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ABSTRACT
Unitarily invariant norms on finite von Neumann algebras

by
Haihui Fan

University of New Hampshire, September, 2018

John von Neumann’s 1937 characterization of unitarily invariant norms on the n× n matrices

in terms of symmetric gauge norms on Cn had a huge impact on linear algebra. In 2008 his results

were extended to II1 factor von Neumann algebras by J. Fang, D. Hadwin, E. Nordgren and J.

Shen. There already have been many important applications. The factor von Neumann algebras are

the atomic building blocks from which every von Neumann algebra can be built. My work, which

includes a new proof of the II1 factor case, extends von Neumann’s results to an arbitrary finite

von Neumann algebra on a separable Hilberts space. A major tool is the theory of direct integrals.

The main idea is to associate to a von Neumann algebra R a measure space (Λ, λ) and a group

G (R) of invertible measure-preserving transformations on L∞ (Λ, λ). Then we show that there

is a one-to-one correspondence between the unitarily invariant norms on R and the normalized

G (R)-symmetric gauge norms on L∞ (Λ, λ).

vii



CHAPTER 1

INTRODUCTION

Since John von Neumann’s beautiful characterization of the unitarily invariant norms for the

n × n complex matrices Mn (C), there have been over four hundred papers related to this sub-

ject. In [17] von Neumann showed that there is a natural one-to-one correspondence between the

unitarily invariant norms on Mn (C) and the normalized symmetric gauge norms on Cn. More

recently, Junsheng Fang, Don Hadwin, Eric Nordgren, and Junhao Shen [10] showed that there

is an analogous correspondence between the unitarily invariant norms on a II1 factor von Neu-

mann algebraM and the normalized symmetric gauge norms on L∞ [0, 1]. Although the proofs of

both results relied on s-numbers, the proof of the latter result was different from von Neumann’s

proof. We provide a new proof of the II1 factor result that more closely parallels the proof for

Mn (C). The key ingredient is an "approximate" version of the Ky Fan Lemma that is used in the

finite-dimensional case.

It is our goal to find a similar characterization of all the unitarily invariant norms on a finite von

Neumann algebraR acting on a separable Hilbert space H . To make these two examples look the

same, we want to view Cn as L∞ (Jn, δn) , where (Jn, δn) is a probability space. We also want to

have Jn ⊂ [0, 1]. Our choice is Jn =
{

1
n
, . . . , n

n

}
and δn is normalized counting measure, i.e.,

δn (E) =
1

n
Card (E) .

We define J∞ = [0, 1] and δ∞ to be Lebesgue measure. It turns out that every finite von Neu-

mann algebra on a separable Hilbert space has a central decomposition, which means it can be

decomposed as a direct sum of direct integrals of factor von Neumann algebras, which are either

1



isomorphic to Mn (C) or are II1 factors. Each finite factor von Neumann algebra has a unique tra-

cial state. From the central decomposition we can define a tracial state τ on R. The problem is to

identify the corresponding measure space (Λ, λ). A key observation is that every maximal abelian

selfadjoint subalgebra (masa) of Mn (C) is isomorphic to Cn = L∞ (Jn, δn) and each masa in a

II1 factor is isomorphic to L∞ [0, 1] = L∞ (J∞, δ∞). If A is a masa inR, then the central decom-

position of R decomposes A to a direct integral of algebras that are masas in the corresponding

factor. We must analyze this decomposition carefully to see that the masas are all isomorphic, in a

very special way, to L∞ (Λ, λ) for some measure space (Λ, λ). Once we find the measure space,

we have to show how the unitarily invariant norms on R correspond to the normalized symmetric

gauge norms on L∞ (Λ, λ). This involves defining the analogue of the "s-numbers" and proving

a general approximate Ky Fan Lemma. To show that things are independent of the choices of the

masas we use, we need a result on approximate unitary equivalence.

2



CHAPTER 2

PRELIMINARIES

2.1 Unitarily invariant norms

If A is a unital C*-algebra, U (A) denotes the set of all unitary elements of A. If T ∈ A we define

|T | = (T ∗T )1/2.

Lemma 1. Suppose A is a unital C*-algebra and α is a norm on A such that α (1) = 1. The

following are equivalent.

1. For every T ∈ A and for every U ∈ U (A),

α (T ) = α (|T |) = α (U∗TU) .

2. For all U, V in U (A),

α (T ) = α (UTV ) .

Proof. Suppose T ∈ A and for every U ∈ U (A), we have α (T ) = α (|T |) = α (U∗TU) . Then

α (UT ) = α (|UT |) = α
(
[(UT )∗(UT )]1/2

)
= α

(
(T ∗T )1/2

)
= α (|T |) = α (T ) ,

and similarly, α (TV ) = α (T ) . Therefore, α (T ) = α (UTV ) .

Suppose T ∈ A and α (T ) = α (UTV ) for every U, V ∈ U (A) . It is clear that α (T ) =

α (U∗TU). To prove α (T ) = α (|T |), the Russo-Dye Theorem [3] says the norm closed convex

hull of U (A) is {A ∈ A : ‖A‖ ≤ 1}, and therefore we know that T is in the closed convex hull

3



of {‖T‖U : U is unitary}; thus α (T ) ≤ ‖T‖ for every T ∈ A. Also suppose T = W1 |T | =

|T |W2, where W1,W2 are in the norm-closed convex hull of the set of unitaries, which implies

T is in the norm closed convex hull of {U |T | : U is unitary} and |T | is in the closed convex

hull of {V T : V is unitary}. Hence α (T ) ≤ α (|T |) and α (|T |) ≤ α (T ). Therefore α (|T |) =

α (T ) .

Definition 2. If A is a unital C∗-algebra and α is a norm on A satisfying α (1) = 1 and either of

the two conditions in Lemma 1, we say that α is a unitarily invariant norm on A.

Below are some properties about unitarily invariant norms.

Proposition 1. IfA is a unitalC∗-algebra and α is a unitarily invariant norm onA, and T,A,B ∈

A, we have the following:

1. α (T ) ≤ ‖T‖ ,

2. α (T ) = α (T ∗),

3. α (ATB) ≤ ‖A‖α (T ) ‖B‖ ,

4. 0 ≤ A ≤ B implies α (A) ≤ α (B) .

Note: Whenever we discuss a measure space (Ω,Σ, µ) we always assume that the space is

complete in the sense that, whenever E ⊂ F and µ (F ) = 0, we have E ∈ Σ.

Lemma 3. If α is a unitarily invariant norm on a unital C*-algebra R, S, T ∈ R, and {Ui} is a

net of unitary operators inR such that

lim
ι
‖S − U∗i TUi‖ = 0,

then

α (S) = α (T ) .

4



Proof. We have

0 ≤ |α (S)− α (T )| = lim
i
|α (S)− α (U∗i TUi)|

≤ lim
i
α (S − U∗i TUi) ≤ lim

i
‖S − U∗i TUi‖ = 0.

Definition 4. If (Ω, µ) is a probability space, then L∞ (µ) is a von Neumann algebra, and a

unitarily invariant norm α on L∞ (µ) is called a normalized gauge norm on L∞ (µ). In this case

all we require of α is that α (1) = 1 and α (f) = α (|f |) for every f ∈ L∞ (µ). We let MP (Ω, µ)

denote the group (under composition) of all invertible measure-preserving transformations from Ω

to Ω. We say that a gauge norm α on L∞ (µ) is symmetric if, for every γ ∈ MP (Ω, µ) and every

f ∈ L∞ (µ), we have

α (f ◦ γ) = α (f) .

In [17], J. von Neumann characterized all of the unitarily invariant norms on Mn (C), which

is the n × n full matrix algebra with entries in C. In [10], J. Fang, D. Hadwin, E. A. Nordgren

and J. Shen characterized the unitarily invariant norms on a II1 factor von Neumann algebra.

The goal of this thesis is to give a characterization of all unitarily invariant norms of a finite von

Neumann algebra acting on a separable Hilbert space. Along the way we give a new proof of the

characterization of unitarily invariant norms on a II1 factor.

2.1.1 Unitarily invariant norms on Mn (C)

Let τn be the normalized trace on Mn (C) , i.e., τn = 1
n
Trace.

Lemma 5. Suppose T ∈Mn (C) , then there exists a unitary U ∈ U (Mn (C)) , such that

U∗|T |U = α



sT
(

1
n

)
0 · · · 0

0 sT
(

2
n

) ...

...
. . .

. . . 0

0 · · · 0 sT
(
n
n

)


,

5



and sT
(

1
n

)
> sT

(
2
n

)
> ...sn

n
(T ) ≥ 0. The numbers sT

(
1
n

)
, s 2

n
..., sT

(
n
n

)
are unique and are

called the s-numbers of the matrix T . Define s (T ) =
(
sT
(

1
n

)
, sT

(
2
n

)
, · · · , sT

(
n
n

))
.

If α is a unitarily invariant norm on Mn (C), then

α (T ) = α (|T |) = α (U∗|T |U) = α



sT
(

1
n

)
0 · · · 0

0 sT
(

2
n

) ...

...
. . .

. . . 0

0 · · · 0 sT
(
n
n

)


,

and thus α (T ) depends only on the s-numbers of T .

Note that s (T ) ∈ Cn, and in classical matrix theory [2] the standard notation is sk (T ) instead of

our sT
(
k
n

)
for 1 ≤ k ≤ n. We know that Cn is isomorphic to L∞ (δn), where δn is normalized

counting measure on
{

1
n
, . . . , 1

}
. Let Sn be the permutation group (i.e., all the bijective functions

on
{

1
n
, . . . , 1

}
). It is clear that Sn = MP (Jn, δn).

In this case a normalized gauge norm β on Cn = L∞ (δn) is symmetric if, for every f ∈

L∞ (δn) and every σ ∈ Sn,

β (f) = β (f ◦ σ) ,

that is

β ((a1, . . . , an)) = β
((
aσ(1), . . . , aσ(n)

))
.

We know that for each x = (x1, . . . , xn) in Cn and |x| = (|x1| , . . . , |xn|), there is a σ ∈ Sn such

that

s (|x|) =
(∣∣xσ(1)

∣∣ , · · · , ∣∣xσ(n)

∣∣) =
def

(
sx

(
1

n

)
, sx

(
2

n

)
, · · · , sx

(n
n

))
,

where sx
(

1
n

)
≥ sx

(
2
n

)
≥ · · · ≥ sx

(
n
n

)
≥ 0. We call s|x| the nonincreasing rearrangement of |x|.

Note that, although σ may not be unique, s|x| is unique.

6



Given a unitarily invariant norm α on Mn (C) , define βα on Cn by

βα (x) = βα(x1, ...xn) = α


x1

. . .

xn

 = α


s|x|
(

1
n

)
. . .

s|x|
(
n
n

)
 .

Clearly, permutation on Cn corresponds to unitary conjugation by permutation matrices in Mn (C).

Hence βα is a normalized gauge norm on L∞ (δn) = Cn.

Given a symmetric normalized gauge norm β on Cn, we would like to define αβ on Mn (C) by

αβ (T ) = β

(
sT

(
1

n

)
, sT

(
2

n

)
, · · · , sT

(n
n

))
.

We need to check that αβ is a norm. Clearly, sλT
(

1
n

)
= |λ| sT

(
1
n

)
, so

αβ (λT ) = β

(
sλT

(
1

n

)
, sλT

(
2

n

)
, · · · , sλT

(n
n

))
= |λ|αβ (T ) .

Also, αβ (T ) ≥ 0 and αβ (T ) = 0 implies T = 0. The big problem is the triangle inequality:

sA+B

(
k
n

)
≤ sA

(
k
n

)
+ sB

(
k
n

)
can fail if k > 1. When k = 1, sT

(
k
n

)
= ‖T‖ .

Example 1. A =

 1
2

0

0 1

 , B =

 1 0

0 3
4

 .

In this example, sA+B

(
2
n

)
= 3

2
, sA

(
2
n

)
+ sB

(
2
n

)
= 5

4
.

In order to prove the triangle inequality of αβ , Ky Fan Norms are involved. For 1 ≤ k ≤ n we

define KF k
n

: Mn (C)→ [0,∞) and KF k
n

: Cn → [0,∞), by

KF k
n

(T ) =
sT
(

1
n

)
+ · · · sT

(
k
n

)
k

and KF k
n

(x) =
sx
(

1
n

)
+ · · · sx

(
k
n

)
k

.

To prove KF k
n

is a norm on Mn (C) and on Cn, we use the following Lemma whose proof can

be found in [3]. Once we know α = KF k
n

is a norm on Mn (C), it easily follows that KF k
n

= βα

is a symmetric gauge norm on Cn.

7



Lemma 6. For T ∈ Mn (C) , KF k
n

(T ) = sup{Tr (UTP ) , U is unitary, P is a projection of rank

k}.

We easily obtain the following corollary.

Corollary 7.
k∑
i=1

sA+B( i
n
) ≤

k∑
i=1

[
sA( i

n
) + sB( i

n
)
]

for A,B ∈Mn (C) and 1 ≤ k ≤ n.

The key result relates the Ky Fan norms to arbitrary unitarily invariant norms. The proof can

be found in [9].

Lemma 8. Suppose n ∈ N, a = (a1, ..., an), b = (b1, ..., bn) ∈ Cn, a1 ≥ a2 ≥ · · · ≥ an >

0, b1 > b2 > · · · bn > 0, and if KF k
n

(a) ≤ KF k
n

(b) for 1 ≤ k ≤ n, then there exists N ∈ N,

σ1, · · · , σN ∈ Sn, 0 ≤ tj ≤ 1, with
N∑
j=1

tj = 1 such that a ≤
N∑
j=1

tj (b ◦ σj)

Corollary 9. Suppose a, b ∈ Cn with KF k
n

(a) ≤ KF k
n

(b) for 1 ≤ k ≤ n, then, for every

symmetric gauge norm β on Cn, β (a) ≤ β (b) .

Proof. β (a) ≤ β

(
N∑
j=1

tjb ◦ σj

)
≤

N∑
j=1

tjβ (b ◦ σj) =

(
N∑
j=1

tj

)
β (b) = β (b) .

Lemma 10. If β is a symmetric normalized gauge norm on Cn, then αβ is a unitarily invariant

norm on Mn (C).

Proof. We just need to prove the triangle inequality. Suppose A,B ∈Mn (C).If

a =

(
sA+B(

1

n
), sA+B(

2

n
), ..., sA+B(

n

n
)

)
and,

b =

(
sA

(
1

n

)
+ sB

(
1

n

)
, sA

(
2

n

)
+ sB

(
2

n

)
. . . , sA

(n
n

)
+ sB

(n
n

))
,

then, by Corollary 7, we know thatKF k
n

(a) ≤ KF k
n

(b) . for 1 ≤ k ≤ n. It follows from Corollary

9 that β (a) ≤ β (b) . However,

αβ (A+B) = β (a) ≤ β (b) = β (sA + sB) ≤ β (sA) + β (sB) = αβ (A) + αβ (B) .

8



It is easy to see that αβα = α and βαβ = β always hold. This give us von Neumann’s charac-

terization of unitarily invariant norms on Mn (C) .

Theorem 11. [17]There is a one to one correspondence between symmetric gauge norms on Cn

and unitarily invariant norms on Mn (C).

2.1.2 Unitarily invariant norms on a II1 factor

Suppose M is a II1 factor von Neumann algebra. Then M has a unique faithful normal

tracial state τ with the property that if P and Q are projections inM, then P and Q are unitarily

equivalent inM if and only if τ (P ) = τ (Q). In this case the measure space (Jn, δn) is replaced

with the measure space (J∞, δ∞), where J∞ = [0, 1] and δ∞ is Lebesgue measure. A normalized

gauge norm β on L∞ [0, 1] = L∞ (δ∞) is symmetric if, for every γ ∈ MP (J∞, δ∞) and every

f ∈ L∞ (δ∞) , we have β(f) = β(f ◦ γ).

The main result in [10] is that there is a one-to-one correspondence between the unitarily in-

variant norms onM and the symmetric normalized gauge norms on L∞ (δ∞). This looks just like

von Neumann’s result for Mn (C).

The definition of the s-numbers for a function in L∞ [0, 1] can be obtained from nonincreasing

rearrangements in measure theory. The proof in [10] doesn’t use a version of the Ky Fan Lemma

(Lemma 8); we present a new proof here using an "approximate" version of the Ky Fan Lemma

(Theorem 20).

Lemma 12. Suppose f : [0, 1] → C is measurable. Then there is a γ ∈ MP (J∞, δ∞) such that

sf =
def
|f | ◦ γ is nonincreasing on [0, 1]. The transformation γ may not be unique, but sf is unique

(a.e.). It therefore follows that f1,f2 : [0, 1]→ C are measurable, then

sf1 = sf2 if and only if |f1| = |f2| ◦ γ for some γ ∈MP (J∞, δ∞) .

9



For 0 < t ≤ 1, we define the Ky Fan norm KFt on L∞ [0, 1] by

KFt (f) =
1

t

∫ t

0

sfdδ∞.

For an operator T ∈ M and 0 ≤ t ≤ 1, the tth s-number of T , denoted by sT (t), was defined

by Fack and Kosaki in [8] as

sT (t) = inf{‖TE‖ : E is a projection inM with τ(E⊥) ≤ t}.

It is clear that the map t 7→ sT (t) is nonincreasing on [0, 1]. The tth Ky Fan norm KFt (T ) is

defined as

KFt (T ) =

 ‖T‖ if t = 0

1
t

∫ t
0
sT (t) dδ∞ if 0 < t ≤ 1.

In the matrix case |T | is unitarily equivalent to a diagonal matrix, which naturally corresponds

to an element of Cn. In the II1 factor case we need a more complicated approach.

Definition 13. A normal ∗-isomorphism π : L∞ (δ∞)→M such that, for every f ∈ L∞ (δ∞),

(τ ◦ π) (f) =

∫
J∞

fdδ∞.

is called a tracial embedding.

The following Lemma is a consequence of Hadwin-Ding in [5].

Lemma 14. If π and ρ are tracial embeddings into a II1 factorM, then π and ρ are approximately

unitarily equivalent inM, i.e., there is a net {Ui} of unitary operators inM such that, for every

f ∈ L∞ (δ∞),

‖U∗i π (f)Ui − ρ (f)‖ → 0.

10



Corollary 15. If π : L∞ (δ∞) → M is a tracial embedding and γ ∈ MP (J∞, δ∞), then ρ :

L∞ (δ∞) → M defined by ρ (f) = π (f ◦ γ) is also a tracial embedding. Hence, there is a net

{Ui} of unitary operators inM such that, for every f ∈ L∞ (δ∞),

‖U∗i π (f)Ui − π (f ◦ γ)‖ → 0.

In the matrix case, the assertion that |T | is unitarily equivalent to a diagonal matrix can be

rephrased as |T | is contained in a maximal abelian selfadjoint algebra (i.e., masa) of Mn (C), and

every masa in Mn (C) is unitarily equivalent to the algebra of diagonal n× n matrices. Here is the

analogue for a II1 factor.

Lemma 16. Suppose A is a masa in a type II1 factor M. Then there is a surjective tracial

embedding π : L∞ (δ∞) → A. Moreover, if f ∈ L∞ [0, 1] and π (f) = T , then, for almost every

t ∈ [0, 1],

sf (t) = sπ(f) (t) .

As in the matrix case we need to prove KFt is a norm onM by giving an alternate characteri-

zation.

Lemma 17. If T ∈M and 0 < t ≤ 1, then

KFt (T ) = sup {|τ (UTP )| : U ∈ U (M) , P is a projection, τ (P ) = t} .

It was proved in Lemma 5.1 in [10].

Suppose α is a unitarily invariant norm on M. We can choose a tracial embedding π :

L∞ (J∞, δ∞)→M and define a norm βα on L∞ (J∞, δ∞) by

βα (f) = α (π (f)) .

11



We need to show that the definition does not depend on the embedding π. If ρ : L∞ (J∞, δ∞)→M

is another tracial embedding, then by Lemma 14, there is a net {Ui} of unitary operators inM such

that, for every f ∈ L∞ (J∞, δ)

‖U∗i π (f)Ui − ρ (f)‖ → 0.

Since

|β (π (f))− β (ρ (f))| = |β (U∗i π (f)Ui)− β (ρ (f))|

≤ β (U∗i π (f)Ui − ρ (f)) ≤ ‖U∗i π (f)Ui − ρ (f)‖ → 0,

we see that β (π (f)) = β (ρ (f)). Moreover, it follows from Corollary 15 that, the gauge norm

βα is symmetric. A simple consequence is that KFt = βKFt is a symmetric gauge norm on

L∞ (J∞, δ∞).

Next suppose β is a symmetric gauge norm on L∞ (J∞, δ∞). We want to define αβ onM. If

T ∈ M, we can choose a masa A inM such that |T | ∈ A. We then choose a surjective tracial

embedding π : L∞ (J∞, δ∞) → A and choose f ∈ L∞ (J∞, δ∞) such that π (f) = |T | and then

define

αβ (T ) = β (f) = β (sf ) .

Since

sf (t) = sπ(f) (t) = s|T | (t) ,

we see that the definition is independent of A and π. As in the matrix case, the main difficulty is

proving that αβ satisfies the triangle inequality. In [10] this was done using an approach that avoids

proving an analogue of the matrix Ky Fan Lemma (Lemma 8). Here we prove a general version of

the Ky Fan Lemma that we will need later in our paper.

Lemma 18. Suppose f, h ∈ L∞ [0, 1] , and 0 ≤ f, h ≤ 1, ‖f‖∞ = 1. Suppose f, h are non-

increasing, then there exist step functions s[m]
f ≥ f and s

[m]
h ≤ h with ranges contained in

12



{
k
m

: 0 ≤ k ≤ m
}

such that 1
m
≤ s

[m]
f ≤ 1 and 0 ≤ s

[m]
h ≤ m−1

m
and f ≤ s

[m]
f ≤ f + 1

m
and

max
(
h− 1

m
, 0
)
≤ s

[m]
h ≤ h. It follows that KFt

(
s

[m]
h

)
≤ KFt (h) and KFt (f) ≤ KFt

(
s

[m]
f

)
for every t ∈ (0, 1].

Proof. For every m ∈ N, let pi = sup f−1
(
(1− i

m
, 1− i−1

m
]
)
, qi = inf h−1

(
(1− i

m
, 1− i−1

m
]
)
,

i = 1, ...,m. Let p0 = q0 = 0. Then define

s
[m]
f (x) =

m−1∑
i=0

(
1− i

m

)
χ[pi,pi+1) (x) for i = 0, ...,m− 1.

s
[m]
h (x) =

m−1∑
i=0

(
1− i+ 1

m

)
χ[qi,qi+1) (x) for i = 0, ...,m− 1.

It is easy to see that f ≤ s
[m]
f ≤ f + 1

m
; thus

∥∥∥f − s[m]
f

∥∥∥
∞
≤ 1

m
. Also max

(
h− 1

m
, 0
)
≤

s
[m]
h ≤ h; so

∥∥∥h− s[m]
h

∥∥∥
∞
≤ 1

m
.

Therefore, KFt
(
s

[m]
h

)
≤ KFt (h) and KFt (f) ≤ KFt

(
s

[m]
f

)
for every t ∈ (0, 1]

Lemma 19. Suppose f is a step function on [a, b] and k ∈ N, then there exists an invertible

measure preserving map ϕk : [a, b]→ [a, b] such that

∥∥∥∥∥1

k

k∑
j=1

f ◦ ϕ(j)
k −

1

b− a

∫ b

a

f (x) dδ∞

∥∥∥∥∥
∞

≤ η ‖f‖∞
4

k

where η = card f ([a, b]), ϕ(j)
k is the composition of j ϕk’s, i.e., ϕk ◦ ϕk ◦ · · · ◦ ϕk.

Proof. Define ϕk : [a, b]→ [a, b] by

ϕk (x) =

 x+ b−a
k

if a ≤ x ≤ b− b−a
k

x+ b−a
k
− b+ a if b− b−a

k
< x ≤ b

Then ϕ(k)
k is the identity map.

Denote ρk (f) = 1
k

k∑
j=1

f ◦ ϕ(j)
k − 1

b−a

∫ b
a
fdδ∞, then ρk is linear and ‖ρk‖ ≤ 2 (with ρk acting

13



as an operator on L∞ (J∞, δ∞)). Suppose 0 ≤ j < k. Then ρk
(
χ[a+j b−a

k
,a+(j+1)) b−a

k
)

)
= 0 a.e.

(δ∞). Since ρk is linear, ρk
(
χ[a+j1

b−a
k
,a+(j2)) b−a

k
)

)
= 0 whenever 0 ≤ j1 < j2 ≤ k. Suppose

a ≤ α < β ≤ b. We choose j1 and j2 such that j1 is the largest j, 1 ≤ j ≤ k such that

a+ j1
b−a
k
≤ α and choose j2 to be the smallest j, 1 ≤ j ≤ k such that β ≤ a+ j2

b−a
k

. Then

χ[a+j1
b−a
k
,a+(j2)) b−a

k
) − χ[α,β) = χ[a+j1

b−a
k
,α) − χ[β,a+(j2)) b−a

k
).

Hence

ρk
(
χ[α,β)

)
= ρk

(
χ[a+j1

b−a
k
,α)

)
− ρk

(
χ[β,a+(j2)) b−a

k
)

)
.

However, ifE ∈
{

[a+ j1
b−a
k
, α), [β, a+ (j2)) b−a

k
)
}

and f = χE then, since f◦ϕ(j)
k = χ(

ϕ
(j)
k

)−1
(E)

and the collection
{(

ϕ
(j)
k

)−1

(E) : 1 ≤ j ≤ k

}
is disjoint, we have

∥∥∥∥∥1

k

k∑
j=1

f ◦ ϕ(j)
k

∥∥∥∥∥
∞

≤ 1

k

and
1

b− a

∫ b

a

χEdδ∞ ≤
1

b− a
b− a
k

=
1

k
,

we have ‖ρk (E)‖∞ ≤
2
k
. Hence

ρk
(
χ[α,β)

)
≤ 4

k
.

Suppose f is a step function, then f =
n∑
j=1

ajχ[αj ,αj+1) for some n ∈ N. Denote fj = χ[αj ,αj+1),

Then

f =
n∑
j=1

ajfj

∫ b

a

f (x) dδ∞ =
n∑
j=1

aj

∫ b

a

χ[αj ,αj+1)dδ∞.

Thus

‖ρk (f)‖∞ ≤
n∑
j=1

|aj| ‖ρk (fj)‖∞

≤

(
n∑
j=1

|aj|

)
2

k
≤ η ‖f‖∞

(
4

k

)
.
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We call the following an approximate Ky Fan Lemma for L∞ (δ∞) .

Theorem 20. Suppose m is a positive integer. Then whenever 0 ≤ f, h ≤ 1 in L∞ (δ∞) satisfies

KFt (h) ≤ KFt (f) for all rational numbers 0 < t ≤ 1,

there are, γ1, . . . γm2m ∈MP (J∞, δ∞) , such that

sh ≤
1

mm2

mm
2∑

i=1

sf ◦ γi +
2

m

Hence β (h) ≤ β (f) for every symmetric gauge norm β on L∞ (δ∞) .

Proof. If f ∈ L∞ (J∞, δ∞), then the map t 7→ KFt (f) is continuous on (0, 1]. Hence we have

KFt (h) ≤ KFt (f) for all 0 < t ≤ 1. We know that KFt (f) = KFt (sf ) and β (f) = β (sf ) for

every f ∈ L∞ (δ∞) . We may assume that f, h are nonincreasing, and we denote u,w be the step

functions as in Lemma 18. Then u,w satisfying f ≤ u ≤ f + 1
m

and max
(
h− 1

m
, 0
)
≤ w ≤ h.

Recall that

u =

(
1− i

m

)
χ[pi,pi+1) (x) for i = 0, ...,m− 1.

w =

(
1− i+ 1

m

)
χ[qi,qi+1) (x) for i = 0, ...,m− 1.

and it is easy to see that

∫ t

0

fdδ∞ +
t

m
≥
∫ t

0

udδ∞ ≥
∫ t

0

wdδ∞ ≥
∫ t

0

hdδ∞ −
t

m
,
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for all 0 ≤ t ≤ 1.

By Lemma 19, for each m ∈ N, there exists a measure preserving map ϕm : [0, 1] → [0, 1] such

that ∥∥∥∥∥ 1

m

m∑
j=1

u ◦ ϕ(j)
m −

∫ 1

0

udδ∞

∥∥∥∥∥
∞

≤ η ‖u‖∞
4

m
.

where η = card (Ran (u))

Let l(t) = 1
t

∫ t
0
udδ∞, then l : [0, 1] −→ [0,∞) is a continuous function. There are 2 cases to

consider:

Case 1: If l(1) =
∫ 1

0
udδ∞ ≥ b1 = max {w (t) : 0 < t ≤ 1}, then by Lemma 19, for ∀k =

m2 ∈ N, there exists ϕk ∈MP[0, 1] such that

∥∥∥∥∥∥u ◦ ϕ
(1)
k + · · ·+ u ◦ ϕ(m2)

k

m2
−
∫ 1

0

udδ∞

∥∥∥∥∥∥
∞

≤ 4η ‖u‖∞
m2

≤ 4

m
,

where η = card (u) ≤ m.Denote ϕ(i)
k by γj Then we have

1

m2

m2∑
j=1

u ◦ γj ≥ w − 6

m
.

Therefore 1
m2

m2∑
j=1

f ◦ ϕ(j) + 1
m
≥ h− 4

m
follows from Lemma 18. That is

1

m2

m2∑
j=1

f ◦ ϕ(j) ≥ h− 3

m

We can view it as
1

m2m

m2m∑
j=1

f ◦ ϕ(j) ≥ h− 3

m

where ϕ(i+m2t) = ϕ(i) for 1 ≤ i ≤ m2 and 0 ≤ t ≤ m2m−2 − 1.
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Case 2: l(1) =
∫ 1

0
udδ∞ < b1.

Then there must exist p′1 ∈ (0, 1) , so that

l(p
′

1) =
1

p
′
1

∫ p
′
1

0

udδ∞ = b1.

Define u(1) in the following way

u(1) (x) =

 b1

u(x)

0 ≤ x ≤ p′1

p′1 < x ≤ 1

Then for every t > p
′
1,

l (t) =

∫ t

0

udδ∞ >
∫ t

0

wdδ∞ =⇒
∫ p′1

0

udδ∞ +

∫ t

p′1

udδ∞ >
∫ p′1

0

wdδ∞ +

∫ t

p′1

wdδ∞.

Thus we have b1p
′
1 +

∫ t
p′1
u(1)dδ∞ > b1p

′
1 +

∫ t
p′1
wdδ∞, therefore

∫ t
q1
u(1)dδ∞ >

∫ t
q1
wdδ∞.

Therefore, for every 0 < t ≤ 1, we have

u− 1

m
≤ u(1) ≤ u

KFt
(
u(1)
)
≥ KFt (w)

and for every t ≤ t1,
∥∥u(1)

∥∥
t

= b1 = ‖h‖t

By Lemma 19 again, for every k = m2 ∈ N,there exist ϕ(1), . . . , ϕ(k) : [0, 1] −→ [0, 1] such

that ∥∥∥∥ 1

m2

m2

Σ
i=1
u ◦ ϕ(i) −

∫ 1

0

udδ∞

∥∥∥∥
∞
≤ η ‖u‖∞

4

m2
≤ 4

m
.

Let ϕ(1)
(r)(t) =

 ϕ(r)(t)

t

t ≤ q1

t > q1

, r = 1, . . . ,m2. Then ϕ(1)
(r) ∈ MP[0, 1] for all 1 ≤ r ≤ m2

and ∥∥∥∥ 1

m2

m2

Σ
r=1
u ◦ ϕ(1)

(r) − u
(1)

∥∥∥∥
∞
≤ 2

m
.

That is u(1) ≈ 1
m2

m2

Σ
r=1
u ◦ ϕ(1)

(r) and Ran(u(1)) ⊆ {b1, a2, ..., am}.
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If 1
q1

∫ 1

q1
u(1)dδ∞ > b2, go to case 1.

if 1
q1

∫ 1

q1
u(1)dδ∞ < b2, do the similar process as case 2 above, we have u(2) and

∥∥∥∥ 1

m2

m2

Σ
i=1
u(1) ◦ ϕ(2)

i − u(2)

∥∥∥∥
∞
≤ 2

m

That is

u(2) ≈ 1

m2

m2

Σ
i=1
u(1) ◦ ϕ(2)

i

=
1

m2

m2

Σ
i1=1

(
m2

Σ
i2=1

1

m2

(
u ◦ ϕ(1)

i1

))
◦ ϕ(2)

i2

=
1

m4

m2

Σ
i=1

m2

Σ
j=1

(u ◦ ϕ(1)
i1
◦ ϕ(2)

i2
).

and ran
(

(u)(2)
)
⊆ {b1, b2, a3, ..., am}.

Finally, after r steps(at most m), we will have

u(r) ≈ 1

m2r

m2

Σ
i1=1
· · ·

m2

Σ
ir=1

(u ◦ ϕ(1)
i1
◦ ϕ(2)

i2
· · · ◦ ϕ(r)

ir
),

and thus u(r) > w.

since m2r|mm2
, similar as in case 1, we can view this as

1

mm2

mm
2∑

j=1

u ◦ ϕ(j) ≥ w − 2

m
.

In conclusion, for everym, there is an integerN = mm2 , and there are γ1, . . . γN ∈MP (J∞, δ∞)

such that
1

N

N∑
i=1

u ◦ γi ≥ w − 2m

N
.

By Lemma 18, we know that f ≥ u− 1
m

and h ≤ w + 1
m

Thus, 1
N

N∑
i=1

sf ◦ γi + 2m
N

+ 1
m
≥ sh.

Therefore, β (f) ≥ β (h) as m→∞.
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Corollary 21. If β is a symmetric gauge norm on L∞ (J∞, δ∞), then αβ is a norm onM.

Proof. We need only prove the triangle inequality. If A,B ∈ M, we define h (t) = sA+B (t) and

f (t) = sA (t) + sB (t). Then KFt (h) = KFt (A+B) and KFt (f) = KFt (A) + KFt (B), so

Lemma 20 applies, and we get

αβ (A+B) = β (h) ≤ β (f) = β (sA (t) + sB (t)) ≤ β (sA (t)) + β (sB (t)) = αβ (A) + αβ (B) .

Since it is easily seen that α = αβα and β = βαβ , we obtain the characterization [10] of the

unitarily invariant norms on a II1 factor von Neumann algebra.

Theorem 22. LetM be a type II1 factor von Neumann algebra, then there is a one-to-one corre-

spondence between unitarily invariant norms onM and symmetric gauge norms on L∞ (J∞, δ∞) .

2.2 Approximate Unitary Equivalence

The following is a consequence of a result of Hadwin and Ding [5]. SupposeR is a von Neumann

algebra and T ∈ R. Z (R) = R∩R′ is the center. In [4] the R-rank of T was defined to be the

Murray-von Neumann equivalence class of the projection PT onto the closure of the range of T .

Note that

PT = lim
n→∞

(TT ∗)1/n (SOT ) ,

so PT ∈M.

In [5] they definedR-rank(S) ≤ R-rank(T ) to mean that PS is Murray-von Neumann equiva-

lent to a subprojection of PT .

Theorem 23. SupposeR is a finite von Neumann algebra acting on a separable Hilbert spaceH.

Let Φ : R → Z (R) be the unique center-valued trace on R. Suppose A is a unital commutative

C* algebra and π, ρ : A → R are unital ∗-homomorphisms. The following are equivalent:
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1. There is a net {Uλ} of unitary operators inR such that, for every a ∈ A,

‖U∗λπ (a)Uλ − ρ (a)‖ → 0.

2. Φ ◦ π = Φ ◦ ρ.

Proof. (2) ⇒ (1). Suppose (2) is true. Suppose x1, . . . , xn ∈ A and ε > 0. Let B =

C∗ (x1, . . . , xn). Then B is separable and commutative. Since π.ρ : B → R are unital ∗-

homomorphisms, there are weak*-weak* continuous unital ∗-homomorphisms π̂ and ρ̂ from the

second dual B## of B into R such that the restrictions of π̂ and ρ̂, respectively, to B are π and

ρ. Since Φ is weak*-weak* continuous on R, we see that Φ ◦ π̂ = Φ ◦ ρ̂. Suppose x ∈ B.

Then the range projection Pπ(x) equals the weak*-limit π
(
|x|1/n

)
and Pρ(x) is the weak*-limit of

ρ
(
|x|1/n

)
. Thus

Φ
(
Pπ(x)

)
= lim

n→∞
Φ
(
π
(
|x|1/n

))
= lim

n→∞
Φ
(
ρ
(
|x|1/n

))
= Φ

(
Pρ(x)

)
.

This means, by Corollary 2.8 in Takesaki, vol 1, that Pπ(x) and Pρ(x) are Murray-von Neumann

equivalent. Hence, for every x ∈ B,

R-rank (π (x)) = R-rank (ρ (x)) .

If follows from [5] that the restrictions of π and ρ to B are approximately equivalent in R. Hence

there is a unitary operator U ∈M such that

‖U∗π (xk)U − ρ (xk)‖ < ε

for 1 ≤ k ≤ n. If we let D be the set of all pairs d = (F , ε), with F = {x1, . . . , xn} ⊆ A finite

and ε > 0, we see that D is a directed set with respect to≤= (⊆,≥) and if we denote the U above
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by Ud, we obtain a net {Ud} of unitary operators inR such that, for every x ∈ A

‖U∗dπ (x)Ud − ρ (x)‖ → 0.

(1)⇒ (2). Suppose a = a∗ ∈ A and let π̂ and ρ̂ fromA## toR be as in the proof of (2)⇒ (1).

The family
{
χ{t} (π (a)) : t ∈ R

}
is an orthogonal family of projections on the separable Hilbert

space H , so, except for a countable set Eπ(a) ⊆ R these projections must be 0. Simlarly, there

is a countable subset Eρ(a) ⊆ R such that, for t ∈ R\Eρ(a), we have χ{t} (ρ (a)) = 0. Suppose

−∞ < s < t <∞ and s, t /∈ Eπ(a) ∪ Eρ(a). Define the function h : R→ R by

h (x) =


0 if x ≤ s

x−s
t−s if s ≤ x ≤ t

1 if t ≤ x

Then h is continuous and Pπ(h(a)) = Pg(π(a)) = χ[s,t) (π (a)) and Pρ(h(a)) = Pg(ρ(a)) = χ[s,t) (ρ (a)).

Since π and ρ are approximately equivalent inR, it follows from [5] that χ[s,t) (π (a)) and χ[s,t) (ρ (a))

are Murray-von Neumann equivalent. Thus, by Corollary 2.8 in [15],

Φ
(
χ[s,t) (π (a))

)
= Φ

(
χ[s,t) (ρ (a))

)
.

Since the allowable s and t are dense in R and Φ is weak*-weak* continuous, we see that

Φ
(
χ[s,t) (π (a))

)
= Φ

(
χ[s,t) (ρ (a))

)
holds for all −∞ < s < t <∞. Since Φ is linear, we see that

Φ (π (a)) = Φ (ρ (a))

whenever a = a∗ ∈ A, and thus, for all a ∈ A. Thus (2) is proved.
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Remark 1. The characterization of approximate equivalence in terms of R-rank in [5] Ding-

Hadwin holds for separable AH C*-algebras. Every nonseparable AH C*-algebra is a direct limit

of separable AH C*-algebra, and the proof of Theorem 23 can easily be modified to handle the AH

case.

2.3 The Central Decomposition

We refer the reader to [11] for the theory of direct integrals and the central decomposition of a

von Neumann algebra acting on a separable Hilbert space. Since we are only interested in the von

Neumann algebraR and not how it acts on a Hilbert space, we can ignore multiplicities when using

the central decomposition [11].Suppose R is a finite von Neumann algebra acting on a separable

Hilbert space. Then we can write

R = [R1 ⊕R2 ⊕ · · · ]⊕R∞

whereRk is type Ik for 1 ≤ k <∞ andR∞ is a type II1 von Neumann algebra.

2.3.1 Measurable families

SupposeM is a type II1 von Neumann algebra with a faithful tracial state acting on a separable

Hilbert space H=l2∞. We will associate withM a probability space (Ω, µ) and a unitary operator

U : H −→ L2(µ,H) that transforms M into a certain von Neumann algebra of operators on

L2 (µ,H) that will be described next.

For each ω ∈ Ω, there is a type II1 von Neumann algebraMω in B (H) that is determined by

two sequences of SOT measurable functions fn and gn from Ω into the unit ball of B (H) so that

Mω is generated by the set {fn (ω) : n ∈ N} ,M′
ω is generated by the set {gn (ω) : n ∈ N}, and

each of those sets is SOT dense in the unit ball of the von Neumann algebra it generates. Suppose

ϕ : Ω→ B (H) is a SOT-measurable function, and define |ϕ| = ‖·‖ ◦ ϕ, that is |ϕ| (ω) = ‖ϕ (ω)‖

for ω ∈ Ω. If |ϕ| ∈ L∞ (µ) , then let ‖ϕ‖∞ = ‖ϕ‖∞. We will assume that (Ω, µ), U , and the

fn, gn,Mω have been chosen so that
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U∗MU = {ϕ : Ω −→ B(H)| ϕ is SOT-measurable, ϕ (ω) ∈Mω a.e. (µ) , and |ϕ| ∈ L∞ (µ)} .

As usual, ϕ1 = ϕ2 will mean ϕ1 = ϕ2 a.e. (µ), and each ϕ in U∗MU is the operator on

L2 (µ,H) defined for f ∈ L2 (µ,H) by

(ϕf) (ω) = ϕ (ω) f (ω) .

2.3.2 Measurable cross-sections

Definition 24. Suppose (X, d) is a metric space and µ : Bor(X) −→ [0,∞) is a finite measure.

A subset B of X is called µ-measurable if there are A,F ∈ Bor(X) such that B\A ⊂ F and

µ (F ) = 0. The σ-algebra of all µ-measurable sets is denoted by Mµ. A subset D of X is

absolutely measurable if D is µ-measurable for every finite measure µ on Bor(X). The σ-algebra

of all absolutely measurable subsets of X is denoted by AM (X). Clearly we have

AM (X) =
⋂
{Mµ : µ is a finite Borel measure on X} .

It is obvious that eachMµ contains Bor(X), so Bor(X) ⊂ AM (X). However, it is often the

case that Bor(X) 6= AM (X). If Y is another metric space, we say that a function f : X → Y

is absolutely measurable if f is AM (X)-Bor(Y ) measurable, i.e., for every Borel set E ⊆ Y,

f−1(E) ∈ AM (X). Recall that a finite measure space (Λ,Σ, λ) is complete if, E ∈ Σ whenever

E ⊂ F, F ∈ Σ and λ (F ) = 0, i.e., all subsets of sets of measure 0 are in Σ. Note that statement

(4) in Lemma 25 shows how, in the presence of a complete measure space, absolute measurability

turns into measurability.

Lemma 25. Suppose X , Y and Z are metric spaces and f : X −→ Y , and g : Y → Z. Then

1. f is absolutely measurable if and only if f is AM(X)-AM (Y ) measurable

2. If f and g are absolutely measurable, then g ◦ f : X → Z is absolutely measurable.

3. For every Borel set E ⊆ Y, f−1(E) is absolutely measurable.
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4. If (Λ,Σ, λ) is a complete finite measure space and ϕ : Λ→ X is Borel measurable, then

(a) ϕ is Σ-AM (X) measurable, and,

(b) If f is absolutely measurable, then f ◦ ϕ : X → Y is measurable.

Definition 26. If f : X → Y and g : f(X) −→ X satisfy, for every y ∈ f(X),

f (g(y)) = y,

then g is called a cross-section for f .

The following Theorem is from Theorem 3.4.3 in [1] and is the key to dealing with direct

integrals.

Theorem 27. Suppose X is a Borel subset of a complete separable metric space, and Y is a

separable metric space.If f : X −→ Y is a continuous function, then

1. f(X) is an absolutely measurable subset of Y, and

2. f has an absolutely measurable cross-section g : f(X) −→ X .

Here is a simple result proved using measurable cross-section.

Lemma 28. Suppose n is a positive integer and Mn (C)+ is the set of n× n matrices A such that

A ≥ 0. Let Un be the set of unitary n × n matrices and let Dn be the set of all diagonal n × n
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matrices in Mn (C)+ of the form diag
(
s 1
n
, . . . s1

)
with s 1

n
≥ s 2

n
≥ · · · ≥ s1 ≥ 0. Then there is an

absolutely measurable function u : Mn (C)+ → Un such that, for every A ∈Mn (C)+,

u (A)∗Au (A) ∈ Dn,

i.e.,

u (A)∗Au (A) =



sA
(

1
n

)
sA
(

2
n

)
. . .

sA
(
n
n

)


.

Hence, for every T ∈Mn (C),

u (|T |)∗ |T |u (|T |) =



sT
(

1
n

)
sT
(

2
n

)
. . .

sT
(
n
n

)


.

Proof. LetX =
{

(A,UA) : A ∈Mn (C)+ , UA ∈ Un, U∗AAUA = diag
(
sA
(

1
n

)
, . . . , sA

(
n
n

))}
, which

is a subset of Mn (C)+ × Un. For every (Aλ, UAλ) ∈ X, and (Aλ, UAλ) −→ (A,UA), we have

Aλ −→ A,UAλ −→ UA, Thus

‖U∗AAUA − UAλAλUAλ‖ → 0,

We also know that 1
i

i∑
j=1

sA
(
j
n

)
= KFi (A) for all 1 ≤ i ≤ n and sA

(
1
n

)
= KF1 (A) ≤ ‖A‖ . We

can get sAλ
(
i
n

) ‖·‖→ sA
(
i
n

)
for all 1 ≤ i ≤ n. Thus

U∗AλAλUAλ = diag

(
sAλ

(
1

n

)
, . . . , sAλ

(n
n

))
‖·‖−→ diag

(
sA

(
1

n

)
, . . . , sA

(n
n

))

Therefore U∗AAUA = diag
(
sA
(

1
n

)
, . . . , sA

(
n
n

))
, and X is a closed subset of a Mn (C)+×Un,

which is a complete separable metric space.
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Define π1 : X −→Mn (C)+ and π2 : X −→ Un by

π1(A,U) = A, π2(A,U) = U

It is easy to see that π1(X) = Mn (C)+.

Since we know for every A ∈Mn (C)+, there exists a unitary UA such that

U∗AAUA = diag

(
sA

(
1

n

)
, . . . , sA

(n
n

))

Thus by Theorem 27, there exists an absolutely measurable function g : Mn (C)+ −→ X

such that π1 ◦ g = id on Mn (C)+, for every A ∈ Mn (C)+, g(A) = (A,UA). Then we define

u = π2 ◦ g : Mn (C)+ −→ Un, it is absolutely measurable.

Therefore, for every A ∈Mn (C)+,

u (A) = UA and u (A)∗Au (A) = diag

(
sA

(
1

n

)
, . . . , sA

(n
n

))
∈ Dn.

Hence, for every T ∈Mn (C),

u (|T |)∗ |T |u (|T |) =



sT
(

1
n

)
sT
(

2
n

)
. . .

sT
(
n
n

)


.

2.3.3 Direct Integrals

Suppose Ω ⊆ R is compact, µ is a probability Borel measure, H is a separable Hilbert space.

Define
∫ ⊕

Ω
Hdµ = L2 (µ,H) to be the set of all measurable functions f : Ω→ H such that

‖f‖2
2 =

def

∫
Ω

‖f (ω)‖2 dµ (ω) <∞.
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We define an inner product 〈, 〉 on L2 (µ,H) by

〈f, h〉 =

∫
Ω

〈f (ω) , h (ω)〉 dµ (ω) .

In this way L2 (µ,H) is a Hilbert space.

We define L∞ (µ,B (H)) to be the set of all bounded functions ϕ : Ω → B (H) that are

measurable with respect to the weak operator topology (WOT) on B (H). Although the weak

operator topology, strong operator topology (SOT) and ∗-strong operator topology (∗-SOT) on

B (H) are different, the Borel sets with respect to these topologies are all the same. Suppose the

map ω 7→ Tω is in L∞ (µ,B (H)). We define an operator T =
∫ ⊕

Ω
Tωdµ (ω) by

(Tf) (ω) = Tω (f (ω)) .

If ϕ ∈ L∞ (µ,B (H)) and Tω = ϕ (ω) for ω ∈ Ω, we also use the notation Mϕ to denote∫ ⊕
Ω
Tωdµ (ω). In this way we can view L∞ (µ,B (H)) ⊆ B (L2 (µ,H)) , and we can write

L∞ (µ,B (H)) =
∫ ⊕

Ω
B (H) dµ (ω) .

We have that L∞ (µ) can be viewed as the subalgebra D of L∞ (µ,B (H)) of all functions ϕ

such that ϕ (ω) ∈ C · 1 a.e. (µ), that is, by identifying h ∈ L∞ (µ) with the function ω 7→ h (ω) 1.

We denote D by

D =

∫ ⊕
Ω

C · 1dµ (ω) .

We have D′ = L∞ (µ,B (H)) and L∞ (µ,B (H))′ = D, therefore D = Z (L∞ (µ,B (H))).

Suppose, for each ω ∈ Ω, Rω ⊂ B (H) is a von Neumann algebra. We say that the family

{Rω}ω∈Ω is a measurable family if there is a countable set {ϕ1, ϕ2, . . .} ⊂ L∞ (µ,B (H)) such

that

ball (Rω) = {ϕ1 (ω) , ϕ2 (ω) , . . .}−SOT a.e. (µ) .

It is known that if {Rω}ω∈Ω is a measurable family, then so is {R′ω}ω∈Ω. Moreover, if {R′ω}ω∈Ω is

a measurable family, then there is a sequence {ψ1, ψ2, . . .} ⊂ L∞ (µ,B (H)) such that
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ball (R′ω) = {ψ1 (ω) , ψ2 (ω) , . . .}−SOT a.e. (µ) .

If {Rω}ω∈Ω is a measurable family, then we define the direct integral
∫ ⊕

Ω
Rωdµ (ω) to be the set

of all T =
∫ ⊕

Ω
Tωdµ (ω) ∈ L∞ (µ,B (H)) such that

Tω ∈ Rω a.e. (µ) .

It is known [11] that a von Neumann algebraR ⊂ B (L2 (µ,H)) can be written as

R =

∫ ⊕
Ω

Rωdµ (ω)

for a measurable family {Rω}ω∈Ω if and only if

D =

∫ ⊕
Ω

C · 1dµ (ω) ⊂ R ⊂
∫ ⊕

Ω

B (H) dµ (ω) = D′,

equivalently,

D ⊂ Z (R) .

In particular, since Z (R) = Z (R′) = R ∩R′ for every von Neumann algebra R, we see that R

can be decomposed as a direct integral if and only ifR′ can be decomposed as a direct integral.

Suppose 1 ≤ n ≤ ∞ = ℵ0. We define `2
n be the space of square summable sequences with the

inner product 〈x, y〉 =
n∑
i=1

xiyi, where x, y ∈ H and H is a Hilbert space with dimension n.

Lemma 29. Suppose A is an abelian von Neumann algebra on a separable Hilbert space H .

Then there are compact subsets Ωn ⊂ R for 1 ≤ n ≤ ∞ and a Borel measure µn on Ωn

such that µn (Ωn) ∈ {0, 1} and A is unitarily equivalent to
∑⊕

1≤n≤∞ L
∞ (µn,C · 1) acting on∑⊕

1≤n≤∞ L
2 (µn, `

2
n).
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Suppose R is a von Neumann algebra acting on a separable Hilbert space H . Then the center

Z (R) ofR is an abelian von Neumann algebra on H . From Lemma 29 we can write

H =
⊕∑

1≤n≤∞

L2
(
µn, `

2
n

)

and

Z (R) =
⊕∑

1≤n≤∞

L∞ (µn,C · 1) .

SinceR commutes with Z (R), we can write

R =
⊕∑

1≤n≤∞

Rn,

whereRn ⊂ B (L2 (µn, `
2
n)). It is clear, for 1 ≤ n ≤ ∞, that

Z (Rn) = L∞ (µn,C · 1) ,

which implies

Rn ⊂ Z (Rn)′ = L∞ (µn,C · 1)′ = L∞
(
µn, B

(
`2
n

))
.

Hence, for each n, 1 ≤ n ≤ ∞, there is a measurable family {Rn (ω)}ω∈Ωn
such that

Rn =

∫ ⊕
Ωn

Rn (ω) dµn (ω) .

We therefore have

R =
⊕∑

1≤n≤∞

∫ ⊕
Ωn

Rn (ω) dµn (ω) .

This is called the central decomposition ofR.

The following Lemma is a well-known result.[11]

Lemma 30. In the central decomposition of R, almost every Rn (ω) is a factor von Neumann

algebra.
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Lemma 31. Suppose An is a masa of a Rn for 1 ≤ n ≤ ∞, then there is a measurable family

{An (ω)}ω∈Ωn
such that

An =

∫ ⊕
Ωn

An (ω) dµn (ω) ,

where An (ω) is a masa inRn (ω) .

Proof. Suppose

W =
(
B
(
l2n
))
× A×B × C × E × N× N,

where A = B = C =
∞
Π
i=1

ball (B (l2n)) and E = {x ∈ l2n : ‖x‖ = 1}. Then W is a complete

separable metric space with product topology.

Define Xm,k to be the set of elements (T, {Ai}∞i=1 , {Bi}∞i=1 , {Ci}
∞
i=1 , e,m, k) inW satisfying

TAi = AiT , TBi = BiT , ‖(TCm − CmT ) e‖ ≥ 1

k
, for every i ∈ N.

Then Xm,k is a closed subset ofW . We define X =
∞
∪

m,k=1
Xm,k, then X is a Borel subset ofW .

Let π2,3,4 : X →A × B × C be the projection map. Then π2,3,4 (X ) consists of elements

({Ai}∞i=1 , {Bi}∞i=1 , {Ci}
∞
i=1) so that there exists T ∈ ball (B (l2n)) such that

T ∈ {A1, A2, . . . }′ ∩ {B1, B2, . . . }′ and T /∈ {C1, C2, . . . }′ .

Suppose there are sequences {f1, f2, . . .}, {ψ1, ψ2, . . .} and {g1, g2, . . .} contained inL∞ (µn, B (l2n))

such that

ballAn (ω) = {f1 (ω) , f2 (ω) , . . . }−SOT ,

ballRn (ω)′ = {ψ1 (ω) , ψ2 (ω) , . . . }−SOT

ballAn (ω)′ = {g1 (ω) , g2 (ω) , . . . }−SOT .

By Theorem 27, we know there exists an absolutely measurable function Υ : π2,3,4 (X ) −→ X

such that π2,3,4◦Υ is the identity function on π2,3,4 (X ) .
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Define F : Ωn → A×B × C by

F (ω) = {fi (ω)}∞i=1 × {ψi (ω)}∞i=1 × {gi (ω)}∞i=1 .

Let

G = F−1 (π2,3,4 (X )) ={
ω : there exists T ∈ B (l2n) such that T (ω) ∈ An (ω)′ ∩Rn (ω) and T (ω) /∈ An (ω)

}
.

We know from Lemma 25 and the completeness of (Ωn, µn) that G is measurable. We need to

prove µn (Gc) = 0. Suppose not, and let π1 : X →B (l2n) be the projection map (into the first

coordinate). Then, by Lemma 25, π1 ◦ Υ ◦ F |G is a measurable function from G to B (l2n). We

define T by

T (ω) =

 (π1 ◦Υ ◦ F |G) (ω) if ω ∈ G

0 if ω /∈ G
.

Thus

T =

∫ ⊕
G

T (ω) dµn (ω)⊕
∫ ⊕

Ωn\G
0dµn (ω) ,

then T ∈ A′n ∩Rn and T /∈ An, which contradicts to the assumption that An is a masa. Therefore

µn (G) = 0 and

An =

∫ ⊕
Ωn

An (ω) dµn (ω) ,

An (ω) is a masa a.e.(µn). This completes the proof.

2.3.4 Multiplicities for Type In factors

A type I factor von Neumann algebra is isomorphic to B (H) for some Hilbert space H . How-

ever, if m is a cardinal, we can let H(m) denote a direct sum of m copies of H and, for each

T ∈ B (H) write T (m) be a direct sum of m copies of T acting on H(m), and let B (H)(m) ={
T (m) : T ∈ B (H)

}
. Clearly, B (H)(m) is isomorphic to B (H). The number m is called the mul-

tiplicity of the factor B (H)(m) and it is the minimal rank of a nonzero projection in B (H)(m). If
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we consider a type I von Neumann algebra acting on a separable Hilbert space as a direct integral

of factors, we can change the factors so that they all have multiplicity 1. This gives another von

Neumann algebra that is isomorphic to the original one. Since we are interested in finite von Neu-

mann algebras, the type In algebras, with 1 ≤ n < ∞, can be written as direct integrals of copies

of Mn (C), i.e.,
∫ ⊕

Ωn
Mn (C) dµn (ω) acting on L2 (µn, `

2
n) for some probability space (Ωn, µn)

where µn is a Borel measure on a compact subset Ωn of R. In this case,
∫ ⊕

Ωn
Mn (C) dµn (ω) is

naturally isomorphic to Mn (L∞ (µn)) acting on L2 (µn)(n). When we write the type In part of a

von Neumann algebra this way, we have an isomorphic copy, but maybe not a unitarily equiva-

lent copy of the algebra, since we changed all of the multiplicities to be 1. Note that the center

Z
(∫ ⊕

Ωn
Mn (C) dµn (ω)

)
=
∫ ⊕

Ωn
C · 1µn (ω) acting on L2 (µn, `

2
n).

For example, if a von Neumann algebra is
∫ ⊕
E1

M2 (C) dη1 (ω) ⊕
∫ ⊕
E2

M2 (C)(3) dη2 (ω), then

it is isomorphic to
∫ ⊕

Ω
M2 (C) dµ (ω) where Ω is the disjoint union of E1 and E2 and µ (A) =

η1 (A ∩ E1) + η2 (A ∩ E2).

Thus in the central decomposition, we can assume, for each positive integer n (i.e., 1 ≤ n <

∞), that

Rn =

∫ ⊕
Ωn

Rn (ω) dµn (ω) =

∫ ⊕
Ωn

Mn (C) dµn (ω) ,

and

Z (Rn) =

∫ ⊕
Ωn

C · 1dµn.

For 1 ≤ n <∞ we have that the map ρn : Rn → C defined by

ρn (T ) =

∫ ⊕
Ωn

τn,ω (Tω) dµn (ω)

is a normal faithful tracial state onRn.

2.3.5 II1 von Neumann algebras

Once we have changed the multiplicities of the type In parts ofR, we have in the decomposition

R∞ =

∫ ⊕
Ω∞

R∞ (ω) dµ∞ (ω) .
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We have

Z (R∞) =

∫ ⊕
Ω∞

C · 1dµ∞ (ω) .

we have that each R∞ (ω) must be an infinite dimensional finite factor, which means it must be a

type II1 factor, and we can assume it acts on `2. In this case making the multiplicity infinite can

make things more convenient.

We let R(∞)
∞ =

{
T (∞) = T ⊕ T ⊕ · · · : T ∈ R∞

}
. Clearly, R(∞)

∞ is isomorphic to R∞, and

we have

R(∞)
∞ =

∫ ⊕
Ω∞

R(∞)
∞ (ω) dµ∞ (ω)

acting on L2
(
µ∞, (`

2)
(∞)
)

. The nice thing about R(∞)
∞ (ω) is that every normal state ϕ on

R(∞)
∞ (ω) can be written as

ϕ
(
T (∞)

)
=
〈
T (∞)e, e

〉
for some unit vector e ∈ (`2)

(∞). Since (`2)
(∞) is isomorphic to `2 = `2

∞, we can, by replacing

R∞ withR(∞)
∞ , assume that every normal state ϕ onR∞ (ω) can be written as

ϕ (T ) = 〈Te, e〉

for some unit vector e. In particular, since R∞ (ω) is a II1 factor, there is a unique normal tracial

state τ∞,ω onR∞ (ω). Hence there is a unit vector e (ω) ∈ `2
∞ such that, for every T ∈ R∞ (ω),

τ∞,ω (T ) = 〈Te (ω) , e (ω)〉 .

Using the measurable cross-section theorems we can choose e (ω) so that the map e : Ω∞ → `2
∞

is absolutely measurable.

Lemma 32. Suppose R∞ is type II1 von Neumann algebra with R∞ =
∫ ⊕

Ω∞
R∞ (ω) dµ∞ (ω).

Then there exists a map e ∈ L2 (µ∞, `
2
∞) and ‖e‖2 = 1 such that for every T =

∫
Tωdµ∞ (ω) ∈

R∞, 〈T∞,ωe (ω) , e (ω)〉 = τ∞,ω (Tω), where τ∞,ω is the unique normal tracial state onR∞ (ω) .
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Proof. Suppose

W = ball
(
B
(
l2∞
))
×
∞
Π
i=1

ball
(
B
(
l2∞
))
× E,

where E = {x ∈ l2∞ : ‖x‖ = 1}. Then W is a complete separable metric space with product

topology.

Let X be the set of elements (T, {Ai}∞i=1 , e) inW satisfying

TAi = AiT, 〈AiAje, e〉 = 〈AjAie, e〉 for every i, j ∈ N.

It is easy to verify that X is closed.

Let π2 : X →
∞
Π
i=1

ball (B (l2∞)), π3 : X →E be the projection maps. Then π2 (X ) is the set of

elements {Ai}∞i=1 so that there exists T ∈ ball (B (l2∞)) such that

T ∈ {A1, A2, . . . }′ ∩ {B1, B2, . . . }′ and 〈AiAje, e〉 = 〈AjAie, e〉 for all i, j ∈ N.

There exists sequences {ψ1, ψ2, . . .} contained in L∞ (µ∞, B (l2∞)) such that

ballR∞ (ω)′ = {ψ1 (ω) , ψ2 (ω) , . . . }−SOT

By Theorem 27, we know there exists an absolutely measurable function Υ : π2 (X ) −→ X

such that π2 ◦Υ is the identity function on π2 (X ) .

Define F : Ω∞ →
∞
Π
i=1

ball (B (l2∞)) by

F (ω) = {ψi (ω)}∞i=1

which is measurable, thus, by Lemma 25, π3 ◦Υ ◦ F is a measurable function from Ω∞ to l2∞. We

define e by

e (ω) = (π3 ◦Υ ◦ F ) (ω) .
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Thus e is a measurable function with e =
∫ ⊕

Ω∞
e (ω) dµ∞ (ω), that is e ∈ L2 (µ∞, `

2
∞) and

‖e‖2
2 =

∫
Ω∞

‖e (ω)‖2 dµ∞ (ω) =

∫
Ω∞

1dµ∞ (ω) = µ∞ (Ω∞) = 1.

The map

τ∞ : R∞ → C

defined by

τ∞ (T ) = 〈Te, e〉 =

∫
Ω∞

〈Tωe (ω) , e (ω)〉 dµ∞ (ω) =
def

∫
Ω∞

τ∞,ω (Tω) dµ∞ (ω)

is a faithful normal trace onR∞. Since τ∞,ω is a faithful normal trace onR∞ (ω) and the trace on

a type II1 factor is unique, it follows that τ∞,ω is the usual trace.

2.3.6 The Center-valued Trace

Suppose R is an arbitrary finite von Neumann algebra, possibly not acting on a separable

Hilbert space. There is (see [15]) a unique map ΦR : R → Z (R) satisfying

1. ΦR is linear and completely positive,

2. ΦR (1) = 1,

3. ΦR (AB) = ΦR (BA) for all A,B ∈ R,

4. ΦR is weak*-weak* continuous, and

5. ΦR (ATB) = AΦR (T )B for all T ∈ R and all A,B ∈ Z (R).

The map ΦR is called the center-valued trace onR.
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In the case whenR acts on a separable Hilbert space, and we have

R =
∑⊕

1≤n≤∞
Rn,

we have

Z (R) =
∑⊕

1≤n≤∞
Z (Rn) ,

and we have

ΦR =
∑⊕

1≤n≤∞
ΦRn .

We can write each ΦRn explicitly in terms of the central decomposition, i.e.,

ΦRn (T ) =

∫ ⊕
Ωn

τn (Tω) · 1dµn (ω)

when 1 ≤ n <∞, and

ΦR∞ (T ) =

∫ ⊕
Ωn

τω (Tω) · 1dµ∞ (ω) .

It is clear that these maps satisfy the defining properties (1)-(5) and the uniqueness tells us that

these formulas are correct.

2.3.7 Two Simple Relations

Suppose 1 ≤ n ≤ ∞. There is a normal ∗-isomorphism γn : L∞ (µn)→ Z (Rn) defined by

γn (f) =

∫ ⊕
Ωn

f (ω) · 1dµn (ω) .

Also the map f 7→
∫

Ωnfdµn is a state on L∞ (µn). The simple relation between this state and the

∗-isomorphism γn and ρn is given by

(ρn ◦ γn) (f) =

∫
Ωn

fdµn

for every f ∈ L∞ (µn).
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Another simple relationship between ρn and ΦRn is

ρn = ρn ◦ ΦRn .

2.3.8 Putting Things Together

We let Ω be the disjoint union of {Ωn : 1 ≤ n ≤ ∞}, which can be represented as a Borel

subset of R. We define a probability Borel measure µ on Ω by

µ (E) =
1

2
µ∞ (E ∩ Ω∞) +

∞∑
n=1

1

2n+1
µn (E ∩ Ωn) .

Then the von Neumann algebra L∞ (µ) can be written as

L∞ (µ) = L∞ (µ∞)⊕
∑⊕

1≤n≤∞
L∞ (µn)

We define an isomorphism

γ : L∞ (µ)→ Z (R) ,

by

γ (f∞ ⊕ f1 ⊕ f2 ⊕ · · · ) = γ∞ (f∞)⊕ γ1 (f1)⊕ γ2 (f2) · · · .

We can define a faithful normal tracial state ρ : R → C by

ρ
(∑⊕

1≤n≤∞
Tn

)
=

1

2
ρ∞ (T∞) +

∑
1≤n<∞

1

2n+1
ρn (Tn) .

We have

1. ρ = ρ ◦ ΦR,

2. (ρ ◦ γ) (f) =
∫

Ω
fdµ for every f ∈ L∞ (µ) , and, as we stated above,

3. ΦR (T ) =
∑⊕

1≤n≤∞ΦRn (Tn)

=
[∑⊕

1≤n<∞
∫ ⊕

Ωn
τn (Tn (ω)) · 1dµn (ω)

]
⊕
∫ ⊕

Ω∞
τω (T∞ (ω)) · 1dµ∞ (ω) .
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CHAPTER 3

MASAS IN FINITE VON NEUMANN ALGEBRAS

A masa in a C*-algebra is a maximal abelian selfadjoint subalgebra. In B (H) where H is

a separable infinite-dimensional Hilbert space there are many different masas. For example, the

set of all diagonal operators with respect to some fixed orthonormal basis is a discrete masa. On

the other hand L∞ [0, 1] = L∞ (δ∞) acting as multiplications on L2 [0, 1] with Lebesgue measure

is also a masa that is not isomorphic to the diagonal masa, since it has no minimal (nonzero)

projections. However, in a finite von Neumann algebra R with a faithful normal tracial state τ

acting on a separable Hilbert space we will prove that all masas are isomorphic.

Theorem 33. Suppose A is a masa in a finite von Neumann algebra R. Then there is an tracial

embedding πA : L∞ (λ)→ A such that the following diagram commutes

L∞ (λ)
πA→ A

↓ η ↓ ΦR

L∞ (µ)
γ→ Z (R)

Moreover, if B is another masa in R, then B is isomorphic to A. In fact, πA and πB are approxi-

mately equivalent inR.

We first need to prove this theorem when R is a finite factor. When R is a type In factor, i.e.,

R = Mn (C), the result is obvious.

Lemma 34. Suppose A ⊂ Mn (C) is a masa. Then there exists a unitary U ∈ U (Mn (C))

such that UAU = Dn, the n × n complex diagonal matrices. Hence there is a *-isomorphism

πA : L∞ (δn)→ A such that, for every f ∈ L∞ (δn), which is isometrically isomorphic to Cn.

τn (π (f)) =

∫
Jn

fdδn .
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WhenR is a type II1 factor the result is well-known [11], but we sketch a proof for complete-

ness.

Lemma 35. SupposeM is a type II1 factor von Neumann algebra acting on a separable Hilbert

space with a (unique) faithful normal tracial state τ , and suppose A is a masa inM. Then there

is an isomorphism πA : L∞ (δ∞)→ A such that, for every f ∈ L∞ (δ∞),

τ (πA (f)) =

∫ 1

0

f (t) dδ∞ (t) .

Proof. Using von Neumann’s theorem [11] there is an operator A = A∗ in A such that 0 ≤ A ≤ 1

and A = W ∗ (A) (the von Neumann algebra generated by A). Then A is generated by the chain

of spectral projections C0 =
{
χ[0,s) (A) : 0 ≤ s ≤ 1

}
. This chain is contained in a maximal chain

C of projections in R Since C ⊂ C ′0 = A′ = A, we have A = W ∗ (C). Since a II1 factor has no

minimal projections and τ : C → [0, 1] is injective, we can write C = {Pt : 0 ≤ t ≤ 1} such that,

for every t ∈ [0, 1],

τ (Pt) = t.

Since C is linearly independent and the linear span sp (C) of C is a unital *-algebra,we know the

map π

χ[0,t) 7→ Pt

give a *-isomorphism π between sp
({
χ[0,t)

})
and sp (C) such that, for every f ∈ sp

({
χ[0,t)

})

τ (π (f)) =

∫ 1

0

fdδ∞ .

The map π is also a ‖·‖2-isometry between dense subsets of L2 (δ∞) and L2 (A, τ) . Thus π extends

uniquely to a unitary operator from L2 (δ∞) to L2 (A, τ). Since limn→∞ ‖h‖2n = ‖h‖∞ for all

h ∈ L∞ (δ∞), this maps sends L∞ (δ∞) onto A. This is the desired map πA.
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Corollary 36. Suppose A is an abelian von Neumann algebra on a separable Hilbert space with

a faithful (tracial) state τ . The following are equivalent:

1. There is an isomorphism π : L∞ (δ∞)→ A such that, for every f ∈ L∞ (δ∞),

τ (π (f)) =

∫ 1

0

f (t) dδ∞ (t) .

2. There is a T ∈ A such that

(a) W ∗ (T ) = A

(b) T = T ∗

(c) τ (T n) = 1
n+1

for n ∈ N

Moreover, if (2) holds, then 0 ≤ T ≤ 1 and the map π (f) = f (T ) is the required map in

(1) .

Proof. (1) ⇒ (2). Suppose π exists as in (1). Define f (t) = t in L∞ (δ∞) and let T = π (f) .

Then 0 ≤ T ≤ 1,

A = π (L∞ (δ∞)) = π (W ∗ (f)) = W ∗ (π (f)) = W ∗ (T ) ,

and, for each n ∈ N,

τ (T n) = τ (π (fn)) =

∫ 1

0

tndt =
1

n+ 1
.

(2)⇒ (1). Define the state ρ : L∞ (δ∞)→ C by

ρ (f) =

∫ 1

0

f (t) dδ∞ (t) .

Letting f ∈ L∞ (δ∞) be as above, we have τ (T n) = ρ (fn) = 1
n+1

for each n ∈ N. It follows

from Lemma 1 in [16] that there is a normal (i.e., weak*-weak* continuous) ∗-isomorphism π :
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L∞ (δ∞) → A such that π (f) = T and such that τ ◦ π = ρ. It is clear that, for any polynomial

p (t), π (p) = p (T ). Suppose f ∈ L∞ (δ∞). By changing f on a set of measure 0, we can assume

that f is Borel measurable. Then there is a sequence {pn} of polynomials such that pn → f weak*.

Thus

f (T ) = (weak*) lim
n→∞

pn (T ) = (weak*) lim
n→∞

π (pn) = π (f) .

From this Lemma, we can see that π (f) = f (T ) and τ (T n) = τ (πA (xn)) =
∫ 1

0
xndδ∞ =

1
n+1

for n = 1, 2, · · · .

Lemma 37. Suppose A = A∗ ∈ B (H). It follows that W ∗ (A) = {p1 (A) , p2 (A) , · · · }−WOT for

a sequence of polynomials p1, p2, · · · .

Proof. We know that span {1, A,A2, · · · } = {p (A) : p ∈ C [z]} , then

W ∗ (A) = W ∗ (p (A) , p ∈ C [z]) .

Since {p (A) , p ∈ C [z]} ⊆ {p (A) , p ∈ Q [z]}−‖‖ ⊆ {p (A) , p ∈ C [z]}−WOT , thus W ∗ (A) =

{p1 (A) , p2 (A) , · · · }−WOT for a sequence of polynomials.

Lemma 38. Suppose A∞ is a masa of R∞. Then there exists an operator T =
∫ ⊕

Ω∞
Tωdµ∞ (ω)

such that W ∗ (Tω) = A∞ (ω), and τω,∞ (T nω ) = 〈T nω e (ω) , e (ω)〉 = 1
n+1

for n ≥ 1.

Proof. Let

Y =B
(
l2∞
)
×
∞
Π
i=1

ball
(
B
(
l2∞
))
×
∞
Π
i=1

ball
(
B
(
l2∞
))
×
∞
Π
i=1

ball
(
B
(
l2∞
))
× E,

where E = {x ∈ l2∞ : ‖x‖ = 1}. It is clear that Y is a complete separable metric space with

product topology. Let X be the set of tuples (T, {Ai}∞i=1 , {Bi}∞i=1 , {Ci}
∞
i=1 , e) in Y satisfying

TAi = AiT, TBi = BiT, 〈T ne, e〉 =
1

n+ 1
for n ≥ 1.
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From Lemma 37, we know there exists a sequence of polynomials such that W ∗ (T ) such that

W ∗ (T ) = W ∗ (p1 (T ) , p2 (T ) , · · · ) . DefineWi,k,n be the subset of X satisfying

T = T ∗, d (Ai, pn (T )) ≥ 1

k
for n ≥ 1.

LetWi,k =
∞⋂
n=1

Wi,k,n andW =
∞⋃
i=1

∞⋃
k=1

Wi,k, thenW is a subset of X satisfying

Ai /∈ W ∗ (p1 (T ) , p2 (T ) , · · · ) , for i ≥ 1

Then X\W
∞

=
⋂
i=1

∞⋂
i=1

X\Wi,k is a subset of X satisfying

W ∗ (A1, A2, · · · ) ⊆ W ∗ (p1 (T ) , p2 (T ) , · · · ) ,

which is a Gδ set. By Lemma 2.5 in [6], there exists a metric which makes X\W a complete

separable space. Let π2,3,4 be the projection map into second, third, fourth coordinates, then there

exists an absolute measurable function Υ : π2,3,4 (X ) → X such that π2 ◦ Υ is an identity on

π2,3,4 (X ) .

Suppose there are sequences {f1, f2, · · · } , {ψ1, ψ2, · · · } , {ϕ1, ϕ2, · · · } contained in

L∞ (µ∞, B (l2∞)) such that

ballA∞ (ω) = {f1 (ω) , f2 (ω) , . . . }−SOT ,

ballR∞ (ω)′ = {ψ1 (ω) , ψ2 (ω) , . . . }−SOT ,

ballR∞ (ω) = {ϕ1 (ω) , ϕ2 (ω) , . . . }−SOT .

Define F : Ω∞ →
∞
Π
i=1

ball (B (l2∞)) by

F (ω) = {fi (ω)}∞i=1 × {ψi (ω)}∞i=1 × {ϕi (ω)}∞i=1
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which is measurable, thus, by Lemma 25, π1 ◦Υ◦F : ω 7−→ Tω is the desired measurable function

from Ω∞ to B (l2∞) such that ballA∞ (ω) = W ∗ (Tω), where π1 is the projection from X\W into

its first coordinate.

Lemma 39. Suppose An is a masa of Rn for every 1 ≤ n ≤ ∞. Then there is an isomorphism

πAn : L∞ (Ωn × Jn, µn × δn)→ An =
∫ ⊕

Ωn
An (ω) dµn (ω).

Proof. First suppose 1 ≤ n < ∞. We know that Rn is isomorphic to
∫ ⊕

Ωn
Mn (C) dµn (ω) , so if

An is a masa inRn, thenAn =
∫ ⊕

Ωn
An (ω) dµn (ω) where eachAn (ω) is a masa in Mn (C). There

is a unitary operator Uω ∈ Mn (C) such that An (ω) = U∗ωDn (C)Uω. An easy measurable cross-

section proof allows us to choose the Uω’s measurably. However,Dn is isomorphic to L∞ (Jn, δn) .

Define πAn : L∞ (Ωn × Jn)→
∫ ⊕

Ωn
L∞ (δn) dµn (ω) by

πAn (f) =

∫ ⊕
Ωn

U∗ω


f
(
ω, 1

n

)
. . .

f
(
ω, n

n

)
Uωdµn (ω) .

Now suppose n =∞. We choose {Tω} as in Lemma 38, and we define

πA∞ (f) =

∫ ⊕
Ω∞

fω (Tω) dµ∞ (ω) ,

where fω (t) = f (ω, t).

Suppose now thatR is a finite von Neumann algebra acting on a separable Hilbert space H ,

R = [R1 ⊕R2 ⊕ · · · ]⊕R∞ .

For 1 ≤ n < ∞, Rn is a type In von Neumann algebra acting on Hn, R∞ is a type II1 von

Neumann algebra acting on H∞,

H = [H1 ⊕H2 ⊕ · · · ]⊕H∞.
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A is a masa inR. Then, we can write

A = [A1 ⊕A2 ⊕ · · · ]⊕A∞,

where, for 1 ≤ n ≤ ∞, An is a masa in Rn. Clearly, since An is a masa in Rn, we know

that Dn = Z (Rn) ⊆ An ⊆ Rn ⊆ L∞ (µn, B (Hn)). It follows from Lemma 31 that there is a

measurable family {An (ω) : ω ∈ Ωn} of von Neumann algebras such that

An =

∫ ⊕
Ωn

An (ω) dµn (ω) .

If 1 ≤ n <∞, then almost every An (ω) must be a masa in Mn (C). If n =∞, then almost every

An (ω) must be a masa in the II1 factor R∞ (ω). Since throwing away a set of measure 0 from

Ωn doesn’t change anything, we can assume that, when 1 ≤ n < ∞ every An (ω) is a masa in

Mn (C), and when n =∞, every A∞ (ω) is a masa inR∞ (ω).

If 1 ≤ n ≤ ∞, then each An (ω) is isomorphic to L∞ (δn) (see Lemma 34 and 35).

And
∫ ⊕

Ωn
An (ω) dµn (ω) is isomorphic to

∫ ⊕
Ωn
L∞ (δn) dµn (ω), which is isomorphic to

L∞ (Ωn × Jn, µn × δn). The isomorphism sends a function f (ω, t) ∈ L∞ (Ωn × Jn, µn × δn) to∫ ⊕
Ωn
fω (t) dµn (ω), where fω (t) = f (ω, t).

For each n, 1 ≤ n ≤ ∞, we define Λn = Ωn × Jn and we define λn = µn × δn. We let Λ

denote the disjoint union of the Λn’s for 1 ≤ n ≤ ∞, and we can choose Λ to be a Borel subset of

R, and we define a probability Borel measure λ on Λ by

λ (F ) =
1

2
λ∞ (F ∩ Λ∞) +

∞∑
n=1

1

2n
λn (F ∩ Λn) .

We then have

L∞ (λ) = L∞ (λ∞)⊕ Π
1≤n<∞

L∞ (λn) .

For each n, 1 ≤ n ≤ ∞, there is a mapping

ηn : L∞ (λn) = L∞ (µn × δn)→ L∞ (µn) ,
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defined by

ηn (f) (ω) =

∫ ⊕
Jn

f (ω, t) dδn (t) .

We define η : L∞ (λ)→ L∞ (µ) by

η (f) = η (f∞ ⊕ f1 ⊕ f2 ⊕ · · · ) = η∞ (f∞)⊕ η1 (f1)⊕ η2 (f2)⊕ · · · .

Lemma 40. For 1 ≤ n ≤ ∞, if An is a masa in Rn, then there exists a tracial embedding

πAn : L∞ (λn) = L∞ (µn × δn)→ An such that the following diagram commutes

L∞ (λn)
πAn→ An

↓ ηn ↓ Φn

L∞ (µn)
γn→ Z (Rn)

.

Φn ◦ πAn = γn ◦ ηn.

where

γn (f) =

∫ ⊕
Ωn

f (ω) Idµn (ω) ,

ηn (f) (ω, t) =

∫
Jn

f (ω, t) dδn (t) and,

Φn

(∫ ⊕
Ωn

T (ω) dµn (ω)

)
=

∫ ⊕
Ωn

τω,n (T (ω)) Idµn (ω) .

Moreover, if Bn is a masa in Rn, and there is a tracial embedding πBn : L∞ (λn) → Bn such that

Φn ◦ πBn = γn ◦ ηn, then,

if 1 ≤ n <∞, then there exists a unitary U ∈ U (Rn) such that

UπAn (L∞ (λn))U∗ = πBn (L∞ (λn)) ,

if n =∞, then πAn is approximately equivalent to πBn inRn.

45



Proof. For 1 ≤ n <∞, we have

γn ◦ ηn (f) (ω) = γn

(
1

n

n∑
k=1

f

(
ω,
k

n

))
I =

1

n

n∑
k=1

∫ ⊕
Ωn

f

(
ω,
k

n

)
Idµn (ω) ,

and

Φn (πAn (f)) = Φn


∫ ⊕

Ωn

U∗ω


f
(
ω, 1

n

)
. . .

f
(
ω, n

n

)
Uωdµn (ω)

 =

∫ ⊕
Ωn

τn

U∗ω


f
(
ω, 1

n

)
. . .

f
(
ω, n

n

)
Uω

 dµn (ω) =

∫ ⊕
Ωn

1

n

n∑
k=1

f

(
ω,
k

n

)
Idµn (ω) .

Thus the diagram commutes. For n = ∞, by Lemma 38, we know there exists an operator T =∫ ⊕
Ω∞

Tωdµ∞ (ω) such that Tω generates A∞ (ω) in weak operator topology with 0 ≤ Tω ≤ 1 and

τω,∞ (T nω ) = 1
n+1

for n ≥ 1. The map πA∞ : L∞ (δ∞)→ W ∗ (T ) = A∞ is defined by πA∞ (f) =∫ ⊕
Ω∞

fω (Tω) dµ∞ (ω) . Thus γ∞ ◦ η∞ (f) (ω) =
[∫

Jn
f (ω, t) dδn (t)

]
I and Φ∞ ◦ πA∞ (f) (ω) =

τω,∞ (fω (Tω)) I =
[∫

Jn
f (ω, t) dδn (t)

]
I. Therefore the diagram commutes.

Combining all of these results we obtain Theorem 33.

And we also have the following corollary.

Corollary 41. If A and B are masas in R, then the tracial embeddings πA, πB are approximately

unitarily equivalent inR.

Proof. If A and B are masas in R, then there are tracial embeddings πA and πB as in Theorem

33 . Thus Φ ◦ πA = Φ ◦ πB. By Theorem 23, we have πA and πB are approximate unitarily

equivalent.

46



CHAPTER 4

MEASURE PRESERVING TRANSFORMATIONS

4.1 Basic Facts

A Borel measurable map σ : [0, 1] → [0, 1] is measure-preserving if and only if, for every Borel

set E ⊆ [0, 1],

δ∞
(
σ−1 (E)

)
= δ∞ (E) .

We say that σ : [0, 1] → [0, 1] is an invertible measure-preserving map if there are measure-

preserving measurable maps σ1, σ2 : [0, 1]→ [0, 1] such that

(σ ◦ σ1) (x) = x and (σ2 ◦ σ) (x) = x, almost everywhere (δ∞) .

In this case, let E = {y ∈ J∞ : σ ◦ σ1 (y) 6= y or σ2 ◦ σ (y) 6= y} and let S be the semigroup

generated by σ, σ1, σ2, id[0,1]. Then S is countable, thus denoted by S = {σ̂n : n ∈ N}. Suppose

F =

(
∪
n∈N

σ̂n (E)

)
∪
(
∪
n∈N

σ̂−1
n (E)

)
, it follows that δ∞ (F ) = 0. and σ (F ) = σ1 (F ) = σ2 (F ) =

F. Therefore, on J∞\F, σ, σ1, σ2 : J∞\F → J∞\F is bijective, also σ ◦ σ1 = σ2 ◦ σ. Define σ̃ on

J∞ by

σ̃ (y) =

 σ (y)

y

y ∈ J∞/F

y ∈ F

Then σ̃, σ̃−1 are bijective, measurable, and σ̃ = σ a.e.(δ∞) . We can change σ and σ1, σ2 on sets of

measure 0 so that σ : J∞ → J∞ is bijective and σ1 = σ2 = σ−1 a.e.(δ∞). In the following sections,

whenever we talk about an invertible measure-preserving transformation σ on J∞, we will mean a

bijective map σ : J∞ → J∞ such that σ and σ−1 are measurable and measure-preserving.
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Let MP [0, 1] = {σ|σ : [0, 1]→ [0, 1] is an invertible measurable preserving transformation} , then

(MP [0, 1] , ◦) is a group.

Let V be all unitaries U in U (B (L2 ([0, 1]))) with U (1) = 1, and for all f, g ∈ L∞ [0, 1],

U (fg) = U (f)U (g) .

Lemma 42. V is ∗-SOT closed.

Proof. Suppose {Un} ⊆ V , and Un
SOT→ U , U∗n

SOT→ U∗. It is easy to see U∗U = UU∗ = 1 and

U (1) = 1. And we know thatUn
SOT→ U if and only if sp

{
f ∈ L2 [0, 1] : ‖Unf − Uf‖2

2 → 0
}

=

L2 [0, 1]. Thus there exists a subsequence {Unk} such that for all f, g ∈ L∞ [0, 1] , Ufg =

lim
k→∞

Unk (fg) = lim
k→∞

(Unkf) (Unkg) = UfUg, thus U ∈ V .

Corollary 43. V is a complete separable, metric space in the ∗-SOT.

Proof. Since V is a ∗-SOT closed subalgebra of U (B (L2 [0, 1])) and U (B (L2 [0, 1])) is a com-

plete separable metric space. It follows that V is a complete separable metric space.

Lemma 44. There exists a group isomorphism σ → Uσ from MP [0, 1] onto V .

Proof. If σ ∈ MP [0, 1] , define Uσ : L2 [0, 1] → L2 [0, 1] by Uσf = f ◦ σ−1. Since, for every

f ∈ L2 [0, 1] ,

‖Uσf‖2
2 =

∫
Y

(
f ◦ σ−1

)2
dδ∞ =

∫
Y

|f |2 ◦ σ−1dδ∞ =

∫
Y

|f |2 dδ∞ = ‖f‖2
2 ,

Uσ is an isometry. Since Uσ−1 = U−1
σ , Uσ is unitary. Also Uσ (fg) = (fg) ◦ σ = (f ◦ σ) (g ◦ σ) =

(Uσf) (Uσg) when f, g ∈ L∞ [0, 1] . Thus Uσ ∈ V .
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To prove that the map σ → Uσ is onto, we suppose U ∈ V . Define x ∈ L2 [0, 1] by x (t) = t,

and define γ = U (x). We will show that γ ∈MP [0, 1]. Then U (xn) = γn for all n ≥ 1. Thus

‖γ‖∞ = lim ‖γ‖2n = lim
[∥∥∥γ2n−1

∥∥∥
2

]1/2n−1

= lim
[∥∥∥Ux2n−1

∥∥∥
2

]
=

[∥∥∥x2n−1
∥∥∥

2

]1/2n−1

= ‖x‖∞ = 1.

Also if γ = u+ iv, then

4

∫
v2dδ∞ =

∫
‖γ − γ̄‖2

2 dδ∞ = ‖γ‖2 + ‖γ̄‖2
2 − 2Re 〈γ, γ̄〉

= 2 ‖γ‖2
2 − 2

〈
γ2, 1

〉
= 2 ‖x‖2

2 − 2

∫
x2dδ∞ = 0

Thus γ = γ̄. Since ∫ 1

0

γndδ∞ =

∫ 1

0

xndδ∞ =
1

n+ 1

for each n ≥ 1. It follows from Corollary 36, using τ (f) =
∫ 1

0
fdδ∞, that 0 ≤ γ ≤ 1. And

the map π (f) = f ◦ γ is a weak*-continuous automorphism on L∞ ([0, 1]) such that, for every

f ∈ L∞ [0, 1] , ∫ 1

0

fdδ∞ = τ (π (f)) =

∫ 1

0

f ◦ γdδ∞.

Thus

δ∞
(
γ−1 (E)

)
=

∫ 1

0

χE ◦ γdδ∞ = δ∞ (E) .

Hence γ is a measure-preserving transformation on [0, 1]. Furthermore, Uγf = f ◦γ is an isometry

on L2 ([0, 1]) and equals U on the dense subset of polynomials. Thus U = Uγ . Since Uγ is unitary,

γ ∈MP [0, 1].

Since V is closed in the ∗-strong operator topology (∗-SOT), and the closed unit ball ofB (L2 [0, 1])

is a ∗-SOT complete metric space, we know that MP [0, 1] is a complete separable metric space

with the topology γn → γ if and only if Uγn → Uγ in the ∗-SOT. On MP [0, 1] this topology is
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called the weak topology. [7] The metric for the unit ball of B (L2 [0, 1]) is rather complicated. For

MP [0, 1] we have a simpler metric.

Lemma 45. MP (Y, ν) is a complete separable metric space with the metric d on MP [0, 1] defined

by

d (γ1, γ2) = ‖γ1 − γ2‖2 +
∥∥γ−1

1 − γ−1
2

∥∥
2

Proof. Suppose d (γn, r)→ 0, then ‖γn − γ‖2 → 0 and ‖γ−1
n − γ−1‖2 → 0. Thus

∥∥γkn − γk∥∥2
→

0 and
∥∥∥(γ−1

n )
k − (γ−1)

k
∥∥∥

2
→ 0 for every k ≥ 0. Thus

∥∥Uγnxk − Uγxk∥∥2
→ 0 which implies

Uγn → U in SOT and U∗γn = Uγ−1
n
→ Uγ−1 = U∗γ in SOT. The converse is obvious. To prove

completeness, a similar argument to the one above shows that if {γn} is d-Cauchy, then {Uγn} is

∗-SOT Cauchy, so there is a γ ∈ MP [0, 1] such that Ugn → Uγ in the ∗-SOT. Hence γn → γ in

d.

We now turn to our measure space (Λ, λ). We want to describe a subgroup Gn (R) of MP (Λ, λ).

Definition 46. Suppose σ ∈ MP (Λn, λn). Then σ ∈ Gn (R) if and only if, for every measurable

E ⊂ Ωn,

σ (E × Jn) ⊂ E × Jn, a.e.,

i.e.,

λn (σ (E × Jn) \ (E × Jn)) = 0.

Since it is known that

σ ((Ωn\E)× Jn) ⊂ (Ωn\E)× Jn, a.e.,

it follows that

σ (E × Jn) = E × Jn, a.e..

This implies that σ−1 ∈ Gn (R). Clearly, Gn (R) is a subgroup of MP (Λn, λn).
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Definition 47. We define G (R) to be all σ ∈ MP (Λ, λ) such that, for 1 ≤ n ≤ ∞, σ (Λn) = Λn

and σ|Λn ∈ Gn (R). We see that we can view

G (R) = Π
1≤n≤∞

Gn (R) ,

as a product space.

We can express the following Lemma as:

G (R) =
⊕∑

1≤n≤∞

∫ ⊕
Ωn

MP (Jn, δn) dµn (ω) ≤MP (Λ, λ) .

Lemma 48. Suppose σ ∈ Gn, 1 ≤ n ≤ ∞. Then there is a measurable family {σω : ω ∈ Ωn} in

MP (Jn, δn) such that, for every f ∈ L∞ (Λn, )

(f ◦ σ) (ω, t) = f (ω, σω (t)) .

We write this as

σ =

∫
Ωn

σωdµn (ω) .

Proof. We can view L2 (Λn, λn) = L2 (Ωn × Jn, µn × δn) as

∫ ⊕
Ωn

L2 (Jn, δn) dµn (ω)

by identifying f ∈ L2 (Ωn × Jn, µn × δn) with

∫ ⊕
Ωn

fωdµn (ω) ,

where fω (t) = f (ω, t) . Fubini’s theorem shows that this is an isomorphism, i.e.,

‖f‖2
2 =

∫
Ωn×Jn

|f (ω, t)|2 d (µn × δn) =

∫
Ωn

∫
Jn

|fω|2 dδn (t) =

∫
Ωn

‖fω‖2 dµn (ω) .
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We know that U (f) = f ◦ σ is a unitary operator on L2 (Λn, λn) = L2 (Ωn × Jn, µn × δn) .

Suppose E ⊂ Ωn is measurable. Then

PE =
def

∫ ⊕
Ωn

χE (ω) 1dµ (ω) ∈
∫ ⊕

Ωn

B
(
L2 (Jn, δn)

)
dµn (ω) ,

and the definition of σ−1 ∈ Gn (R) implies that PEU = UPE . Since the linear span of {χE : E ⊂ Ωn, E measurable}

is dense in L∞ (Ωn, µn) , we see that U is in the commutant of

{∫ ⊕
Ωn

ϕ (ω) 1dµn (ω) : ϕ ∈ L∞ (Ωn, µn)

}
.

Thus there is a measurable family {Uω : ω ∈ Ωn} of unitary operators in B (L2 (Jn, δn)) such that

U =

∫ ⊕
Ωn

Uωdµ (ω) .

If h ∈ L2 (Jn, δn) , we define ĥ ∈ L2 (Ωn × Jn, µn × δn) by

ĥ (ω, t) = h (t) ,

i.e.,

ĥ =

∫ ⊕
Ωn

hdµn (ω) .

If h, k ∈ L∞ (Jn, δn), then U
(
ĥk̂
)

= U
(
ĥ
)
U
(
k̂
)
, so, for almost every ω ∈ Ωn,

Uω (hk) = Uω (h)Uω (k) .

Since L2 (Jn, δn) is separable, there is a countable set E whose closure in ‖·‖2 is

{h ∈ L∞ (Jn, δn) : ‖h‖∞ ≤ 1}
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(which is ‖·‖2-closed). We now have for almost every ω ∈ Ωn and h, k ∈ E ,

Uω (hk) = Uω (h)Uω (k) .

We can change Uω on a set of measure 0 and assume that the above relation holds for all ω ∈ Ωn.

Suppose h, g ∈ L∞ (Jn, δn) and ‖h‖∞ , ‖g‖∞ ≤ 1 and suppose ω ∈ Ωn. We can choose sequences

{hk} and {gk} in E such that ‖hk − h‖2 → 0 and ‖gk − g‖2 → 0. By replacing these sequences

with appropriate subsequences, we can assume that hk (t) → h (t) , (Uωhk) (t) → (Uωh) (t),

gk (t)→ g (t) , (Uωgk) (t)→ (Uωg) (t) a.e. (δn). It follows that ‖hkgk − hg‖2 → 0. Thus

Uω (hg) (t) = lim
k→∞

Uω (hkgk) (t) = lim
k→∞

(Uωhk) (t) (Uωgk) (t) = (Uωh) (t) (Uωg) (t) .

It follows from Lemma 44 that, for each ω ∈ Ωn, there is a (unique) σω ∈ MP (Jn, δn) such that,

for every h ∈ L2 (Jn, δn),

Uωh = h ◦ σω .

Our measurable cross-section theorems can be used to show that there is a measurable choice of

the σω’s, but the uniqueness implies that {σω : ω ∈ Ωn} is measurable.

4.2 Nonincreasing Rearrangement Functions, s-functions, and Ky Fan func-

tions.

Theorem 49. Suppose f : Λ → [0,∞) is measurable. Then there is a σ ∈ G (R) such that, for

1 ≤ n ≤ ∞, the mapping t 7→ (f ◦ σ) (ω, t) is nonincreasing on Jn a.e. (µn).

Proof. Choose R > ‖f‖∞. Suppose 1 ≤ n ≤ ∞. Let

X = {(h, σ) ∈ L∞ (δn)×MP (Jn) : 0 ≤ h ≤ R, h ◦ σ is nonincreasing on Jn} ,

where {f : 0 ≤ f ≤ R} is given the ‖·‖2,δn
-topology, MP (Jn) is given the weak topology, and

L∞ (δn) × MP (Jn) is given the product topology. (Note that if n < ∞, MP (Jn) corresponds
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to the set of n × n permutation matrices and has the discrete topology.) Since ‖·‖2 convergence

implies subsequential convergence almost everywhere, it follows that X is a complete separable

metric space. Since every measurable h has a nonincreasing rearrangement, the map

π1 : X → {h : 0 ≤ h ≤ R}

is onto, so, by Lemma 27, there is an absolutely measurable cross-section γn : Y → X for π1. Let

ηn = π2 ◦ γn : Y →MP (Jn).

We now define sn : Ωn →MP (Jn) by

sn (ω) = ηn (fω) ∈MP (Jn) .

It is clear from the construction that that fω◦sn (ω) is a nonincreasing function of t, i.e., f (ω, sn (ω) (t))

is a nonincreasing function of t for each ω ∈ Ωn.

We define

σn (ω, t) = (ω, sn (ω) (t)) .

Then σ = {σn}1≤n≤∞ ∈ G (R) has the desired properties.

Note that the function σ is not necessarily unique, but the function f ◦ σ is unique. It is called

the nonincreasing rearrangement function for f , and we denote it by sf . If f and h are nonnegative

measurable functions on Λ, we say that f and h are G (R)-equivalent if and only if sf = sh a.e.

(λ). This holds if and only if there is a σ1 ∈ G (R) such that h = f ◦ σ1.

For each ω ∈ Ωn and t ∈ Jn, sf (ω, t) is call the tth s-number of f at ω.

Definition 50. Suppose T ∈ R. We can write T =
∑

1≤n≤∞
∫ ⊕

Ωn
T (ω) dµn (ω). We define sT ∈

L∞ (Λ, λ) by

sT (ω, t) = sT (ω) (t)

when 1 ≤ n ≤ ∞, ω ∈ Ωn and t ∈ Jn.
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Definition 51. Suppose f ∈ L∞ (Λ, λ) and 0 ≤ f . For each 1 ≤ n ≤ ∞, and each ω ∈ Ωn, we

define fω ∈ L∞ (Jn, δn) by

fω (t) = f (ω, t) .

We view

f =
⊕∑

1≤n≤∞

∫ ⊕
Ωn

fωdµn (ω) .

We then define sf ∈ L∞ (Λ, λ) by

sf (ω, t) = sfω (t) .

Lemma 52. Suppose 0 ≤ f ∈ L∞ (Λ, λ). Then there is a σ ∈ G such that, f ◦ σ = sf .

Proof. For 1 ≤ n ≤ ∞, the map ω 7→ fω from Ωn to L∞ (Jn, δn) is measurable. For each ω ∈ Ωn,

there is a σω ∈ MP (Jn, δn) such that fω ◦ σω = sfω . Using measurable cross-sections, we can

choose the σω’s so that {σω : ω ∈ Ω} is measurable. Thus σ =
∑

1≤n≤∞
∫ ⊕

Ωn
σω ∈ G and

(f ◦ σ) (ω, t) = f (ω, σω (t)) = (fω ◦ σω) (t) = sfω (t) = sf (ω, t) .

Lemma 53. Suppose T ∈ R, A is a masa in R, |T | ∈ A, πA : L∞ (Λ, λ) → A is a tracial

embedding as in Theorem 33, and f ∈ L∞ (Λ, λ) satisfies πA (f) = |T |. Then sT = sf .

Proof. We can write

A =
∑

1≤n≤∞

∫ ⊕
Ωn

Aωdµn (ω) ,

where, for 1 ≤ n ≤ ∞ and ω ∈ Ωn, Aω is a masa inRω. We can also write

πA =
∑

1≤n≤∞

∫ ∞
Ωn

πωdµn (ω) ,

where, for each ω ∈ Ωn, πω : L∞ (Jn, δn)→ Aω is a tracial embedding. If πA (f) = |T |, then, for

almost every ω,

πω (fω) = |T | (ω) = |Tω| .
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Thus, for almost every ω ∈ Ω,

sfω = sTω .

Thus sf = sT .

Lemma 54. Suppose A1, A2 are masas in R, 0 ≤ Ak ∈ Ak, πk : L∞ (Λ, λ) → Ak are the

isomorphisms in Theorem 33 and f1, f2 ∈ L∞ (Λ, λ) satisfy πk (fk) = Ak for k = 1, 2. The

following are equivalent:

1. sf1 = sf2

2. There is a γ ∈ G (R) such that f2 = f1 ◦ γ

3. There is a sequence {Un} of unitary operators inR such that

‖UnA1U
∗
n − A2‖ → 0.

4. For every unitarily invariant norm α onR

α (A1) = α (A2)

5. For every rational number t ∈ (0, 1] KFt (A1) = KFt (A2) .

Proof. (1) ⇒ (2). There are γ1, γ2 ∈ G (R) such sfk = fk ◦ γk for k = 1, 2. By (1) we have

f2 = f1 ◦
(
γ1 ◦ γ−1

2

)
.

(2)⇒ (3). Define π3 : L∞ (Λ, λ)→ A2 by

π3 (f) = π2 (f ◦ γ) .

Thus π3 (f1) = A2. By Theorem 23, π1 ∼a π3. Thus there is a net (sequence) {Ui} of unitary

operators inR such that

lim
i
‖UiA1U

∗
i − A2‖ = lim

i
‖Uiπ1 (f1)U∗i − π3 (f1)‖ = 0.
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Hence, for every n ∈ N, there is a unitary Un such that

‖UnA1U
∗
n − A2‖ < 1/n.

(3)⇒ (4), (4)⇒ (5) are trivial.

(5)⇒ (1). We know that KFt (A1) = KFt (sf1) and KFt (sf2). Let

Et = {ω ∈ Ω : KFt (sf1) (ω) 6= KFt (sf2) (ω)} ,

and let E = ∪Et, then λ (E) = 0. Therefore
∫ t

0
f1 (x) dx =

∫ t
0
f2 (x) dx for every 0 < t ≤ 1.

Thus f1 (x) = f2 (x) except on a countable set. Therefore f1 = f2 a.e.(δ∞) .

Corollary 55. Suppose A1, A2 are masas in R, 0 ≤ A ∈ Ak, πk : L∞ (Λ, λ) → Ak are the

isomorphisms in Theorem 33 and f1, f2 ∈ L∞ (Λ, λ) satisfy πk (fk) = A for k = 1, 2. Then

sf1 = sf2 .

If T ∈ R, we define

KFt (T ) = KFt (s (fT ))

We need to define tth Ky Fan function KFt (T ) solely in terms of T andR. (See Lemma 17)

Note that when n = ∞, KFt is defined on L∞ (Jn, δn) for all 0 < t ≤ 1. For 1 ≤ n < ∞,

KFt is only defined when t ∈
{

1
n
, . . . , n

n

}
. The next definition extends this concept.

Definition 56. Suppose 1 ≤ n <∞ and 0 < t ≤ 1. We choose an integer k, 1 ≤ k ≤ n such that

k − 1

n
< t ≤ k

n
.

We define KFt on L∞ (Jn, δn) by

KFt = KF k
n
.
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For f ∈ L∞ (Λ) and 1 ≤ n ≤ ∞ and ω ∈ Ωn and t ∈ Jn, we define

KFt (f) (ω, t) = KFt (sfω) ,

and we define, for T ∈ R,

KFt (T ) = KFt (sT ) .

We easily have that for S, T ∈ R

KFt (S + T ) ≤ KFt (S) +KFt (T )

always holds.

4.3 G (R)-symmetric normalized gauge norms on L∞ (Λ, λ)

Suppose (Y, ν) is a probability space, and G is a subgroup of MP (Y, ν). A norm β on L∞ (Y, ν)

is called a G-symmetric normalized gauge norm if and only if

1. β (1) = 1

2. β (f) = β (|f |) for every f ∈ L∞ (Y, ν),

3. β (f ◦ σ) = β (f) for every f ∈ L∞ (Y, ν) and every σ ∈ G.

The examples that interest us here are for Y = Λ, ν = λ, and G = G (R), i.e., the G (R)-

symmetric normalized gauge norms on L∞ (Λ, λ).

Suppose β is a G (R)-symmetric normalized gauge norms on L∞ (Λ, λ). For every f ∈

L∞ (Λ, λ), we see that

β (f) = β (sf ) .
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4.4 Approximate Ky Fan Lemma

If T ∈ R, we define

KFt (T ) = KFt (s (fT ))

We can show that KFt satisfies the triangle inequality on R by describing KFt (T ) directly in

terms of T. The Ky Fan Lemma is more complicated. We will apply the Ky Fan Lemmas we have

throughout the direct integral. However, this is impossible to do directly as the next examples

show.

Example 2. In Cn, if f = (1, 0, . . . , 0) and g =
(

1
n
, 1
n
, . . . , 1

n

)
, we have KF k

n
(f) ≥ KF k

n
(g) for

1 ≤ k ≤ n, But the number N of permutations γ1, . . . , γN for

N∑
j=1

f ◦ γj ≥ g

must be at least n since each f ◦ γj is nonzero in exactly one coordinate.

Example 3. SupposeR = R2 = M2 (C)⊕M2 (C) and

A =
⊕∑

1≤k<∞

 1

0


and

B =
⊕∑

1≤k<∞

 1
2

+ 1
2k

1
2
− 1

2k


Then there are no σ1, . . . , σN ∈ G (R) and t1, . . . , tN ∈ [0, 1] such that

N∑
k=1

tk (sA ◦ σk) ≥ sB .

This forces us to prove an approximate version of the Ky Fan Lemma that works universally.
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Theorem 57. Suppose m is a positive integer. Then, for 1 ≤ n ≤ ∞ and for all 0 ≤ f, g ≤ 1 in

L∞ (Jn, δn) with

KFt (f) ≥ KFt (g) for all t ∈ Jn

there are {γj : 1 ≤ j ≤ m2m} ⊂MP (Jn, µn) such that

2

m
+

1

m2m

m2m∑
j=1

sf ◦ γj ≥ sg.

Proof. For 1 ≤ n <∞, it follows from Lemma 9. For n =∞, it is proved in Theorem 20.

Corollary 58. For 1 ≤ n ≤ ∞, if KFt (f) ≥ KFt (g) for all t ∈ Jn, then β (f) ≥ β (g) for all

symmetric gauge norm β.

To prove the approximate Ky Fan Lemma, we need the following Lemmas.

Lemma 59. Suppose m,n are positive integers. f = (f1, · · · , fn) , h = (h1, · · · , hn) , where

f1, . . . , fn and h1, . . . , hn are integers with 1 ≤ fi+1 ≤ fi ≤ m, 1 ≤ hi+1 ≤ hi ≤ m.and∑k
i=1 fi ≥

∑k
i=1 hi, for 1 ≤ k ≤ n.Then there exists a positive integerN ≤ mm2

, γ1, · · · , γN ∈ Sn

such that
1

N

N∑
i=1

f ◦ γi ≥ h

Proof. Suppose S =


 fk

hk

 , 1 ≤ k ≤ n

, and define an order on S by

 fi

hi

 ≥
 fj

gj

 if fi > fj or, fi = fj and hi ≥ hj.

Then S is a linearly ordered set.

We say S is trivial if for every

 fk

hk

 ∈ S, fk ≥ hk. If S is trivial, we are done, so we may as-

sume S is nontrivial. Denote S0 = S\


 fk

fk

 , fk ∈ {1, · · · ,m}

. Define p (S0) = max (fk),
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q (S0) = max {fk, with hk > fk}, where p (S0) , q (S0) ∈ {f1, · · · , fn} , we may assume p (S0) =

fp, q (S0) = fq. Then denote l (S0) = p (S0)− q (S0). It is not hard to see that fp > hp ≥ hq > fq,

so fp − fq ≥ 2.

Let γp,q be the permutation that permute fp with fq and leave all other fi’s fixed,

define f (1) =
(
f

(1)
1 , · · · , f (1)

n

)
= 1

l(S0)
[(hp − fq) f + (fp − hp) f ◦ γp,q], where f (1) ∈ Nn. Then

denote S(1)=


 f

(1)
k

hk

 , 1 ≤ k ≤ n

, S(1)
0 = S(1)\


 f

(1)
k

f
(1)
k


, we form linear convex

combination of fi’s this way and update f with f (1), · · · , f (r) until l
(
S(r)

0

)
< l (S0). We can

also see that l (S0) < m, and r < m, so we need at most mm permutations to reduce l (S0) for 1.

Repeating this process, we need at most
(
mm2

)
permutations to reduce S0 to a trivial set. Note

that we can make the number of permutations is exactly
(
mm2

)
!, some permutations are duplicate.

Therefore, there exists a positive integer N =
(
mm2

)
!, γ1, · · · , γN ∈ Sn such that

1

N

N∑
i=1

f ◦ γi ≥ h.

Lemma 60. Suppose m,n are positive integers, then there exists a positive integer N ≤ mm2

such that for all f = (f1, f2, . . . , fn) and h = (h1, . . . , hn) with 1 ≥ f1 ≥ · · · ≥ fn ≥ 0,

1 ≥ h1 ≥ · · · ≥ hn ≥ 0, and
j∑
i=1

fi ≥
j∑
i=i

hi for all 1 ≤ j ≤ n, there exist γ1, . . . , γN ∈ Sn such that

1

N

N∑
i=1

f ◦ γi +
2

m
≥ h.

Proof. For all 1 ≤ i ≤ n, if k−1
m

< fi ≤ k
m

for some k ∈ N, then define f̃i = k
m

and if k−1
m
≤ hi <

k
m

for some k ∈ N, then define h̃i = k−1
m
. Let f̃ =

(
f̃1, · · · , f̃n

)
and h̃ =

(
h̃1, · · · , h̃n

)
. It is easy

to check that fi ≤ f̃i ≤ fi + 1
m

and max
(
hi − 1

m
, 0
)
≤ h̃i ≤ hi for all 1 ≤ i ≤ n. From Lemma

59, we know there exists a positive integer N and γ1, · · · , γN ∈ Sn such that 1
N

∑N
i=1

(
mf̃
)
◦γi ≥(

mh̃
)

. Therefore, 1
N

N∑
j=1

f ◦ γj + 2
m
≥ h.
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The following is the Approximate Ky Fan Lemma.

Theorem 61. If f, g ∈ L∞ (Λ, λ) , m ∈ N, m ≥ 2, and 0 ≤ f, g ≤ 1 and KFt (f) ≥ KFt (g) a.e.

(µ) for each rational number t ∈ (0, 1], then there are σ1, . . . , σ(mm2)! ∈ G (R) such that

1

(mm2)!

∑(
mm

2
)

!

k=1
f ◦ σk +

1

m
≥ g.

Thus, for every G (R)-symmetric normalized gauge norm β on L∞ (Λ, λ) ,

β (f) ≥ β (g) .

Proof. Suppose f, g ∈ L∞ (Λ, λ). Since there are σ1, σ2 ∈ G (R) such that sf = f ◦ σ1 and

sg = g ◦ σ2, we can assume f = sf and g = sg. We know f, g can be viewed as f =∑⊕
1≤n≤∞ fn =

∑⊕
1≤n≤∞

∫ ⊕
Ωn
fn,ωdµn (ω) and g =

∑⊕
1≤n≤∞

∫ ⊕
Ωn
gn,ωdµn (ω). Suppose m ∈ N

and m ≥ 2. For 1 ≤ n ≤ ∞, let Xn be the set of tuples
(
F,G, σ1, σ2, · · · , σmm2

)
satisfying

1

mm2

∑mm
2

k=1 F ◦σk+ 1
m
≥ G,where 0 ≤ f, g ≤ 1. Then X is a closed subset of ball(L∞ (Jn, δn))×

ball (L∞ (Jn, δn)) ×
mm

2

Π
i=1

MP (Λ, λ), which is a complete separable metric space with the ‖·‖2 on

ball(L∞ (Jn, δn)). Then by Theorem 27 the projection onto ball(L∞ (Jn, δn))×ball(L∞ (Jn, δn))

has an abolutely measurable range Yn and an absolutely measurable cross-section ψ and we let

ψk be the composition of projection onto the coordinate of σk with ψ for 1 ≤ k ≤
(
mm2

)
!. If

1 ≤ n <∞, it follows from Lemma 60 and Theorem 20 that

(sfω , sgω) ∈ Yn

for almost all ω ∈ Ωn. We define, for 1 ≤ k ≤
(
mm2

)
!, σk (ω) ∈MP (Jn, δn) by

σk (ω) = ψk (sfω , sgω) .
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This gives σ1, . . . σ(mm2)! ∈ G (R) such that

1

(mm2)!

∑(
mm

2
)

!

k=1
sf ◦ σk +

1

m
≥ sg.

If follows that, for any G (R)-symmetric normalized gauge norm β on L∞ (Λ, λ) that

β (g) = β (sg) ≤
1

(mm2)!

∑(
mm

2
)

!

k=1
β (sf ◦ σk) + β

(
1

m

)
=

1

(mm2)!

∑(
mm

2
)

!

k=1
β (f) +

1

m
= β (f) +

1

m
.

Since m ≥ 2 was arbitrary, it follows that β (g) ≤ β (f).
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CHAPTER 5

MAIN THEOREM

Theorem 62. Suppose R is a finite von Neumann algebra acting on a separable Hilbert space

H . Let the probability space (Λ,Σ, λ) and the group G ≤ MP (Λ,Σ, λ) be as above. Then there

is a natural 1-1 correspondence between the normalized unitarily invariant norms on R and the

normalized G-symmetric gauge norms on L∞ (Λ, λ).

Proof. Suppose α is a normalized unitarily invariant norm on R, choose any masa A in R, and

choose a tracial embedding πA : L∞ (Λ, λ)→ A as in Theorem 33. Define βα : L∞ (λ)→ R by

βα (f) = α (πA (f)) ,

If B is another masa in R and πB : L∞ (Λ, λ)→ B is as in Theorem 33, we see from Theorem 33

that, if Φ : R → Z (R) is the center-valued trace onR, then

Φ ◦ πA = Φ ◦ πB.

Thus, by Theorem 33, πA and πB are approximately equivalent inR. Hence, there is a net {Ui} in

U (R) such that, for every f ∈ L∞ (Λ, λ) ,

‖U∗i πA (f)Ui − πB (f)‖ → 0.

It follows from Lemma 3 that, for every f ∈ L∞ (Λ, λ),

α (πA (f)) = α (πB (f)) .
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Thus the definition of βα is independent of choice of the masa A and tracial embedding πA. It is

easy to check that βα is norm. To prove βα is G-symmetric, suppose σ ∈ G. Then, by Lemma 48,

there is a measurable family {σω : ω ∈ Ω} with each ω ∈ Ωn, such that σω ∈ MP (Jn, µn) .Thus,

by Theorem 33,

Φn (πA (f ◦ σ)) = γ ◦ η (f ◦ σ) ,

but

η (f ◦ σ) (ω) =

∫
Jn

(f ◦ σ) (t, ω) dδn (t) =

∫
Jn

fω (σω (t)) dδn (t) =

∫
Jn

fω (t) dδn (t) = η (f) (ω) .

Thus, for every f ∈ L∞ (Λ, λ),

Φ ◦ πA (f) = Γ (η (f)) = Γ (η (f ◦ σ)) = Φ ◦ πA (f ◦ σ) .

Thus, ρ (f) = πA (f ◦ σ) is a tracial embedding as in Theorem 33, which implies ρ is approxi-

mately equivalent to πA. Hence, by Lemma 3, for every f ∈ L∞ (Λ, λ), we have

βα (f) = α (πA (f)) = α (πA (f ◦ σ)) = βα (f ◦ σ) .

Thus βα is a normalized G-invariant gauge norm on L∞ (Λ, λ).

Conversely, suppose β is a normalized G-symmetric gauge norm on L∞ (Λ, λ). If T ∈ R, then

W ∗ (|T |) is abelian and is contained in a masaA ofR. By Theorem 33 there is a tracial embedding

πA : L∞ (Λ, λ)→ A such that, for every f ∈ L∞ (Ω, µ),

τ (πA (f)) =

∫
Ω

fdµ.

Choose 0 ≤ f ∈ L∞ (Λ, λ) with πA (f) = |T | . Then we define

αβ (T ) = β (f) = β
(
π−1
A (|T |)

)
.
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Suppose B is another masa inRwith |T | ∈ B. Then there is a tracial embedding πB : L∞ (Λ, λ)→

B and an 0 ≤ h ∈ L∞ (Λ, λ) with πB (h) = |T |. It follows from Lemma 53 that

sf = sT = sh.

Hence, by Lemma 54, there is a σ ∈ G such that

h = f ◦ σ .

Thus

α (h) = α (f) = α (sT ) .

Thus the definition of αβ (T ) = β (sT ) is independent of the masa A or the tracial embedding πA.

At this point it is easy to see that βαβ = β holds for a G-symmetric normalized gauge norm on

L∞ (Λ, λ).

If U and V are unitaries inR, then, by Lemma 53,

sUTV = sT .

Thus αβ (UTV ) = αβ (T ) by Lemma 54. Thus αβ is unitarily invariant.

Clearly, αβ (1) = 1 and αβ (zT ) = |z|αβ (T ). To show αβ is a norm, we just need to check

the triangle inequality. Suppose A,B ∈ R. Let h = sA + sB. Since, for almost every ω ∈ Ω the

functions sA (ω, t) and sB (ω, t) are nonincreasing in t, we see that

sh = h = sA + sB.

Thus, we have, if ω ∈ Ωn, n ∈ N, and t = k/n with 1 ≤ k ≤ n, or if ω ∈ Ω∞ and 0 < t ≤ 1 is

rational, then, for almost every ω,

KFt (sh) (ω) = KFt (sA + sB) (ω) = KFt (sA) (ω) +KFt (sB) (ω)
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= KFt (A) (ω) +KFt (B) (ω) ≥ KFt (A+B) (ω) = KFt (sA+B) (ω) .

It follows from the approximate Ky Fan Lemma (Theorem 61) that

β (h) ≥ β (sA+B) ,

which means

αβ (A+B) ≤ β (h) = β (sA + sB) ≤ β (sA) + β (sB) = αβ (A) + αβ (B) .

This complete the proof.
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