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ABSTRACT 

BIOPHYSICAL PROPERTIES OF AN ANTIFREEZE PROTEIN AND THE EFFECTS 

OF IONIC LIQUIDS ON THE MODEL PROTEIN GB1 

by 

Korth Wade Elliott 

University of New Hampshire, September 2018 

 

Antifreeze proteins (AFPs) are a unique class of protein characterized by their ability to 

depress the freezing point of water sufficient to prevent the formation of ice crystals by 

adsorbing to the surface of ice crystals. This unique ability allows organisms (e.g. plants, 

fish, insects, etc.) which live in extremely cold climates to survive. Because of these 

proteins’ ability to prevent and slow the rate of ice crystal formation, they have great 

potential in the application of cryopreservation in medicine, agriculture and food science. 

Antifreeze proteins have been known for over five decades, however, their exact 

mechanism of action is still under investigation.  In this study, we have characterized the 

antifreeze protein ApAFP752 from the beetle Anatolica polita to better understand method 

of action of antifreeze activity of insect antifreeze proteins and to identify it potential 

applications in cryoprotection. We found the protein to have a β-helix secondary structure, 

similar to other known insect antifreeze proteins. Additionally, the protein was found to 

confer some cryoprotection to cellular systems. 

We have also investigated the effects of ionic liquids on protein biophysics. Ionic 

liquids are highly viscous liquids at room temperature comprised entirely of ions, which 

makes it challenging to study their interactions with protein by traditional NMR methods. 

It has been proposed that ILs can be tuned to alter the structural and biophysical 
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properties of biomacromolecules. In this study, the effect of an ionic liquid (1-butyl-3-

methylimidazolium bromide, [C4-mim]Br) on the structure and dynamics of the model 

protein GB1 was investigated using high-resolution magic angle spinning (HR-MAS) NMR 

spectroscopy. HR-MAS NMR proved to be a viable tool for the elucidation of the molecular 

mechanism of ionic liquid – protein interactions. 
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PROJECT AIMS AND HYPOTHESIS 

 

This thesis can be divided into two projects, and the aims are summarized here:  

Project I. Characterization of the antifreeze protein ApAFP752 

Effective cryoprotection is an important unsolved practical problem in medicine, the 

pharmaceutical and food industries, and agriculture. Nature employs a variety of 

compounds and strategies for freeze avoidance and freeze tolerance that enhance the 

survival of certain organisms in extreme cold environments. Antifreeze proteins are 

produced in certain types of fish, insects, bacteria, and plants that live in cold climates 

and contribute to their resistance to freezing. Antifreeze proteins are thought to 

irreversibly bind to the surface of ice crystals and inhibit their growth. The exact 

mechanism of ice-binding and ice-growth inhibition at the molecular level is not fully 

understood despite considerable efforts over the past decades. This is an important 

problem, as the lack of understanding of ice-binding and ice-growth inhibition has 

hindered development of effective cryoprotection techniques and applications of 

antifreeze proteins.  

 In order to contribute to a better fundamental understanding of ice binding and ice-

growth inhibition and potential applications of antifreeze proteins, we have set out to 

structurally characterize a hyperactive antifreeze protein, ApAFP752, from the beetle 

Anatolica polita and test its potential as a cryopreservation agent. While the best studied 

class of antifreeze proteins are from fish (as these were discovered first in the 1960s), 

insect antifreeze proteins have very different structures and thermal hysteresis, ice 

recrystallization, and ice crystal shaping activities, which offer different potential for their 

applications. The goals of the project were accomplished in the following specific aims: 
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Aim 1: Structural characterization of ApAFP752 antifreeze protein by solution 

NMR spectroscopy. We hypothesized that the structure of ApAFP752 would show 

good surface complementarity to ice.  

Aim 2: Investigate the cryoprotective mechanism ApAFP752 in live cells. Our 

hypothesis was that ApAFP752 can confer cryoprotection to live cells that are 

otherwise sensitive to freezing.  

 

Project II. Ionic liquid interactions with proteins 

Ionic liquids are synthetic materials comprised entirely of ions with phase transitions at or 

below room temperature. Recent reports have described the ability of ionic liquids to 

modulate intermolecular and intramolecular interactions of small molecules. Ionic liquids 

offer unique environments that can be tuned to alter the structural and biophysical 

properties of biomacromolecules. To advance the fundamental understanding of how 

ionic liquids influence native protein secondary structure and function, we have chosen 

to study the effect of 1-butyl-3-methylimidazolium bromide ([C4-mim]Br) on the  structure 

of GB1, an immunoglobulin binding domain B1 of streptococcal protein G. Due to the 

inherent difficulties of studying proteins in highly viscous media by solution NMR, we have 

utilized  high resolution magic angle spinning (HR-MAS) NMR spectroscopy, which can 

reduce NMR linewidths in semi-solid samples through the application of magic angle 

spinning (MAS). We were also motivated to use this as a test case to probe whether HR-

MAS could be used for studying an antifreeze protein (Project I) in viscous environment 

(e.g. live cells). The goals of the project were accomplished in the following specific aims: 
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Aim 1: Utilize high resolution magic angle spinning (HR-MAS) NMR 

spectroscopy to characterize a protein site specifically in highly viscous 

environment. We hypothesized that HR-MAS NMR spectroscopy was a viable tool 

to study proteins at the atomic level in a highly viscous environment.  

Aim 2: Investigate whether ionic liquids have the ability to stabilize protein fold. 

We hypothesized that the ionic liquid [C4-mim]Br could stabilize structure of the GB1 

protein.  
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CHAPTER 1 

 

INTRODUCTION TO ANTIFREEZE PROTEINS 

 

Antifreeze proteins (AFPs) are a subset of ice binding proteins that have the capacity to 

depress the freezing point of liquid water and prevent the formation of and growth of ice 

crystals. The formation of ice crystals in biology can be harmful to organisms and can 

result cellular death. Antifreeze proteins have the ability to mitigate the damaging effects 

of ice by preventing ice crystals from expanding past the point of a microcrystal. Antifreeze 

proteins have been discovered in numerous species of plants, animals, insects, fungi and 

bacteria, enabling them to survive in very cold temperatures1,2. Organisms that have 

AFPs are classified as freeze tolerant or freeze avoidant3-5. Freeze tolerant organisms 

are those that can survive ice formation in their extracellular fluids. Freeze avoidant 

organisms are organisms that can survive in freezing conditions but do not survive 

formation of ice in their cells. These adaptive mechanisms have ensured the survival of 

species that live in areas of extreme cold or have climates with enormous temperature 

fluctuations within a single day. Because of AFPs’ ability to lower the freezing point of 

water, this class of protein has become an area of increased interest within the scientific 

community. The potential applications for this class of protein span a large spectrum, 

ranging from food science to agro-science to medicine6-10. 

 The first antifreeze protein discovered was an antifreeze glycoprotein (AFGP) in 

1960s by Art DeVries11. It was discovered in Antarctic Notothenioids (winter flounder). 

Several other AFPs have since been identified throughout the world. While each of these 
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antifreeze proteins has a similar function, there is a remarkable amount of sequence and 

structural diversity among these proteins. This diversity is due to antifreeze proteins 

evolving independently of each other. Antifreeze proteins have been subclassified 

according to their sequence homology and thermal hysteresis properties. 

 

I. Fish Antifreeze Proteins 

Fish antifreeze proteins are the most studied class of antifreeze protein and can 

be subclassified as types I, II, III, IV and antifreeze glycoproteins. Type I antifreeze 

proteins are most commonly found in arctic and Antarctic fish (see Figure 1A). The HPLC6 

isoform of the winter flounder was the first AFP to have its atomic structure determined. 

Type I antifreeze proteins are typically small, α-helical proteins12. They contain three 

repeats comprised of Thr-Ala-Ala-X-Ala-X-X-Ala-Ala-X-X, where X represents any given 

amino acid13,14. This series of repeats is quite significant with respect to its ice binding 

mechanism15. 

 

A. Type I 

 

B. Type II 

 

C. Type III 

 
PDB: 1Y03 PDB: 2ZIB PDB: 1UCS 

Figure 1: Antifreeze proteins have very broad structural diversity due to their independent 
evolutionary roots.  They are classified into subgroups based on their structure. Here we 
show an example of type I AFP from sculpin16 (A), type II AFP from longsnout poacher17 
(B), type III AFP from eel pout18 (C). 
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 Type II antifreeze proteins are another subset of AFPs commonly found in fish (see 

Figure 1B). These proteins are typically larger than their type I counterpart, averaging a 

size of approximately 20-kDa. It has been found that some type II AFPs (those that 

contain Ca2+) have a high homology to the carbohydrate recognition domain of lectins, 

which use Ca2+ to bind sugars19. This subtype of AFP was the first type discovered to 

have disulfide bonds. Since then other subtypes of AFP have been discover which also 

contain disulfide bonds14. Type II AFPs have been found to contain a combination of α-

helix and β-sheet residues.  

Type III antifreeze proteins are a subset of AFPs which contain very little sequence 

similarities within its own subtype (see Figure 1C). They are also commonly found in fish. 

Currently there has been no identified sequence associated with the ice binding surface 

of the protein14,20,21. It has been found that type III antifreeze proteins contain a 

combination of α-helix and β-sheet residues. Type IV antifreeze proteins have been 

identified in fish. They are thought to contain four amphipathic α-helices folded into a four-

helix bundle. These proteins have been found to have sequence similarities to plasma 

apolipoproteins and also have a similar helix bundle structure14. However, due to the 

concentration of type IV AFPs found in the blood of fish and their differences in expression 

pathway from apolipoproteins, type IV AFPs are distinct from apolipoproteins22. 

Antifreeze glycoproteins (AFGPs) were the first ice-binding proteins found in fish. 

AFGPs are classified according to their size with AFGP1 being the longest and AFGP8 

being the shortest with their relative molecular masses ranging from 33.7-kDa to 2.6-kDa. 

All AFGPs consist of repeats of Ala-Ala-Thr joined with the disaccharide β-D-
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galactopyranosyl-(1,3)α-N-acetyl-D-galactosamine at the hydroxyl oxygen of the Thr 

residue14,23 (see Figure 2).   

 

Figure 2: Typical antifreeze glycoprotein chemical formula depicting the AAT repeats 
joined with a dissacharide14. 

 

II. Insect Antifreeze Proteins 

Insect antifreeze proteins are a more recently discovered subtype of AFP. These 

proteins are typically small proteins around 9-kDa in size. The most extensively studied 

insect antifreeze protein is found in the beetle Tenebrio molitor (yellow fire beetle)24-26. It 

has been found that insect AFPs are primarily hyperactive, meaning that they can depress 

the freezing point of water further than the average antifreeze protein27. These proteins 

are known to have a series of Thr-Cys-Thr repeats where the cysteine residues are 

disulfide bonded creating a β-helix and the threonine residues point outward to interact 

with water28. 

 

III. Plant Antifreeze Proteins 

Plant antifreeze proteins are a less well studied subset of antifreeze proteins. 

There are currently two well studied plant AFPs: Lolium perenne (LpAFP) and Dacus 
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carrotova (DcAFP)14,29. While these two antifreeze proteins have been discovered in 

plants, they contain very different sequences associated with ice binding. LpAFP contains 

repeats of X-X-Asn-X-Val-X-Gly. The current model for this protein is a β-roll containing 

an additional sequence repeat of Thr-X-Thr similar to that of insect AFPs. Even though 

this protein contains similarities to insect AFPs, the Thr-X-Thr repeat is not as well 

conserved in LpAFP.  

DcAFP is a leucine rich antifreeze protein. It contains a repeat of the following 

twenty-four residues: Pro-X-X-X-X-X-Leu-X-X-Leu-X-X-Leu-X-Leu-Ser-X-Asn-X-Leu-X-

Gly-X-Ile. The structure of this protein is comprised of a ten coil β-helical folds consisting 

of two β-strands and a 310 helix14. This results in a structure similar to an insect AFP β-

helix. Unlike most β-helical AFPs, this protein contains multiple highly conserved Asn 

residues between the β-strands indicating that the ice binding surface is opposite to the 

flat surface of the protein. 

 

IV: Thermal Hysteresis Glycolipids 

Some organisms have developed adaptive mechanisms outside of producing 

antifreeze proteins in order to survive freezing temperatures. The beetle Upis 

ceramboides produces glycolipids and polyols as its primary mechanism of freeze 

tolerance30. These biomolecules are found in high concentrations in the hemolymph of 

this beetle during periods of cold temperature. Similar thermal hysteresis glycolipids have 

also been found in other organisms including insects, fish and frogs23.   
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V: Antifreeze Protein Properties 

All antifreeze proteins have the same three properties: thermal hysteresis activity, 

ice crystal shaping and ice recrystallization inhibition activity. The extent of these 

properties varies among and within AFP classes. Antifreeze proteins have also been 

commonly referred to as thermal hysteresis proteins. Thermal hysteresis is defined as the 

difference between a sample’s freezing point and melting point (Figure 3)1,27. AFPs inhibit 

the growth of ice crystals by decreasing the freezing point of water, creating a gap 

between the freezing point and melting point of water. The magnitude of thermal 

hysteresis is used to qualify an antifreeze protein as either moderately active or 

hyperactive1,31.  

 

𝑇𝐻 =  𝑇𝑚 − 𝑇𝑓 

Figure 3: Thermal hysteresis (TH) is defined as the difference between the melting point 
(Tm) and the freezing point (Tf) of water. This property is different from freezing point 
depression associated with salts, where salt freezing point depression is a function of 
osmolarity. 

 

Though AFPs’ thermal hysteresis activities are quantitatively characterized, the 

activity of these proteins can be correlated to their ice binding mechanisms and the planes 

of ice to which the protein binds. Ice contains two planes, the basal and prism planes 

(Figure 4). 
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Figure 4: A representation of the planes of ice. Each plane is affiliated with a designated 
axis.  

 

Antifreeze proteins bind to the surface of ice and mechanically prevent additional waters 

from attaching to the ice crystal’s surface. The plane or planes to which the AFP binds 

dictates the shape the ice crystal will take. Moderate antifreeze proteins bind to the prism 

surface of ice along the c-axis. This results in the formation of a single bipyramidal ice 

crystal (Figure 5A). Hyperactive antifreeze proteins bind to the basal and prism surfaces 

of ice along the a-axis and c-axis32. This binding results in the formation of a single 

hexagonal disc or lemon shaped ice crystal (Figure 5B)31,33-35. The formation of these 

single micro crystals is essential in the prevention of the growth of ice crystals and is the 

primary mechanism by which antifreeze proteins prevent the formation of larger ice 

crystals. Due to the binding characteristics of these proteins, Moderate antifreeze 

proteins, such as many fish AFPs, require 10 to 100 times the protein concentration to 

achieve the same thermal hysteresis activity as their hyperactive AFP counterparts31,36.  
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A 

 

B 

 

 

Figure 5: Ice crystal shaping effects of antifreeze proteins. (A) Moderate active antifreeze 
protein binding along the c-axis of ice resulting in a hexagonal bipyramidal crystal shape. 
(B) Hyperactive antifreeze protein binding along both the a- and c-axes of ice resulting in 
a hexagonal disk crystal shape. 

 

Antifreeze proteins are thought to irreversibly bind to the surface of ice27. Because 

of this characteristic, AFPs can prevent the fusion of smaller ice crystals into larger ice 

crystals during melting. This ability to prevent this fusion from occurring is known as ice 

recrystallization inhibition. This property is extremely important when considering cells 

that experience freeze/thaw cycles37. As cells thaw small ice crystals fuse together 

resulting in larger ice crystals, which results in an increase in intracellular pressure. This 

increase in pressure can damage cellular components rendering the cell non-viable. An 

AFPs ice recrystallization inhibition properties help to prevent this occurrence27.  

 

VI: Ice Binding Theories 

Over the years there have been many theories as to the exact mechanism of action 

behind antifreeze protein ice binding. Initially, it was thought that hydrogen bonding was 

the culprit behind AFP ice binding.  As previously stated, type I antifreeze proteins contain 
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repeats comprised of Thr-Ala-Ala-X-Ala-X-X-Ala-Ala-X-X13. Studies found the distance 

between the hydroxyl groups in the Thr residues in these repeats is 16.5 Å and the 

distance between the oxygen atoms in the water molecules in the ice plane is 16.7 Å14. 

Due to how close these two distances are, it was assumed that the Thr hydroxyls in the 

AFP and the oxygen atoms in water molecules aligned properly to facilitate a strong 

hydrogen bonding interaction, thus creating an ice binding interface.  

 It has since been demonstrated that hydrogen bonding is not solely responsible 

for AFP ice binding. A series of point mutation studies performed on type I antifreeze 

proteins showed that hydrogen bonding plays a much smaller role in ice binding than 

originally thought14,38. This was demonstrated by inserting Ser residues in place of the 

Thr residues in order to mimic the hydrogen bonding capabilities14. The study showed 

that this mutation resulted in an almost complete loss of antifreeze activity. Additional 

studies were performed substituting amino acids containing hydrophobic side chains in 

place of the Thr residues. Unexpectedly, the substitutions with Ala and Val both resulted 

in a very small loss of thermal hysteresis activity13,39. These studies showed that the 

presence of hydrogen bonding capable residues was much less important than originally 

assumed and showed that the presence of hydrophobic residues may play a significant 

role in ice binding and antifreeze activity. This theory was further substantialized by the 

study of type III antifreeze proteins which demonstrated that hydrophobic residues are 

not solely responsible for the thermal hysteresis activity, but they are additive to the 

thermal hysteresis properties due to van der Waals forces14. 

Currently the most accepted theory behind the ice binding mechanism of antifreeze 

proteins is the anchored clathrate model. In this theory, ice-like waters form a clathrate 
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(also known as a water cage) around the γ-methyl of the Thr residues. This clathrate is 

anchored to the protein via hydrogen bonds to the main chain nitrogen atoms and the 

hydroxyl groups on the Thr residues. The clathrate creates a quasi-liquid membrane 

around the protein which binds to the ice surface and allows the protein to prevent further 

growth of the ice crystal31,40,41. The proposed spacing of the Thr hydroxyls in the insect 

antifreeze protein ApAFP752 compared to the spacing of water molecules in ice lends 

further evidence to the importance of the position of the Thr in antifreeze proteins activity 

as the TCT spacing between the neighboring Thr are 4.5 Å along the a-axis plane of ice 

and the TCT spacing between adjacent Thr is 7.5 Å along the c-axis, both of which are 

ideal matches to the spacing of water molecules in ice35. 

 

VII: ApAFP752 

The Varga lab is currently studying the antifreeze protein ApAFP752 (Figure 6A). 

ApAFP752 is an 8.9-kDa hyperactive insect antifreeze protein found in the desert beetle 

Anatolica polita. A. polita is found in the Xinjiang province of China in the Gurbantunggut 

Desert as well as other part of central Asia. This area of the world has temperatures that 

can fluctuate up to 40 °C in a single day with temperatures reaching as low as -40 

°C35,42,43. These climate pressures have resulted in an antifreeze protein with very high 

thermal hysteresis activity. The activity of this protein as a fusion protein has been 

previously demonstrated with the use of differential scanning calorimetry. Similar to other 

insect antifreeze proteins, ApAFP752 is thought to have a β-helical secondary structure 

(Figure 6B). This protein is thought to be a right-handed parallel β-helix consisting of six 

repetitive 12-amino acid loops. It has very high homology to the well-studied antifreeze 
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protein from the beetle Tenebrio molitor (TmAFP) which is also a β-helical protein25. Like 

other insect antifreeze proteins, ApAFP752 contains repeats of Thr-X-Thr, where X is a 

cysteine residue. These cysteine residues are disulfide bonded to create the flat ice 

binding surface necessary for the protein’s thermal hysteresis activity.  

 

A 

 

B 

 

Figure 6: (A) Sequence of ApAFP752. (B) Representation of a protein having a β-helix 
secondary structure. Threonines are highlighted in red indicating the potential ice-binding 
surface. 

 

The gene coding for the ApAFP752 protein sequence was cloned into an E. coli 

expression vector, and the antifreeze protein was expressed and purified as a fusion 

protein with thioredoxin-A (TrxA), termed TrxA-ApAFP752, in all prior literature reported 

studies35,43,44. TrxA participates in the catalysis of dithiol-disulfide exchange reactions45. 

In our work, we have chosen to work both with the TrxA-ApAFP752 fusion protein and 

ApAFP752 (without the TrxA fusion partner). In the following chapters, we will describe 

the characterization of the antifreeze activity of both proteins, the structural 

characterization of ApAFP752 by nuclear magnetic resonance (NMR) spectroscopy, and 

the application of the TrxA-ApAFP752 fusion protein in cryopreservation studies. 
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CHAPTER 2 

 

EXPRESSION AND PURIFICATION OF ApAFP752 

 

The expression and purification of the ApAFP752 joined with thioredoxin (Trx) as a fusion 

protein (TrxA-ApAFP752) was reported in the literature by Ji Ma and coworkers at 

Xinjiang University35,43,44, and the initial expression of this protein was carried out in the 

Varga lab in accordance with previously published reports35,43,44. While utilization of the 

published method did result in the expression of the fusion protein, in order to carry out 

nuclear magnetic resonance (NMR) spectroscopy and cryopreservation studies, the 

ApAFP752 protein must be available in milligram quantities and in high purity. For NMR 

structural studies, the protein also had to be enriched with NMR active isotopes (e.g. 13C 

and 15N) and the expression was established in minimal medium. The protocols were 

optimized in order to maximize the yield and purity of the fusion protein utilizing various 

E. coli cell lines and purification protocols.  

 While the fusion protein was reported to have antifreeze activity35,43,44, our aim was 

also to characterize the ApAFP752 without the thioredoxin fusion, which was not 

published before and proved to be experimentally challenging. We have explored different 

routes for producing pure ApAFP752, including the expression and purification of 

ApAFP752 (without the TrxA fusion) and also the cleavage of purified TrxA-ApAFP752 

followed by a purification step. The protein is challenging to be expressed in E. coli 

because of the high number of Cys residues, and we were unable to produce well-folded 
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ApAFP752 when expressed without the TrxA fusion. We were successful however to 

produce ApAFP752 by cleaving the purified purified TrxA-ApAFP752. 

 

I.  Optimization of the expression of TrxA-APAFP752 fusion protein   

Optimization of E. coli cell line for the expression of TrxA-ApAFP752 fusion protein 

The recombinant plasmid, pET32a-Apafp752, for the fusion protein TrxA-ApAFP752 was 

a gift from Ji Ma at Xinjiang University35,43,44. As previously stated, TrxA-ApAFP752 is 

thought to be a heavily disulfide bonded β-helix containing 16 Cys residues. Because of 

the high number of suspected disulfide bonds, various E. coli strains were tested in order 

to identify the one best suited for this protein. While E. coli strains such as BL21 (DE3) 

pLysS are commonly used for recombinant protein expression, they are not typically well 

suited for proteins with a high number of disulfide bonds. To address this, the following 

E. coli strains were each tested individually to assess their proficiency in expressing and 

folding the protein: BL21 (DE3) pLysS (Promega), Rosetta-gami™ 2(DE3) (Novagen) and 

Origami™ B(DE3) (Novagen). Rosetta-gami™ 2(DE3) and Origami™ B(DE3) were 

tested because their claimed increased capacity for expressing and folding disulfide 

bonded proteins. The transformed cells were plated onto Luria-Bertani medium agar 

plates containing 100 μg mL-1 ampicillin and incubated at 37 °C overnight for 14 hours. 

30 mL cultures of Luria-Bertani (LB) medium (Fisher Scientific) containing 100 μg mL-1 

ampicillin were inoculated each with a single transformed colony and cultured overnight 

in an orbital shaker at 37 °C, 225 rpm for 12 hours. 4 mL of the overnight culture was 

transferred into 1 L of fresh LB medium and grown in an orbital shaker at 37 °C, 225 rpm 

until the optical density at 600 nm (OD600) reached 0.65 to 0.70. The OD600 was measured 
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using an Agilent 8453 UV-Vis spectrometer. Once the specified OD600 was reached, the 

transformed cells were harvested via centrifugation at 9559 x g, 4 °C for 20 minutes. The 

cells were resuspended in a minimal growth medium containing 15N enriched (>99%) 

ammonium chloride (NH4Cl) at a 1:1 LB broth to minimal growth medium. The cells were 

then incubated at 25 °C, 225 rpm for 45 minutes. Overexpression of the protein was 

induced with the addition 1 mL of 400 mM (final concentration 0.4 mM) isopropyl β-D-1-

thiogalactopyranoside (IPTG) and incubated at 25 °C, 225 rpm for 8 hours46. The cells 

were harvested via centrifugation at 9559 x g, 4 °C for 25 minutes. The cell pellets were 

either used right away or frozen at -80 °C for long term storage.  

 

Purification of TrxA-AFP752 fusion protein 

The cell pellets were resuspended in a lysis buffer containing 50 mM sodium phosphate, 

150 mM NaCl, 1% v/v Halt™ Protease Inhibitor Cocktail (Thermo Scientific), pH 8.0. The 

cells were lysed four times via French Press at 1500 psi. The lysate was centrifuged at 

20,217 x g, 4 °C for 30 minutes and the supernatant was then collected. Fast protein 

liquid chromatography (FPLC; GE Healthcare ÄKTA purifier 900) was performed in 

duplicate using Ni-affinity columns to take advantage of the 6xHis tag engineered into the 

protein sequence. The protein was eluted from the FPLC using 500 mM imidazole and 

dialyzed into a buffer containing 50 mM potassium phosphate, 20 mM NaCl, pH 8.0.   

 Fast protein liquid chromatography revealed expression of the protein in each of 

the cell lines (Figures 7-9). Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE) stained with Coomasie brilliant blue revealed high purity protein from each 

cell line, suggesting successful purification using Ni-affinity methods (Figure 10). In some 
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cases, Ni-affinity methods provided insufficient purity. In such cases, Ni-affinity 

chromatography was supplemented with anion exchange chromatography and size-

exclusion chromatography in order to achieve the desire protein purity. 

 

 

Figure 7: Purification chromatogram of TrxA-ApAFP752 expressed in the E. coli cell line 
Rosetta-gami™ 2(DE3). The various colored lines are representative of the following 
measurements: (Blue) absorption at 280 nm; (Green) percent concentration of elution 
buffer relative to the starting imidazole concentration; (Brown) solution/sample 
conductivity in units of mS cm-1. The peak appearing at fraction 28 is consistent with the 
elution of TrxA-ApAFP752 fusion protein. Peaks prior to fraction 14 are consistent with 
non-6xHis proteins and heavily aggregated proteins. 
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Figure 8: Purification chromatogram of TrxA-ApAFP752 expressed in the E. coli cell line 
Origami™ B(DE3). The various colored lines are representative of the following 
measurements: (Blue) absorption at 280 nm; (Green) percent concentration of elution 
buffer relative to the starting imidazole concentration; (Brown) solution/sample 
conductivity in units of mS cm-1. The peak appearing at fraction 28 is consistent with the 
elution of TrxA-ApAFP752 fusion protein. Peaks prior to fraction 14 are consistent with 
non-6xHis proteins and heavily aggregated proteins. 
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Figure 9: Purification chromatogram of TrxA-ApAFP752 expressed in the E. coli cell line 
BL21 (DE3) pLysS. The various colored lines are representative of the following 
measurements: (Blue) absorption at 280 nm; (Green) percent concentration of elution 
buffer relative to the starting imidazole concentration; (Brown) solution/sample 
conductivity in units of mS cm-1. The peak appearing at fraction 28 is consistent with the 
elution of TrxA-ApAFP752 fusion protein. Peaks prior to fraction 14 are consistent with 
non-6xHis proteins and heavily aggregated proteins. 
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A 

 

B 

 
                                             C 

 
 

Figure 10: SDS-PAGE of 12% Tris-Tricine gels stained with Coomasie brilliant blue R-
250. (A) TrxA-ApAFP752 from the E. coli cell line Rosetta Gami™ 2(DE3); (B) TrxA-
ApAFP752 from the E. coli cell line BL21 (DE3) pLysS; (C) TrxA-ApAFP752 from the E. 
coli cell line Origami™ B(DE3). Protein bands appear in each expression slightly above 
25-kDa. This is consistent with the 26.4-kDa molecular weight of TrxA-ApAFP752. 

 

Each protein sample was then concentrated to a volume of 270 μL in preparation for NMR 

studies, as the 5 mm Shigemi® NMR tubes have an approximately 300 μL sample 

volume. The protein concentrations were calculated using UV-Visible spectroscopy at an 

absorbance of 280 nm47. The protein’s molar absorptivity was calculated to be 19,575 M-

1 cm-1 using the ExPASy ProtParam tool48. It was found that the concentrations of the 

fusion protein from Rosetta Gami™ 2(DE3), Origami™ B(DE3) and BL21 (DE3) pLysS 
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were 47 μM,  6 μM and 31 μM, respectively (Figure 11). From these concentrations the 

protein yield for each expression vector was determined to be 62 μg L-1, 41 μg L-1 and 96 

μg L-1, respectively. 

  

A 

 

B 

 

                                      C 

 

Figure 11: UV-Vis absorption spectra of TrxA-ApAFP752 from each expression vector. 
Spectra were collected at a 10-fold dilution of the protein. A280 was found to be (A) 
0.142, (B) 0.0916 (C) 0.0611.  

 

NMR sample preparation 

Each sample was mixed with deuterium oxide (D2O), 4,4-dimethyl-4-silapentane-1-

sulfonic acid (DSS) and sodium azide (NaN3) to a final concentration of 10% v/v D2O, 200 

μM DSS and 1 mM NaN3 in preparation for NMR studies. D2O is used for sample locking 

in the NMR spectrometer. DSS is commonly used as an internal reference in aqueous 
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solution NMR experiments. NaN3 is a known biocide and is used in protein NMR samples 

as a method of inhibiting bacterial growth in the sample during experiments. 1-

dimensional (1D) 
1H and 2-dimensional (2D) 1H-15N heteronuclear single quantum 

coherence (HSQC) NMR experiments were acquired for each sample to evaluate the 

protein fold. Spectra were acquired on a Bruker Avance III 600 MHz NMR spectrometer 

equipped with a BBO probe at 25 °C and referenced to DSS (internal reference)49. 1H-

15N HSQC spectra for the fusion protein expressed in E. coli cell lines Rosetta gami™ 

2(DE3) and BL21 (DE3) pLysS exhibited well-defined peaks with even dispersion and 

signal intensities (Figures 12). The 1H-15N HSQC spectrum for the sample expressed in 

E. coli cell line Origami™ B(DE3) exhibited poor signal intensity with poorly defined peaks 

and a lack of peak dispersion (Figure 13A). Further evaluation of the 1H spectrum showed 

only 3 distinct peaks at 8.44 ppm, 7.90 ppm and 7.18 ppm indicating improper folding or 

aggregation of the protein (Figure 13B). Because of these results, no further expression 

or experimentation was performed using Origami™ B(DE3) cells.  
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A 

 
 
B 

 
 

Figure 12: 1H-15N HSQC NMR spectra of TrxA-ApAFP752 from E. coli cell lines (A) BL21 
(DE3) pLysS and (B) Rosetta gami™ 2(DE3). Both spectra exhibit a well folded protein. 
Note: the concentration of TrxA-ApAFP752 in spectrum A is more than double of 
spectrum B, resulting in a much stronger signal.  
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           A 

 
 

           B 

 
 

Figure 13: NMR spectra of TrxA-ApAFP752 from E. coli cell line Origami™ B(DE3). (A) 
1H-15N HSQC spectrum illustrates a lack of proper fold. (B) 1H-1D containing 3 distinct 
peaks at 8.44 ppm, 7.90 ppm and 7.18 ppm indicative improper folding or aggregation of 
the protein.  
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Optimization of expression of isotopically enriched TrxA-ApAFP752 protein in E. coli cell 

line BL21 (DE3) pLysS 

The expression of the TrxA-ApAFP752 was further optimized using E. coli BL21 (DE3) 

pLysS, as this expression vector resulted in the highest protein yield. Due to the poor 

yield of the protein in the labeled minimal growth medium, the ratio of resuspension of the 

cells from LB broth to labeled minimal growth medium was changed from 1:1 to 4:1, 

effectively increasing the cell density during the overexpression stage by a factor of four50. 

Additionally, the temperature of the overexpression phase was lowered from 25 °C to 15 

°C to facilitate folding of the protein. Optimization of the fusion protein expression was 

performed by sampling the minimal growth medium, post induction, at hours 6 through 22 

at 2-hour increments. Samples were centrifuged at 4,500 x g for 20 minutes and the 

resultant cell pellets were stored at -80 °C until utilized. 

The frozen cell pellets were thawed in the previously described lysis buffer 

containing 1 mM ethylenediaminetetraacetic acid (EDTA) and 10 mg mL-1 lysozyme 

(Sigma Aldrich) at 37 °C. Freeze-thaw cycles were implemented in triplicate to ensure 

complete lysis of the cells. The fusion protein was isolated from the cells via 

centrifugation, with the supernatant being collected. Samples were run through SDS-

PAGE and analyzed via western blotting. Evaluation of the western blots showed a 12-

hour induction time resulted in the strongest band intensity, indicating the highest protein 

concentration and protein yield (Figure 14).  
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Figure 14: Western blots TrxA-ApAFP752 expressed in BL21 (DE3) pLysS sampled 
during the overexpression stage from hours 6 to 22 at 15 °C temperature and 225 rpm 
shaking. The strongest protein band was exhibited at the 12-hour expression time, which 
was determined to be optimal time under these experimental conditions and was used in 
further experiments. 
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II. Isolation of ApAFP752 from TrxA-ApAFP752 

In order to study the antifreeze protein in its naturally occurring form, ApAFP752 was 

removed from the fusion protein via proteolytic cleavage using bovine His-enterokinase 

(Prospec-Tany). TrxA-ApAFP752 cleavage was performed in 50 mM potassium 

phosphate, 20 mM NaCl, pH 8.0. A small-scale cleavage test was performed with an 

enzyme to protein mixture ratio of 1 IU bovine His-enterokinase to 400 ug TrxA-

ApAFP752 for six hours at 25 °C. Samples were taken every two hours. SDS-PAGE was 

performed and stained with Coomasie brilliant blue (Figure 15).  

 

 

Figure 15: Cleavage of TrxA-ApAFP752 with bovine His-enterokinase. Degradation of the 
fusion protein becomes noticeable at 2 hours. TrxA appears at approximately 17-kDa. At 
6 hours the cleavage appears to be complete. 

 

A band for ApAFP752 was not found in the gel, however, the optimal cleavage time was 

determined by the degradation of the TrxA-ApAFP72 band and the appearance of the 

TrxA band at approximately 17-kDa. Six hours was found to be an optimal cleavage time 

at this protein-enzyme ratio and a full scale was performed using these conditions. The 
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post-cleavage samples were purified using FPLC Ni-affinity. Due to the 6xHis-tag being 

positioned on the TrxA side of the cleavage site, the FPLC flow-through contained the 

ApAFP752, while the Ni-affinity elution contained the TrxA and the bovine His-

enterokinase (Figure 16). SDS-PAGE was performed on the isolated ApAFP752 sample 

and silver staining was used to identify the protein (Figure 17). The molar absorptivity of 

ApAFP752 was calculated to be 5,400 M-1 cm-1 using the ExPASy ProtParam tool48. Due 

to the lack of tryptophan, the absorbance of tyrosine at 275 nm was used to calculate the 

concentration of ApAFP752 protein samples. 

 

 

Figure 16: Ni-affinity chromatography of post-cleavage TrxA-ApAFP752 fusion protein. 
The peak appearing at fraction 4 is the elution of ApAFP752 protein in the flow-through. 
The peak at fraction 29 is consistent with the elution of TrxA and bovine His-enterokinase.  
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Figure 17: Silver stain of 16.5% tris-tricine SDS-PAGE of TrxA-ApAFP752 fusion protein 
biproducts. Left two lanes show a band just below 10-kDa which is consistent with 9.4-
kDa molecular weight of ApAFP752. Right lane contains a strong band just above 15-kDa 
(TrxA) and just 25-kDa (enterokinase). 

 

To simplify the complex processes in expressing, cleaving and isolating ApAFP752 

from the fusion protein, the sequence for ApAFP752 was cloned into the pET23a plasmid 

construct. The plasmid was transformed into E. coli BL21 (DE3) pLysS cells, and the 

protein was expressed under the conditions listed above. The protein was harvested 

using French press and centrifugation in the same manner used for TrxA-ApAFP752. The 

sample was purified with Ni-affinity chromatography by FPLC and the concentration of 

the purified protein was analyzed by UV-Vis spectrophotometry (Figure 18A). The sample 

was prepared for NMR spectroscopy experiments as listed above. NMR data was 

acquired on a Bruker Avance III 600 MHz spectrometer. The NMR data showed a very 

weak protein signal with few discernable peaks (Figure 18B). This information, coupled 
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with the strong signal intensity seen in the UV-Vis spectrum for the same sample, 

indicates that the sample was either heavily aggregated or improperly folded.  

 

      A 

 

       B 

 

Figure 18: ApAFP752 from the pET23a plasmid expressed in E. Coli BL21 (DE3) pLysS 
cells. A) UV-Vis spectrum showing absorbance signal at 275 nm. B) 1H-15N HSQC NMR 
spectrum of the same protein sample as in Figure A. A conglomeration of peaks 
associated with Gln and Asn side-chain N-H correlations are observable along with a few 
other peaks. The NMR spectrum indicates the sample is not a well-folded protein.  
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Additional steps were taken in attempt to denature then refold the protein into its 

native structure. ApAFP752 was first denatured and the disulfide bonds were reduced in 

a solution of 8 M guanidine-HCl, 100 mM Tris-HCl (pH 8.5), 1mM 

ethylenediaminetetraacetic acid (EDTA) and 12 mM 2-mercaptoethanol, and the solution 

was slowly mixed at 22 °C for 1 hour25. The protein sample was then added to a cold 

solution of 50 mM K2HPO4, 1 mM EDTA, 2 mM 2-mercaptoethanol and 100 mM NaCl at 

pH 10.7. The solution was mixed for 16 hours at 15 °C, after which the sample was 

dialyzed in 10 mM Tris-HCl, 1 mM EDTA and 100 mM NaCl at pH 8.0 for 48 hours. The 

sample was then left to oxidize and refold via slow agitation for 6 weeks. The resulting 

sample was then concentrated to 270 μL, and the concentration was checked using UV-

Vis spectrophotometry. The UV-Vis spectrum for the re-oxidized sample showed no 

discernable protein signal, indicating that the refolding was unsuccessful and may have 

resulted in degradation of the protein (Figure 19).   

 

 

Figure 19: UV-Vis spectrum of ApAFP752 from the pET23a plasmid expressed in E. coli 
BL21 (DE3) pLysS cells. No discernable protein signal is observed at 275 nm.   
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III. Confirmation of ApAFP752 by Mass Spectrometry 

Mass spectrometry was performed on a lyophilized 15N-labeled ApAFP752 sample by Dr. 

Feixia Chu at the University of New Hampshire in order to confirm the sequence of the 

protein post-cleavage. The lyophilized protein was resuspended in 6M guanidine 

hydrochloride to a final concentration of 5-10 M. The protein was reduced by DTT (10 

mM final concentration) at 56 C for 45 minutes, then alkylated by iodoacetamide (25 mM 

final concentration) in darkness at room temperature for 1 hour. The protein solution was 

diluted with 25 mM ammonium carbonate to 0.5-1 M, immediately followed by the 

addition of trypsin (2% protein weight). In-solution digestion was carried out at 37 C for 

2 hours, before LC-MS/MSMS analysis51. Briefly, 1 l aliquot of the digestion mixture was 

injected into a Dionex Ultimate 3000 RSLCnano UHPLC system with an autosampler 

(Dionex Corporation, Sunnyvale, CA, USA), and the eluant was connected directly to a 

nanoelectrospray ionization source of an LTQ Orbitrap XL mass spectrometer (Thermo 

Fisher). LC-MS data were acquired in an information-dependent acquisition mode, cycling 

between a MS scan (m/z 310-2000) acquired in the Orbitrap, followed by low-energy CID 

analysis in the linear ion trap.  

Though the incorporation of 15N is higher than 90%, the presence of 14N makes it 

difficult to determine the monoisotopic masses for effective database search. Therefore, 

we inspected the MSMS spectra of five high abundance peptides acquired in the LC-

MS/MSMS run, with m/z values at 663.272+, 846.975+, 1004.342+, 1097.412+ and 

1167.453+ (Figure 20). Except for peptide 846.975+, high quality MSMS spectra were 

acquired for all peptides for the conclusive identification of the antifreeze protein. 
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Figure 20: Spectrum of anti-freeze protein ApAFP752, averaged through the peptide 
elution window from the LC-MS/MSMS analysis. 

 

Figure 21 shows a representative MSMS spectrum for peptide Ala70-Lys81. The nearly 

complete C-terminal containing fragment series (y ions) provides sufficient information on 

this peptide sequence. As expected, the mass of a y ion matches to the mass of unlabeled 

counterpart and the number of nitrogen atoms in the fragment. Based on the identification 

of four high abundance peptides, we can conclude that anti-freeze protein ApAFP752 is 

the dominant protein component in the sample. 
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Figure 21: Representative MSMS Spectrum of the anti-freeze protein, ApAFP752, 
peptide, Ala70-Lys81. The almost complete C-terminal containing y ions series provides 
conclusive identification of the peptide. Cysteine residues were carbamidomethyl 
modified through reduction and alkylation. 

 

IV. Conclusion 

 TrxA-ApAFP752 has been successfully expressed and purified. BL21 (DE3) pLysS 

was the most proficient bacterial vector for expressing a well folded fusion protein, which 

was confirmed and NMR spectroscopy. Ni-affinity chromatography by FPLC was found 

to be sufficient for the purification of the fusion protein in most cases. In situations where 

Ni-affinity was insufficient, supplemental purifications were performed using anion 

exchange chromatography and size-exclusion chromatography. Stable isotope labeling 

for NMR spectroscopy was optimized and confirmed with western blots, SDS-PAGE and 

NMR spectroscopy. Lysis of purified TrxA-ApAFP752 with recombinant bovine 

enterokinase-His resulted in a well folded, non-fusion form of the antifreeze protein. 

Isolation of the protein, ApAFP752, was achieved with Ni-affinity chromatography via 
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FPLC by collecting the flow through. Protein stability was confirmed by NMR 

spectroscopy and the protein sequence was confirmed by mass spectrometry.  
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CHAPTER 3 

 

CHARACTERIZATION OF ANTIFREEZE PROTEIN PROPERTIES 

 

 

As discussed in Chapter 1 (in section “V: Antifreeze Protein Properties”), antifreeze 

proteins can be characterized by their thermal hysteresis, ice recrystallization, and ice 

crystal shaping activity. Thermal hysteresis studies of the fusion protein, TrxA-ApAFP752, 

were first reported by Ji Ma and coworkers in 2010 and 201135,43. Data collected using 

differential scanning calorimetry (DSC) and osmometry provided the first insight into the 

thermal hysteresis activity (THA) of this protein. Using osmometry, they reported ice 

crystals in the shape of hexagonal disks consistent with ice crystal shaping properties 

associated with the AFP binding both the prism and basal planes of ice. This study 

indicates that TrxA-ApAFP752 is a hyperactive antifreeze protein. In order to achieve 

Project 1, Aim 2: Investigate the cryoprotective mechanism ApAFP752 in live cells, 

we further investigated the antifreeze properties of the fusion protein, TrxA-ApAFP752, 

and the isolated antifreeze protein, ApAFP752, and their potential as cryoprotectants.  

 

I. Thermal Hysteresis Activity of TrxA-ApAFP752 and ApAFP752 

 The thermal hysteresis activity of both the fusion protein, TrxA-ApAFP752, and 

ApAFP752 where studied using differential scanning calorimetry (DSC). Samples of TrxA-

ApAFP752 were evaluated at concentrations of 1 mg mL-1, 3 mg mL-1 and 5 mg mL-1. 

Samples were tested in a buffer consisting of 50 mM potassium phosphate, 20 mM NaCl. 

An aliquot of 10 μL of each sample was loaded into Tzero® aluminum hermetic pans (TA 
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Instruments) cooled to -30.0 °C at a rate of 1 °C min-1 and held at this temperature for 10 

minutes. Samples were then heated at 1 °C min-1 up to -1.0 °C, held at this temperature 

for 5 minutes and cooled to -30.0 °C at 1 °C min-1. This freeze-thaw cycle was repeated 

from -1.0 °C to +0.5 °C in increments of 0.1 °C in order to vary the percentage of ice 

present in the sample43,52 (See Appendix: Materials and Methods – Differential Scanning 

Calorimetry). The percentage of ice was estimated to be |[1 − (−
∆𝐻𝑟

∆𝐻𝑚
⁄ )]| × 100%, 

where ΔHm is the enthalpy of melting and ΔHr is the enthalpy of refreezing. Thermal 

hysteresis activity data was collected on a TA Instruments Q2000 Differential Scanning 

Calorimeter.  

 Each sample showed some amount of thermal hysteresis activity. The greatest 

activity was seen in the 5 mg mL-1 TrxA-ApAFP752 sample with a hysteresis of -0.39 °C 

(Figure 22). Both the 1 mg mL-1 and the 3 mg mL-1 samples exhibited lower activity at -

0.30 °C (Figure 23) and -0.36 °C (Figure 24) respectively. The ice fractions for each 

sample were calculated to be 10.8 % at 1 mg mL-1, 10.5 % at 3 mg mL-1 and 14.0 % at 5 

mg mL-1 (Table 1). While the 1 mg mL-1 and 3 mg mL-1 samples shared similar ice fractions 

there was still a noticeable increase in the thermal hysteresis activity as the concentration 

increased. This overall trend of increase in activity with respect to increase in 

concentration is to be expected.  
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Figure 22: DSC curves of the fusion protein, TrxA-ApAFP752, at 5 mg mL-1 concentration. 
The black arrow indicates the onset of freezing in the sample. The thermal hysteresis 
activity was found to be -0.39 °C at an ice fraction of 13.8%. 
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Figure 23: DSC curves of the fusion protein, TrxA-ApAFP752, at 1 mg mL-1 concentration. 
The black arrow indicates the onset of freezing in the sample. The thermal hysteresis 
activity was found to be -0.30 °C at an ice fraction of 10.8%.  
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Figure 24: DSC curves of the fusion protein, TrxA-ApAFP752, at 3 mg mL-1 concentration. 
The black arrow indicates the onset of freezing in the sample. The thermal hysteresis 
activity was found to be -0.36 °C at an ice fraction of 10.5%.  

 

Table 1: Results of DSC thermal hysteresis experiments on TrxA-ApAFP752. A 
concentration of 5 mg mL-1 yielded the highest thermal hysteresis activity. The sample 
was also found to have the largest ice fraction of all the samples. A smaller ice fraction 
may result in a greater activity. 

Concentration (mg 

mL-1) 

Concentration 

(μM) 

ΔHr 

(J/g) 

ΔHm 

(J/g) 

THA 

(°C) 

Ice Fraction 

(%) 

1 37.9 -332.8 300.4 -0.30 10.8 

3 113.6 -325.3 294.4 -0.36 10.5 

5 189.39 -305.5 268.4 -0.39 14.0 
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 An additional study was carried out on a TrxA-ApAFP752 sample to study the role 

the protein’s tertiary structure plays in thermal hysteresis activity. A TrxA-ApAFP752 

sample at a concentration of 3 mg mL-1 was heated to 85.0 °C for 10 minutes in order to 

denature the protein. DSC data was collected on the heat-denatured fusion protein using 

the same method describe above. The heat-denatured sample showed no signs of 

thermal hysteresis activity (Figure 25), indicating that the fold of the protein plays a critical 

role its ability to interact with ice, thereby affecting its thermal hysteresis activity. 

 

 
Figure 25: DSC curves for a heat denatured sample of TrxA-ApAFP752 at 3 mg mL-1 
treated at 85 °C for 10 minutes. The sample exhibits no thermal hysteresis activity.  

 

Thermal hysteresis activity experiments were also carried out on samples of the 

non-fusion form of the antifreeze protein ApAFP752. Samples of ApAFP752 at 
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concentrations of 1 mg mL-1 (106.4 μM) and 3 mg mL-1 (31 .2 μM) were tested to identify 

potential differences in thermal hysteresis activity compared to the fusion protein TrxA-

ApAFP752. It was found that ApAFP752 at the concentrations of 1 mg mL-1 and 3 mg mL-

1 resulted in thermal hysteresis activities of -0.52 °C (Figure 26) and -0.50 °C (Figure 27), 

respectively. The percent ice present in each sample was once again calculated using 

the using the enthalpies of melting and refreezing (See Appendix: Materials and Methods 

– Differential Scanning Calorimetry), which can be found in Table 2.  

 

Figure 26: DSC curves for ApAFP752 at 1 mg mL-1 (106.4 μM) concentration. The black 
arrow indicates the onset of freezing in the sample. The thermal hysteresis activity was 
found to be -0.52 °C at an ice fraction of 15.4%. 
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Figure 27: DSC curves for ApAFP752 at 3 mg mL-1 (319.2 μM) concentration. The black 
arrow indicates the onset of freezing in the sample. The thermal hysteresis activity was 
found to be -0.50 °C at an ice fraction of 18.3%. 

 

 

Table 2: Results of DSC thermal hysteresis experiments on ApAFP752. A concentration 
of 1 mg mL-1 yielded the highest thermal hysteresis activity. The sample was also found 
to have the smaller ice fraction of the two samples.  

Concentration (mg 

mL-1) 

Concentration 

(μM) 

ΔHr 

(J/g) 

ΔHm 

(J/g) 

THA 

(°C) 

Ice Fraction 

(%) 

1 106.4 -340.8 295.3 -0.52 15.4 

3 319.1 -373.1 315.4 -0.50 18.3 
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 A sample control consisting of 3 mg mL-1 concentration bovine serum albumin 

(Santa Cruz Biotechnology) in the previously described protein buffer was tested as a 

negative control to verify that the hysteresis activity observed was not due to osmolarity 

effects. This sample was tested under same conditions as described above. It was found 

that the bovine serum albumin (BSA) sample exhibited no thermal hysteresis activity 

(Figure 28). This finding is consistent with published data43 showing that BSA has no 

thermal hysteresis activity or antifreeze properties. 

 

 
Figure 28: DCS curves for bovine serum albumin prepared at 3 mg mL-1. The sample 
exhibits no thermal hysteresis activity. 
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II. Ice Recrystallization Inhibition 

 As previously stated, in addition to thermal hysteresis, antifreeze proteins possess 

the ability to inhibit the recrystallization of ice. TrxA-ApAFP752’s ice recrystallization 

inhibition activity was tested in collaboration with Dr. Paul Baures at Keene State College. 

In order to test the activity, a small amount of sample was loaded into microcapillary tubes 

and exposed to freeze-thaw cycles. The antifreeze protein containing samples were 

compared with a protein buffer control of 50 mM potassium phosphate, 20 mM NaCl, pH 

8.0 and a non-antifreeze protein control of 100 μM bovine serum albumin (BSA). Ice 

recrystallization inhibition assays were tested at TrxA-ApAFP752 concentrations of 100 

μM, 50 μM and 12.5 μM. Samples were completely frozen and then slowly thawed to be 

able to visibly monitor the amount of granulation and ice fusion occurring.  

It was shown that neither the control samples of buffer or 100 μM BSA showed 

evidence of ice recrystallization inhibition activity (Figure 29). These results were as 

expected as neither phosphate salt buffers or BSA are known to have any ice 

recrystallization inhibition properties. Each of the TrxA-ApAFP752 samples showed some 

ice recrystallization inhibition activity, with the 100 μM TrxA-ApAFP752 sample exhibiting 

the greatest activity of the test group. This result was not unexpected as the higher 

concentration of antifreeze protein results in a higher percentage of nascent ice crystals 

being bound by the antifreeze protein during freezing and preventing the fusion of these 

crystals during melting27,53. 
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Figure 29: Ice recrystallization inhibition study on the fusion protein, TrxA-ApAFP752. The 
left figure set shows all 5 samples at the initial freezing where sample is completely frozen. 
The right figure set shows each sample during the thawing cycle at 23 hours. Both the 
buffer and BSA samples show no ice recrystallization inhibition. Each TrxA-ApAFP752 
sample shows inhibition activity.  
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III. Cryoprotection of Cells with the Fusion Protein, TrxA-ApAFP752 

Since the discovery of antifreeze proteins, several studies have been performed to assess 

their application as cryoprotectants and cryopreservatives in medicine, agriculture and 

food54-57. In collaboration with Dr. Daniel Levy and Dr. Predrag Jevtic at the University of 

Wyoming, we investigated the cryoprotective effects of an insect AFP on Xenopus laevis 

eggs and embryos. X. laevis is a model organism that has provided fundamental insights 

into cell and developmental biology and is relatively easy to maintain in the laboratory 

environment. X. laevis eggs and embryos were chosen because they are large (i.e. 1-1.2 

mm), easily manipulated by microinjection (e.g. with DNA, mRNA, or protein), and provide 

an ample source of biochemically active cytoplasmic extracts. Frog embryos develop 

externally, which allows for experiments to be performed prior to and directly following 

fertilization. Xenopus shares a common evolutionary history with mammals and can serve 

as an excellent model organism to provide insights into human conditions and diseases58. 

While Xenopus eggs and embryos are relatively easy to work with in the laboratory, there 

have not been any successful reports involving their cryopreservation. Studies have 

investigated intra- and extracellular ice formation with Xenopus oocytes to gain insight 

into cryopreservation59,60. In another study, ectopic expression of the aquaporin-3 channel 

in Xenopus oocytes resulted in plasma membrane permeability to glycerol, ethylene 

glycol, and propylene glycol61. While these studies suggest that cryopreservation of 

Xenopus oocytes and eggs may be possible, effective approaches do not currently exist. 

Development of cryopreservation protocols would be of great interest to Xenopus 

investigators, allowing for long-term storage of oocytes and eggs (not currently possible) 

and facilitating studies with single clutches of oocytes and eggs, thereby eliminating 
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batch-to-batch variability. 

Both fertilized and unfertilized X. laevis eggs were injected with 50 nL of purified 

recombinant TrxA-ApAFP752 to a final intracellular concentration of ~5 µM. For control 

experiments, eggs were microinjected with an equivalent volume of buffer62. 

Microinjected eggs were exposed to a freeze/thaw cycle and imaged. Egg viability was 

judged based upon post freeze/thaw physical appearance. Eggs exhibiting a white, puffy 

appearance are those that were damaged during freeze/thaw and did not survive63-69.  

 Results of the study show eggs injected with TrxA-ApAFP752 had an increase in 

survival rate compared to those injected with buffer. Unfertilized eggs showed a 96.0% 

survival when injected with the antifreeze protein, while the buffer injected eggs only 

exhibited a 13.2% survival rate (Figure 30). Fertilized eggs injected with the antifreeze 

protein had an 80.0% survival rate, while the buffer injected had a 30.0% rate of survival 

(Figure 31). 

 

Figure 30: Unfertilized microinjected eggs from X. laevis. Eggs injected with TrxA-
ApAFP752 had a survival rate of 96.0%. Buffer injected eggs had a survival rate of 13.2%, 
7.27 times lower than that of the antifreeze protein study. 

 



47 
 

 

Figure 31: Post fertilization microinjected eggs from X. laevis. Eggs injected with TrxA-
ApAFP752 had a survival rate of 80.0%. Buffer injected eggs had a survival rate of 30.0%, 
2.67 times lower than that of the antifreeze protein study. 

 

 Additional studies were performed on X. laevis eggs in which one-cell stage 

embryos were injected with mRNA encoding for the expression of GFP-ApAFP752 or 

GFP. The eggs were allowed to develop to a later stage in order to allow for the 

expression of the antifreeze protein and imaged. Eggs containing the GFP-ApAFP752 

showed localization of the protein to the membrane. Eggs containing only GFP showed 

no localization to the plasma membrane (Figure 32). This suggests ApAFP752 may have 

some interaction with the membrane which may play a further role in its ability to act as 

an in vivo cryoprotectant.  
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Figure 32: X. laevis eggs microinjected with (A) GFP-ApAFP752 mRNA and (B) GFP 
mRNA. (A) Localization of GFP-ApAFP752 to the membrane portion of the plasma 
membrane. (B) GFP does not exhibit any visible localization to the plasma membrane. 

 

 The cryoprotective capabilities of TrxA-ApAFP752 were further studied in 

comparison to known chemical cryoprotectants in collaboration with Dr. Irena 
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Kratochvílová at the Academy of Sciences of the Czech Republic. Human skin fibroblast 

samples in DMEM medium were mixed with either 0.5 mg mL-1 TrxA-ApAFP752, 3.2 % 

w/w trehalose, 10 % w/w DMSO or a combination of 10 % w/w DMSO and 3.2 % w/w 

trehalose. The samples were then cooled to -80 °C at a rate of -1 °C min-1 and stored at 

-80 °C for 24 hours. The samples were then thawed, and the viability was evaluated using 

flow cytometry.  

 It was found that the cells mixed with DMSO and trehalose had the highest viability 

at 85.6 %, while the cells mixed with TrxA-ApAFP752 had the lowest viability after freeze-

thaw at 32.3 %. 80.7 % of cells mixed with DMSO were viable and 58.5 % of cells mixed 

with trehalose were viable after freeze-thaw (Figure 33). These results are not 

unexpected as DMSO is able to penetrate and accumulate in the cell cytoplasm70 and 

trehalose is able to enter the cell via pinocytosis46. TrxA-ApAFP752 is not able to freely 

pass through the cell membrane, thus, the cryoprotective effects of the antifreeze protein 

were entirely external to the cell. It is worth mentioning that the antifreeze protein, while 

resulting in the lowest survival rate of the tested cryoprotectants, did result in a higher 

rate of survival than that of the control sample. 
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Figure 33: Human skin fibroblast viability after 24 hours mixed with various 
cryoprotectants. Cell viability was assessed with flow cytometry. Samples exposed to 
DMSO and trehalose experienced higher survival rates as the cryoprotectants were inside 
and outside of the cells. TrxA-ApAFP752 was only external to the cells. 

 

IV. Conclusion 

 Both TrxA-ApAFP752 and ApAFP752 exhibited levels of thermal hysteresis 

activity. TrxA-ApAFP752 was found to exhibit ice-recrystallization inhibition activity. Our 

data has shown that the TrxA-ApAFP752 (ApAFP752 joined with thioredoxin) fusion 

protein does confer partial cryoprotection to Xenopus oocytes and human skin fibroblast 

cells. Our results also suggest that one of the mechanisms by which antifreeze proteins 

protect cells during freeze/thaw is by protecting the cell membranes. Future studies will 

focus on determining the ice-recrystallization inhibition activity of ApAFP752 along 

identifying the mechanism by which the antifreeze protein interacts with cells membranes.  
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CHAPTER 4 

 

STRUCTURAL STUDIES OF ApAFP752 

 

Nuclear magnetic resonance spectroscopy is a powerful tool in structural biology as it 

provides useful information in determining the stability, fold, structure and interactions of 

proteins and their substrates. There have been numerous AFP structures solved and 

AFPs characterized using NMR techniques71-74. As of July 13, 2018, there are 12,282 

protein structures reported as solved by NMR spectroscopy in the Protein Data Bank75. 

In this chapter we will examine Project 1, Aim 1: Structural characterization of 

ApAFP752 antifreeze protein by solution NMR spectroscopy (see “Project Aims and 

Hypothesis”). We have utilized NMR spectroscopy techniques in order to better 

understand the structural characteristics associated with the protein ApAFP752. In order 

to study the protein using NMR, ApAFP752 was expressed using stable isotopes of 13C 

and 15N. Protein samples were purified and isolated as previously mentioned. The 

resulting ApAFP752 samples were concentrated to a minimum of 350 μM and packed 

into D2O matched Shigemi® NMR tubes. ApAFP752 NMR data was acquired at the City 

University of New York’s Advanced Science Research Center, the University of  yoming 

and Brandeis University.  

 

I. Backbone and Side-Chain Assignments 

 As previously stated, a 1H-15N heteronuclear single quantum coherence (HSQC) 

spectrum was collected as an initial assessment of protein fold and stability. The spectrum 
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showed well dispersed peaks with relative uniformity in peak intensity and signal (Figure 

34). Upon confirmation of protein stability, a standard set of 3-dimensional (3D) NMR 

spectra were acquired for assignments.  

 

Figure 34: 1H-15N HSQC spectrum of ApAFP752. Each peak indicated either a backbone 
or side-chain N-H correlation. 

 

The prerequisite of structure determination is spectral assignment, i.e. each peak 

in the spectrum must be assigned to a specific residue in the protein sequence. 

Assignments are accomplished based on known characteristic chemical shifts and 

connectivity patterns of the 20 amino acids and chemical shift connectivity in 

complementary NMR spectra. The following backbone and side-chain experiments were 

collected and used to assign the amino acid residues of the uniformly-15N, 13C enriched 

ApAFP752: 1H-15N HSQC, HNCA, HNCO, HNCACB, CBCA(CO)NH, HN(CO)CA, 
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CC(CO)NH, HAHBNH, H(CCO)NH (Figure 35). Most acronyms correlate to the 

magnetization transfer pathway and the resonances that can be identified in each 

spectrum. For instance, in 3D HNCA experiment, the magnetization of the amide 1H is 

transferred to the directly bonded amide 15N of the i residue and in the next step to the 

13Cα of both the i residue and the i-1 (previous residue) in the protein's amino acid 

sequence. Thus, the HNCA spectrum has three chemical shift axes (1H, 15N and 13C) and 

contains peaks that encode chemical shift data of amide 1H and 15N correlating with 13Cα 

of both the i and i-1 residues. The HNCACB spectrum correlates the amide 1H and 15N of 

the i residue with 13Cα and the 13Cβ of the i and i-1 residues. The advantage of the 

HNCACB spectrum is that it contains more information (it encodes the 13Cβ resonance in 

addition to the 13Cα), however the experiment has lower sensitivity and the spectrum 

typically has lower signal-to-noise. The parentheses in the experimental names, i.e. 

CBCA(CO)NH, signify that the magnetization transfer pathway included those atoms (in 

this case the carbonyl, 13CO), however the chemical shift information for these atoms is 

not encoded in the spectrum. Figure 36 shows an example of the 3D HNCA (amide 1H, 

15N, and 13Cα correlation) spectrum ‘backbone walk’ of the ApAFP752 protein, an 

assignment strategy to link protein backbone atoms with their sequential amino acid 

neighbors. 

Backbone and side-chain data was acquired at the City University of New York’s 

Advanced Science Research Center on a Bruker Avance III 800 MHz NMR spectrometer 

equipped with a triple resonance TCI cryoprobe. All NMR data was processed using the 

NMRPipe76 software package available through the National Institute of Standards and 

Technology (NIST). Spectra were analyzed using the NMRFAM-Sparky77 software 
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package available through the National Magnetic Resonance Facility at Madison 

(NMRFAM). 

 

 

A 

 

B 
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D 
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G 

 

H 

 

I 

 

Figure 35: Depiction of NMR backbone and side-chain experiments used to complete the 
assignments. A) 1H-15N HSQC, B) HNCA, C) HNCO, D) HN(CO)CA, E) HNCACB, F) 
CBCA(CO)NH, G) CC(CO)NH, H) HAHBNH, and I) H(CCO)NH. Red indicates 
resonances detected in the experiment. Green indicates resonances not detected by the 
experiment. 

 

Initial prediction of the chemical shift assignments was made using the I-PINE web 

server at NMRFAM78. Refinement of the I-PINE assignments was performed using 

chemical shift statistical data available through the Biological Magnetic Resonance Data 

Bank (BMRB) and data published by Wang and Jardetzky79. Chemical shifts of the 
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backbone spectra were used to assign individual amino acid residues within the protein 

(Figure 36). Proton side-chain spectra and 1H-15N NOESY-HSQC spectra were used to 

both confirm backbone assignments and to assign the protons in the side-chain residues. 

Currently, 91 % of ApAFP752 resonances have been assigned. A full list of the assigned 

residues can be found in the Appendix under the “Chemical Shift Assignment Table” 

section. Completion of the assignments is in progress and additional NMR spectra are 

being acquired to aid in this endeavor. A preliminary structure for the protein using the 

current assignments has been calculated (Chapter 4.II Structural Characterization of 

ApAFP752 by NMR Spectroscopy). 
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Figure 36: HNCA strip plot showing the Cα chemical assignments for residues T60 
through T71 of ApAFP752. HNCA strip plot demonstrates the “backbone walk” for the 
assignment by linking the i and i-1 residues through matching Cα chemical shifts. It must 
be noted that the Cα chemical shifts for C67 and Y68 overlap in the Y68 strip. The same 
occurs with the Cα chemical shifts for K6  and A70 in the A70 strip. This was confirmed 
with the use of the CBCA(CO)NH and HN(CO)CA experiments.  

 

 

II. Structural Characterization of ApAFP752 by NMR Spectroscopy 

 

A preliminary structure of the protein ApAFP752 was calculated using CS-

Rosetta80,81 using backbone and side-chain resonance assignments. The preliminary 

structural calculations yielded a protein with right handed β-helix secondary structure 
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(Figure 37). Probabilistic secondary structure calculations using PECAN were performed 

to corroborate the structural data obtained with CS-Rosetta82. The PECAN data indicates 

the protein has a high probability of β-sheet motifs as well as α-helix motifs (Figure 38). 

Structural calculations show the interhelical distances between the β-sheets to be 

between 4.81 Å and 5.00 Å. Distances from threonine Cα to threonine Cα in the TCT 

repeats were revealed to be 6.86 Å and 6.97 Å. These findings are similar to the previously 

predicted homology model produced by Mao and collaborators35. Additionally, the 

predicted β-helix is in similar to that of other known insect antifreeze proteins. It has been 

reported that the intermolecular distance between waters along the c-axis is 7.5 Å and 

4.5 Å along the a-axis. While the predicted threonine to threonine distances of ApAFP752, 

both intra-strand and interhelical, are not a perfect match to the intermolecular distances 

of water, they are very close. This indicates that the protein is capable of binding to both 

planes of ice similar to other insect antifreeze proteins. Additional structure refinement is 

currently being performed. 
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Figure 37: Ribbon backbone diagram of ApAFP752. Β-sheet sections are shown in 
yellow with the threonine residues highlighted in red. Distance measurement were 
performed using Jmol83.  
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Figure 38: The probabilistic secondary structure of ApAFP752 calculated using PECAN82. 
Blue indicates the probability a given residue is in an extended state (β-sheet). Green is 
the probability a given residue is in an α-helical state. Yellow indicates the probability the 
given residue is a boundary residue in either an extended or helical region. 

 

The Cα, Cβ and CO chemical shifts are sensitive reporters of protein secondary 

structure84. Secondary chemical shift statistical analyses were performed in NMRFAM-

Sparky77. Chemical shifts were compared to the BMRB chemical shift statistics of random 

coil amino acids. The secondary chemical shift of a given protein nucleus “i” is defined as 

∆𝜎𝑆
𝑖 = 𝜎𝑜𝑏𝑠

𝑖 − 𝜎𝑟.𝑐.
𝑖 , where 𝜎𝑜𝑏𝑠

𝑖  is the chemical shift observed and 𝜎𝑟.𝑐.
𝑖  is the chemical shift 

of corresponding nucleus in a random coil state85. The secondary chemical shift provides 

valuable insight in predicting the secondary structure of a protein85. Secondary chemical 
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shift analysis was performed on the 1H-N, C’ (carbonyl) and Cα resonances. The 1H-N 

(Figure 39), C’ (Figure 40) and Cα (Figure 41) secondary chemical shifts for ApAFP752 

reveal the majority of the residues are associated with a helical state with some of the 

residues being associated with a β-strand state79. While this does not guarantee the 

secondary structure is that of a β-helix, it does give further merit to the secondary structure 

of ApAFP752 calculated in CS-Rosetta. 

 

 

Figure 39: 1HN secondary chemical shift data for ApAFP752. Green bars in the negative 
region generally indicate residues potentially in an α-helix state79. Exceptions include Cys 
(reduced and oxidized), Glu, Gly, Ile, Phe, Trp, Tyr and Val. Blue bars in the positive 
region indicate residues potentially in a β-strand conformation. Exceptions are the same 
as those previously listed. Residues that do not show either blue or green (ΔCS=0) are 
residues that have yet to be assigned. 
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Figure 40: Carbonyl backbone secondary chemical shift data for ApAFP752. Green bars 
in the negative region indicate residues potentially in a β-strand state79. Blue bars in the 
positive region indicate residues potentially in an α-helix state. Residues that do not show 
either blue or green (ΔCS=0) are residues that have yet to be assigned. 
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Figure 41: Cα secondary chemical shift data for ApAFP752. Green bars in the negative 
region indicate residues potentially in an α-helix state79. Blue bars in the positive region 
indicate residues potentially in a β-strand state. Oxidized Cys is an exception to both 
cases as both the α-helix and β-strand states typically have secondary chemical shifts 
greater than random coil states. Residues that do not show either blue or green 
(ΔCS=0) are residues that have yet to be assigned. 

 

III. Hydrogen Bonding Characteristics and Structure of ApAFP752 as an Effect of 

Temperature  

 A series of temperature studies were carried out on ApAFP752 in order to see the 

effects on the secondary structure of the protein and to obtain information on hydrogen 

bonding. Circular dichroism (CD) spectroscopy experiments were collected at 

temperatures ranging from 0 °C to 44 °C. 1H-15N HSQC NMR spectroscopy experiments 

were acquired at temperatures ranging from 5 °C to 45 °C. NMR spectroscopy 

experiments were not acquired at 0 °C due to the possibility of micro-ice crystal formation. 

CD and NMR temperature study data was collected at the University of Wyoming. NMR 
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data was collected on a Bruker Avance III 600 MHz NMR spectrometer equipped with a 

TXI triple resonance probe. CD data was collected on a JASCO circular dichroism 

spectrometer. 

 The NMR spectra revealed linear chemical shift perturbations occurring with every 

temperature change. These chemical shift perturbations in the proton and nitrogen 

dimension indicate some form of protein-solvent surface interactions86 (Figure 42A). In 

order to rule out that large chemical shift changes were caused by potential protein 

unfolding, CD spectra were acquired. The CD data showed minimal change in the 

spectrum between temperatures, indicating the protein did not undergo a change in 

secondary structure (Figure 42B). This finding is consistent with studies reported by 

Hong87 and colleagues in which they state that the amide 1HN chemical shift temperature 

coefficient primarily arises from the hydrogen bond distance change. This coefficient can 

be the product of intermolecular and intramolecular hydrogen bond distance changes. To 

this end, amide 1HN chemical shift temperature coefficients (ΔσHN/ΔT) were calculated 

for each residue using NMR data collected at temperatures of 5 °C, 15 °C, 25 °C, 35 °C 

and 45 °C. Figure 43 shows residues Ile5, Gln41, Thr48, Lys69, Cys79, Val85 and Lys87 

having the largest chemical shift temperature coefficients. This indicates that these 

residues experience the greatest change in hydrogen bonding distance per degree 

Celsius, which indicates solvent exposure. 
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   A 

 

             

                       B 

 

Figure 42: Temperature studies on ApAFP752. A) 1H-15N HSQC spectra collected at 
temperatures from 5 °C to 45 °C. The highlighted section shows the alanine residues 
experience large chemical shift perturbations between each temperature. B) Circular 
dichroism spectra collected from 0 °C to 44 °C. Minimal change in each spectrum 
between each temperature.  
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Figure 43: Residue specific amide 1HN chemical shift coefficients for ApAFP752 derived 
from the 1HN chemical shifts measured at temperatures of 5 °C, 15 °C, 25 °C, 35 °C and 
45 °C.   

 

IV. Conclusion 

 Our results show that the antifreeze protein ApAFP752 has a β-helical secondary 

structure, similar to other known insect antifreeze proteins, which plays a role in the 

protein’s ice-binding properties. Using NMR spectroscopy, a preliminary structure of the 

antifreeze protein was calculated with CS-Rosetta and shows a right handed β-helix, 

which is also consistent with the predicted homology model. The spacing between the 

interhelical and intra-strand threonines is consistent with the spacing of waters in ice 

along the a-axis and c-axis, respectively. Additional refinement of the protein structure is 

underway using NOESY spectra for additional distance constraints. Temperature studies 
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of ApAFP752 show the protein does not experience any significant changes in secondary 

structure at lower temperatures, however, it does experience temperature related 

changes in hydrogen bonding distances. 
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Ionic liquids have great potential in biological applications and biocatalysis, as some ionic 

liquids can stabilize proteins and enhance enzyme activity, while others have the opposite 

effect. However, on the molecular level, probing ionic liquid interactions with proteins, 

especially in solutions containing high concentration of ionic liquids, has been 

challenging. In the present work the 13C, 15N-enriched GB1 model protein was used to 

demonstrate applicability of high-resolution magic-angle-spinning (HR-MAS) NMR 

spectroscopy to investigate ionic liquid –protein interactions. Effect of an ionic liquid (1-

butyl-3-methylimidazolium bromide, [C4-mim]Br) on GB1 was studied over a wide range 

of the ionic liquid concentrations (0.6 to 3.5 M, which corresponds to 10%-60% v/v). 

Interactions between GB1 and [C4-mim]Br were observed from changes in the chemical 

shifts of the protein backbone as well as the changes in 15N ps-ns dynamics and rotational 

correlation times. Site-specific interactions between the protein and [C4-mim]Br were 

assigned using 3D methods under HR-MAS conditions. Thus, HR-MAS NMR is a viable 

tool that could aid in elucidation of the molecular mechanism of ionic liquid – protein 

interactions. 

 

 

Keywords: imidazolium ionic liquid; GB1; ionic liquid – protein interaction; HR-MAS NMR  
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Introduction 

  Ionic liquids are customizable materials that are composed entirely of ions and 

have phase transitions at or below room temperature. Ionic liquids provide a unique 

chemical environment and have drawn considerable attention in recent years, with 

numerous applications as media for chemical and biocatalytic transformations 88,89, 

preparation of materials 90-92, energy-related processes 93-95, as well as several 

environmental 96-98 and analytical 99,100 systems. Notably, many recent reports describe 

the ability of ionic liquids to modulate inter- and intramolecular interactions of small 

molecules 101-103.  

  The microenvironment surrounding a protein can greatly affect its folded state 

(including secondary and tertiary structure), stability, and function. Ionic liquids offer 

unique environments that can be tuned to alter the structural and biophysical properties 

of biomacromolecules. Thus, understanding the effect of ionic liquids on the native 

structure of biomacromolecules is a critical step in the advancement of many areas, 

including enzymology, biocatalysis, and bioengineering.  

  While it is evident that ionic liquids can alter the stability and function of proteins, 

the current mechanistic understanding of protein stability and enzyme activity in ionic 

liquid-rich environments requires clarification. For example, some ionic liquids were noted 

to increase the stability of proteins by serving as an anti-aggregation/unfolding media for 

lysozyme over an extended period of time 104. However, it was also shown that certain 

proteins, for example the redox active form of cytochrome c, could be denatured by 

imidazolium-based ionic liquids 105,106, yet choline-based ionic liquids were recently 

shown to improve the redox activity of cytochrome c 107. While stability and enzymatic 
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activity of a few proteins in ionic liquid-containing aqueous media correlate with the 

Hofmeister’s series 108,109 others do not 110,111. Using simulations, it was also suggested 

that ionic liquids could influence xylanase activity by disturbing the dynamic motion of the 

protein in addition to affecting protein structure 112.  

  Protein function is intimately linked to structure and dynamics, thus a molecular-

based understanding of ionic liquid-protein interactions is vital for developing efficient 

applications. Recent studies 113,114 have demonstrated that solution NMR spectroscopy 

can be utilized to probe direct interactions between ionic liquids and proteins using NMR 

chemical shift perturbations, which are sensitive reporters of changes in the chemical 

environment, including protein structural changes. Kaar and coworkers 114 demonstrated 

interactions between [C4-mim]Cl and lipase A at up to 0.29 M (i.e., 5% v/v) ionic liquid, 

and Cabrita and coworkers 113 probed the interaction of various ionic liquids (up to 1 M 

concentration) with the protein Im. The results from these groups established that 

chemical shift perturbations in the 2D 1H-15N HSQC spectra could be used to monitor 

ionic liquid-induced structural changes in the proteins. It was suggested that both 

electrostatic as well as hydrophobic interactions occurred between proteins and ionic 

liquids, as a number of charged and nonpolar residues experienced chemical shift 

perturbations.  

  Although traditional solution state NMR techniques are applicable for relatively low 

(≤ 1 M) concentrations of ionic liquids 113,114, the viscosity of the aqueous ionic liquid 

solutions above concentrations of 1 M are high enough to slow the tumbling of most 

proteins, thus sufficiently broadening NMR signals and limiting the use of solution state 

NMR. Importantly, several industrial and biomedical applications require high 
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concentrations of ionic liquids. For example, ionic liquid-based pretreatment of biomass 

is being explored for removing lignin and hemicellulose under milder conditions than 

conventional acid or steam pretreatments 115, however the concentration of ionic liquids 

are fairly high (above 20% v/v) 115,116. Another significant application of ionic liquids is to 

extend the life and quality of protein storage and formulation in the pharmaceutical 

industry; in these cases even higher concentrations of ionic liquids have been suggested 

for maintaining long-term maximal protein stability 104,117,118. Thus, in order to probe ionic 

liquid – protein interactions at high ionic liquid concentration, pertinent to industrial 

applications, alternative NMR approaches that are not limited by slow tumbling are 

required. 

  High-resolution magic-angle-spinning (HR-MAS) NMR is particularly applicable for 

analyzing viscous or semi-solid samples using solution NMR methods while spinning at 

the magic angle in order to remove line-broadening effects. HR-MAS NMR has been 

shown to be a useful tool in monitoring chemical reactions 119 and in establishing the 

structure of small (e.g., ≤ 5 amino acids) peptides 120,121 in ionic liquids. HR-MAS reduces 

the line broadening caused by differences in magnetic susceptibly of the sample and also 

decreases the dipolar interaction and chemical shift anisotropy, although these effects 

are less significant in heterogeneous quasi-liquid samples 122.  

  Here, we demonstrate, for the first time, that a protein with >50 residues could be 

efficiently studied at atomic scale resolution in solution with high concentrations of ionic 

liquids using HR-MAS NMR. Specifically, structural and dynamical changes of the model 

56-residue protein, immunoglobulin binding domain B1 of streptococcal protein G (GB1) 

123 induced by a high concentration of [C4-mim]Br (up to 3.5 M, which corresponds to 60 
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%, v/v) were monitored by using 2D 1H-15N HSQC, 3D HNCA, and 15N relaxation spectra 

of GB1. Significantly, the use of HR-MAS NMR spectroscopy surmounted the problem of 

line broadening due to the high viscosity of the ionic liquid-containing systems, and thus 

this technique could provide unique and precise information about site-specific ionic liquid 

– protein interactions. Arguably, this work provides an important foundation for probing 

protein secondary structure in ionic liquid-rich media. 

 

Experimental  

  [C4-mim]Br 124,125 and GB1 126 were prepared as previously described. NMR 

samples were prepared by mixing a 4.4 mM GB1 stock solution in buffer (50 mM sodium 

phosphate, pH 5.50), D2O, and neat [C4-mim]Br in a pre-determined ratio to a 1.3 mM or 

0.9 mM concentration of GB1 and a 10-50% v/v or 60% v/v final concentration of [C4-

mim]Br, respectively. Other samples included GB1 in 50% v/v glycerol/aqueous solution 

and 1.3 mM GB1 in the presence of 2.3 M KBr. A control GB1 sample was prepared 

without the addition of [C4-mim]Br, KBr, or glycerol (referred to in the text as 0% v/v [C4-

mim]Br sample). HR-MAS NMR spectra were acquired on a 600 MHz Avance III Bruker 

NMR spectrometer equipped with a 4 mm HR-MAS probe at 27 °C and 5 kHz MAS 

frequency. Additional details are given in the SI.    
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Results and discussion 

Selection of protein, ionic liquid, and experimental method 

  We probed the effects of [C4-mim]Br on the protein GB1 to gain a better 

understanding of how ionic liquids impact protein structure, stability, and dynamics. The 

GB1 structure, folding pathway, and dynamics have been previously well characterized 

by NMR spectroscopy 84,127-130, which makes it an ideal model protein for assessment by 

HR-MAS spectroscopy. GB1 is a 56-residue stable protein comprised of one α-helix 

packed against a four-stranded β-sheet. 1-butyl-3-methylimidazolium bromide, [C4-

mim]Br, was chosen as a model ionic liquid, as it is a common, readily available, water-

soluble, and widely used ionic liquid.  

  GB1 samples were prepared with varying concentrations of [C4-mim]Br in NMR 

buffer: 0%, 10% (0.59 M), 25% (1.47 M), 40% (2.36 M), 50% (2.95 M), and 60% v/v (3.53 

M) [C4-mim]Br. To test the effects of high viscosity and high salt concentration media, 

control samples were also prepared in NMR buffer: GB1 in the presence of 50% glycerol 

and in the presence of 2.29 M KBr. A table describing the composition of each sample is 

given in Table S1. The HR-MAS NMR probe was configured for MAS and with a Z-axis 

gradient aligned along the magic angle to provide access to a wide range of solution NMR 

experiments. Significantly, using an HR-MAS probe allowed us to use deuterium lock and 

solvent suppression of the water signal using standard solution NMR pulse sequences. 

Although MAS induces large pressure especially on the sample near the inner wall of the 

rotor, the low spinning frequency of 5 kHz in a 4 mm rotor is not expected to destabilize 

GB1. A concentrated aqueous solution of GB1 was mixed with neat [C4-mim]Br and D2O, 

thus the ionic liquid concentration was limited by the minimum volumes of D2O and protein 
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solution. We acquired 1D 1H, 1D 13C, 2D 1H-15N HSQC, 3D HNCA, and 15N relaxation 

spectra for GB1 utilizing HR-MAS NMR.  Although the VT inlet temperature was 27 °C 

under HR-MAS conditions, we estimated that the actual sample temperature was 

approximately 30-31 °C (due mostly to frictional heating) based on comparison of GB1 

2D 1H-15N HSQC spectra under HR-MAS conditions to conventional solution GB1 2D 1H-

15N HSQC spectra at various temperatures (Fig S1). 

The effect of [C4-mim]Br on the structure of GB1 

  1D 1H spectra were not practical to detect changes in protein secondary structure 

due to the large excess of [C4-mim]Br in solution (data not shown). Since GB1 was 

uniformly 15N-, 13C-enriched and [C4-mim]Br was not, 1D 13C spectra (Fig. S2) were 

utilized to monitor large changes in protein secondary structure in spite of the significant 

signal overlap, as discussed below. The [C4-mim]Br signals were sharp, and their intensity 

increased as the ionic liquid concentration increased.  

  2D 1H-15N HSQC GB1 spectra were acquired for all GB1 samples, including GB1 

in the presence of 0-60% v/v [C4-mim]Br, 2.3 M KBr, and 50% v/v glycerol) (Fig. 1 and 

Fig. S3). All 2D 1H-15N HSQC spectra were assigned based on published chemical shifts 

127 and 3D HNCA spectra. 3D HNCA GB1 spectra were acquired for 0%, 10%, 25%, and 

50% v/v [C4-mim]Br and 2.29 M KBr samples. Fig. S4 shows the assigned 1H-15N HSQC 

spectra for GB1 in 0% [C4-mim]Br, and Fig. S5 highlights examples of the HNCA strip 

plots used for assignments of the aqueous GB1 sample under HR-MAS conditions. The 

HNCA spectra were very well resolved even in the presence of 50% v/v [C4-mim]Br, 

although the i-1 peak was often weak (Fig. S5c). 3D solution NMR methods under HR-
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MAS conditions could be a general tool for structural studies of biomacromolecules in 

viscous, high salt solutions.  

 Traditional solution NMR 2D 1H-15N HSQC spectra of GB1 in the presence of 50% v/v 

[C4-mim]Br were acquired at both 600 and 900 MHz using cryogenically cooled probes 

(Fig S6). The quality of spectra from samples in solutions containing high concentrations 

of ionic liquids collected at high field with cryogen probes are often compromised by poor 

tuning and radiation damping thereby hindering traditional solution-based NMR 

experiments, especially when using cryogenically cooled probes (i.e., cryo/cold probes), 

131 which are commonly used in protein NMR studies. In the case of GB1 in 50% v/v [C4-

mim]Br, the traditional solution NMR spectra were observed to have broader lines and T1 

noise artifacts due to radiation damping (Fig S6 b,c). For example, G9 exhibited 23.0 Hz 

vs 33.9 Hz 1H line width and L12 had a 32.86 Hz vs. 44.48 Hz 1H line widths in the HR-

MAS vs. traditional solution NMR spectrum at 600 MHz. Further, radiation damping from 

50% v/v [C4-mim]Br results in significant noise at ca. 7.8 ppm and 9.1 ppm (Fig S6 b,c), 

completely obscuring several GB1 peaks. Overall, the HR-MAS spectrum has a much 

better quality than the solution NMR spectrum.        

  High salt concentrations can induce perturbations in the protein amide 1H and 15N 

shifts due to a number of effects, including the bulk magnetic susceptibility of the solvent 

as well as interactions between the solvent and solute molecules 132. Amide 1H shifts in 

proteins are especially sensitive to hydrogen bonding 133 and can report on protein 

secondary structure changes. Therefore, we evaluated the chemical shift changes of the 

amide moieties in the backbone as a function of [C4-mim]Br concentration using 2D 1H-

15N HSQC. [C4-mim]Br induced chemical shift changes in both the 1H and 15N dimensions 
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(Fig. 44, Fig. 45, Fig. S3, and Fig. S7a,b). At 50% v/v [C4-mim]Br, all GB1 residues 

showed a significant (0.10-0.54 ppm) downfield 1H chemical shift perturbation. The 15N 

chemical shift perturbations were more complex and not straightforward, ranging from –

2.28 to 1.97 ppm at 50% v/v [C4-mim]Br. The combined and weighted 1H and 15N chemical 

shift perturbations 133 (ΔHN) were calculated (Fig. 45a) using equation Eq. S1. The large 

shift perturbations at high ionic concentrations indicated that the amino acid residue 

interactions with [C4-mim]Br were significant along the protein backbone. The residues 

most affected (more than 0.40 ppm in ΔHN) by [C4-mim]Br included L7, T17, V21, V29, 

Q32, N35, and E42 (Fig. 45b). In general, most amino acids with large chemical shift 

perturbations were nonpolar and charged polar residues. The anion, Br−, is classified as 

a mild chaotrope (destabilizer) based on the Hofmeister's series. Bordusa and coworkers 

observed that neutral and chaotropic inorganic salts could cause significant chemical shift 

changes due to peptide-anion hydrogen bonding 121. Thus [C4-mim]Br – protein 

interactions are likely driven by both hydrophobic and electrostatic forces. The largest 

chemical shift perturbations clustered to the α-helical region of GB1. Additional evidence 

came from Cα chemical shift perturbations (known to be strong reporters of the protein’s 

secondary structure), which were also significantly affected (ΔCα ranged from -0.21 to 

1.05 ppm; Fig. S7c) by the increasing concentration of [C4-mim]Br. Secondary structure 

predictions from 0, 25, and 50% IL were calculated using Talos+ (Table S4). An increase 

in loop content was found for residues K13, G14, and E15 and decrease in confidence 

of secondary structure assignment for residues in E42 and W43. K13, G14 and E15 are 

located near a turn previously identified as a melting hotspot  in a destabilized mutant of 

GB1 84.  
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Figure 44:  2D 1H-15N HSQC spectra of GB1 in the presence of [C4-mim]Br.  a) Overlay 
of spectra with 0% (blue), 10% (cyan), 25% (green), 40% (orange), and 50% (red) v/v 
[C4-mim]Br. Aliased peaks are shown in dashed ovals.  
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Figure 45: Chemical shift perturbations for each residue in the presence of 10-50% v/v 
[C4-mim]Br. a) Combined and weighted 1H and 15N (ΔHN) chemical shift perturbations 
(CSP) of all residues in the presence of 10% (cyan), 25% (green), 40% (orange), 50% 
(red) v/v [C4-mim]Br. b) Cartoon representation of the crystal structure of GB1 (PDB: 
2QMT) color coded by amide chemical shifts perturbation (CSP) in 10%-50% v/v [C4-
mim]Br. Chemical shift perturbation is indicated by colors ranging from blue (least, 0.00 
ppm) to red (most, 0.55 ppm), and the coloring gradient is scaled to the maximum CSP 
in the 50% [C4-mim]Br sample. GB1 residues which have more 0.40 ppm CSP in the 50% 
v/v [C4-mim]Br sample are identified. The maximum radius of the putty representation is 
scaled to maximum CSP in the shown condition (10% v/v [C4-mim]Br, 25% v/v [C4-
mim]Br, 40% v/v [C4-mim]Br or 50% v/v [C4-mim]Br). The figure was generated by 
PYMOL.  
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At 60% v/v [C4-mim]Br, GB1 exhibited multiple peaks in the 1H-15N HSQC for a number 

of residues and an increased number of peaks appeared in a narrow amide proton 

chemical shift at around 8.4-8.9 ppm (Fig. S3), which indicated the loss of homogeneous 

tertiary and secondary protein structure at 60% v/v [C4-mim]Br. While some peaks shifted 

more downfield as anticipated based on our previously observed trends at lower 

concentrations (Fig. S3c), other additional peaks appear (Fig. S3d,e), implying the 

coexistence of a folded state and unfolded state of GB1.  

  Previous studies have shown that the thermal unfolding of GB1 is reversible 

throughout the transition between the folded and unfolded state 134,135. To test whether 

the ionic liquid-induced unfolding was reversible, GB1 sample in 60% v/v [C4-mim]Br was 

diluted with the buffer to obtain 40% v/v [C4-mim]Br. Remarkably, the 1H, 15N spectrum of 

the resulting sample overlaid almost perfectly with the 40% v/v [C4-mim]Br spectrum (Fig. 

S9b). In the 13C 1D spectra, most individual amino acids were not well-resolved, however 

in the 60% v/v [C4-mim]Br spectrum obvious changes were observed in the GB1 carbonyl 

region (Fig. S9a), which is a known sensitive reporter of protein secondary structure 136. 

After the 60% v/v [C4-mim]Br protein sample was diluted to 40% v/v [C4-mim]Br, the 

carbonyl region displayed the characteristic profile of a 40% v/v [C4-mim]Br-GB1 sample, 

consistent also with the observations in the 1H, 15N spectra. Overall, the data indicated 

that the unfolding of GB1 due to its interaction with [C4-mim]Br was reversible, and the 

protein could re-gain its well defined native structure upon decreasing the ionic liquid 

content. 
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Molecular tumbling and backbone 15N relaxation of GB1 in [C4-mim]Br 

  Ionic liquids are much more viscous than most conventional solvents, and solution 

NMR measurements can be hindered by high viscosity. Although neat [C4-mim]Br 

exhibited very high viscosity (i.e. 433 cP at 27 °C), the presence of water reduced the 

viscosity substantially (Table S5 and S10a). For instance, the viscosity of 60% v/ v [C4-

mim]Br solution at 27 °C was 6.0 cP. For comparison, the viscosity of a 50% v/v glycerol 

in the NMR buffer was 8.4 cP, slightly higher than the viscosity of the 60% v/v [C4-mim]Br 

mixture. The 2D 1H-15N HSQC spectrum of GB1 in 50% v/v glycerol appeared to be 

shifted upfield, while still being of similar resolution and quality as the GB1 spectrum 

without additives (Fig. S10b), thus the viscosity of the solution medium was not a major 

factor in protein destabilization.  
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Figure 46: Rotational correlation times (τc) for GB1 in 10%, 25% and 50% v/v [C4-mim]Br. 
Rotational correlation times were calculated from an average of T1 and T2 times of non-
flexible residues for GB1 in the presence of 0% (blue), 25% (green), and 50% (red) v/v 
[C4-mim]Br. The theoretical T1 and T2 curves were calculated using a home written 
Mathematica script.  
 

  Backbone 15N spin relaxation T1 and T2 (from which R1 and R2 are calculated) were 

measured in order to determine the tumbling rates τc, for GB1 in 0%, 25%, and 50% 

aqueous [C4-mim]Br. The residue specific R1, R2 and hetNOE relaxation data for 0% [C4-

mim]Br (Fig. S7d, S7e, S7f) supported previously published data of GB1 in solution state 

experiments 128, demonstrating that the HR-MAS technique did not introduce any 

observed, unintended effects. The average T1 and T2 values of the different solutions at 

the calculated τc values (Tab. 3) of 3.53 ns, 5.64 ns, and 10.37 ns for 0%, 25%, and 50% 

v/v [C4-mim]Br were in good agreement with theoretical values (Fig. 46). In addition, they 
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were in a relatively good agreement with values calculated using Stoke’s law (Eq. S2 and 

S3.), especially at lower viscosities. Although GB1 is a small model protein which tumbles 

reasonably well even in high viscosity solvents, our results show that the HR-MAS 

technique can be utilized as an alternative technique to traditional solution NMR to study 

proteins in high concentrations of ionic liquids, which will be particularly advantageous 

when applied to large proteins.  

  The residue specific R1 and R2 are sensitive reporters of the ps-ns timescale 

motions and can be used to measure the backbone motions of a protein. At 25% and 

50% v/v [C4-mim]Br, GB1 showed a relative decrease in R1 and increase in R2 rates for 

residues 20-30, which were found in the N-terminal half of the α-helix, and consistent with 

previous findings that suggest that the N-terminal part of the helix was part of an unfolding 

hotspot 84. These 15N relaxation results support the chemical shift data, which suggests 

that higher concentrations of [C4-mim]Br destabilize and promote local unfolding of GB1. 

 

Sample Ave. T1/ms Ave. T2/ms Τc, relax /ns Τc, SL /ns 

0% IL 160.6 377.1 3.53 3.46 

25% IL 103.7 436.2 5.64 5.88 

50% IL 62.9 721.1 10.37 13.27 

 

Table 3: 15N spin relaxation T1 and T2 and tumbling rate, τc of GB1-[C4-mim]Br samples. 
The τc values were calculated from the 15N NMR data (relax) or based on Stoke’s Law 
(SL), as described in detail in the Supplemental Information. 
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  In conclusion, we have demonstrated that HR-MAS NMR spectroscopy is a viable 

tool to study atomic level protein – ionic liquid interactions in a high ionic liquid 

concentration (3.53 M), high inorganic salt concentration (2.29 M), and high viscosity (7.4 

cP). Specifically, the chemical shift perturbation analysis of ΔHN and ΔCα suggested that 

the α-helical region of GB1 had the strongest interaction with [C4-mim]Br. Interestingly, 

even though regions of the protein with the highest CSP did not appear to change their 

secondary structure dramatically even in 50% IL, where it is clear that in 60% v/v [C4-

mim]Br, GB1 folded and unfolded states coexisted. However, GB1 unfolding was 

reversible upon dilution to 40% [C4-mim]Br. Residue specific R1, R2 and hetNOE 

relaxation data obtained for GB1 in the presence of 0%, 25%, and 50% v/v [C4-mim]Br 

show that the protein not only experiences decreased tumbling rates due to viscosity, but 

also shows changes in the ps-ns timeframe consistent with destabilization of a previously 

reported unfolding hotspot. The GB1 tumbling rates in [C4-mim]Br solutions were in good 

agreement with theoretical values, thus supporting the use of HR-MAS as a tool for 

studying proteins or large molecules in highly viscous and high ionic strength media. 

Importantly, the results of this study open up many exciting possibilities for further 

structural and dynamical characterization of others, in high concentration of ionic liquids, 

which will advance the fundamental understanding of how ionic liquids influence native 

protein secondary structure and function, a critical step in the development of many 

applications.  
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CHAPTER 6 

 

CONCLUSIONS AND SUMMARY 

 

Project I: Characterization of the antifreeze protein ApAFP752 

As previously stated, antifreeze proteins are of great interest in the area of 

cryopreservation. We have worked to characterize the insect antifreeze protein, 

ApAFP752. In doing so, we have been able to gain greater insight into the functionality 

and potential applications of this protein. We have focused on 2 primary aims, and have 

been able to answer several of the questions associated with these aims. 

Aim 1: Structural characterization of ApAFP752 antifreeze protein by 

solution NMR spectroscopy. We hypothesized that the structure of ApAFP752 would 

show good surface complementary to ice. The expression and purification of the TrxA-

ApAFP752 fusion protein was reported in the literature before, however, we have 

developed a method for the production of active ApAFP752 (without the fusion partner) 

for NMR studies and characterized its thermal hysteresis activity. Our results show that 

the antifreeze protein ApAFP752 has a β-helical secondary structure, similar to other 

known insect antifreeze proteins, which plays a role in the protein’s ice-binding properties. 

To this end, preliminary structural data indicates the spacing between the interhelical and 

intra-strand threonines is similar to the spacing of waters in ice along the a-axis and c-

axis, respectively. Furthermore, temperature studies of ApAFP752 show the protein does 

not experience any significant change in secondary structure at lower temperatures, 

however, it does experience temperature related changes in hydrogen bonding distances. 
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Additional refinement of the protein structure is underway using distance constraint 

NOESY spectra. Protein dynamics analysis is also underway and will yield greater insight 

into protein structural properties.  

Aim 2: Investigate the cryoprotective mechanism ApAFP752 in live cells. Our 

hypothesis was that ApAFP752 can confer cryoprotection to live cells that are otherwise 

sensitive to freezing. Our data have shown that the TrxA-ApAFP752 (ApAFP752 joined 

with thioredoxin) fusion protein could confer partial cryoprotection to Xenopus oocytes 

and human skin fibroblast cells. Our results also suggest that one of the mechanisms by 

which ApAFP752 protects cells during freeze/thaw is by protecting the cell membranes. 

Additional studies are being performed to characterize the interaction between ApAFP752 

and cell membranes. Application of the antifreeze protein’s properties are currently being 

investigated in the form of protein-polymer hybrid constructs for use as anti-icing 

materials.  

 

Project II. Ionic liquid interactions with proteins 

Ionic liquid-protein interactions have been of interest to the scientific community since it 

was first hypothesized that ionic liquids can be tuned to alter the structural and biophysical 

properties of proteins. We have worked to characterized the interaction of the ionic liquid, 

[C4-mim]Br, with a model protein, GB1. Throughout this work we have focused on 2 aims 

and have obtained useful insight on some of the potential effects ionic liquids have on 

protein structure. 

Aim 1: Utilize high resolution magic angle spinning (HR-MAS) NMR 

spectroscopy to characterize a protein site specifically in highly viscous 
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environment. We hypothesized that HR-MAS NMR spectroscopy was a viable tool to 

study proteins at the atomic level in a highly viscous environment. We have demonstrated 

that HR-MAS can indeed be applied for studying proteins in highly viscous (as well as 

high ionic strength media in our example) and could report on protein structure and 

dynamics site specifically using complex, traditional solution NMR sequences. Site-

specific interactions between the protein and [C4-mim]Br were assigned using 3D 

methods under HR-MAS conditions. 

Aim 2: Investigate whether ionic liquids have the ability to stabilize protein 

fold. We hypothesized that the ionic liquid [C4-mim]Br could stabilize the structure of the 

GB1 protein. Our data showed that high concentrations (60% v/v) of [C4-mim]Br had a 

destabilizing effect on GB1, and folded and unfolded states of GB1 co-existed. We have 

identified protein unfolding hotspots and reported on protein dynamics. This work 

provides an important foundation for probing protein secondary structure in ionic liquid-

rich media. 
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APPENDIX 

 

Materials and Methods 

Plasmid Constructs: The plasmid construct for the fusion protein TrxA-ApAFP752 was 

obtained as a gift from Dr. Ji Ma at XinJiang University, Urumqi, China. The fusion protein 

is engineered in the a pET32a construct and contains a cleavage site for enterokinase 

engineered between the TrxA and the ApAFP752 with a 6-His histidine tag located on the 

C-terminus of the TrxA portion of the fusion protein.  

An ApAFP752 construct was designed as a non-fusion form of the protein (no TrxA 

attachment) using a pET23a plasmid vector. A Tobacco Echovirus (TEV) protease cut 

site and 6-His histidine tag were engineered on to the protein sequence with 6-His 

histidine tag on the C-terminus and the TEV protease cut site between the protein 

sequence and the 6-His histidine tag. 

  

Materials Used in the Expression of Trx-ApAFP752: Chemicals were purchased from 

VWR, Fisher Scientific and Sigma Aldrich. Isopropyl β-D-thiogalactopyranoside (IPTG) 

and ampicillin were purchased from Gold Biotechnology. EDTA free Halt protease 

inhibitor was purchased from Fisher Scientific. 15N labeled ammonium hydroxide was 

purchased from both Sigma Aldrich and Cambridge Isotope Laboratories. Benzonase 

nuclease (DNase) was purchased from Novagen. HIS-Select® nickel affinity resin was 

purchased from Sigma Aldrich. HisTrap FF nickel affinity columns were purchased from 

GE Healthcare Life Sciences. Gel electrophoresis materials were purchased from 

BioRad.  
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Method of Expression of Trx-ApAFP752: The following is a general discussion of the 

techniques employed in the expression of both the fusion protein Trx-ApAFP752 and the 

protein ApAFP752. As the initial studies were performed on the protein produced from 

Plasmid 1, this section will reference it in all cases where the techniques used are 

universal to the three AFP plasmids previously mentioned.  

 The plasmid of interest was propagated using DH5α competent Escherichia coli 

(E. coli)138. The plasmid was then transformed into BL21 (DE3) pLysS competent E. 

coli139-141. A transformation was performed by incubating a mixture of the plasmid and E. 

coli cell line at 4 °C for 40 minutes. Heat shock was then induced by incubating the mixture 

at 42 °C for 35 seconds. Following heat shock, the mixture was immediately submerged 

in ice. SOC media was combined with the plasmid/bacteria mixture and incubated at 37 

°C for 1 hour. The resulting culture was plated on luria agar plates with a final ampicillin 

concentration of 0.3 mM. The plates were incubated overnight at 37 °C.  

Following incubation, the plates were removed from the incubator. Single colonies 

were pulled from the plates and placed in luria broth containing a final ampicillin 

concentration of 0.3 mM. These pre-cultures were then placed in a coffin shaker and 

incubated at 37 °C for 12 hours. A small aliquot of the pre-culture was then used to 

inoculate 1 L of luria broth containing 0.3 mM ampicillin. This mixture was then shaken at 

225 rpm and 37 °C until an optical density (OD600) of 0.7 absorbance units at 600 nm was 

achieved. Cells were harvested via centrifugation at 9559 x g, 4 °C for 20 minutes and 

the supernatant discarded. 
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Natural Abundance Protein: Cell pellets were resuspended in 250 mL minimal growth 

medium. The resulting suspension was then incubated for 1 hour at 15 °C and 225 rpm. 

Over-expression of the protein was induced by adding 250 μL of a 400 mM stock solution 

of IPTG to the culture (final concentration 0.4 mM IPTG). The culture was incubated at 

15 °C, 225 rpm for 12 hours. The OD600 was monitored over the course of the induction 

phase in order to ensure that the cells remained viable. Upon completion, the cells were 

harvested via centrifugation. Cells were harvested via centrifugation at 9559 x g, 4 °C for 

25 minutes. The remaining supernatant medium was discarded, and the pellet was stored 

at -80 °C until lysis and purification could be performed. 

 

Stable Isotope Labeling of Protein: Upon reaching an OD600 of 0.7 absorbance units, the 

cells were harvested by centrifugation. The supernatant was discarded, and the 

remaining pellet was resuspended with 250 mL of isotopically enriched minimal media. 

The resulting suspension was then incubated for 1 hour at 15 °C and 225 rpm. Following 

the 1 hour incubation the culture was inoculated with 250 μL 400 mM IPTG to induce 

protein over-expression and incubated at 15 °C and 225 rpm for 12 hours. The OD600 was 

monitored continuously over the course of the growth in order to ensure cell viability. Upon 

completion, the cells were harvested by centrifugation. The supernatant was discarded, 

and the pellets stored at -80 °C until purification could be performed.  

 

Purification: Pellets were removed from the -80 °C freezer, weighed and thawed at 4 °C. 

Once thawed, the pellets were then resuspended with an EDTA free protease inhibitor 

solution containing 50 mM sodium phosphate, 150 mM NaCl, pH 8.0 and Benzonase 
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nuclease. Once the pellets were resuspended, the cells were lysed using a French press 

at 1500 psi performed in quadruplicate. The lysate was collected and centrifuged 20,217 

x g, 4 °C for 30. The protein containing supernatant was collected for further purification. 

The protein sample was then passed through a 0.22 μm syringe driver filter and then 

concentrated to 5 mL.  

After concentration, the sample was purified using nickel affinity chromatography 

via a GE Healthcare ӒKTA  00 Fast Protein Liquid Chromatographer (FPLC). The sample 

was eluted using a 50 mM sodium phosphate, 150 mM NaCl, pH 8.0 buffer containing 

500 mM imidazole. Upon completion of the initial, crude His-tag purification the sample’s 

purity was analyzed using Sodium dodecylsulfate polyacrylamide gel electrophoresis 

(SDS-PAGE). The sample was then dialyzed for a minimum of 14 hours using a 50 mM 

sodium phosphate, 150 mM NaCl, pH 8.0 buffer. The sample was switched into new 

buffer at hours 0 and 2 to ensure maximum removal of imidazole from the sample.  

Purity was assessed using polyacrylamide gels and additional purification steps 

were sometimes required. If further purification was required, additional rounds of FPLC 

were employed in the form of Ni-affinity chromatography, size exclusion chromatography 

or anion exchange chromatography. Upon completion of each FPLC run, dialysis or buffer 

exchange of the protein was performed. Analysis of the purity of the protein was 

performed via SDS-PAGE and protein bands were visualized by Coomassie brilliant blue. 

Once the sample purity had reached an acceptable level it was ready for experimentation 

and testing.  

Protein sample concentration was estimated using UV-Visible spectrophotometry, 

monitoring the sample at 280 nm and 275 nm for TrxA-ApAFP752 and ApAFP752, 
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respectively. Extinction coefficients for each protein were calculated using ExPASy 

ProtParam tool48 and were used to calculate the concentration of the sample via UV-

Visible spectrophotometry. 

 

Cleavage of TrxA-ApAFP752: ApAFP752 was removed from the fusion protein via 

proteolytic cleavage using bovine His-enterokinase (Prospec-Tany). TrxA-ApAFP752 

cleavage was performed in 50 mM potassium phosphate, 20 mM NaCl, pH 8.0. A small-

scale cleavage test was performed with an enzyme to protein mixture ratio of 1 IU bovine 

His-enterokinase to 400 μg TrxA-ApAFP752 for six hours at 25 °C. Samples were taken 

every two hours. SDS-PAGE was performed and stained with Coomasie brilliant blue. 

Full cleavage was performed using 1 IU bovine His-enterokinas per 400 μg TrxA-

ApAFP752 for six hours at 25 °C. The cleavage sample was then passed FPLC Ni-affinity 

and the flow through was collected. 

 

Cryoprotection Studies: Cryoprotection studies were performed in collaboration with Dr. 

Daniel Levy’s group at the University of  yoming, Department of Molecular Biology. A 

natural abundance sample of Trx-ApAFP752 was prepared in a buffer of 20 mM Tris HCl, 

20 mM NaCl at pH 7.5 by the Varga lab. The final concentration of the produced protein 

sample was 113 μM. Cryoprotection studies were performed by the Levy lab on 

unfertilized eggs from the frog X. laevis142.  
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Nuclear Magnetic Resonance Studies on AFP:  

Purified samples were concentrated to a minimum final concentration 100 μM in 

order to produce enough usable signal for spectrum analysis. Samples were prepared for 

NMR by adding 5 % deuterium oxide (D2O) for sample locking, 4,4-dimethyl-4-

silapentane-1-sulfonic acid (0.2 mM final concentration) for referencing and sodium azide 

(final concentration 1 mM) as a biocide. Samples were packed into 3 mm or 5 mm 

(depending on sample volume) D2O matched Shigemi® NMR tubes. Sample spectra 

were collected using a Bruker Avance III 600 MHz NMR spectrometer with a 5 mm BBO 

solution probe (University of Wyoming), a Bruker Avance III 800 MHz NMR spectrometer 

with a 5 mm TCI cryoprobe probe (City University of New York Advanced Science 

Research Center) and a Bruker Avance II 800 MHz NMR spectrometer with a 5 mm TCI 

cryoprobe probe (Brandeis University). 

 

Differential Scanning Calorimetry: 

Samples were tested in a buffer consisting of 50 mM potassium phosphate, 20 mM NaCl. 

An aliquot of 10 μL of each sample was loaded into Tzero® aluminum hermetic pans (TA 

Instruments) cooled to -30.0 °C at a rate of 1 °C min-1 and held at this temperature for 10 

minutes. Samples were then heated at 1 °C min-1 up to -1.0 °C, held at this temperature 

for 5 minutes and cooled to -30.0 °C at 1 °C min-1. This freeze-thaw cycle was repeated 

from -1.0 °C to +0.5 °C in increments of 0.1 °C in order to vary the percentage of ice 

present in the sample43,52. Thermal hysteresis activity data was collected on a TA 

Instruments Q2000 Differential Scanning Calorimeter. The percentage of ice was 

estimated to be |[1 − (−
∆𝐻𝑟

∆𝐻𝑚
⁄ )]| × 100%, where ΔHm is the enthalpy of melting and 
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ΔHr is the enthalpy of refreezing. The enthalpies of melting and refreezing were calculated 

using the Universal Analysis software package from TA Instruments. The enthalpy of 

refreezing was calculated by integrating the area under the curve of the exotherm 

associated with the refreezing cycle which showed thermal hysteresis activity. The 

enthalpy of melting was calculated by integrating the area under the curve of the 

endotherm associated with the melting cycle at a temperature of +0.5 °C, where complete 

melting of the sample was observed.   
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Table A1: Chemical Shift Assignment Table for ApAFP752 

         Res  Res  Res   Atom   Iso    CS      STD   

     1    2    2   MET     C  C 13  175.833   0.00 0 

     2    2    2   MET    CA  C 13   56.059   0.08 0 

     3    2    2   MET    CB  C 13   33.092   0.28 0 

     4    2    2   MET    CE  C 13   20.214   0.00 0 

     5    2    2   MET    CG  C 13   31.928   0.03 0 

     6    2    2   MET    HA  H  1    4.432   0.00 0 

     7    2    2   MET   HB2  H  1    2.147   0.00 0 

     8    2    2   MET   HB3  H  1    2.137   0.00 0 

     9    2    2   MET    HE  H  1    1.974   0.00 0 

    10    2    2   MET   HG2  H  1    2.626   0.00 0 

    11    2    2   MET   HG3  H  1    2.501   0.00 0 

    12    3    3   ALA     C  C 13  177.146   0.00 0 

    13    3    3   ALA    CA  C 13   52.560   0.09 0 

    14    3    3   ALA    CB  C 13   19.378   0.07 0 

    15    3    3   ALA     H  H  1    8.344   0.00 0 

    16    3    3   ALA    HA  H  1    4.345   0.03 0 

    17    3    3   ALA    HB  H  1    1.399   0.03 0 

    18    3    3   ALA     N  N 15  124.613   0.08 0 

    19    4    4   ASP     C  C 13  176.373   0.00 0 

    20    4    4   ASP    CA  C 13   54.431   0.11 0 

    21    4    4   ASP    CB  C 13   41.262   0.04 0 

    22    4    4   ASP     H  H  1    8.199   0.00 0 

    23    4    4   ASP    HA  H  1    4.616   0.02 0 

    24    4    4   ASP   HB2  H  1    2.718   0.01 0 

    25    4    4   ASP   HB3  H  1    2.621   0.00 0 

    26    4    4   ASP     N  N 15  119.425   0.02 0 

    27    5    5   ILE     C  C 13  176.846   0.00 0 

    28    5    5   ILE    CA  C 13   61.586   0.12 0 

    29    5    5   ILE    CB  C 13   38.640   0.14 0 

    30    5    5   ILE    CD  C 13   13.235   0.04 0 

    31    5    5   ILE   CG1  C 13   27.309   0.02 0 

    32    5    5   ILE   CG2  C 13   17.726   0.03 0 

    33    5    5   ILE     H  H  1    8.019   0.00 0 

    34    5    5   ILE    HA  H  1    4.191   0.02 0 

    35    5    5   ILE    HB  H  1    1.924   0.00 0 

    36    5    5   ILE   HB3  H  1    1.972   0.00 0 

    37    5    5   ILE   HD1  H  1    0.912   0.00 0 

    38    5    5   ILE   HG1  H  1    1.480   0.00 0 

    39    5    5   ILE  HG12  H  1    1.480   0.00 0 

    40    5    5   ILE  HG13  H  1    1.480   0.00 0 

    41    5    5   ILE   HG2  H  1    1.209   0.00 0 

    42    5    5   ILE     N  N 15  120.471   0.03 0 

    43    6    6   GLY     C  C 13  174.355   0.00 0 

    44    6    6   GLY    CA  C 13   45.577   0.07 0 

    45    6    6   GLY     H  H  1    8.460   0.00 0 

    46    6    6   GLY   HA1  H  1    4.052   0.00 0 

    47    6    6   GLY   HA2  H  1    4.028   0.02 0 

    48    6    6   GLY   HA3  H  1    4.028   0.02 0 

    49    6    6   GLY     N  N 15  112.268   0.03 0 

    50    7    7   SER     C  C 13  174.440   0.00 0 

    51    7    7   SER    CA  C 13   58.508   0.07 0 

    52    7    7   SER    CB  C 13   64.143   0.05 0 

    53    7    7   SER     H  H  1    8.086   0.00 0 
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    54    7    7   SER    HA  H  1    4.501   0.00 0 

    55    7    7   SER   HB2  H  1    4.018   0.00 0 

    56    7    7   SER   HB3  H  1    3.950   0.07 0 

    57    7    7   SER     N  N 15  115.425   0.03 0 

    58    8    8   GLU     C  C 13  175.993   0.00 0 

    59    8    8   GLU    CA  C 13   56.668   0.12 0 

    60    8    8   GLU    CB  C 13   30.223   0.05 0 

    61    8    8   GLU    CG  C 13   36.275   0.00 0 

    62    8    8   GLU     H  H  1    8.435   0.01 0 

    63    8    8   GLU    HA  H  1    4.381   0.01 0 

    64    8    8   GLU   HB2  H  1    2.263   0.00 0 

    65    8    8   GLU   HB3  H  1    2.067   0.00 0 

    66    8    8   GLU     N  N 15  122.189   0.08 0 

    67    9    9   CYS    CA  C 13   55.937   0.00 0 

    68    9    9   CYS    CB  C 13   33.047   0.00 0 

    69    9    9   CYS     H  H  1    8.317   0.01 0 

    70    9    9   CYS     N  N 15  118.792   0.11 0 

    71   13   13   CYS     C  C 13  172.422   0.00 0 

    72   13   13   CYS    CA  C 13   55.806   0.11 0 

    73   13   13   CYS    CB  C 13   44.988   0.03 0 

    74   13   13   CYS    HA  H  1    4.317   0.00 0 

    75   13   13   CYS   HB3  H  1    2.794   0.00 0 

    76   14   14   THR     C  C 13  175.123   0.00 0 

    77   14   14   THR    CA  C 13   61.156   0.02 0 

    78   14   14   THR    CB  C 13   72.097   0.00 0 

    79   14   14   THR   CG2  C 13   19.444   0.00 0 

    80   14   14   THR     H  H  1    7.524   0.00 0 

    81   14   14   THR    HA  H  1    4.759   0.00 0 

    82   14   14   THR    HB  H  1    4.078   0.00 0 

    83   14   14   THR     N  N 15  113.911   0.10 0 

    84   15   15   GLY     C  C 13  174.424   0.00 0 

    85   15   15   GLY    CA  C 13   45.399   0.11 0 

    86   15   15   GLY     H  H  1    7.997   0.01 0 

    87   15   15   GLY   HA1  H  1    4.015   0.00 0 

    88   15   15   GLY   HA2  H  1    4.015   0.00 0 

    89   15   15   GLY   HA3  H  1    4.015   0.00 0 

    90   15   15   GLY     N  N 15  111.656   0.06 0 

    91   16   16   GLY     C  C 13  174.424   0.00 0 

    92   16   16   VAL    CA  C 13   61.712   0.01 0 

    93   16   16   VAL     H  H  1    8.017   0.01 0 

    94   16   16   VAL    HA  H  1    4.480   0.00 0 

    95   16   16   VAL     N  N 15  112.776   0.03 0 

    96   18   18   CYS     C  C 13  176.944   0.00 0 

    97   18   18   CYS    CA  C 13   55.694   0.08 0 

    98   18   18   CYS    CB  C 13   43.292   0.08 0 

    99   18   18   CYS    HA  H  1    4.503   0.00 0 

   100   18   18   CYS   HB2  H  1    2.967   0.00 0 

   101   18   18   CYS   HB3  H  1    2.223   0.00 0 

   102   19   19   PHE     C  C 13  175.629   0.00 0 

   103   19   19   PHE    CA  C 13   63.110   0.06 0 

   104   19   19   PHE    CB  C 13   39.515   0.05 0 

   105   19   19   PHE     H  H  1    8.445   0.00 0 

   106   19   19   PHE    HA  H  1    4.395   0.00 0 

   107   19   19   PHE   HB2  H  1    3.580   0.00 0 

   108   19   19   PHE   HB3  H  1    3.048   0.00 0 

   109   19   19   PHE     N  N 15  125.013   0.16 0 

   110   20   20   SER     C  C 13  173.766   0.00 0 
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   111   20   20   SER    CA  C 13   58.504   0.05 0 

   112   20   20   SER    CB  C 13   63.810   0.02 0 

   113   20   20   SER     H  H  1    8.151   0.01 0 

   114   20   20   SER    HA  H  1    4.345   0.00 0 

   115   20   20   SER   HB2  H  1    4.075   0.00 0 

   116   20   20   SER   HB3  H  1    3.957   0.00 0 

   117   20   20   SER     N  N 15  108.311   0.04 0 

   118   21   21   CYS    CA  C 13   57.565   0.10 0 

   119   21   21   CYS    CB  C 13   43.835   0.00 0 

   120   21   21   CYS     H  H  1    7.664   0.01 0 

   121   21   21   CYS     N  N 15  120.203   0.05 0 

   122   22   22   MET     C  C 13  175.517   0.00 0 

   123   22   22   MET    CA  C 13   54.508   0.02 0 

   124   22   22   MET    CB  C 13   32.309   0.00 0 

   125   22   22   MET    HA  H  1    4.830   0.00 0 

   126   22   22   MET   HG2  H  1    2.625   0.00 0 

   127   22   22   MET   HG3  H  1    2.446   0.00 0 

   128   23   23   ALA     C  C 13  174.211   0.00 0 

   129   23   23   ALA    CA  C 13   51.464   0.05 0 

   130   23   23   ALA    CB  C 13   18.878   0.02 0 

   131   23   23   ALA     H  H  1    7.384   0.00 0 

   132   23   23   ALA    HA  H  1    4.806   0.01 0 

   133   23   23   ALA    HB  H  1    1.484   0.02 0 

   134   23   23   ALA     N  N 15  127.246   0.03 0 

   135   24   24   GLU     C  C 13  175.401   0.00 0 

   136   24   24   GLU    CA  C 13   54.914   0.06 0 

   137   24   24   GLU    CB  C 13   29.591   0.15 0 

   138   24   24   GLU    CG  C 13   35.802   0.00 0 

   139   24   24   GLU     H  H  1    7.674   0.01 0 

   140   24   24   GLU    HA  H  1    4.893   0.03 0 

   141   24   24   GLU   HB2  H  1    1.933   0.00 0 

   142   24   24   GLU   HB3  H  1    1.933   0.00 0 

   143   24   24   GLU     N  N 15  122.508   0.08 0 

   144   25   25   CYS     C  C 13  175.729   0.00 0 

   145   25   25   CYS    CA  C 13   56.556   0.04 0 

   146   25   25   CYS    CB  C 13   47.161   0.06 0 

   147   25   25   CYS     H  H  1    8.601   0.00 0 

   148   25   25   CYS   HB2  H  1    3.666   0.00 0 

   149   25   25   CYS     N  N 15  128.271   0.07 0 

   150   26   26   THR     C  C 13  173.395   0.00 0 

   151   26   26   THR    CA  C 13   60.027   0.08 0 

   152   26   26   THR    CB  C 13   70.679   0.15 0 

   153   26   26   THR   CG2  C 13   21.702   0.00 0 

   154   26   26   THR     H  H  1    8.860   0.01 0 

   155   26   26   THR    HA  H  1    5.193   0.00 0 

   156   26   26   THR    HB  H  1    3.908   0.00 0 

   157   26   26   THR   HG2  H  1    1.103   0.00 0 

   158   26   26   THR     N  N 15  120.983   0.07 0 

   159   27   27   ASN     C  C 13  176.052   0.00 0 

   160   27   27   ASN    CA  C 13   54.372   0.12 0 

   161   27   27   ASN    CB  C 13   38.744   0.24 0 

   162   27   27   ASN     H  H  1    8.026   0.01 0 

   163   27   27   ASN    HA  H  1    4.611   0.30 0 

   164   27   27   ASN   HB2  H  1    3.465   0.00 0 

   165   27   27   ASN   HB3  H  1    2.841   0.00 0 

   166   27   27   ASN     N  N 15  121.855   0.06 0 

   167   28   28   CYS     C  C 13  177.961   0.00 0 
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   168   28   28   CYS    CA  C 13   56.230   1.23 0 

   169   28   28   CYS    CB  C 13   42.359   0.01 0 

   170   28   28   CYS     H  H  1    8.198   0.00 0 

   171   28   28   CYS    HA  H  1    4.363   0.00 0 

   172   28   28   CYS   HB2  H  1    1.663   0.00 0 

   173   28   28   CYS   HB3  H  1    0.905   0.00 0 

   174   28   28   CYS     N  N 15  121.252   0.18 0 

   175   29   29   CYS    CA  C 13   55.377   0.00 0 

   176   29   29   GLY    CA  C 13   45.543   0.02 0 

   177   29   29   GLY     H  H  1    8.418   0.01 0 

   178   29   29   GLY   HA3  H  1    4.064   0.00 0 

   179   29   29   GLY     N  N 15  109.441   0.04 0 

   180   32   32   ARG     C  C 13  176.051   0.00 0 

   181   32   32   ARG    CA  C 13   57.714   0.06 0 

   182   32   32   ARG    CB  C 13   39.565   0.09 0 

   183   32   32   ARG   HD2  H  1    3.125   0.00 0 

   184   33   33   ASN     C  C 13  174.185   0.00 0 

   185   33   33   ASN    CA  C 13   52.908   0.03 0 

   186   33   33   ASN    CB  C 13   41.982   0.08 0 

   187   33   33   ASN     H  H  1    8.762   0.01 0 

   188   33   33   ASN    HA  H  1    5.013   0.03 0 

   189   33   33   ASN   HB2  H  1    2.811   0.00 0 

   190   33   33   ASN   HB3  H  1    2.429   0.00 0 

   191   33   33   ASN     N  N 15  112.984   0.10 0 

   192   34   34   ALA    CA  C 13   54.007   0.04 0 

   193   34   34   ALA    CB  C 13   19.773   0.00 0 

   194   34   34   ALA     H  H  1    6.987   0.00 0 

   195   34   34   ALA    HA  H  1    4.439   0.00 0 

   196   34   34   ALA    HB  H  1    1.351   0.00 0 

   197   34   34   ALA     N  N 15  125.616   0.06 0 

   198   35   35   ARG     C  C 13  177.294   0.00 0 

   199   35   35   ARG    CA  C 13   58.100   0.04 0 

   200   35   35   ARG    CB  C 13   31.662   0.16 0 

   201   35   35   ARG    CG  C 13   27.843   0.00 0 

   202   35   35   ARG    HA  H  1    4.433   0.00 0 

   203   35   35   ARG   HB2  H  1    1.957   0.00 0 

   204   35   35   ARG   HB3  H  1    1.844   0.00 0 

   205   35   35   ARG   HD2  H  1    2.662   0.00 0 

   206   35   35   ARG   HD3  H  1    2.683   0.01 0 

   207   36   36   THR     C  C 13  172.502   0.00 0 

   208   36   36   THR    CA  C 13   60.916   0.09 0 

   209   36   36   THR    CB  C 13   71.844   0.19 0 

   210   36   36   THR   CG2  C 13   22.609   0.00 0 

   211   36   36   THR     H  H  1    8.027   0.01 0 

   212   36   36   THR    HA  H  1    5.069   0.02 0 

   213   36   36   THR    HB  H  1    3.925   0.00 0 

   214   36   36   THR   HG2  H  1    1.139   0.00 0 

   215   36   36   THR     N  N 15  111.344   0.19 0 

   216   37   37   CYS     C  C 13  174.131   0.00 0 

   217   37   37   CYS    CA  C 13   55.244   0.10 0 

   218   37   37   CYS    CB  C 13   50.730   0.12 0 

   219   37   37   CYS     H  H  1    8.293   0.01 0 

   220   37   37   CYS    HA  H  1    5.205   0.00 0 

   221   37   37   CYS   HB3  H  1    3.504   0.00 0 

   222   37   37   CYS     N  N 15  120.866   0.05 0 

   223   38   38   THR     C  C 13  174.926   0.00 0 

   224   38   38   THR    CA  C 13   62.104   0.05 0 
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   225   38   38   THR    CB  C 13   70.604   0.09 0 

   226   38   38   THR   CG2  C 13   21.910   0.00 0 

   227   38   38   THR     H  H  1    8.466   0.00 0 

   228   38   38   THR    HA  H  1    5.191   0.00 0 

   229   38   38   THR    HB  H  1    3.904   0.00 0 

   230   38   38   THR   HG2  H  1    1.173   0.00 0 

   231   38   38   THR     N  N 15  120.049   0.06 0 

   232   39   39   ASP     C  C 13  174.997   0.00 0 

   233   39   39   ASP    CA  C 13   57.072   0.07 0 

   234   39   39   ASP    CB  C 13   40.071   0.03 0 

   235   39   39   ASP     H  H  1    8.641   0.25 0 

   236   39   39   ASP    HA  H  1    5.050   0.04 0 

   237   39   39   ASP   HB2  H  1    3.014   0.00 0 

   238   39   39   ASP   HB3  H  1    2.625   0.00 0 

   239   39   39   ASP     N  N 15  125.520   2.95 0 

   240   40   40   SER     C  C 13  172.321   0.00 0 

   241   40   40   SER    CA  C 13   58.904   0.07 0 

   242   40   40   SER    CB  C 13   69.651   0.11 0 

   243   40   40   SER     H  H  1    8.085   0.00 0 

   244   40   40   SER    HA  H  1    5.641   0.00 0 

   245   40   40   SER    HB  H  1    4.339   0.00 0 

   246   40   40   SER     N  N 15  111.437   0.07 0 

   247   41   41   GLN    CA  C 13   53.981   0.02 0 

   248   41   41   GLN    CB  C 13   32.284   0.00 0 

   249   41   41   GLN     H  H  1    7.815   0.01 0 

   250   41   41   GLN     N  N 15  117.513   0.06 0 

   251   42   42   TYR     C  C 13  175.509   0.00 0 

   252   42   42   TYR    CA  C 13   57.684   0.05 0 

   253   42   42   TYR    CB  C 13   34.302   0.05 0 

   254   42   42   TYR   HB2  H  1    3.343   0.00 0 

   255   42   42   TYR   HB3  H  1    3.078   0.00 0 

   256   43   43   CYS     C  C 13  177.542   0.00 0 

   257   43   43   CYS    CA  C 13   58.019   0.12 0 

   258   43   43   CYS    CB  C 13   46.951   0.06 0 

   259   43   43   CYS     H  H  1    7.912   0.00 0 

   260   43   43   CYS    HA  H  1    4.799   0.00 0 

   261   43   43   CYS   HB2  H  1    3.785   0.00 0 

   262   43   43   CYS   HB3  H  1    2.855   0.00 0 

   263   43   43   CYS     N  N 15  119.608   0.06 0 

   264   44   44   ASN     C  C 13  173.488   0.00 0 

   265   44   44   ASN    CA  C 13   56.708   0.09 0 

   266   44   44   ASN    CB  C 13   40.330   0.02 0 

   267   44   44   ASN     H  H  1    7.618   0.15 0 

   268   44   44   ASN    HA  H  1    4.282   0.01 0 

   269   44   44   ASN   HB2  H  1    3.145   0.00 0 

   270   44   44   ASN   HB3  H  1    2.657   0.00 0 

   271   44   44   ASN     N  N 15  115.840   0.96 0 

   272   45   45   ASN     C  C 13  174.273   0.00 0 

   273   45   45   ASN    CA  C 13   53.156   0.10 0 

   274   45   45   ASN    CB  C 13   40.924   0.07 0 

   275   45   45   ASN     H  H  1    8.619   0.00 0 

   276   45   45   ASN    HA  H  1    4.960   0.01 0 

   277   45   45   ASN   HB2  H  1    2.792   0.01 0 

   278   45   45   ASN   HB3  H  1    2.574   0.06 0 

   279   45   45   ASN     N  N 15  114.061   0.06 0 

   280   46   46   ALA     C  C 13  177.783   0.00 0 

   281   46   46   ALA    CA  C 13   53.095   0.04 0 
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   282   46   46   ALA    CB  C 13   19.770   0.05 0 

   283   46   46   ALA     H  H  1    7.024   0.00 0 

   284   46   46   ALA    HA  H  1    4.341   0.03 0 

   285   46   46   ALA    HB  H  1    1.321   0.04 0 

   286   46   46   ALA     N  N 15  126.112   0.05 0 

   287   47   47   MET     C  C 13  177.178   0.00 0 

   288   47   47   MET    CA  C 13   57.266   0.04 0 

   289   47   47   MET    CB  C 13   34.515   0.07 0 

   290   47   47   MET    CG  C 13   32.157   0.00 0 

   291   47   47   MET     H  H  1    9.357   0.01 0 

   292   47   47   MET    HA  H  1    4.668   0.02 0 

   293   47   47   MET   HB2  H  1    2.349   0.00 0 

   294   47   47   MET   HB3  H  1    2.284   0.01 0 

   295   47   47   MET    HE  H  1    2.163   0.00 0 

   296   47   47   MET   HG2  H  1    2.715   0.00 0 

   297   47   47   MET   HG3  H  1    2.831   0.00 0 

   298   47   47   MET     N  N 15  118.209   0.04 0 

   299   48   48   THR     C  C 13  172.391   0.00 0 

   300   48   48   THR    CA  C 13   61.021   0.10 0 

   301   48   48   THR    CB  C 13   71.268   0.08 0 

   302   48   48   THR    CG  C 13   21.557   0.00 0 

   303   48   48   THR     H  H  1    7.100   0.00 0 

   304   48   48   THR    HA  H  1    5.204   0.00 0 

   305   48   48   THR    HB  H  1    3.968   0.03 0 

   306   48   48   THR   HG2  H  1    1.166   0.00 0 

   307   48   48   THR     N  N 15  111.810   0.05 0 

   308   49   49   CYS     C  C 13  172.647   0.00 0 

   309   49   49   CYS    CA  C 13   55.024   0.06 0 

   310   49   49   CYS    CB  C 13   50.532   0.10 0 

   311   49   49   CYS     H  H  1    8.563   0.01 0 

   312   49   49   CYS    HA  H  1    5.133   0.00 0 

   313   49   49   CYS   HB2  H  1    3.691   0.00 0 

   314   49   49   CYS   HB3  H  1    3.221   0.00 0 

   315   49   49   CYS     N  N 15  123.852   0.07 0 

   316   50   50   THR     C  C 13  175.416   0.00 0 

   317   50   50   THR    CA  C 13   62.083   0.06 0 

   318   50   50   THR    CB  C 13   70.415   0.13 0 

   319   50   50   THR   CG2  C 13   21.775   0.00 0 

   320   50   50   THR     H  H  1    8.469   0.01 0 

   321   50   50   THR    HA  H  1    5.113   0.01 0 

   322   50   50   THR    HB  H  1    4.032   0.01 0 

   323   50   50   THR   HG2  H  1    1.128   0.00 0 

   324   50   50   THR     N  N 15  118.301   0.07 0 

   325   51   51   ARG     C  C 13  175.013   0.00 0 

   326   51   51   ARG    CA  C 13   57.177   0.16 0 

   327   51   51   ARG    CB  C 13   28.730   0.27 0 

   328   51   51   ARG    CD  C 13   42.863   0.00 0 

   329   51   51   ARG     H  H  1    9.249   0.01 0 

   330   51   51   ARG    HA  H  1    4.683   0.03 0 

   331   51   51   ARG   HB3  H  1    1.914   0.07 0 

   332   51   51   ARG   HD2  H  1    3.564   0.00 0 

   333   51   51   ARG   HD3  H  1    3.564   0.00 0 

   334   51   51   ARG   HG2  H  1    1.674   0.00 0 

   335   51   51   ARG   HG3  H  1    1.674   0.00 0 

   336   51   51   ARG     N  N 15  129.174   0.05 0 

   337   52   52   SER     C  C 13  173.083   0.00 0 

   338   52   52   SER    CA  C 13   58.007   0.08 0 
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   339   52   52   SER    CB  C 13   68.706   0.12 0 

   340   52   52   SER     H  H  1    8.242   0.01 0 

   341   52   52   SER    HA  H  1    6.058   0.00 0 

   342   52   52   SER   HB2  H  1    4.127   0.00 0 

   343   52   52   SER   HB3  H  1    3.051   0.00 0 

   344   52   52   SER     N  N 15  111.558   0.07 0 

   345   53   53   THR     C  C 13  172.972   0.00 0 

   346   53   53   THR    CA  C 13   58.073   0.10 0 

   347   53   53   THR    CB  C 13   72.487   0.05 0 

   348   53   53   THR   CG2  C 13   19.342   0.00 0 

   349   53   53   THR     H  H  1    7.641   0.01 0 

   350   53   53   THR    HA  H  1    5.322   0.00 0 

   351   53   53   THR     N  N 15  108.270   0.03 0 

   352   54   54   ASP     C  C 13  175.597   0.00 0 

   353   54   54   ASP    CA  C 13   54.855   0.09 0 

   354   54   54   ASP    CB  C 13   37.825   0.17 0 

   355   54   54   ASP     H  H  1    8.021   0.00 0 

   356   54   54   ASP    HA  H  1    3.628   0.00 0 

   357   54   54   ASP   HB2  H  1    2.185   0.00 0 

   358   54   54   ASP   HB3  H  1    1.948   0.00 0 

   359   54   54   ASP     N  N 15  119.599   0.08 0 

   360   55   55   CYS     C  C 13  177.023   0.00 0 

   361   55   55   CYS    CA  C 13   57.398   0.10 0 

   362   55   55   CYS    CB  C 13   46.605   0.02 0 

   363   55   55   CYS     H  H  1    7.432   0.00 0 

   364   55   55   CYS    HA  H  1    4.667   0.02 0 

   365   55   55   CYS   HB2  H  1    3.822   0.00 0 

   366   55   55   CYS   HB3  H  1    2.789   0.00 0 

   367   55   55   CYS     N  N 15  118.877   0.03 0 

   368   56   56   PHE     C  C 13  176.047   0.00 0 

   369   56   56   PHE    CA  C 13   57.462   0.09 0 

   370   56   56   PHE    CB  C 13   39.628   0.07 0 

   371   56   56   PHE     H  H  1    6.749   0.00 0 

   372   56   56   PHE    HA  H  1    4.627   0.03 0 

   373   56   56   PHE   HB2  H  1    3.546   0.00 0 

   374   56   56   PHE   HB3  H  1    3.121   0.00 0 

   375   56   56   PHE     N  N 15  116.134   0.05 0 

   376   57   57   ASN     C  C 13  174.048   0.00 0 

   377   57   57   ASN    CA  C 13   52.964   0.04 0 

   378   57   57   ASN    CB  C 13   41.202   0.04 0 

   379   57   57   ASN     H  H  1    8.922   0.01 0 

   380   57   57   ASN    HA  H  1    5.027   0.00 0 

   381   57   57   ASN   HB3  H  1    2.354   0.00 0 

   382   57   57   ASN     N  N 15  113.374   0.07 0 

   383   58   58   ALA     C  C 13  177.519   0.00 0 

   384   58   58   ALA    CA  C 13   53.885   0.09 0 

   385   58   58   ALA    CB  C 13   19.938   0.18 0 

   386   58   58   ALA     H  H  1    6.825   0.00 0 

   387   58   58   ALA    HA  H  1    3.205   1.36 0 

   388   58   58   ALA    HB  H  1    1.609   0.00 0 

   389   58   58   ALA     N  N 15  124.237   0.04 0 

   390   59   59   ILE     C  C 13  176.735   0.00 0 

   391   59   59   ILE    CA  C 13   62.425   0.08 0 

   392   59   59   ILE    CB  C 13   39.028   0.12 0 

   393   59   59   ILE   CD1  C 13   13.184   0.00 0 

   394   59   59   ILE   CG1  C 13   28.160   0.01 0 

   395   59   59   ILE   CG2  C 13   18.118   0.09 0 
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   396   59   59   ILE     H  H  1    8.561   0.00 0 

   397   59   59   ILE    HA  H  1    4.411   0.03 0 

   398   59   59   ILE    HB  H  1    2.070   0.03 0 

   399   59   59   ILE   HD1  H  1    1.013   0.00 0 

   400   59   59   ILE  HG12  H  1    1.757   0.00 0 

   401   59   59   ILE  HG13  H  1    1.446   0.00 0 

   402   59   59   ILE   HG2  H  1    1.156   0.00 0 

   403   59   59   ILE     N  N 15  119.290   0.03 0 

   404   60   60   THR     C  C 13  172.860   0.00 0 

   405   60   60   THR    CA  C 13   61.279   0.09 0 

   406   60   60   THR    CB  C 13   71.110   0.19 0 

   407   60   60   THR    CG  C 13   21.404   0.03 0 

   408   60   60   THR     H  H  1    7.367   0.00 0 

   409   60   60   THR    HA  H  1    5.146   0.02 0 

   410   60   60   THR    HB  H  1    4.013   0.02 0 

   411   60   60   THR   HG2  H  1    1.102   0.00 0 

   412   60   60   THR     N  N 15  115.445   0.08 0 

   413   61   61   CYS     C  C 13  172.046   0.00 0 

   414   61   61   CYS    CA  C 13   55.080   0.13 0 

   415   61   61   CYS    CB  C 13   49.960   0.06 0 

   416   61   61   CYS     H  H  1    8.996   0.00 0 

   417   61   61   CYS    HA  H  1    5.264   0.00 0 

   418   61   61   CYS   HB2  H  1    3.317   0.00 0 

   419   61   61   CYS   HB3  H  1    3.240   0.06 0 

   420   61   61   CYS     N  N 15  125.486   0.04 0 

   421   62   62   ILE     C  C 13  177.060   0.00 0 

   422   62   62   ILE    CA  C 13   60.569   0.08 0 

   423   62   62   ILE    CB  C 13   40.989   0.03 0 

   424   62   62   ILE   CD1  C 13   13.557   0.00 0 

   425   62   62   ILE   CG1  C 13   28.162   0.01 0 

   426   62   62   ILE   CG2  C 13   17.696   0.10 0 

   427   62   62   ILE     H  H  1    8.669   0.00 0 

   428   62   62   ILE    HA  H  1    4.795   0.00 0 

   429   62   62   ILE    HB  H  1    1.863   0.00 0 

   430   62   62   ILE  HB12  H  1    1.418   0.00 0 

   431   62   62   ILE  HB13  H  1    1.428   0.00 0 

   432   62   62   ILE   HD1  H  1    0.895   0.00 0 

   433   62   62   ILE  HG12  H  1    1.418   0.00 0 

   434   62   62   ILE  HG13  H  1    1.428   0.00 0 

   435   62   62   ILE   HG2  H  1    1.028   0.00 0 

   436   62   62   ILE     N  N 15  121.433   0.05 0 

   437   63   63   ASP     C  C 13  175.244   0.00 0 

   438   63   63   ASP    CA  C 13   55.838   0.07 0 

   439   63   63   ASP    CB  C 13   40.240   0.10 0 

   440   63   63   ASP     H  H  1    9.124   0.01 0 

   441   63   63   ASP    HA  H  1    5.004   0.03 0 

   442   63   63   ASP   HB2  H  1    3.101   0.00 0 

   443   63   63   ASP   HB3  H  1    2.699   0.00 0 

   444   63   63   ASP     N  N 15  132.149   0.04 0 

   445   64   64   SER     C  C 13  173.510   0.00 0 

   446   64   64   SER    CA  C 13   59.065   0.08 0 

   447   64   64   SER    CB  C 13   68.552   0.08 0 

   448   64   64   SER     H  H  1    8.589   0.00 0 

   449   64   64   SER    HA  H  1    5.822   0.00 0 

   450   64   64   SER   HB2  H  1    4.075   0.00 0 

   451   64   64   SER   HB3  H  1    3.193   0.00 0 

   452   64   64   SER     N  N 15  112.403   0.03 0 
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   453   65   65   THR     C  C 13  172.784   0.00 0 

   454   65   65   THR    CA  C 13   58.245   0.10 0 

   455   65   65   THR    CB  C 13   72.527   0.08 0 

   456   65   65   THR   CG2  C 13   22.170   0.04 0 

   457   65   65   THR     H  H  1    7.839   0.00 0 

   458   65   65   THR    HA  H  1    5.276   0.02 0 

   459   65   65   THR    HB  H  1    4.080   0.00 0 

   460   65   65   THR   HG2  H  1    1.075   0.00 0 

   461   65   65   THR     N  N 15  108.706   0.03 0 

   462   66   66   ASN     C  C 13  173.238   0.00 0 

   463   66   66   ASN    CA  C 13   53.795   0.08 0 

   464   66   66   ASN    CB  C 13   36.477   0.07 0 

   465   66   66   ASN     H  H  1    7.865   0.01 0 

   466   66   66   ASN    HA  H  1    4.321   0.00 0 

   467   66   66   ASN   HB2  H  1    2.533   0.00 0 

   468   66   66   ASN   HB3  H  1    2.659   0.00 0 

   469   66   66   ASN     N  N 15  117.246   0.07 0 

   470   67   67   CYS     C  C 13  176.903   0.00 0 

   471   67   67   CYS    CA  C 13   57.143   0.08 0 

   472   67   67   CYS    CB  C 13   46.653   0.07 0 

   473   67   67   CYS     H  H  1    8.203   0.00 0 

   474   67   67   CYS    HA  H  1    4.753   0.03 0 

   475   67   67   CYS   HB2  H  1    3.569   0.00 0 

   476   67   67   CYS   HB3  H  1    3.013   0.00 0 

   477   67   67   CYS     N  N 15  116.582   0.04 0 

   478   68   68   TYR     C  C 13  177.556   0.00 0 

   479   68   68   TYR    CA  C 13   57.174   0.05 0 

   480   68   68   TYR    CB  C 13   38.439   0.12 0 

   481   68   68   TYR     H  H  1    6.560   0.00 0 

   482   68   68   TYR    HA  H  1    4.814   0.01 0 

   483   68   68   TYR   HB2  H  1    3.305   0.00 0 

   484   68   68   TYR   HB3  H  1    2.999   0.00 0 

   485   68   68   TYR     N  N 15  114.561   0.03 0 

   486   69   69   LYS     C  C 13  176.383   0.00 0 

   487   69   69   LYS    CA  C 13   54.863   0.04 0 

   488   69   69   LYS    CB  C 13   34.199   0.08 0 

   489   69   69   LYS    CD  C 13   29.477   0.04 0 

   490   69   69   LYS    CE  C 13   42.381   0.00 0 

   491   69   69   LYS    CG  C 13   25.191   0.09 0 

   492   69   69   LYS     H  H  1    9.704   0.01 0 

   493   69   69   LYS    HA  H  1    4.559   0.02 0 

   494   69   69   LYS   HB2  H  1    1.978   0.00 0 

   495   69   69   LYS   HB3  H  1    1.978   0.00 0 

   496   69   69   LYS   HD2  H  1    1.762   0.00 0 

   497   69   69   LYS   HD3  H  1    1.735   0.00 0 

   498   69   69   LYS   HE2  H  1    3.095   0.00 0 

   499   69   69   LYS   HG2  H  1    1.485   0.00 0 

   500   69   69   LYS   HG3  H  1    1.485   0.00 0 

   501   69   69   LYS     N  N 15  118.489   0.06 0 

   502   70   70   ALA     C  C 13  177.644   0.00 0 

   503   70   70   ALA    CA  C 13   54.807   0.06 0 

   504   70   70   ALA    CB  C 13   19.979   0.07 0 

   505   70   70   ALA     H  H  1    7.096   0.00 0 

   506   70   70   ALA    HA  H  1    4.434   0.03 0 

   507   70   70   ALA    HB  H  1    1.402   0.00 0 

   508   70   70   ALA     N  N 15  124.689   0.04 0 

   509   71   71   THR     C  C 13  176.380   0.00 0 
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   510   71   71   THR    CA  C 13   62.735   0.07 0 

   511   71   71   THR    CB  C 13   69.173   0.16 0 

   512   71   71   THR   CG2  C 13   22.511   0.01 0 

   513   71   71   THR     H  H  1    8.529   0.01 0 

   514   71   71   THR    HA  H  1    4.385   0.00 0 

   515   71   71   THR    HB  H  1    4.385   0.00 0 

   516   71   71   THR   HG2  H  1    1.302   0.00 0 

   517   71   71   THR     N  N 15  114.607   0.03 0 

   518   72   72   THR    CA  C 13   63.574   0.04 0 

   519   72   72   THR    CB  C 13   69.303   0.00 0 

   520   72   72   THR     H  H  1    7.920   0.00 0 

   521   72   72   THR    HA  H  1    4.483   0.00 0 

   522   72   72   THR     N  N 15  120.284   0.02 0 

   523   73   73   CYS     C  C 13  172.370   0.00 0 

   524   73   73   CYS    CA  C 13   55.760   0.08 0 

   525   73   73   CYS    CB  C 13   45.560   0.09 0 

   526   73   73   CYS    HA  H  1    5.006   0.02 0 

   527   73   73   CYS   HB2  H  1    3.617   0.00 0 

   528   73   73   CYS   HB3  H  1    2.589   0.00 0 

   529   74   74   ILE    CA  C 13   60.733   0.16 0 

   530   74   74   ILE    CB  C 13   38.937   0.00 0 

   531   74   74   ILE     H  H  1    8.907   0.00 0 

   532   74   74   ILE    HA  H  1    4.420   0.00 0 

   533   74   74   ILE     N  N 15  126.997   0.03 0 

   534   75   75   ASN     C  C 13  173.699   0.00 0 

   535   75   75   ASN    CA  C 13   54.110   0.13 0 

   536   75   75   ASN    CB  C 13   37.635   0.10 0 

   537   75   75   ASN     H  H  1    8.036   0.00 0 

   538   75   75   ASN    HA  H  1    4.476   0.00 0 

   539   75   75   ASN   HB2  H  1    3.526   0.00 0 

   540   75   75   ASN   HB3  H  1    2.752   0.00 0 

   541   75   75   ASN     N  N 15  122.158   0.00 0 

   542   76   76   SER     C  C 13  173.008   0.00 0 

   543   76   76   SER    CA  C 13   57.824   0.09 0 

   544   76   76   SER    CB  C 13   67.963   0.05 0 

   545   76   76   SER     H  H  1    7.606   0.00 0 

   546   76   76   SER    HA  H  1    5.765   0.01 0 

   547   76   76   SER   HB2  H  1    3.923   0.00 0 

   548   76   76   SER   HB3  H  1    3.525   0.00 0 

   549   76   76   SER     N  N 15  109.678   0.03 0 

   550   77   77   THR     C  C 13  174.800   0.00 0 

   551   77   77   THR    CA  C 13   59.788   0.07 0 

   552   77   77   THR    CB  C 13   71.023   0.07 0 

   553   77   77   THR   CG2  C 13   22.508   0.00 0 

   554   77   77   THR     H  H  1    8.067   0.00 0 

   555   77   77   THR    HA  H  1    4.662   0.16 0 

   556   77   77   THR   HG2  H  1    1.232   0.00 0 

   557   77   77   THR     N  N 15  111.918   0.04 0 

   558   78   78   GLY     C  C 13  172.805   0.00 0 

   559   78   78   GLY    CA  C 13   46.323   0.04 0 

   560   78   78   GLY     H  H  1    8.811   0.00 0 

   561   78   78   GLY   HA2  H  1    3.829   0.00 0 

   562   78   78   GLY   HA3  H  1    3.853   0.02 0 

   563   78   78   GLY     N  N 15  108.349   0.03 0 

   564   79   79   CYS    CA  C 13   53.294   0.00 0 

   565   79   79   CYS    CB  C 13   42.152   0.00 0 

   566   79   79   CYS     H  H  1    7.773   0.00 0 
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   567   79   79   CYS    HA  H  1    4.988   0.00 0 

   568   79   79   CYS     N  N 15  116.861   0.03 0 

   569   80   80   PRO     C  C 13  177.063   0.00 0 

   570   80   80   PRO    CA  C 13   63.434   0.08 0 

   571   80   80   PRO    CB  C 13   31.896   0.06 0 

   572   80   80   PRO    CD  C 13   50.674   0.00 0 

   573   80   80   PRO    CG  C 13   27.459   0.00 0 

   574   80   80   PRO    HA  H  1    4.440   0.00 0 

   575   80   80   PRO   HB2  H  1    2.258   0.00 0 

   576   80   80   PRO   HB3  H  1    2.258   0.00 0 

   577   80   80   PRO   HD2  H  1    3.912   0.00 0 

   578   80   80   PRO   HD3  H  1    3.905   0.00 0 

   579   80   80   PRO   HG2  H  1    1.857   0.00 0 

   580   80   80   PRO   HG3  H  1    1.857   0.00 0 

   581   81   81   LYS     C  C 13  176.488   0.00 0 

   582   81   81   LYS    CA  C 13   56.225   0.12 0 

   583   81   81   LYS    CB  C 13   32.877   0.10 0 

   584   81   81   LYS    CD  C 13   27.063   0.00 0 

   585   81   81   LYS    CG  C 13   19.446   0.00 0 

   586   81   81   LYS     H  H  1    8.360   0.00 0 

   587   81   81   LYS    HA  H  1    4.412   0.00 0 

   588   81   81   LYS   HB2  H  1    1.958   0.00 0 

   589   81   81   LYS   HB3  H  1    1.943   0.00 0 

   590   81   81   LYS   HD2  H  1    1.715   0.00 0 

   591   81   81   LYS   HD3  H  1    1.705   0.00 0 

   592   81   81   LYS   HE3  H  1    2.271   0.00 0 

   593   81   81   LYS   HG2  H  1    1.381   0.00 0 

   594   81   81   LYS   HG3  H  1    1.381   0.00 0 

   595   81   81   LYS     N  N 15  121.297   0.06 0 

   596   82   82   HIS     C  C 13  174.703   0.00 0 

   597   82   82   HIS    CA  C 13   55.627   0.15 0 

   598   82   82   HIS    CB  C 13   30.425   0.11 0 

   599   82   82   HIS     H  H  1    8.281   0.01 0 

   600   82   82   HIS    HA  H  1    4.682   0.00 0 

   601   82   82   HIS   HB2  H  1    3.150   0.00 0 

   602   82   82   HIS   HB3  H  1    3.150   0.00 0 

   603   82   82   HIS     N  N 15  120.020   0.20 0 

   604   83   83   LYS     C  C 13  176.057   0.00 0 

   605   83   83   LYS    CA  C 13   56.409   0.20 0 

   606   83   83   LYS    CB  C 13   33.156   0.15 0 

   607   83   83   LYS    CD  C 13   29.115   0.00 0 

   608   83   83   LYS    CE  C 13   42.183   0.00 0 

   609   83   83   LYS    CG  C 13   24.559   0.00 0 

   610   83   83   LYS     H  H  1    8.319   0.01 0 

   611   83   83   LYS    HA  H  1    4.333   0.00 0 

   612   83   83   LYS   HB2  H  1    1.751   0.00 0 

   613   83   83   LYS   HB3  H  1    1.751   0.00 0 

   614   83   83   LYS   HD1  H  1    1.547   0.00 0 

   615   83   83   LYS   HD2  H  1    1.544   0.00 0 

   616   83   83   LYS   HE2  H  1    2.983   0.00 0 

   617   83   83   LYS   HE3  H  1    2.983   0.00 0 

   618   83   83   LYS   HG2  H  1    1.383   0.00 0 

   619   83   83   LYS   HG3  H  1    1.383   0.00 0 

   620   83   83   LYS     N  N 15  123.382   0.07 0 

   621   84   84   VAL     C  C 13  175.904   0.00 0 

   622   84   84   VAL    CA  C 13   57.531  11.03 0 

   623   84   84   VAL    CB  C 13   32.843   0.06 0 
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   624   84   84   VAL   CG1  C 13   21.251   0.00 0 

   625   84   84   VAL   CG2  C 13   20.778   0.00 0 

   626   84   84   VAL     H  H  1    8.211   0.01 0 

   627   84   84   VAL     N  N 15  122.965   0.05 0 

   628   85   85   VAL     C  C 13  175.617   0.00 0 

   629   85   85   VAL    CA  C 13   62.197   0.11 0 

   630   85   85   VAL    CB  C 13   33.110   0.24 0 

   631   85   85   VAL   CG1  C 13   21.200   0.00 0 

   632   85   85   VAL   CG2  C 13   20.494   0.00 0 

   633   85   85   VAL     H  H  1    8.282   0.00 0 

   634   85   85   VAL    HA  H  1    4.132   0.00 0 

   635   85   85   VAL    HB  H  1    2.033   0.00 0 

   636   85   85   VAL   HG2  H  1    0.986   0.00 0 

   637   85   85   VAL   HG3  H  1    0.850   0.00 0 

   638   85   85   VAL     N  N 15  125.638   0.03 0 

   639   86   86   LYS     C  C 13  175.218   0.00 0 

   640   86   86   LYS    CA  C 13   56.268   0.07 0 

   641   86   86   LYS    CB  C 13   33.213   0.08 0 

   642   86   86   LYS    CD  C 13   29.026   0.00 0 

   643   86   86   LYS    CE  C 13   42.340   0.00 0 

   644   86   86   LYS    CG  C 13   24.553   0.00 0 

   645   86   86   LYS     H  H  1    8.347   0.00 0 

   646   86   86   LYS    HA  H  1    4.353   0.00 0 

   647   86   86   LYS   HB2  H  1    1.870   0.00 0 

   648   86   86   LYS   HB3  H  1    1.885   0.00 0 

   649   86   86   LYS   HD2  H  1    1.672   0.00 0 

   650   86   86   LYS   HD3  H  1    1.672   0.00 0 

   651   86   86   LYS   HE2  H  1    2.977   0.00 0 

   652   86   86   LYS   HE3  H  1    2.977   0.00 0 

   653   86   86   LYS   HG2  H  1    1.419   0.00 0 

   654   86   86   LYS   HG3  H  1    1.419   0.00 0 

   655   86   86   LYS     N  N 15  126.823   0.03 0 

   656   87   87   LYS    CA  C 13   57.909   0.12 0 

   657   87   87   LYS    CB  C 13   33.753   0.00 0 

   658   87   87   LYS     H  H  1    7.960   0.00 0 

   659   87   87   LYS     N  N 15  129.111   0.02 0 
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Materials and Methods 

Synthesis of [C4-mim]Br 

[C4-mim]Br was prepared according to literature procedures 124,125. It was treated with 

charcoal and repetitive dissolutions into CH2Cl2, followed by filtration and removal of 

CH2Cl2 to get rid of colored impurities; subsequently it was dried using an EtOH 

azeotrope, and left on the vacuum for at least 12 hours prior to use to remove residual 

solvents. 

 
[C4-mim]Br: 1H NMR (Varian 300 MHz; acetone-d6) δ = 10.21 (1H, s), 7.88 

(1H, s), 7.80 (1H, s), 4.44 (2H, t, J = 7.5 Hz), 4.10 (s, 3H), 1.93 (2H, pent, J = 7.5 

Hz), 1.37 (2H, sept, J = 7.5 Hz), 0.94 (3H, t, J = 7.5 Hz) 124,125. 

Viscosity measurements  

Viscosities of neat [C4-mim]Br and all solutions used in this study were measured using 

an Anton-Paar Lovis 4500M microviscometer. Following the viscosity measurements, the 

water content of [C4-mim]Br was measured using Aquamax KF coulometric titrator from 

GRS Scientific according to manufacturer provided protocols, using 0.8 mL of the sample; 

the average of two runs was reported. Sodium phosphate buffer (50 mM, pH 5.5) was 

prepared as follows: a 1 M solution of NaH2PO4 was diluted to 50 mM and the pH was 

adjusted to 5.5 using a freshly prepared 10 M solution of NaOH. See Table S5 for more 

details.  
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NMR experiments 

GB1 was prepared as previously described 126. The GB1 stock solution contained 27.2 

mg/mL (4.4 mM) protein in 50 mM sodium phosphate buffer, pH 5.50. For HR-MAS 

experiments, NMR samples were packed into 50 μL Bruker rotors. Each 50 μL sample 

was prepared by mixing 15 μL of 4.4 mM GB1 stock (1.3 mM final concentration), 10 μL 

of D2O (20% v/v final concentration), and 25 μL of various concentrations of [C4-mim]Br 

(10%, 25%, 40%, and 50% v/v final concentration) mixed with phosphate buffer (50 mM 

sodium phosphate buffer, pH 5.5). For the 60% v/v [C4-mim]Br sample, 30 μL of [C4-

mim]Br  had to be added, thus only 10 μL  of the GB1 stock was used (to 0.  mM final 

concentration). Other samples included GB1 in glycerol/water (50% v/v) and 4.6 M KBr 

in H2O (2.3 M final concentration). A control GB1 sample was prepared without the 

addition of [C4-mim]Br or KBr (referred to in the text as aqueous control or 0% v/v [C4-

mim]Br sample). It was found that a minimum of 10 μL of D2O (20% v/v final 

concentration) was required to maintain a stable lock signal over several days. There was 

no significant pH variation between the [C4-mim]Br  mixtures. See Table S1 for summary 

of sample conditions. Samples were stored at -20 °C in the rotor between experiments. 

The GB1 samples were stable for at least two years under these conditions. 

 HR-MAS NMR spectra were acquired on a 600 MHz Avance III Bruker NMR 

spectrometer equipped with a 4 mm HR-MAS probe. 1D 1H, 1D 13C, 2D 1H-15N 

Heteronuclear Single Quantum Coherence (HSQC) and 3D HNCA spectra were acquired 

at 27 °C and 5 kHz MAS frequency using standard Bruker pulse sequences (with 

sensitivity improvement for multi-dimensional spectra). The 1H 90° pulse increased from 

4.66 μs at 0% v/v [C4-mim]Br  to 7.5 μs and 8.1 μs in the presence of 2.3 M KBr and 60% 
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v/v (3.53 M) [C4-mim]Br, respectively. 1D 13C spectra of GB1 in 0-50% v/v [C4-mim]Br 

were acquired by averaging 2018 scans with a 2-s pulse delay over 1 h 13 min using a 

108 ms acquisition. As the concentration of GB1 in the 60% v/v [C4-mim]Br was lower, 

4096 scans were acquired. The 2D 1H-15N HSQC spectra and 3D HNCA spectra at 600 

MHz were collected with parameters shown in Table S2. Relaxation datasets were 

collected with parameters shown in Table S3. Solution NMR 2D 1H-15N HSQC spectrum 

of GB1 in 50% v/v [C4-mim]Br was acquired using a Cold probe on a VNMRS 900 MHz 

spectrometer. 

 

 Spectra were externally referenced to DSS (27 °C and 5 kHz MAS frequency). 1H 90° 

pulse lengths ranged from 4.66 μs (0% v/v [C4-mim]Br) to 7. 3 μs (60% v/v [C4-mim]Br). 

GB1 chemical shifts were assigned based on published chemical shifts (BMRB 143 entry 

7280 127) and analysis of the 3D HNCA spectra. 

 All data were processed using NMRPipe 144. Analysis and assignments of the 2D and 

3D data sets were carried out using CCPNMR 145 and Sparky 146. Chemical shift 

perturbations were determined by subtracting the chemical shift (ppm) of each residue of 

GB1 in aqueous solution (control) from the chemical shift (ppm) of GB1 in the presence 

of [C4-mim]Br, glycerol, or KBr. Combined 1H and 15N chemical shift perturbations (ΔHN) 

were calculated using the following equation:   

 
Eq. S1.     ΔHN = ((ΔH)2 + (0.15 × ΔN)2)0.5 
 
where ΔH and ΔN are the chemical shift perturbations in ppm for 1H and 15N respectively 

133,147.  
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 Relaxation parameters, T1 or T2, were calculated by fitting the peak heights of the 

HSQC spectra at different relaxation delays to an exponential decay equation. 

Specifically, the peak heights were measured using the nlinLS module included in the 

NMRPipe analysis package144. The values and errors for the residue specific T1 and T2’s 

were calculated from the average and standard deviations after 10,000 Monte Carlo trials 

of fitting an exponential decay equation to the peak heights using a home written python 

script. The ideal number of Monte Carlo trials was determined empirically as the minimum 

number of trials necessary for convergence of 50% [C4-mim]Br data, as this was the 

lowest quality dataset.  

 The residue specific τc was calculated by numerically solving for the ratio of the 

average T1 and T2 relaxation rates of rigid amide 15N spins, given by equation 8 in Kay et 

al. 148, using the simplified spectral density function (equation 9 in Kay et al. 148) and 

assuming a rigid, isotropically tumbling N-H bond vector (S2=1), a bond length of 1.02 Å 

and a nitrogen frequency of 60.8209826 MHz. The average τc was calculated using 

experimental T1 and T2 data that were pruned to include only rigid residues with hetNOE 

values greater than 0.7.  

 T1 and T2 relaxation are due to dipolar coupling of a 15N amide covalently bound to a 

proton and by chemical shift anisotropy and can be described using the spectral density 

function 149. The theoretical T1 and T2 curves in Fig. 3 were calculated with a home written 

Mathematica script from the relaxation rates of an amide 15N spin relaxed by dipolar 

coupling to a directly bonded proton and by chemical shift anisotropy given by Abragam 

149 using the Lipari-Szabo formalism 150,151 and described in detail by Kay 148. The 

simulated T1 and T2 lines were plotted as a function of the τc.  
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The tumbling rate was also estimated using Stoke's law following the equation 152: 

 

Eq.S2.        𝜏𝑐 =
4𝜋𝜂𝑟3

3𝐾𝑇
 

 
using the effective hydrodynamic radius equation: 
 

Eq. S3.       𝑟 =  √
3𝑀

4𝜋𝜌𝑁𝑎

3
+ 𝑟𝑤 

 
where 𝜂 is the viscosity, r is the effective hydrodynamic radius, K is the Boltzmann 

constant, T is the temperature, M is the molar mass, 𝜌 is the density, Na is Avogadro’s 

number, and rw is the radius of hydration. The NMR based τc values were in a relatively 

good agreement with values calculated using Stoke’s law, especially at lower viscosities. 

Thus, while it was reported that GB1 had an ellipsoid shape with a D∥D⊥ ratio of 1.6-1.7 

153, for the simple analyses of the relaxation data presented here, a spherical 

approximation was adequate. 

 In order to estimate the actual sample temperature under HR-MAS conditions (27 °C 

and 5 kHz MAS frequency), traditional solution 2D 1H-15N HSQC NMR spectra of GB1 

protein were acquired using a 5 mm SmartProbeTM at various temperatures: 24 °C, 27 

°C, 30 °C, 33 °C, and 36 °C. HSQC NMR spectra of GB1 acquired under HR-MAS 

conditions was compared to the traditional solution NMR spectra. 

 Although the experiments were carried out at 27 °C VT inlet gas temperature, the 

MAS rotation increased the actual sample temperature slightly. It is well known that amide 

chemical shifts are sensitive to temperature 154,155. We estimated that the actual sample 

temperature was approximately 30-31 °C based on comparison of GB1 2D 1H-15N HSQC 

spectra under HR-MAS conditions to conventional solution GB1 2D 1H-15N HSQC spectra 

at various temperatures (Fig. S1).  
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Table S1. Composition of the samples  
 

GB1 (mM) 

[C4-mim]Br 

Glycerol (%, v/v) KBr (M) D2O (%, v/v) 

% (v/v) M 

1.3 – – – – 20 

1.3 10 0.59 – – 20 

1.3 25 1.47 – – 20 

1.3 40 2.36 – – 20  

1.3 50 2.95 – – 20  

0.9 60 3.53 – – 20  

1.3   50 – 20  

1.3   – 2.29 20  
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Table S2. Experimental parameters for 2D and 3D datasets.  
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Table S3. Experimental parameters for relaxation experiments 
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Table S4. Talos+ predicted secondary structure for 0, 25, and 50% v/v [C4-mim]Br. 
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Table S5. Viscosities of [C4-mim]Br, its solutions and glycerol-containing sample as a 

function of temperature. 

 

Solvent system T / oC Viscosity / cP 

[C4-mim]Bra 

 

27 433 

32 306 

37 223 

[C4-mim]Br (60 %, v/v) 

D2O (20 %, v/v) 

Bufferb (20 %, v/v) 

27 6.0 

32 5.2 

37 4.5 

[C4-mim]Br (50 %, v/v) 

D2O (20 %, v/v) 

Bufferb (30 %, v/v) 

27 4.1 

32 3.6 

37 3.1 

[C4-mim]Br (40 %, v/v) 

D2O (20 %, v/v) 

Bufferb (70 %, v/v) 

27 2.8 

32 2.4 

37 2.2 

[C4-mim]Br (25 %, v/v) 

D2O (20 %. v/v) 

Bufferb (70 %, v/v) 

27 1.8 

32 1.6 

37 1.4 

[C4-mim]Br (10 %, v/v) 

D2O (20 %, v/v) 

Bufferb (70 %, v/v) 

27 1.3 

32 1.2 

37 1.1 

[C4-mim]Br (0 %, v/v) 

D2O (20 %, v/v) 

Bufferb (70 %, v/v) 

27 1.1 

32 0.9 

37 0.8 

glycerol (50 %, v/v) 

D2O (20 %, v/v) 

Bufferb (30 %, v/v) 

27 8.4 

32 7.4 

37 5.9 

a – density: 1.2907 g/ ml (at 27oC); water content: 33000 ppm 
b – 50 mM sodium phosphate buffer, pH 5.5  
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Figure S1. Temperature calibration of 2D 1H-15N HSQC HRMAS spectra of GB1. a) 
Solution NMR 2D 1H-15N HSQC spectra were acquired using a traditional solution NMR 
BBO probe at 24-36 °C and compared to an HRMAS spectrum acquired at 27 °C VT inlet 
gas temperature. b) The HRMAS GB1 spectrum best overlays with the traditional solution 
NMR spectra obtained at 30 °C (slightly shifted towards the 33 °C spectrum). Therefore, 
it is estimated that the true sample temperature of the GB1 sample under 5 kHz magic 
angle spinning is approximately 30-31 °C. All spectra were acquired on a 600 MHz 
Avance III Bruker NMR spectrometer.  
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Fig. S2 1D 13C HR-MAS spectra of GB1 in the presence of [C4-mim]Br. a) GB1 with 0% 

(blue), 10% (cyan), 25% (green), 40% (orang), 50% (red), and 60% (black) v/v [C4-

mim]Br. The dominant peaks are assigned to [C4-mim]Br. b) 1D 13C enlarged views to 

show protein 13C peaks. The [C4-mim]Br peaks were cut in the ≥25% v/v [C4-mim]Br 

spectra. The scaling factor was approximately 10 in panel b) relative spectra shown in 

panel a). The most obvious changes were observed in the carbonyl region of the GB1 

spectrum in the presence of 60% v/v [C4-mim]Br. 
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Figure S3. 2D 1H-15N HSQC spectra of GB1 in the presence of 0-60% v/v [C4-mim]Br. 

a) Individual 2D 1H-15N HSQC spectra. b) Overlay of 2D 1H-15N HSQC spectra. c) Some 

peaks shifted more downfield in the 60% v/v [C4-mim]Br spectrum as anticipated based 

on the observed trend. d) For some amino acids, additional peaks also appeared, as 

indicated by arrows. e) There was a notable increase of the number of the peaks in the 

8.4-8.9 ppm 1H region of the 60% v/v [C4-mim]Br spectrum, which indicates random coil 

conformation. The data implies the coexistence of a folded state and an unfolded state 

of GB1 in the presence of 60% v/v [C4-mim]Br. Aliased peaks are shown in dashed 

ovals.  
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Fig. S4 Resonance assignments of 0% IL GB1 2D 1H-15N HSQC spectrum. 
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Fig. S5 Representative 3D HNCA strip plots of GB1 for residues K10-V29: a) aqueous 

solution (0% v/v [C4-mim]Br), b) in 25% v/v [C4-mim]Br, c) in 50% v/v [C4-mim]Br, and 

d) in 2.2  M KBr. The Cα peaks of the i and i-1 residues are connected to guide the 

eye.  
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Figure S6. Comparison of 2D 1H-15N HSQC HRMAS vs. traditional solution NMR spectra 
of GB1 in the presence of 50% v/v [C4-mim]Br. a) HRMAS 2D 1H-15N HSQC spectrum 
acquired on a 600 MHz Avance III Bruker NMR spectrometer. b) Solution NMR 2D 1H-
15N HSQC spectrum acquired using a Cryoprobe on a 600 MHz Avance III Bruker NMR 
spectrometer. c) Solution NMR 2D 1H-15N HSQC spectrum acquired using a Cold probe 
on a VNMRS 900 MHz spectrometer. The expanded regions (in squares) are shown to 
the right. 
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Fig. S7 Chemical shift perturbations and NMR relaxation data of all residues of GB1. a) 1H 

chemical shift perturbations, ΔH. b) 15N chemical shift perturbations, ΔN. c) 13Cα chemical shift 

perturbations, ΔCα. d) hetNOE relaxation data e) R1 calculated from Backbone 15N spin 

relaxation T1, f) R2 calculated from Backbone 15N spin relaxation T2. In all diagrams, graphs 

are color coded according to the % [C4-mim]Br present in solution: 0% (blue), 10% (cyan), 25% 

(green), 40% (orange), and 50% (red) v/v [C4-mim]Br. 
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Fig. S8 The effect of KBr vs. [C4-mim]Br on GB1. a) Overlay of 0% [C4-mim]Br GB1 2D 
1H-15N HSQC spectrum (blue) with spectrum of GB1 in the presence of 2.29 M KBr 

(maroon). b) Overlay of GB1 spectrum in the presence of 2.29 M KBr (maroon) and 

40% v/v (2.36 M) [C4-mim]Br. Aliased peaks are shown in dashed ovals. 
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Fig. S9 GB1 unfolding in 60% v/v [C4-mim]Br solution is reversible by dilution. a) 

Carbonyl region of 1D 13C HR-MAS spectra of GB1 and b) overlay of 2D 1H-15N HSQC 

GB1 spectra in the presence of 40% v/v [C4-mim]Br (orange), 60% v/v [C4-mim]Br 

(black), and 40% v/v [C4-mim]Br that was diluted from the 60% v/v [C4-mim]Br sample 

by addition of the buffer (grey). GB1 in presence 60% v/v [C4-mim]Br showed distinct 

changes in the 2D 1H-15N HSQC  and in the 13C 1D carbonyl region. Upon dilution of 

the 60% v/v [C4-mim]Br sample with buffer, the spectrum overlaid almost perfectly with 

the 40% v/v [C4-mim]Br spectrum. Aliased peaks are shown in dashed ovals. 
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Fig. S10. The effect of viscosity. a) The viscosity of aqueous [C4-mim]Br solutions (10%-60% 
v/v concentration) at 27 °C, 32 °C, and 37 °C (viscosity of 50% aqueous glycerol at 32 
°C, indicated with a dashed red, line is given for comparison). b) Overlay of 0% IL GB1 
2D 1H-15N HSQC spectrum (blue) with spectrum of GB1 in the presence of 50% glycerol 
(maroon). Aliased peaks are shown in dashed ovals.  
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