influenced 

by the deformed state of the polycrystal. Consequently, an accurate and physics-based 

recrystallization model should be informed by the measured or predicted deformed state. Since 

the output of the deformation model serves as an input for the recrystallization model, the 

complexity and performance of the recrystallization model is determined by the available 
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information provided by the deformation model. Spatially resolved full-field deformation models 

[16-20] can be coupled with full-field recrystallization models (e.g. Monte Carlo Potts models 

[21-25] or cellular autoomata models [26-28]). On the other hand, mean-field deformation 

models [29-31] can be accompanied by appropriate simpler recrystallization models. This paper 

formulates a recrystallization model based on the deformed state predicted by the mean-field 

viscoplastic self-consistent (VPSC) formulation [30]. 

A number of relatively simple recrystallization models initialized with microstructural 

quantities predicted by mean-field formulations have been proposed over the past several 

decades. Bunge and Köhler developed a model for predicting recrystallization textures based on 

deformation textures [32]. The orientations of the nuclei were chosen randomly and each nucleus 

was allowed to grow into the deformed matrix based on the misorientation between the nucleus 

and the matrix. Later, Engler proposed a recrystallization model in which the recrystallized 

orientation distribution function (ODF) was defined by superimposing the nucleation ODF and 

the growth ODF [33]. The nucleation ODF was artificially created based on the experimental 

observations while the growth ODF was derived from the deformation texture. Kestens and 

Jonas developed a more sophisticated recrystallization model based on deformation texture and 

applied it to recrystallization of IF steels [34]. The nucleation probability of each orientation was 

related to its Taylor factor, which was assumed to be a measure representing the strain energy. 

Additionally, an oriented growth law based on the misorientation angle and misorientation axis 

between the nucleus and the matrix grains was employed. Hildenbrand et al. coupled the original 

VPSC model proposed by Molinari et al. [29] with the modified recrystallization model of 

Kestens and Jonas, and utilized the volume transfer scheme [35, 36] for texture evolution [35, 

36]. Along similar lines, Wenk et al developed a deformation-based recrystallization model 
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coupled with VPSC [30, 37-39]. The nucleation was assumed to occur in the grains with the 

highest strain energy calculated based on the current values of the critical resolved shear stresses. 

Since in VPSC each grain is considered to be embedded in a homogenous effective medium, the 

growth rate was defined by the difference in the strain energy between the grain and the effective 

medium having the averaged strain energy. Bolmaro et al. further improved the growth model by 

assuming pairing between the grains and introducing a dependence of the boundary mobility on 

the misorientation angle [40]. Cram et al. coupled a simple polycrystal plasticity model proposed 

by Bouaziz and Buessler [41] with the nucleation model of Zurob et al. [42] and a mean-field 

growth model similar to the one of Wenk et al. [43]. Zurob et al’s nucleation criterion, initially 

developed for static recrystallization, models the formation of the nucleus at grain boundaries 

through subgrain growth [42]. When the growing subgrain reaches the critical radius, it bulges 

out into the neighboring grain and becomes a nucleus. A similar nucleation model was 

previously proposed by Humphreys [44]. In addition, the same type of nucleation model was 

later adopted by Han et al. within a cellular automata recrystallization approach coupled with 

crystal plasticity finite elements [45]. Sebald and Gottstein simulated the evolution of 

recrystallization textures from the deformation textures using different nucleation mechanisms, 

namely: random nucleation, nucleation at shear bands and nucleation at preexisting nuclei [46]. 

An oriented growth model was employed with mobility defined based on the misorientation 

between the nucleus and the deformed grain. The driving force for boundary migration was 

defined by the difference in strain energy, which was related to the grain’s Taylor factor. 

Most of the described mean-field recrystallization models are informed only with the 

average grain orientations predicted by the associated deformation model. However, nucleation 

of recrystallization is influenced by the intragranular orientation gradients developed during the 
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deformation process [1]. In this regard, nucleation is often observed at transition bands, which 

form between portions of the grain deforming by different combinations of slip systems [5, 6, 

11]. In the above summarized recrystallization models, the magnitudes of intragranular 

orientation gradients were either completely neglected or directly related to other grain quantities 

(e.g. total accumulated shear within the grain or magnitude of the grain’s strain rate). The 

orientation of the nucleus was assumed to be the same as the parent’s orientation. This overly 

simplified treatment of intragranular orientation gradients within the deformation and 

recrystallization models leads to poor predictions of the recrystallization textures for 

recrystallization processes driven by intragranular orientation gradients. 

In this paper we propose a recrystallization model that utilizes the intragranular 

misorientation distributions predicted by a recent extension of the VPSC model [47-49]. The 

model is computationally efficient, despite requiring the calculation of the second-order 

moments of stress in the grains as deformation accumulates. The intragranular orientation 

gradients are calculated using the intragranular misorientation distributions, and the grains with 

transition bands are identified based on the shapes of the intragranular misorientation 

distributions. Orientations of the nuclei are appropriately chosen from the transition bands. 

Nucleation at grain boundaries is also considered. The proposed recrystallization model relies on 

the grain growth model proposed by Wenk et al. [37]. Recrystallization textures of face-centered 

cubic (fcc) and body-centered cubic (bcc) materials are simulated and reasonable agreement with 

the experimental measurements is observed. Identification of the grains developing transition 

bands is found to be critical for the nucleation kinetics ensuring accurate predictions of the 

recrystallization textures.  
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2 Model 

First, we briefly summarize the standard VPSC model [30, 50] and the recently developed 

algorithm for calculation of intragranular misorientation distributions [47-48] and grain 

fragmentation (GF) [49] within the VPSC formulation. This extended VPSC model has been 

designated as GF-VPSC [49]. Later, we provide a detailed description of the proposed 

recrystallization model, added to GF-VPSC. 

2.1 VPSC model incorporating the calculation of intragranular misorientation distributions 

A polycrystal is represented by a discrete set of ellipsoidal grains of a certain volume. The 

mean crystal orientation of each grain (r) is described by an active rotation quaternion, 𝐪ഥ(௥), 

which brings the sample frame into alignment with the crystal frame. The crystal orientation 

varies spatially within the grain and, at a material point 𝐱, can be described by the vector part of 

the misorientation quaternion, δ𝐫(𝐱), defined with respect to the mean crystal orientation, 𝐪ഥ(௥). 

Slip resistance of each slip system (s) is assumed to be spatially constant within each grain (r) 

and given by the mean grain value, 𝜏௖
௦,(௥). The constitutive response at grain material point 𝐱 is 

given by the viscoplastic equation: 

𝛆̇(𝐱) = 𝛾̇଴ ∑ ൬
|𝛔(𝐱)∶𝐦ೞ(𝐱)|

ఛ೎
ೞ,(ೝ) ൰

௡

sign൫𝛔(𝐱): 𝐦௦(𝐱)൯௦ 𝐦௦(𝐱), (1) 

where 𝛾̇଴ is the reference shear rate, 𝑛 is the inverse of rate sensitivity (set to 10 in all the 

simulations that follow) and 𝐦௦ is the symmetric part of the Schmid tensor of slip system (s) in 

grain (r). 

Under boundary conditions applied to a viscoplastic polycrystal, the mean stress and strain 

rate within each crystal and the homogenized macroscopic properties can be obtained through 
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self-consistent homogenization [30]. The constitutive response at each material point 𝐱 is 

approximated to be spatially constant within the grains, and described by a first-order Taylor 

expansion relating the mean values of the strain rate and stress in the grains [51]: 

𝛆̇(௥) = 𝐌(௥): 𝛔(௥) + 𝛆̇଴(௥), (2) 

where 𝐌(௥) and 𝛆̇଴(௥) are compliance and back extrapolated strain rate of grain r. Each linearized 

grain is assumed to be an ellipsoidal inhomogeneity within an infinite matrix with the 

macroscopic properties, to which the boundary conditions are applied. The stress and strain rate 

within the inhomogeneity are calculated using the equivalent inclusion approach [52], and the 

following interaction equation can be derived [30]: 

𝛆̇෨(௥) = −𝐌෩ ∶ 𝛔෥(௥), (3) 

where 𝛆̇෨(௥) and 𝛔෥(௥) are deviations of the average strain rate and stress in the grains from the 

corresponding macroscopic values, and 𝐌෩ = (𝐈 − 𝐒)ିଵ ∶  𝐒 ∶  𝐌ഥ  is the interaction tensor, which 

is a function of the symmetric Eshelby tensor, 𝐒, and macroscopic compliance, 𝐌ഥ .  

After each deformation step, the lattice rotation rate, velocity gradient and slip resistance 

rate are multiplied with the time increment, ∆𝑡, in order to produce the corresponding increments 

which are then utilized for explicit updating of the crystal orientation, grain shape and slip 

resistance, respectively. The slip resistance rate is given by [38]: 

𝜏̇௖
௦,(௥)

= ∑ ℎ௦௦ᇱ𝛾̇௦ᇲ,(௥)
௦ᇱ , (4) 

where ℎ௦௦  is a micro-hardening matrix. In this study, the values of the micro-hardening matrix 

are set to ℎ௦௦ᇱ = 1.0, resulting in linear isotropic hardening. The initial slip resistance, 𝜏଴
௦, is set 

to unity.  
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Under the affine linearization (see Eq. 2), VPSC only requires the evaluation of the average 

stress and strain-rate in the grains, and thus the intragranular spatial variations of orientation 

have no influence on the results. However, the average fluctuations of intragranular quantities, 

starting from the second moments of the stress field in the grains, can still be calculated after 

each deformation step using the algorithms described below. In addition, Castelnau et al. [53] 

have used the intragranular field fluctuations to improve the hardening model deriving an 

expression for slip resistance rate in function of both first and second moments of shear rates. 

Consequently, under this hardening model, the field fluctuations also affect the strain energy 

within grains and, in turn, should also influence both recrystallization nucleation and growth.  

Extension of Castelnau et al.’s fluctuation-based hardening model to recrystallization will be the 

subject of future work. 

We consider two sources of intragranular stress fluctuations: variation of mean grain 

properties within the polycrystal [54-56] and intragranular spatial variation of orientation [49]. 

The second moment of the intragranular stress fluctuations is given by [50, 55, 57]: 

〈δ𝛔(௤ത) ⊗ δ𝛔(௤ത)〉(௥) =
ଶ

௪(ೝ)

డ௎෩೅

డ𝐌(ೝ) − 𝛔(௥) ⊗ 𝛔(௥) , (5) 

where δ𝛔(௤ത) is the fluctuation of stress with respect to the average grain stress for a grain with 

homogenous crystal orientation, 𝑤(௥) is the grain volume fraction, 𝑈෩் is the effective stress 

potential and 𝐌(௥) is the grain compliance. The intragranular stress fluctuations due to the spatial 

variation of orientation within the grain are assumed to be linearly proportional to the 

misorientation vectors, where the linear transformation is defined by the derivative of stress with 

respect to the misorienrentation vector, 
డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)
 (Eq. 1). The second moment of these stress 

fluctuations is then given by [49]: 
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〈δ𝛔(ఋ௥) ⊗ δ𝛔(ఋ௥)〉(௥) =
డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)
〈δ𝐫 ⊗ δ𝐫〉(௥) ൬

డ𝛔

డஔ𝐫
ቚ

𝛔(ೝ),𝐪ഥ(ೝ)
൰

்

, (6) 

where δ𝛔(ఋ௥) is the fluctuation of stress with respect to the average grain stress caused by the 

orientation fluctuation within the grain. The second moment of total intragranular stress 

fluctuations is obtained by superimposing the two intragranular stress distributions defined by 

Eqs. (5) and (6): 

〈δ𝛔 ⊗ δ𝛔〉(௥) = 〈δ𝛔(௤ത) ⊗ δ𝛔(௤ത)〉(௥) + 〈δ𝛔(ఋ௥) ⊗ δ𝛔(ఋ௥)〉(௥) +  

+〈δ𝛔(௤ത) ⊗ δ𝛔(ఋ௥)〉(௥) + 〈δ𝛔(ఋ௥) ⊗ δ𝛔(௤ത)〉(௥). (7) 

The cross-covariance terms (3rd and 4th terms on the right-hand side) define the covariance 

between the two stress fluctuation distributions.  

The intragranular fluctuations of lattice rotation rate are assumed to be linearly proportional 

to the stress fluctuations and the intragranular misorientation vectors [47-49]. Consequently, an 

expression for the second moment of intragranular fluctuations of lattice rotation rate can be 

derived in terms of the second moment of stress fluctuations, 〈δ𝛔 ⊗ δ𝛔〉(௥), and the second 

moment of misorientation vectors, 〈δ𝐫 ⊗ δ𝐫〉(௥). Finally, the second moment of misorientation 

increment is calculated by integrating the intragranular fluctuations of lattice rotation rate and is 

utilized for updating of the second moment of misorientation vectors for the next time increment. 

If the intragranular misorientation spread reaches a critical value, the fragmentation model 

subdivides the grain into two child grains, which then continue to evolve separately. 

Consequently, certain grains from the initial texture will be represented by multiple fragments 

during deformation. In the recrystallization model, each such grain will be treated as a single 

grain whose state is defined by averaging its fragments’ states. 
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2.2 Recrystallization model 

During recrystallization new defect-free grains nucleate and grow into the deformed 

microstructure  [1, 58]. The nucleation process is heterogeneous and occurs at locations of high 

strain energy and high orientation gradient [1, 59]. The growth of a recrystallized grain from a 

nucleus happens through high-angle boundary migration driven by the difference in strain energy 

between the two sides of the mobile boundary. Therefore, intragranular orientation gradients and 

strain energy determine the favorable places for nucleation and govern the subsequent boundary 

migration process. Consequently, in order to accurately predict recrystallization, intragranular 

orientation gradients and the strain energy of the microstructure need to be calculated first. Next, 

the nucleation and growth rules are developed based on these quantities.  

2.2.1 Intragranular orientation gradients  

In what follows, we consider a grain with orientation spread. The orientation at each 

material point, 𝐱, of the grain is described with respect to the mean orientation of the grain, 𝐪ഥ(௥), 

by the misorientation vector, δ𝐫(𝐱). The spatial variation of the orientation described by δ𝐫(𝐱) is 

unknown. The only available information is the first and second moments of the misorientation 

vectors within the grain, 〈δ𝐫〉(௥) and 〈δ𝐫⨂δ𝐫〉(௥), calculated with the deformation model. In what 

follows, we derive an expression for average intragranular orientation gradients as a function of 

the second moment 〈δ𝐫⨂δ𝐫〉(௥). 

Let us consider one reference material point within the grain with an associated orientation 

described by a misorientation vector δ𝐫௥௘௙. Next, let us assume that a spatially neighboring 

material point to the reference point has an unknown orientation defined by a misorientation 

vector δ𝐫. The misorientation between these two neighboring points can be approximated as: 
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δ𝐫௟௢௖ ≈ δ𝐫 − δ𝐫௥௘௙. The vector δ𝐫௟௢௖ is a local neighbor misorientation vector that describes the 

misorientation between the two spatially neighboring points within the grain, unlike the 

misorientation vectors δ𝐫௥௘௙ and δ𝐫 which describe the misorientation between the orientation at 

particular point within the grain and the mean orientation of the grain. Let us assume that the 

orientation of the spatially neighboring point to the reference point defined by δ𝐫 can take any 

value from the grain’s orientation spread and let us calculate the first and second moments of 

δ𝐫௟௢௖: 

〈δ𝐫௟௢௖〉(௥),௥௘௙ = 〈δ𝐫 − δ𝐫௥௘௙〉(௥),௥௘௙ = −δ𝐫௥௘௙, (8) 

〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥),௥௘௙ = 〈(δ𝐫 − δ𝐫௥௘௙)⨂(δ𝐫 − δ𝐫௥௘௙)〉(௥),௥௘௙ =  

δ𝐫௥௘௙⨂δ𝐫௥௘௙ + 〈δ𝐫⨂δ𝐫〉(௥). (9) 

The first and second moments of δ𝐫௟௢௖ define a distribution of all the possible local neighbor 

misorientation vectors in grain 𝑟 for the orientation described by δ𝐫௥௘௙. The distribution of 

possible local neighbor misorientations is assumed to be Gaussian with the probability density 

function (pdf) 𝑓(δ𝐫௟௢௖).  

Physically, the spatially neighboring points in the grain are more likely to have similar 

orientations. Consequently, the probability of finding smaller local neighbor misorientations 

δ𝐫௟௢௖ will be relatively higher in comparison to larger local neighbor misorientations. In order to 

take this spatial correlation of misorientations into account we introduce a Gaussian spatial 

correlation pdf, 𝑔(δ𝐫௟௢௖), which determines the likelihood of finding particular local neighbor 

misorientation only based on the spatial correlation criterion. The spatial correlation pdf 

𝑔(δ𝐫௟௢௖) is assumed to be isotropic with zero mean and covariance matrix, 𝐂 = 𝛼𝐈, where 𝛼 is 

the variance and 𝐈 is an identity matrix. Since 𝑔(δ𝐫௟௢௖) is isotropic, the misorientation axis has 
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no effect and only the local misorientation angle determines the probability of finding that 

particular local neighbor misorientation. Variance 𝛼 controls the magnitude of local neighbor 

misorientation angles. For small values of variance 𝛼, the probability of finding spatially 

neighboring points with large misorientation angle is very small. On the other hand, for large 

values of variance 𝛼, the probability of finding two neighboring orientations with large 

misorientation angle would increase. 

The spatial correlation pdf 𝑔(δ𝐫௟௢௖) describes the likelihood of finding a local neighbor 

misorientation δ𝐫௟௢௖ only based on the spatial correlation criterion, without taking into account 

the available local neighbor misorientations defined by the pdf 𝑓(δ𝐫௟௢௖). Consequently, for a 

given intragranular orientation described by δ𝐫௥௘௙ within the grain 𝑟 with misorientation spread 

〈δ𝐫⨂δ𝐫〉(௥), the spatially correlated likelihood of finding particular local neighbor misorientation 

δ𝐫௟௢௖ is described by the product of 𝑓(δ𝐫௟௢௖) and 𝑔(δ𝐫௟௢௖): 

ℎ(δ𝐫௟௢௖) =
௙൫ஔ𝐫೗೚೎൯௚൫ஔ𝐫೗೚೎൯

∫ ௙൫ஔ𝐫೗೚೎൯௚൫ஔ𝐫೗೚೎൯ௗ(ఋ𝐫)
. (10) 

The local neighbor pdf ℎ(δ𝐫௟௢௖) is also Gaussian with the first and second moments given by 

[60]: 

〈δ𝐫௟௢௖〉(௥),௥௘௙,௖௢௥ = − ቀ〈δ𝐫⨂δ𝐫〉(௥)ିଵ
+

ଵ

ఈ
𝐈ቁ

ିଵ
〈δ𝐫⨂δ𝐫〉(௥)ିଵ

δ𝐫௥௘௙, (11) 

〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥),௥௘௙,௖௢௥ = 〈δ𝐫௟௢௖〉(௥),௥௘௙,௖௢௥⨂〈δ𝐫௟௢௖〉(௥),௥௘௙,௖௢௥ +  

ቀ〈δ𝐫⨂δ𝐫〉(௥)ିଵ
+

ଵ

ఈ
𝐈ቁ

ିଵ

. (12) 
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For every orientation in the spread we can define such distribution of local neighbor 

misorientations δ𝐫௟௢௖. Next, we define a distribution of all the local neighbor misorientations for 

a grain by taking the volume average over δ𝐫௥௘௙ in Eq. 11 and 12: 

〈δ𝐫௟௢௖〉(௥) = 𝟎, (13) 

〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥) = ቀ〈δ𝐫⨂δ𝐫〉(௥)ିଵ
+

ଵ

ఈ
𝐈ቁ

ିଵ
〈δ𝐫⨂δ𝐫〉(௥)ି்

ቀ〈δ𝐫⨂δ𝐫〉(௥)ିଵ
+

ଵ

ఈ
𝐈ቁ

ି்

+  

ቀ〈δ𝐫⨂δ𝐫〉(௥)ିଵ
+

ଵ

ఈ
𝐈ቁ

ିଵ

. (14) 

For 𝛼 → 0, the second moment is 〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥) → 0, and for 𝛼 → ∞ we have 

〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥) → 2〈δ𝐫⨂δ𝐫〉(௥). Consequently, for any given 𝛼, the second moment of local 

neighbor misorientations is bounded: 0 < 〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥) < 2〈δ𝐫⨂δ𝐫〉(௥). The variance 𝛼 

should be determined from the experimental results or full-field simulations. However, for the 

purposes of the recrystallization model we are only interested in the relative fluctuations of 

〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥) from grain to grain and not the absolute magnitudes. Consequently, we assume 

𝛼 → ∞, which results in 〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥) = 2〈δ𝐫⨂δ𝐫〉(௥). In this case the distribution of local 

neighbor misorientations corresponds to the distribution of all possible local neighbor 

misorientations defined by 𝑓(δ𝐫௟௢௖). 

For 𝛼 → ∞, the distribution of local neighbor misorientations defined by 〈δ𝐫௟௢௖〉(௥) and 

〈δ𝐫௟௢௖⨂δ𝐫௟௢௖〉(௥) can be viewed as an orientation difference distribution function (ODDF) 

calculated based on the grain’s orientation distribution function (ODF) [61]. The ODDF is 

calculated by determining the orientation difference between each orientation in the ODF and all 

the other orientations in the ODF. The ODDF provides statistical information on possible 
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misorientations between neighboring points within the grain without considering the actual 

spatial configuration of the orientations within the grain [62]. 

The length of the local neighbor misorientation vector, |δ𝐫௟௢௖|, defines the local neighbor 

misorientation angle between spatially neighboring points, 𝛿𝜃. Using the small angle 

approximation, the local neighbor misorientation angle, 𝛿𝜃, can be written as: 

𝛿𝜃 ≈ 2|δ𝐫௟௢௖|. (15) 

A distribution of magnitudes of three dimensional vectors with a Gaussian isotropic 

distribution is a Maxwell distribution [63, 64]. Therefore, if we assume that the distribution of 

local neighbor misorientation vectors, δ𝐫௟௢௖, is multivariate Gaussian and isotropic, the 

distribution of local neighbor misorientation angles 𝛿𝜃 is the Maxwell distribution. In reality, the 

shape of the distribution of δ𝐫௟௢௖ will be anisotropic resulting in a distribution of local neighbor 

misorientation angles somewhat different from the Maxwell distribution. We note that Pantleon 

and Hansen [65] have shown that the measured distributions of misorientation angles of 

geometrically necessary boundaries closely resemble the Maxwell and Rayleigh distributions 

[66]. The Rayleigh distribution describes distribution of magnitudes of two dimensional vectors 

with Gaussian isotropic distribution [64].  

The average local neighbor misorientation angle is given by: 

〈𝛿𝜃〉(௥) ≈ 2〈|δ𝐫௟௢௖|〉(௥) = 2〈√δ𝐫௟௢௖ ∙ δ𝐫௟௢௖〉(௥) ≈ 2ඥ2𝐈: 〈δ𝐫⨂δ𝐫〉(௥). (16) 

The average local neighbor misorientation angle, 〈𝛿𝜃〉(௥), represents an average measure of the 

misorientation angle between the spatially neighboring points within the grain and it is thus 

related to the magnitude of the orientation gradient within the grain. If we assume that the 

distribution of local neighbor misorientation vectors, δ𝐫௟௢௖, is multivariate Gaussian, the 
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distribution of the local neighbor misorientation angles, 𝛿𝜃, follows a Maxwell-like distribution 

and the variance of the local neighbor misorientation angles, 〈𝛿𝜃ଶ〉(௥), is proportional to the 

mean value, 〈𝛿𝜃〉(௥).  

The orientation gradient can be calculated by dividing the local misorientation angle 

between the two spatially neighboring points, 𝛿𝜃, with the distance, 𝛿𝑥, between the two points: 

ఋఏ

ఋ௫
. The distance 𝛿𝑥 depends on the grain size and in the present approach it is assumed to be the 

same for each grain, for simplicity. Consequently, the average magnitude of the orientation 

gradient within the grain is directly proportional to the average local neighbor misorientation 

angle. In the recrystallization model, the average local neighbor misorientation angle is used as a 

measure of the orientation gradient. 

2.2.2 Strain energy 

The stored strain energy in the grain is approximated as [37, 67, 68]: 

𝐸(௥) = 𝜌(௥)𝜇𝑏ଶ/2, (17) 

where 𝜌(௥) is the dislocation density within the grain 𝑟, 𝜇 is the shear modulus and 𝑏 is the 

Burgers vector. Since the increase of slip resistance due to work hardening is proportional to the 

square root of the accumulated dislocation density, ∑ ቀ𝜏௖
௦,(௥)

− 𝜏௖,଴
௦,(௥)

ቁ௦ ~ඥ𝜌(௥), the strain energy 

can be written as [37]: 

𝐸(௥)~ ∑ ቀ𝜏௖
௦,(௥)

− 𝜏௖,଴
௦,(௥)

ቁ௦

ଶ

. (18) 

Note that the calculated dislocation density is related only to the accumulated shear strain on 

slip systems within the grain. The intragranular orientation gradient does not affect the 

dislocation density within the grain and thus geometrically necessary dislocations (GNDs) are 
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not accounted for in the present model. The use of misorientation distributions—calculated using 

the procedure described earlier—for the determination of GNDs, which in turn will affect the 

hardening and, consequently, the recrystallization behavior through the strain energy (Eq. 18), 

will be the subject of future work.  

2.2.3 Nucleation 

Recrystallization nuclei form at heterogeneities in the deformed microstructure. The 

preferred nucleation sites in single phase alloys are grain boundaries, transition bands and shear 

bands [1]. High stored energy and orientation gradients at these locations promote subgrain 

growth during annealing [1, 59]. In addition, the presence of orientation gradients allows 

formation of high-angle boundaries during subgrain growth. The subgrain that reaches the size 

advantage becomes the nucleus. Nucleation events, both at grain boundaries and transition 

bands, are considered next. 

2.2.3.1 Grain boundary nucleation 

High strain energy and orientation gradient at the grain boundary, caused by activation of 

additional slip systems necessary to reduce the strain incompatibilities [59], aid the subgrain 

growth at the grain boundary regions during the recovery, preceding the recrystallization. The 

subgrain that has gained the size advantage during the recovery subsequently bulges out into the 

neighboring grain and becomes a nucleus. Presence of the high-angle grain boundary allows the 

nucleus to further grow into the neighboring grain. In the present model, the strain energy and 

local neighbor misorientation angle at the grain boundary are assumed to be proportional to the 

mean grain strain energy, 𝐸(௥), and mean local neighbor misorientation angle, 〈𝛿𝜃〉(௥), 

respectively. Consequently, it is implied that the variance of the intragranular strain energy and 

local neighbor misorientation angle distributions is proportional to the corresponding mean 
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values. This assumption appears correct for the local neighbor misorientation angle, and an 

approximation for the strain energy. In what follows, the mean grain values will be used for 

definition of the grain boundary nucleation. Since the recrystallization model is mean-field, the 

actual spatial configuration of the polycrystal is not considered and each grain boundary is 

assumed to be a high angle boundary.  

A minimum strain energy and orientation gradient are necessary to initiate subgrain 

formation and growth preceding the nucleation [1]. Consequently, in the model, only the grains 

that have reached a critical strain energy, 𝐸௧௛
௚௕, and critical local neighbor misorientation angle, 

𝛿𝜃௧௛
௚௕, are allowed to nucleate at the grain boundary. The probability of grain boundary 

nucleation during time increment ∆𝑡௥௘௙ and for a grain of average weight 𝑤௔௩௚ =
ଵ

ே
∑ 𝑤(௥)

௥  can 

be expressed as [37]: 

𝑃௚௕
(௥)

(∆𝑡௥௘௙ , 𝑤௔௩௚) = exp ቀ−
஺೒್

ா(ೝ)మቁ,  (19) 

where 𝐴௚௕ is a constant determining the likelihood of grain boundary nucleation. The constant 

𝐴௚௕ is a function of grain boundary energy and temperature and, in the present model, it is 

assumed to be a fitting parameter [37]. For simplicity, it is assumed that the increase of the local 

neighbor misorientation angle beyond the threshold value does not appreciably affect the 

nucleation probability. The scaling of the nucleation probability with the time increment and 

grain weight will be discussed at the end of this section. 

At each time step, for each grain that has sufficiently high strain energy and local neighbor 

misorientation angle, the nucleation probability is calculated and compared to a random number 

0-1. If the nucleation probability is higher than the random number the grain nucleates a new 

dislocation-free grain with weight 𝑤௡௨௖ = 0.0001. The strain energy of the newly formed grain 
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is set to zero and slip resistance is set to the initial value adopted in the deformation model, 

before any strain hardening.  

As was noted before, a grain boundary nucleus develops from a grain boundary subgrain 

that has bulged out into a neighboring grain. Therefore, the orientation of the nucleated grain 

belongs to the set of grain boundary orientations. These orientations are substantially misoriented 

with respect to the mean grain orientation due to the different slip activity near the grain 

boundary [69, 70]. Consequently, the orientations close to the grain boundary correspond to the 

tail of the grain’s orientation spread. Fig. 1a shows a discrete representation of grain’s 

misorientation spread with the grain boundary misorientations, which are the potential nuclei 

misorientations, colored in red. The misorientations, 𝛿𝐫௚௕, belonging to the grain boundary 

region satisfy the following condition: |𝛿𝐫௚௕| > 𝑐 × 𝑆𝐷(𝛿𝐫௚௕/|𝛿𝐫௚௕|), where 𝑐 is a constant 

and 𝑆𝐷(𝛿𝐫௚௕/|𝛿𝐫௚௕|) is the standard deviation along the misorientation direction, 𝛿𝐫௚௕/|𝛿𝐫௚௕|. 

The constant 𝑐 determines the minimal misorientation angle between the mean grain orientation 

and grain boundary orientation. In conclusion, the orientation of the nucleus originating at the 

grain boundary is a randomly sampled grain boundary orientation (details are given in 

Appendix).  

2.2.3.2 Transition band nucleation 

During deformation, grains may subdivide into deformation bands which are regions that 

deform by different combinations of slip systems and thus develop large orientation gradients 

[71]. Transition bands are narrow regions between the deformation bands. The transition bands 

accommodate the orientation difference between the deformation bands and are thus places of 

large orientation gradient. The grains with well-developed transition bands have a multi-modal 

orientation distribution. Therefore, the modes of the orientation distribution correspond to the 
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mean orientations of the deformation bands, while the orientations between the modes 

correspond to the transition band orientations. The nucleation during recrystallization is often 

observed in the transition bands [11, 72]. During the recovery, the growing subgrain in the 

transition band quickly forms high angle boundary due to presence of high orientation gradient 

and becomes a nucleus. The orientation of the transition band nucleus thus belongs to the set of 

transition band orientations. 

 

Figure 1 Discrete representation of intragranular misorientation spread showing: a) 
misorientations corresponding to the points in the vicinity of the grain boundary (potential grain 
boundary nuclei orientations); b) misorientations corresponding to the transition band region of 
the bi-modal grain (potential transition band nuclei orientations). 

In the present model, the grains that have developed transition bands and the orientations 

within the transition bands can be identified based on the misorientation distribution [49]. If a 

grain has developed a bi-modal misorientation distribution it is assumed that the transition band 
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has formed within the grain and the orientations within the transition band are defined by the 

region between the modes of the misorientation distribution. Fig. 1b shows discrete 

representation of the bi-modal misorientation distribution with the identified deformation and 

transition band misorientations. The projections of the transition band misorientations, 𝛿𝐫௧௕, to 

the direction of dominant rotation axis, 𝐯ଵ, are between the modes of the misorientation 

distribution. The dominant rotation axis represents the eigenvector corresponding to the largest 

eigenvalue of second moment 〈𝛿𝐫⨂𝛿𝐫〉(௥) [73]. Since the transition band nuclei evolve from the 

subgrains present at transition bands, the transition band orientations represent a set of possible 

nuclei orientations. 

In the recrystallization model, only the grains with a bi-modal misorientation distribution are 

considered as possible transition band nucleation sites. In addition, the local orientation gradient 

and strain energy in the transition bands within those grains have to be larger than the threshold 

values. We assume that the local orientation gradient and the strain energy in the transition band 

are proportional to the average grain values, 〈𝛿𝜃〉(௥) and 𝐸(௥). Consequently, only grains with bi-

modal misorientation distribution, and local neighbor misorientation angle and strain energy 

larger than the threshold values, 𝛿𝜃௧௛
௧௕ and 𝐸௧௛

௧௕, are allowed to nucleate. The transition band 

nucleation probability is defined analogously to the grain boundary nucleation probability [37]: 

𝑃௧௕
(௥)

(∆𝑡௥௘௙ , 𝑤௔௩௚) = exp ቀ−
஺೟್

ா(ೝ)మቁ,  (20) 

where 𝐴௧௕ is a constant determining the likelihood of transition band nucleation. Similar to grain 

boundary nucleation, it is assumed that the increase of average local neighbor misorientation 

angle above the threshold value does not affect the nucleation probability.  
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For each grain with a bi-modal misorientation distribution, the probability of nucleation at 

transition band is calculated and compared to a random number 0-1. If the nucleation probability 

is larger than the random number, a new grain is nucleated in the same manner as for grain 

boundary nucleation. The orientation of the nucleus is randomly chosen from the transition band 

orientations (see Appendix). 

2.2.3.3 Influence of the time increment and grain weight on the nucleation probability 

The nucleation probability scales with the grain boundary area and the transition band area, 

which are related to the volume of the grain. The shape of the grain also influences the boundary 

area. In our calculations, the shape of each grain is represented with the same ellipsoid and this 

effect is not considered. In addition, the adopted time increment also affects the nucleation 

probability. In what follows, the scaling of the nucleation probability with the volume fraction 

and the time increment is derived. 

First, the effect of the time increment on the nucleation probability is examined.  We 

consider one grain during the time increment ∆𝑡௥௘௙. The probability, 𝑃(∆𝑡௥௘௙), that this grain 

will nucleate during this increment in time is defined by the stored strain energy. Next, let us 

subdivide the time increment into a sequence of 𝑛 subincrements, 𝑑𝑡 = ∆𝑡௥௘௙/𝑛. Since the 

subincrements 𝑑𝑡 are very small, during each subincrement 𝑖 the grain may nucleate only one 

nucleus, with a nucleation probability given by 𝑑𝑃௜. Therefore, each subincrement represents a 

Bernoulli trial [64]. It is assumed that the grain state does not change during the time increment 

∆𝑡௥௘௙. Furthermore, outcome of each subincrement is assumed to be independent on the 

outcomes of all the other subincrements. Consequently, the nucleation probability of each 

subincrement is the same: 𝑑𝑃௜ = 𝑑𝑃. A finite or an infinite sequence of independent Bernoulli 

trials is a Bernoulli process. Consequently, the probability that at least one nucleus forms during 
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the time increment ∆𝑡௥௘௙ is equal to the probability that at least one successful Bernoulli trial 

occurs: 

𝑃(∆𝑡௥௘௙) = 1 − ቀ
𝑛
0

ቁ (1 − 𝑑𝑃)௡ = 1 −
௡!

଴!௡!
(1 − 𝑑𝑃)௡ = 1 − (1 − 𝑑𝑃)௡. (21) 

Let us consider the nucleation probability of the same grain during different time increment, ∆𝑡, 

subdivided into 𝑚 subincrements of the same length as before, ∆𝑡 = 𝑚 × 𝑑𝑡. Under the adopted 

assumptions, the change of the length of the time increment is equivalent to the change of the 

number of trials in the Bernoulli process. The probability that at least one nucleus forms during 

the time increment ∆𝑡 is given by: 

𝑃(∆𝑡) = 1 − (1 − 𝑑𝑃)௠. (22) 

From Eq. (18) and (19) the nucleation probability during the time increment ∆𝑡 is given by: 

𝑃(∆𝑡) = 1 − ቀ1 − 𝑃(∆𝑡௥௘௙)ቁ

೘

೙
= 1 − ቀ1 − 𝑃(∆𝑡௥௘௙)ቁ

∆೟

∆೟ೝ೐೑
. (23) 

By applying similar argument for the change of area the following expression can be derived: 

𝑃(∆𝑡, 𝑤) = 1 − ቀ1 − 𝑃(∆𝑡௥௘௙, 𝑤௥௘௙)ቁ

∆೟

∆೟ೝ೐೑
ቀ

ೢ

ೢೝ೐೑
ቁ

మ
య

. (24) 

Note that the ratio of weights is raised to the exponent 2/3 due to the square-cube law. Same 

expression can be derived by considering nucleation process as a Poisson distribution. 

As stated before, as the time increment increases, the number of Bernoulli trials increases. 

Consequently, the probability of two or more successful Bernoulli trials during the Bernoulli 

process also increases. In the model, the time increment is always set to a value resulting in the 

nucleation probability less than 0.1, because in this case the probability of two or more 
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successful Bernoulli trials is relatively small. Therefore, we can assume that if nucleation occurs 

only one nucleus is formed. 

2.2.4 Boundary migration 

During annealing, high angle boundaries become mobile with the boundary velocity given 

by: 

𝑣 = 𝑀𝑃, (25) 

where 𝑀 is the boundary mobility and 𝑃 is the pressure acting on the boundary [1]. The driving 

pressure is caused by the difference in the stored energy between the two sides of the high angle 

boundary. Therefore, the grains with the lower strain energy grow while the grains with the 

higher strain energy shrink. We adopt a mean field approach and assume each grain is 

surrounded by the homogeneous effective medium [37, 43]. The boundary velocity of each grain 

is thus proportional to the difference between the stored energy of the grain, 𝐸(௥), and the stored 

energy of the effective medium, 𝐸௔௩௚ [37]: 

𝑣(௥) = 𝑀൫𝐸௔௩௚ − 𝐸(௥)൯, (26) 

where the stored energy of the effective medium is the average for the polycrystal, 𝐸௔௩௚ =

∑ 𝑤(௥)𝐸(௥)
௥ . The change of the grain weight due to the boundary migration with the velocity 𝑣(௥) 

during the time increment ∆𝑡 is given by [37]: 

𝑤(௥),௧ା∆௧ = 𝑤(௥),௧ + 3𝑀 ቀ
ସగ

ଷ
ቁ

భ

య
൫𝑤(௥),௧൯

మ

య൫𝐸௔௩௚ − 𝐸(௥)൯∆𝑡. (27) 

After updating the weight of each grain, the normalization of grain weights is performed to 

ensure that ∑ 𝑤(௥),௧ା∆௧
௥ = 1. 
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2.2.5 Algorithm 

Summarizing, the algorithm of the proposed recrystallization model is as follows: 

Calculate the average local neighbor misorientation angle, 〈𝛿𝜃〉(௥), and strain energy, 𝐸(௥), for 

each grain after deformation. For each recrystallization time increment: 

1) Calculate the average strain energy 𝐸௔௩௚. 

2) Grain boundary nucleation: 

 For each grain 𝑟: 

 if 𝐸(௥) > 𝐸௧௛
௚௕

 ∧ 〈𝛿𝜃〉(௥) > 𝛿𝜃௧௛
௚௕: 

 a) Calculate nucleation probability 𝑃௚௕
(௥)

൫∆𝑡 , 𝑤(௥)൯ 

 b) Draw a random number 0 < 𝑟𝑎𝑛𝑑 < 1 

 c) if 𝑟𝑎𝑛𝑑 < 𝑃௚௕
(௥)

: 

 Create a new grain with zero strain energy, initial slip resistance and  

 randomly sampled grain boundary orientation. 

3) Transition band nucleation: 

 For each bi-modal grain 𝑟: 

 if 𝐸(௥) > 𝐸௧௛
௧௕  ∧  〈𝛿𝜃〉(௥) > 𝛿𝜃௧௛

௧௕: 

 a) Calculate nucleation probability 𝑃௧௕
(௥)

൫∆𝑡 , 𝑤(௥)൯ 

 b) Draw a random number 0 < 𝑟𝑎𝑛𝑑 < 1 

 c) if 𝑟𝑎𝑛𝑑 < 𝑃௧௕
(௥)

: 
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 Create a new grain with zero strain energy, initial slip resistance and  

 randomly sampled transition band orientation. 

4) Weight update: 

 For each grain 𝑟 update the weight: 

 𝑤(௥),௧ା∆௧ = 𝑤(௥),௧ + 3𝑀 ቀ
ସగ

ଷ
ቁ

భ

య
൫𝑤(௥),௧൯

మ

య൫𝐸௔௩௚ − 𝐸(௥)൯∆𝑡. 

5) Renormalize the grain weights. 

3 Results 

We apply the developed model to several case studies of coupled deformation and static 

recrystallization modeling. Dynamic recrystallization can be performed simply by calling the 

recrystallization model after each or several deformation steps [37, 43]. 

3.1 Annealing of cold drawn copper wire 

We simulate cold drawing of copper wire to 90% area reduction and subsequent annealing at 

700 °C reported in [74]. The central region of the wire is subjected to the uniaxial tension while 

regions closer to the surface of the wire undergo additional shearing [74]. The applied boundary 

conditions in the model correspond to the central region of the wire and the predictions are 

compared to the measurements taken at the central region. The initial texture of the sample is 

represented by 400 randomly oriented spherical grains. The grains are assumed to deform by 

{111}〈11ത0〉 slip and linear hardening given by Eq. 4. 

Fig. 2a and 2c compare the measured deformation texture and the predicted deformation 

texture in the central region of the wire after 90% area reduction. The measured texture consists 

of major [111] (the intensity of 26.7) and minor [100] (the intensity of 7.6) components. The 
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predicted intensity of the [001] component is considerably higher than the experimentally 

measured intensity. This discrepancy is attributed to the very slow evolution of intragranular 

misorientation spreads for grains close to [001] in simulations [47]. Consequently, the 

orientations are more clustered around the [001] resulting in the higher intensity. On the other 

hand, the predicted total fraction of orientations with tension directions within 15° of [001] is 

0.4, while the orientations with tension directions within 15° of [111] total 0.6. These predictions 

for the fractions of [111] and [001] components are in very good agreement with [75, 76], where 

for copper the ratio of [001] to [001]+[111] is estimated to be around 0.37. 

After 90% drawing, the mean orientations of grains have clustered around the stable 

components and the intensity of the texture is predominantly determined by the magnitudes of 

the grain orientation spreads, which have also reached their stable states. On one hand, the 

orientation spreads of grains that have reached stable components tend to shrink because the 

stable regions are convergent and all the orientations within them reorient toward the stable 

component. On the other hand, the stress fluctuations caused by the variation of grain properties 

within the polycrystal increase the orientation spreads. These two effects eventually balance each 

other and the orientation spreads of grains that have reached stable components stop evolving 

with further deformation. The stable spread magnitude determines the intensity of the stable 

components in the deformation texture. Therefore, because the model overpredicts the [001] 

intensity, we conclude that the model tends to under predict the magnitudes of orientation 

spreads for grains with tension direction close to [001]. A possible reason is the absence of 

neighborhood effects on the grain’s stress distribution in the GF-VPSC model. In an actual 

polycrystal, the intragranular stress distribution of each grain is affected by stress states of 

neighboring grains. During tension of fcc polycrystals, grains clustered around [001] will likely 
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be surrounded by grains with tension direction close to [111] because the majority of the grains 

in the polycrystal are close to [111]. Since the stress state is predominantly determined by the 

grain’s orientation, the [001] grains are likely to be surrounded by grains with quite different 

stress states. Consequently, the effect of the neighborhood on the grain’s stress state will be 

fairly strong for [001] grains. On the other hand, the [111] grains are likely surrounded by grains 

with similar orientation and thus similar stress state resulting in weaker effect of the 

neighborhood on the grain’s stress distribution. The neighborhood effects are missing in the GF-

VPSC model and the stress distribution of each grain is affected equally by all the other grains in 

the polycrystal. The averaged effect of all the other grains on the grain’s stress distribution seems 

to be weaker than the actual effect of the local neighborhood for the grains in the [001] region. 

Consequently, the orientation spreads of grains with tension direction close to [001] might be 

inaccurately predicted. 

Fig. 2b and 2d compare the predicted and measured recrystallization textures. The 

experimental recrystallization texture was measured at the central region of the 90% drawn wire 

after annealing at 700 °C for 1h using electron backscatter diffraction (EBSD). The central 

region was not fully recrystallized and no extensive abnormal grain growth was observed. The 

experimental recrystallization texture consists of [001], [111] and [112] components. It is noted 

that the component [112] is not strong in the deformation texture. In the recrystallization model, 

the nucleation and growth constants were adjusted to favor nucleation at transition bands (Table 

1) and the material was fully recrystallized. The model predicts well the [001], [111] and [112] 

components in the recrystallized texture. On one hand, [001] and [111] components are a result 

of the nucleation at grain boundaries within [001] and [111] grains in the deformed texture. The 

GF-VPSC model predicts transition band orientations clustered around [112], and thus the 
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transition band nucleation is responsible for the [112] recrystallization texture component in the 

simulation. We note that the [112] component is practically absent from the predicted 

deformation textures in both the simulation and experiment, and only emerges after 

recrystallization. Similar behavior is observed in rolled fcc where a strong cube recrystallization 

component is observed after recrystallization, and not after deformation. We believe that the 

same transition band nucleation process is responsible for both of these phenomena [48]. 

 

Figure 2 Inverse pole figures showing deformation and recrystallization textures of 90% drawn 
copper wire: a) measured deformation texture at the central region of the wire; b) measured 
recrystallized texture at the central region of the wire; c) predicted deformation texture; d) 
predicted recrystallization texture. 



234 

Fig. 3 shows the evolution of recrystallized volume, 𝑋௏, as a function of time, log 𝑡. The plot 

shows characteristic sigmodal shape [1]. At the beginning of the recrystallization, a typical 

incubation period is observed followed by increased rate of recrystallization and a linear region. 

As the recrystallized volume increases, the impingement of newly formed grains occurs reducing 

the rate of recrystallization. In the model, the impingement of the defect free grains is captured 

through the reduction of the average strain energy of the effective medium due to increase of the 

recrystallized material, which results in a lower recrystallization rate. 

 

Figure 3 Predicted evolution of the volume fraction of recrystallized material during 
recrystallization of 90% drawn copper wire.   

3.2 Annealing of 95% rolled copper 

Next, we simulated rolling of copper to 95% reduction and subsequent annealing [77]. The 

rolling process was modelled by imposing plane strain compression (PSC) boundary conditions. 

This approximation is valid for the central region of the rolled plate, away from the rolls. Initial 

texture of the sample is represented by 400 randomly oriented spherical grains deforming by 

{111}〈11ത0〉 slip and linear hardening (Eq. 4). 
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The predicted and measured deformation textures are compared in Fig. 4a and 4c. The main 

components of the deformation texture are predicted well. However, the simulated texture is 

noticeably weaker than the measured one. The likely cause for discrepancy is the over prediction 

of intragranular orientation spreads of grains at stable regions. 

 

Figure 4 {111} pole figures showing deformation and recrystallization textures of 95% rolled 
copper: a) measured deformation texture; b) measured recrystallized texture; c) predicted 
deformation texture; d) predicted recrystallization texture. 

Fig. 4b and 4d show the predicted and measured recrystallization textures. Well-known cube 

recrystallization texture is observed both in the simulation and experiment. It is widely accepted 
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that the cube recrystallization texture is caused by the nucleation at the transition bands with the 

cube orientation in the center of the band [9, 11, 72]. The model predicts that approximately 25% 

of the initial grains form transition bands at the end of deformation. Fig. 5 shows all the 

transition band orientations (one orientation per each transition band) color-coded according to 

the average local neighbor misorientation angle. A majority of the predicted crystallographic 

orientations of transition bands are concentrated around the cube orientation, in good agreement 

with experimental observations. In addition, the grains with the cube-oriented transition bands 

possess the highest intragranular misorientation. The remaining transition band orientations are 

concentrated around the Goss, 45°ND rotated cube and (011)[211ത] orientations. Dillamore and 

Katoh predicted that Goss is also likely to develop transition bands [72]. It is noted that at lower 

reductions (~80%), the model predicts predominantly cube-oriented transition bands. In the 

recrystallization simulation, only transition band nucleation is allowed and only the transition 

bands with the highest misorientation are allowed to nucleate (Table 1). The predicted cube 

recrystallization texture is thus directly caused by the nucleation in the cube-oriented transition 

bands, which possess the highest intragranular orientation gradient. 

 

Figure 5 Predicted transition band orientations (one orientation per transition band) after 95% 
plane strain compression of copper, color-coded according to the average local neighbor 
misorientation angle within the corresponding grain, 〈𝛿𝜃〉(௥). 
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Figure 6 Formation of the cube transition band during rolling of copper illustrated on the section 
Φ = 90° of Euler space; a) evolution of the orientation spread of a grain with [010]||ND initial 
orientation (Dillamore and Katoh, 1974; Humphreys and Hatherly, 2004); b) predicted evolution 
of the orientation spread of a grain with [010]||ND initial orientation using GF-VPSC as a 
function of strain. The spread was represented by a set of discrete orientations and color-coded 
according to the strain level. 

Fig. 6 shows the process of formation of cube transition bands during rolling of copper. 

Evolution of a grain with [010]||ND and small initial orientation spread is considered in the 

Φ = 90° section of Euler space during rolling. Schematic on the left shows analysis by 

Dillamore and Katoh, obtained using a Taylor iso-strain approach for calculation of reorientation 

tendencies in Euler space [1, 72]. As the grain approaches the cube orientation along the 

[010]||ND line, portions of the orientation spread that are not on the [010]||ND line diverge by 

rotation around the RD, while the portion on the [010]||ND converges to the cube orientation. 

Therefore, the grain subdivides into two fragments and the transition band forms with the cube 

orientation in the center. The plot on the right shows evolution of the orientation spread of the 

grain with [010]||ND predicted by the GF-VPSC model. The orientation spread is represented by 
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500 discrete points and plotted for 7 strain levels and color-coded according to the strain level. 

Model predicts that the portions of the orientation spread away from the [010]||ND line quickly 

converge to different stable fibers, while the portion of the spread on the [010]||ND line reorients 

to the cube orientation and subsequently diverges by rotation around the RD as it approaches the 

cube. Therefore, the model predicts formation of cube-oriented transition band in a similar 

manner as described by Dillamore and Katoh.  

3.3 Annealing of 88% compressed iron-carbon alloy 

Compression of Fe-0.02%C to 88% strain and subsequent annealing reported in [78] is 

simulated using GF-VPSC furnished with the recrystallization model. The initial texture is 

represented by 400 randomly oriented spherical grains deforming by {110}〈111〉 and 

{112}〈111〉 slip and linear hardening. Initial slip resistance and hardening are assumed to be the 

same for each mode (Eq. 4). 

Fig. 7a and 7c compare the predicted and measured deformation textures. The measured 

texture consists of a strong [111] component and a weaker [001] component. Similar texture is 

obtained during tension of fcc polycrystals. For the same applied boundary conditions, the 

reorientation caused by {110}〈111〉 slip in bcc materials has the same magnitude as the 

reorientation caused by {111}〈110〉 slip in fcc materials but in the opposite direction. 

Consequently, tension of an fcc polycrystal and compression of a bcc polycrystal result in very 

similar reorientations, if only {111}〈110〉 and {110}〈111〉 slip are considered, respectively [72]. 

Similar to the case of tension of copper, the model over-predicts the intensity of the [001] 

component because the misorientation spreads in the [001] region are under-predicted. The total 

weights of orientations with compression direction within 15° of [001] and [111] are 0.35 and 

0.6, respectively.  
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Figure 7 Inverse pole figures showing deformation and recrystallization textures of 88% 
compressed iron: a) measured deformation texture; b) measured recrystallized texture; c) 
predicted deformation texture; d) predicted recrystallization texture. 

Fig. 7b and 7d show the measured and predicted recrystallization textures. The major [111] 

and minor [001] components present in the deformation texture are also present in the measured 

recrystallization texture. In addition, the [114] and the weak [011] components, which are nearly 

absent in the deformation texture, emerge during recrystallization. Both components are 

attributed to transition band nucleation. Orientations on the [114]-[110] line tend to develop 

transition bands because portions of grains’ orientation spreads above the [114]-[110] line 

converge to the [111] stable component while the portions of grains’ orientation spreads below 
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this line converge to [001] stable component [10, 72, 78]. The transition band orientations 

consequently converge toward the [114] component. In the predicted recrystallization texture, 

the [111] and [001] components are formed by the grain boundary nucleation mechanism, while 

the [114] component is a consequence of the transition band nucleation [48]. Parameters for the 

recrystallization model are given in Table 1. The [011] component is absent from the predicted 

recrystallization texture because only a few grains developed transition bands with these 

orientations. At lower strain (50% compression) the majority of predicted transition band 

orientations would be in the [011] region. During further straining to 88% compression these 

transition bands converge to the [114] component. 

3.4 Annealing of 85% rolled Ti-Nb IF steel 

Rolling and recrystallization of 85% rolled Ti-Nb IF steel is simulated and the predicted 

textures are compared with the experimental measurements [79, 80]. We represent the initial 

texture with 400 randomly oriented spherical grains deforming by {110}〈111〉 and {112}〈111〉 

and linear hardening (Eq. 4). Initial slip resistance and hardening parameters are assumed to be 

the same for each mode. 

Fig. 8a and 8c show the 𝜑ଶ = 45° section of Euler space for the measured and predicted 

rolling textures [79, 80]. A majority of the grains in the experimental texture are concentrated 

around the 𝛾-fiber and a portion of the 𝛼-fiber [62, 81, 82]. Note that the intensities of those two 

fibers have been reduced due to the ghost correction applied to the experimental data [79]. The 

predicted texture qualitatively matches the experimental results, but it is considerably sharper 

than the measured texture. Again, the likely reason for the discrepancy in the intensities is the 

under-prediction of misorientation spreads of grains in the stable region. 
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Figure 8 𝜑ଶ = 45° ODF section of deformation and recrystallization textures of 85% rolled IF 
steel: a) measured deformation texture; b) measured recrystallized texture; c) predicted 
deformation texture; d) predicted recrystallization texture. 

The 𝜑ଶ = 45° section of Euler space for the measured and predicted recrystallization 

textures are given on Fig. 8b and 8d. Comparison of the measured recrystallization texture with 

the deformation texture indicates that the 𝛾-fiber strengthens during recrystallization, while the 

𝛼- fiber weakens [62, 82-84]. The grains on the 𝛾-fiber possess higher stored energy and are thus 

favorable nucleation sites [84, 85]. The nuclei are commonly observed in the vicinity of grain 
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boundaries [80, 86]. Inokuti and Doherty showed that intragranular nucleation at transition bands 

occurs only sporadically as opposed to the nucleation in compressed iron where majority of the 

nuclei formed at the transition bands [10, 87]. Considering the experimental observations, in the 

setup of the recrystallization model, only grain boundary nucleation was allowed in the grains 

with the highest stored energy (Table 1). The predicted recrystallization texture agrees well with 

the experimental texture, and the model corroborates the experimental observations. 

Table 1 Recrystallization model parameters. 

 
Grain boundary nucleation Transition band nucleation Growth 

𝐸௧௛
௚௕ 𝛿𝜃௧௛

௚௕ 𝐴௚௕ 𝑐 𝐸௧௛
௧௕ 𝛿𝜃௧௛

௚௕ 𝐴௧௕ 𝑀 

90% drawn 
copper 

0.0 0.0 
3.0

× 10ହ 
2.0 0.0 0.0 

3.0

× 10ଷ 
1.5

× 10ିହ 

95% rolled 
copper 

𝑁\𝐴 𝑁\𝐴 𝑁\𝐴 𝑁\𝐴 0.0 0.867 
2.15

× 10ହ 
1.5

× 10ିହ 
88% 

compressed 
iron 

0.0 0.14 
6.0

× 10ଷ 
2.0 

1.32

× 10ଶ 
0.0 

1.0

× 10ଶ 
8.5

× 10ିହ 

85% rolled IF 
steel 

7.38

× 10ଶ 
0.0 

1.8

× 10ହ 
1.0 𝑁\𝐴 𝑁\𝐴 𝑁\𝐴 

2.0

× 10ିହ 

 

4 Conclusions 

We developed a coupled deformation and recrystallization model that utilizes intragranular 

orientation distributions and strain energy fields predicted by the GF-VPSC model. The new 

formulation incorporates nucleation at grain boundaries and transition bands. The fitting 

parameters of the recrystallization model are determined based on the experimental observations 

to appropriately weight the probability of nucleation events. Deformation and recrystallization 

textures of fcc and bcc materials were simulated and reasonable agreement with experiments was 

achieved. It was found that nucleation at transition bands is responsible for development of the 
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recrystallization texture components that are largely absent from deformation texture. A drastic 

example is the recrystallization of 95% rolled copper, where the strong cube recrystallization 

texture was found to be predominantly a consequence of transition band nucleation, which is in 

good agreement with experimental observations. Furthermore, transition band nucleation was 

also found to be the cause of the [114] recrystallization texture component of compressed iron 

and the [112] recrystallization texture component of drawn copper wire. On the other hand, the 

recrystallization texture of rolled IF steel was found to be caused by grain boundary nucleation 

occurring in the grains with highest strain energy, which is experimentally observed. The main 

deformation texture components were predicted well, but the sharpness of certain components 

was either under- or over-predicted. The likely reason is the inaccurate evolution of intragranular 

orientation spreads around those components caused by the inherent limitations of the present 

mean-field modeling approach. 
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Appendix 

Orientations of nuclei originating at grain boundaries 

The Cholesky decomposition of the second moment of the grain’s misorientation spread is 

〈δ𝐫⨂δ𝐫〉(௥) = 𝐋𝐋். The lower triangular matrix 𝐋 transforms random vectors, 𝐱, with zero mean 

and unit variance to random vectors, δ𝐫(௥),௥௔௡ௗ, with zero mean and second moment 〈δ𝐫⨂δ𝐫〉(௥): 

δ𝐫(௥),௥௔௡ௗ = 𝐋𝐱. (A1) 

Therefore, the inverse matrix, 𝐋ିଵ, transforms random vectors δ𝐫(௥),௥௔௡ௗ to random vectors 𝐱.  

In the model, the orientation of the grain boundary nucleus is randomly chosen using a 

rejection method. First, the distribution of misorientation vectors δ𝐫 is assumed to be 

multivariate Gaussian and a random misorientation vector, δ𝐫(௥),௥௔௡ௗ, is sampled from the 

grain’s misorientation distribution. The sampled random misorientation vector, δ𝐫(௥),௥௔௡ௗ, is 

mapped to the random vector, 𝐱, with zero mean and unit variance using the matrix 𝐋ିଵ. If the 

length of the vector 𝐱 is larger than the constant 𝑐, then the length of the vector δ𝐫(௥),௥௔௡ௗ is 

larger than 𝑐 × 𝑆𝐷൫δ𝐫(௥),௥௔௡ௗ/หδ𝐫(௥),௥௔௡ௗห൯ and the vector δ𝐫(௥),௥௔௡ௗ is accepted. 𝑆𝐷൫δ𝐫(௥),௥௔௡ௗ/

หδ𝐫(௥),௥௔௡ௗห൯ is the standard deviation along the direction of the vector δ𝐫(௥),௥௔௡ௗ. The constant 𝑐 

defines the magnitude of misorientation of grain boundary orientation with respect to the mean 

orientation of the grain. If the length of the vector 𝐱 is smaller than 𝑐, the random vector 

δ𝐫(௥),௥௔௡ௗ is rejected and a new random vector is sampled. The orientation of the nucleus is 

obtained by composing the randomly sampled misorientation and the mean orientation of the 

grain. 
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Orientations of nuclei originating at transition bands 

The transition band orientations correspond to the orientations in the region between the 

modes of the bi-modal orientation distribution. The transition band region of the misorientation 

spread can be identified by the projections of the misorientation vectors to the dominant rotation 

axis. For transition band regions, these projections have to belong to an interval between the 

modes of a probability density function (pdf) along the dominant rotation axis. The orientation of 

the transition band nucleus is randomly sampled from the transition band region using the 

rejection method. A random misorientation vector, δ𝐫(௥),௥௔௡ௗ, is sampled from the grain’s 

misorientation distribution and then projected to the dominant rotation axis, 𝐯ଵ,(௥). If the 

projection δ𝐫(௥),௥௔௡ௗ ∙ 𝐯ଵ,(௥) does not belong to the defined transition band region a new random 

misorientation vector is sampled from the spread until the transition band misorientation vector 

is sampled. The orientation of the nucleus is obtained by composing the randomly sampled 

misorientation and the mean orientation of the grain. 
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SUMMARY AND FUTURE WORK 

In Chapter 1, a novel numerical approach for solution of the macroscopic coupling between 

the VPSC and elasticity is explored. The proposed numerical approach calls the VPSC model 

with imposed strain rate boundary conditions which is found to be more stable than calling the 

VPSC with applied stress boundary conditions. In addition, solving the macroscopic equation for 

strain rate enables us to achieve higher precision of the numerical solution, at lower 

computational cost. In the future work, the numerical method used for solution of the 

macroscopic constitutive equation could be further improved. Currently, Newton’s method is 

used for iterative correction of the visco-plastic strain rate. For each guess for the visco-plastic 

strain rate the residual of the macroscopic constitutive equation has to be evaluated which 

requires one call to the VPSC model. Out of all the calls to the VPSC model, only the call with 

the converged visco-plastic strain rate will actually be used for calculation of the macroscopic 

stress which will be returned to the FEA solver. Consequently, majority of the calls to the VPSC 

will only be used for calculation of the residual and Jacobian of the macroscopic constitutive 

equation required by the Newton’s method. By combining the iterative loop for the solution of 

the macroscopic constitutive equation and the outer iteration loop over grain stresses of the 

VPSC model, the visco-plastic strain rate will be iteratively adjusted in the same loop as the 

grain stresses. Consequently, each new guess for the visco-plastic strain rate will be generated 

based on the current guess for the grain stresses and we would no longer need to solve the VPSC 

model in order to obtain a new guess for the visco-plastic strain rate. As a result the 

computational time required to solve the macroscopic constitutive equation should significantly 

reduce.  
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In Chapters 1 and 2, two methods for accurate representation of rate sensitivity within the 

finite element implementation of VPSC are proposed. Both methods are applied to Taylor impact 

simulations and reasonable agreement is achieved. As part of the future work, the 

phenomenological power-law constitutive equation at the slip system level used in VPSC could 

be replaced by Orowan’s equation. In the power law constitutive equation, the rate sensitivity of 

stress is defined by a constant rate exponent fitted to the experimental data. Consequently, the 

rate sensitivity in the model does not change with strain rate, strain or temperature and is thus 

accurate only for a limited range of test conditions. On the other hand, the Orowan’s equation 

relates the shear rate on a slip system with the average density and velocity of mobile 

dislocations. The rate sensitivity of stress is defined by the adopted expression for the average 

velocity of mobile dislocations which is rate and temperature dependent. Therefore, the rate 

sensitivity of stress is described in a physical way and is accurate for a wide range of test 

conditions. 

In Chapters 3 and 4, an approach for calculation of intragranular misorientation distributions 

within VPSC is developed. Predictions of intragranular misorientation distributions in VPSC 

achieve reasonable agreement with full-field simulations and experimental measurements. In the 

future work, similar approach could be employed for calculation of intragranular distributions of 

other grain state variables like total accumulated shear, dislocation density, slip resistance etc. 

First, the intragranular distributions of particular state variable at low strain could be calculated 

directly from the intragranular stress distributions, by neglecting the effects of the fluctuations of 

other state variables. After verification of these predictions, the calculation of the intragranular 

distributions of particular state variable could be extended to include the joint effects of the 

intragranular distributions of stress and intragranular distributions of other state variables. In 
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addition, the calculated fluctuations of grain state variables could be further used for 

improvements of the twinning and hardening models. For example, the intragranular stress 

distributions could be used for calculation of the maximal resolved shear stress values on the 

twin systems, which would then be used within the improved twin nucleation model. In addition, 

the intragranular fluctuations of strain allow calculation of strain gradients within the grains 

which in turn govern the evolution of the densities of geometrically necessary dislocations. The 

density of geometrically necessary dislocations can next be utilized for calculation of the 

corresponding increase in slip resistance within the hardening model. 

Finally, in Chapter 5 a deformation based mean-field static recrystallization model utilizing 

the calculated intragranular misorientation distributions is proposed. The model is capable of 

reproducing the experimentally measured recrystallization textures for fcc and bcc materials after 

different deformations. The intragranular misorientation distributions were found to be crucial 

for the formulation of the transition band nucleation rule. In future, the developed mean-field 

recrystallization model could be improved to include the neighborhood effects. To this end, each 

grain and each nucleus would be paired with their spatial neighbors. Consequently, the grains 

and nuclei would grow into their actual neighbors and not into the effective medium. In addition, 

the mobility of each grain boundary would be calculated based on the boundary misorientation 

angle. The fluctuations of grain state variables could also be utilized for calculation of the 

fluctuations of strain energy which could improve the grain boundary nucleation criterion and 

the growth model. Finally, introduction of the temperature dependence of the mobility and 

nucleation would facilitate the extension of the recrystallization model to include the dynamic 

recrystallization. 
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In conclusion, the improvements to the VPSC model and its finite element implementation 

described in this dissertation enable simulation of an arbitrary thermo-mechanical process. Each 

improvement has been validated separately by comparison with the full-field simulations and 

experimental measurements. As part of the future work, the proposed improvements could be 

merged into one version capable of simulating the whole thermo-mechanical process. The 

unified model could be validated through comparison of the microstructural predictions after 

each operation of the process with the corresponding experimental measurements. 
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