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ABSTRACT 

 

STRUCTURE AND MECHANICAL AND TRIBOLOGICAL PROPERTIES OF MAGNETRON 

SPUTTER DEPOSITION OF STAINLES-STEEL NITRIDE AND CARBIDE THIN FILMS 

WITH TRANSITION METAL ADDITIVES  

by 

Faisal I. Alresheedi 

University of New Hampshire, May, 2018 

 

                              Since the initial discovery of the S-phase in 1985, understanding the structural 

nature of this phase and the anomalous shift of the (200) diffraction peaks has been a 

challenging problem. Austenitic stainless steels, ternary Fe–Cr–Ni alloys, like AISI 304, 

demonstrate excellent corrosion resistance and relatively good levels of toughness and 

strength. For this reason, they are widely used engineering materials in areas such as 

aerospace, construction buildings, piping, telecommunications, chemical and petrochemical 

applications. However, stainless steels have a relatively low hardness, and this leads to a poor 

wear resistance, resulting in a short lifetime that limits its use in industrial applications. 

Therefore, surface treatment methods have been developed to improve its mechanical 

properties without loss of corrosion resistance. Surface hardening of stainless steels can be 

accomplished using a combination of nitrogen implantation and diffusion to create a hardened 

surface layer. The incorporation of nitrogen into stainless steels by these techniques results in 

expansion of the fcc (austenite) lattice; this phase is referred to as “expanded austenite,’’ or the 

“S-phase’’. A notable feature of the S-phase is the displacement of the (200) reflection from its 

expected position.  
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                               The reactive magnetron sputtering process has been used to deposit thin films of 

nitrogen-supersaturated stainless steels.  In addition,   new hybrid coatings were studied by 

combining stainless steel targets with other transition metals, as well as carbon, in the deposition 

process.  A variety of advanced characterization methods were used to examine the structural, 

compositional, mechanical and tribological properties of these films.  These techniques include 

x-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy 

with energy dispersive x-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), 

micro-hardness (Knoop indenter), nano-Indentation, and both pin-on-disk and optical 

microscopy tests for tribological evaluations.  In addition, the structural nature of the films was 

further examined using area-detector based x-ray diffractometry.     

 

Using 304 stainless steel sputtering targets, films were deposited in a mixed Ar/N atmosphere 

using a variety of Ar/N ratios, as well as parametric variations in substrate bias and 

temperatures and sputter gun power ratios.  XPS analysis showed nitrogen supersaturation 

levels near 40 at.% in these films.  X-ray diffraction analysis showed the structures of the films 

were strongly temperature dependent: above 450 °C, the films were a mixture of CrN, bcc-Fe, 

and Ni; below 450 °C, the films were nominally fcc-structured.  However, the common 

anomalous deviation in the position of the (200) reflection was observed, indicating the 

presence of the S-phase. Area-detector based X-ray diffraction studies, which allowed peak 

position measurements as a function of the inclination of the diffraction vector (angle ψ), 

showed a200 declined with increasing ψ, but always remained greater than a111, which was 

relatively constant with ψ. Hardness was measured and also found to be a strong function of 
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substrate temperature, with the highest hardness of 2100 kg/mm2 obtained for films deposited 

at room temperature. SEM and TEM cross-section samples showed uncommon morphological 

features which provided insight into the structural nature of the S-phase.  

 
Hybrid stainless steel /titanium nitride (SS-Ti-N) films, as well as a hybrid stainless 

steel/chromium nitride (SS-Cr-N) coatings were investigated and showed superior mechanical 

properties that may be promising new coatings. The S-phase was also produced in these 

hybrids coatings. In the SS-Ti-N, titanium concentrations of up to ~14 at.% were obtained, in 

which case the nitrogen levels were near stoichiometric (50 at.%N). Hardness levels of 18-24 

GPa (~1800-2500 Kg/mm2) were obtained for the films that had titanium concentrations 

between 10-14 at.%. These S-phase films made by co-sputteirng from both stainless steel and 

titanium targets could increase the hardness by nearly 100% compared to films made with only 

stainless steel. A tribological analysis of the films was conducted using a pin-on-disk test with an 

alumina ball, and the optimal results were obtained on a SS-Ti-N film deposited at 150oC/ -

140V, where the average friction coefficient was 0.39. It should be noted that the average of 

regular stainless steel is 0.6 

 

For the SS-Cr-N films, chromium concentrations of up to 54% were obtained and showed a 

maximum hardness of ~ 4639.8 Kg/mm2 for a film deposited at 250C and -140V. These films 

tend to have a nitrogen concentration of ~ 40%. The S-phase was formed in these coatings and 

the (200) peak also shifted from expected positions. The friction coefficient of the SS-Cr-N 

coated films was examined and showed an improved friction coefficient (0.41) at film deposited 

at 150C.   
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Further studies of N-supersaturated films deposited stainless steel and stainless steel co-

sputtered with titanium were conducted to better understand the structural nature of the S-

phase. In order to quantify the peak shift in these films, a term denoted the “R-value” was used, 

which for an FCC structure is given by:   

   

2

111

2

200

sin

sin
R




    (1) 

An R-value of 0.75 is expected for normal fcc structures; a value of R>0.75 indicates the 

presence of the S-phase.  The effect of nitrogen and titanium concentrations, substrate 

temperature and the morphology on R-value was investigated. R-values were generally > 0.75, 

indicating a deviation from the common fcc structure. The samples with R closest to 0.75 were 

films with higher titanium levels (10-14 at.% Ti), and these films had stoichiometric nitrogen 

concentration levels (~50 at.% N). Also, films that have a nitrogen content of 30-43% do not 

show a consistent relationship to high or low R-values. SEM cross-section of the S-phase films 

deposited at lower bias showed a layered or ribbed morphology in the coarse columns. TEM 

images revealed a central spine and branched structure in films deposited at 150C and 250 oC, 

with fewer branches at 350C. Additionally, increasing the substrate temperature from 150 to 

350 oC led to a decrease in the R-value (from 0.802 to 0.779) made the films denser. The effect 

on the peak shift (2) calculated and the shift was 0.022o, however, this number was far from 

the value of 2 measured from our XRD data. It was concluded that the observed layered 

morphology does not explain the measured R-values.  
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Films of stainless steel/carbon were also deposited by co-sputtering. This was done because 

carbon offers another way to make an alternative version of S-phase using carbon instead of 

nitrogen. These films maintained S-phase structure when deposited below 450oC.  Carbon 

concentrations near 50% were obtained in several cases, and the hardness of these films reached 

a maximum value of 2256 Kgf/mm2 at a deposition temperature of 250oC. In comparison to SSN, 

SSC has an improved hardness. 
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Chapter 1: Introduction 

 

1.1 Stainless Steels Introduction and History 
 

Stainless steels are alloys of iron, nickel, chromium and additional elements that are added 

based on the specific stainless steels grade in order to improve the properties of these steels. 

They are commonly classified as low carbon steels (< 1.2 wt.% C) and contain at least 10.5% 

(wt%) chromium [1,2]. The presence of chromium is essential because it forms a thin oxide 

layer on the surface which is known as a passivation layer. This layer helps to prevent any 

further corrosion of the steel as a whole. Consequently, the corrosion resistance can be 

increased by increasing the chromium concentration in the stainless steel [1-3].  

To increase the corrosion resistance, improve the formability, increase machinability, and 

create a harder alloy, nickel and molybdenum can be added to obtain these beneficial 

properties [2,4-5]. Thus, stainless steels are typically found in applications dealing with 

aerospace, automotive and medical industries. 

The original discovery of stainless steels can be traced to the early 18th and 19th centuries after 

the discovery of chromium as an element [6]. In 1821, Pierre Berthier, a French engineer, found 

that the stiffness of the iron alloys can be enhanced by adding a specific amount of chromium 

to it [7].. Additionally, this led to an improvement in the iron’s corrosion resistance to acids. The 

microstructure of Fe-Cr and Fe-Cr-Ni alloys were first studied in France in 1909 by Léon Guillet 

and Albert Portevin [8]. The minimum percentage of chromium (10.5 percent) which was 

needed to impart rust-prevention properties to steels was specified by P. Monnartz, a German 
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metallurgist, in 1911 [7]. When this new chromium rich alloy was exposed to the atmosphere, it 

did not rust or corrode. This new steel was labeled as “rostfrei Stahl” in Germany, “acier 

inoxydable” in France and “rustproof or rustless iron” in the United Kingdom [9]. In the United 

States and the United Kingdom, it was given the name of “stainless steel”, which is still used 

today. In 1913, the first stainless steel casting was produced in Sheffield, England [9].    

 

1.2 Classification of Stainless Steel 

 

Throughout the years, the variety of applications for stainless steel alloys has caused the overall 

number of alloys to expand quickly. Due to the large quantity of alloys, stainless steels are 

divided into five groups. Four of them (martensitic, ferrite, duplex and austenitic) are 

dependent on the microstructure or the crystal structure of these alloys. The last one is a 

precipitation hardened group, which is based on the type of heat treatment used [10]. These 

types, and their general compositions are shown in Table 1.1. 

 

Table 1.1 Classification of Stainless Steel by Microstructure [2]    

Stainless Steel Types Typical Composition 

Martensitic stainless steels 12-18 wt.% Cr, < 1.2 wt.% C 

Ferritic stainless steels 17-30 wt.% Cr, < 0.2 wt.% C 

Austenitic stainless steels 18-25 wt.% Cr, < 8-20 wt.% Ni 

Duplex stainless steels 18-26 wt.% Cr, < 4-7 wt.% Ni, 2-3 wt.% Mo 

Precipitation hardening stainless steels 12-30 wt.% Cr 
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1.2.1 Martensitic 
 

Martensitic stainless steels are alloys of iron (Fe), chromium (Cr) and carbon (C). This grade has 

a small amount of carbon (less than 1.2 wt.%) and contains 12-18 wt.% Cr with the balance iron 

[2].  

Martensitic stainless steels show the following properties [9]: 

(i) Ferromagnetic  

(ii) Heat treatment by quenching can be used to harden the steel alloys 

(iii) In the hardened state, they have moderately good toughness and high strength  

(iv) They have the lowest corrosion resistance compared to the other stainless steels grades. 

 
Overall, due to their good strength and hardness they can be used in many applications (i.e. - 

engines, valves, hydroelectric power stations, petrochemical, and chemical applications) [5]. 

 

1.2.2 Ferritic 

Ferritic stainless steels have a body centered cubic (bcc) crystal lattice [9]. At room 

temperature, the structure is bcc and is commonly called α-iron. At high temperature, it is 

known as δ-ferrite. Also, ferritic stainless steels mainly contain chromium 17-30 wt.% and often 

contain less than 0.2% of carbon [2].     

 
Ferritic stainless steels show the following properties [9]:  

(i) They are ferromagnetic. 

(ii) They exhibit bcc crystal structure because of the high content of chromium they have. 
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(iii) They are not heat-treatable. However, by cold working, harder ferritic stainless steels can 

be obtained. However, this type of stainless steels is commonly used in the annealed state. 

(iv) They show poor weldability like martensitic stainless steels. 

 
When moderate corrosion resistance is needed, and toughness is not a significant need, ferritic 

stainless steel is regularly used. Typical applications include automotive components and heat 

transfer equipment for the chemical and petrochemical domains. 

1.2.3 Duplex stainless steel 

Duplex stainless steels grades contain a high percentage of Cr ranging from 18 to 26 wt% and 

have a low nickel content ranging from 4 to 7 wt%. In addition to these two elements, 

molybdenum is also added, and this results in a combination structure consisting of both 

austenite and ferrite phases [9]. Because of the low nickel content, duplex stainless steels 

grades have lower cost compared to the other stainless steels.  

 

Figure 1.1 Shows a Duplex microstructure of ferrite and austenite phases [11]   
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Duplex stainless steels include the following properties [9]: 

(i) Magnetic 

(ii) Good Weldability 

 (iii) High resistance to stress corrosion cracking 

1.2.4 Precipitation hardening grades (PH) 

 

Precipitation hardening (PH) stainless steels are magnetic and hardened by a unique 

mechanism that forms precipitates within the steels’ microstructure. In these grades, the 

strength can be highly improved through a low-temperature heat treatment. The starting 

microstructure of the PH alloys is usually austenite. Before the precipitation hardening can be 

successful, a thermal treatment is used to transform it to martensite [9]. In the applications 

where a moderate corrosion resistance and excellent formability and strength are needed, 

these alloys are commonly used. These applications include aircraft hardware, shafting, and 

high-pressure pumps. Most PH grades contain Titanium (Ti), Cobalt (Co), Aluminum (Al) and 

Copper (Cu). They are added to assist precipitation hardening in the steel. Also, most PH steels 

contain Molybdenum and Vanadium for tempering resistance [13].    

In summary, precipitation hardening stainless steels are used in aerospace, food, chemical and 

petrochemical applications. Also, they are used in gears, valves components and turbine blades 

[12, 14]. 
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1.2.5 Austenitic grades 

Austenitic stainless steel is known as the iron-chromium-nickel (Fe-Cr-Ni) alloy. It contains 18-

25 wt% of chromium and 8-20 wt% nickel and the balance Iron (Fe) [4]. It exhibits a unique 

austenite (γ- fcc) structure even at room temperature. These alloys provide good toughness 

and good to moderate levels of strength along with excellent corrosion resistance in many 

corrosive environments. Austenitic stainless steels are the most commonly used family of 

stainless steels due to the large number of alloys and good corrosion resistance. These alloys 

were investigated in 1910 after adding nickel to chromium- iron alloys. Based on the American 

Iron and Steel Institute (AISI), austenite grade provides around 70-80% of the overall 

productions of stainless steels [2,5]. 

Austenitic stainless steels include the following properties [9]:  

(i) They are ferromagnetic; 

(ii) Have face centered cubic (fcc) crystal structure; 

(iii) Are non-magnetic; 

(iv) Have better corrosion resistance compared to other grades; 

(v) Can be easily welded;  

(vi) In many corrosive environments, they show excellent corrosion resistance at both high and 

low temperatures; 

(vii) Have good toughness and ductility. 

Additionally, according to AISI, austenitic stainless steels are divided into three categories [17]: 
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 (i) AISI 200 categories alloys (iron-chromium-nickel-manganese) 

(ii) AISI 300 categories alloys (iron-chromium-nickel) 

(iii) Nitrogen-infused alloys (where nitrogen elements are infused to stainless steel grades). 

Even though austenitic stainless steels have all these beneficial properties and are widely used 

in many industrial applications, for example, nuclear, aerospace, telecommunications, 

chemical, and petrochemical industries, they have some drawbacks that limit their use. One 

significant limitation is their poor tribological properties, such as high friction and poor wear 

resistance (an inherent property of the austenitic structure) [15, 16]. 

1.3 The effect of the alloying elements on Stainless Steel 

 
Various alloying elements are combined with stainless steels modify the steel’s properties, 

where each element has a particular effect. The effect of the alloying elements on the 

properties and structure are described below [10,17-20]. 

Chromium (Cr) 

Chromium is the most valuable material added to the stainless steels. The steel’s corrosion 

resistance, wear resistance and toughness are increased as more chromium is added to the 

alloys. At high temperature, the corrosion resistance also increases the resistance to oxidation. 

Furthermore, chromium has the same ferritic microstructure as room temperature (bcc) Fe. 
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Nickel (Ni) 

Nickel is added to the steels in order to promote an austenitic (fcc) structure. In general, nickel 

improves toughness and ductility as well as decreases the rate of corrosion. When used in 

precipitation hardening steels, the presence of nickel helps form intermetallic phases, 

increasing the alloy series’ strength. 

Manganese (Mn) 

Manganese is commonly used to enhance the hot ductility. At low temperatures, manganese 

tends to be an austenitic stabilizer, but at high temperatures, it stabilizes the ferritic structure. 

In order to get higher nitrogen content in the austenitic steels, manganese is added because it 

increases the nitrogen solubility. 

Molybdenum (Mo) 

Molybdenum significantly raises the corrosion resistance and the strength of stainless steels. 

Stainless steels which contain molybdenum have higher corrosion resistance than the others 

grades that don’t have molybdenum in them. Furthermore, molybdenum induces a ferritic 

structure. 

Silicon (Si)                                                                                                                                             

Adding even a small amount of silicon to the austenitic stainless steels will enhance the 

resistance to oxidation, and at high temperature, it prevents the alloys from carburizing. Silicon 

promotes a ferritic structure.   

Carbon (C) 
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Stainless steels always contain carbon. In all grades, the carbon content is kept low except for 

the martensitic alloys. In the martensitic grades, the carbon level is intentionally increased to 

gain higher hardness and strength. In ferritic stainless, the presence of carbon decreases the 

corrosion resistance and the toughness. In the martensitic-austenitic and martensitic steels, 

carbon improves strength and hardness. It should be noted that carbon promotes an austenitic 

structure. 

Copper (Cu)                                                                                                           

For exposure to specific acids, copper can be added to improve the corrosion resistance. Also, 

in precipitation hardening steels, it is mainly used to form the intermetallic compounds which 

are utilized to enhance the strength. Copper promotes an austenitic structure. 

Nitrogen (N)  

The combination of nitrogen with molybdenum is generally accompanied with increasing the 

corrosion resistance. The presence of nitrogen in ferritic stainless steels reduces corrosion 

resistance and toughness. In both martensitic and martensitic-austenitic steels, hardness and 

strength are increased while the toughness is reduced. The typical concentration is 0.10-0.30 

wt. %. Nitrogen promotes an austenitic structure. 

Titanium (Ti) 

The effect of adding titanium to stainless steel varies from alloy to alloy. For austenitic steels,  

at high temperature, the hardness is improved and the resistance to the corrosion is increased. 

For ferritic stainless alloys, it improves the alloy’s toughness and corrosion resistance. In 
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precipitation hardening alloys, the titanium helps form intermetallic compounds that make the 

alloy stronger. 

 

Sulfur (S)  

Sulfur is added to specific stainless steels with the goal of improving the machinability. It also 

decreases fabrication properties (weldability and formability), corrosion resistance, and 

ductility. 

 

1.4 Structure of the Thesis  

 
This thesis is focused on the use of reactive magnetron sputtering to study the structure and 

mechanical properties of nitrogen-containing AISI 304 stainless steel (SS-N) thin films deposited 

in a mixed argon/nitrogen atmosphere at a wide range of parameters. In addition, the same 

method was used to investigate new coatings by co-depositing films from AISI 304 stainless 

steel and titanium targets and chromium bulk materials.  A new version of the S-phase was also 

produced in this study by co-sputtered AISI 304 stainless steel and carbon with the use of argon 

gas.  

                     The thesis is divided into nine chapters. In addition to this introduction, chapter 2 

provides a background on nitriding and surface hardening of stainless steels, as well as the 

history of the S-phase in both bulk nitride and thin-film deposited stainless steels.   The 

mechanisms of surface hardening due to the S-phase, and the improvements in mechanical 

properties obtained are reviewed.  In addition, the most common hypotheses that described 

the structure of the S-phase are discussed.  
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                    In Chapter 3, the main experimental methods that have been applied throughout 

the course of the study are explained. Detailed information on the procedures used to 

characterize the structural and mechanical properties on the deposited thin films are also 

described. 

                     The results start with chapter 4. In this section, the effects of various deposition 

parameters on SS-N films were examined in order to improve the mechanical properties of 

austenite stainless steels.  Also, the structural nature of the S-phase was further characterized 

using area-detector based x-ray diffractometry.  

                    In chapter 5 and 6, new coatings were investigated by co-depositing films from 

stainless steel and titanium targets (SS-Ti-N) as well as co-depositing films from stainless steel 

and chromium (SS-Cr-N) targets. This was done to enhance the mechanical properties and wear 

resistance of the austenitic stainless steel films. The structure of these films was examined and 

had primarily the S-phase. Also, these films had a very high hardness which may promote their 

use in the machining industries. 

                      In chapter 7, a comprehensive study is presented on the effect of nitrogen 

concentration and substrate temperatures on the structure of stainless steel nitride films using 

selected films from Chapter 5 and 6. These studies are focused on understanding the S-phase 

structure by quantifying the peak shift using a term denoted the “R-value”.  These results are 

followed by a presentation on the correlation between nitrogen concentration and R-values as 

well as between R-values and substrate temperature. In addition, the stacking fault hypothesis 

for the S-phase structure is critically examined. 
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                      Chapter 8 includes an investigation of a new version of the S-phase made by co-

sputtered stainless steel/carbon (SSC) in argon gas. The mechanical properties were also 

evaluated in hopes of improving its hardness.   

                     Lastly, chapter 9 gives a summary of the results and conclusions that were obtained 

from chapter four to eight as well as the outcomes that could be inferred from those results. 

The chapter ends with short suggestions for promising and beneficial future work. 
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Chapter 2: Background 

 
2.1 Surface Hardening of Austenitic Stainless Steel 

 

2.1.1 Introduction  

 

Austenitic Stainless steels, ternary Fe–Cr–Ni alloys, such as AISI 304 demonstrate excellent 

corrosion resistance and relatively good levels of toughness and strength, and for this reason, 

they are widely used in engineering materials [21,22]. However, stainless steels have a 

relatively low hardness, and this leads to a lower wear resistance, resulting in a short lifetime 

which limits its use in industrial applications. Therefore, research has been conducted to 

develop new technologies to improve the hardness and wear resistance of stainless steels 

without a loss in corrosion resistance.  One approach is to diffuse nitrogen into the metal 

surface to improve the hardness [23].  

To improve the wear resistance of a stainless steel alloy, an approach known as nitriding can be 

helpful. Nitriding is a technique that uses thermal processing in order to diffuse nitrogen into a 

metal surface to improve the surface hardness [23]. Usually, these techniques are aided by the 

presence of molybdenum, aluminum, chromium, or titanium. These elements are known as 

nitride formers. By forming these nitrides within the metal matrix, properties of these nitride 

compounds can be enhanced. When nitriding, the alloy composition, and processing 

parameters affect the proportion and composition of the expected nitride compounds, for 

example, CrN and TiN. Fig. 2.1 [24] shows a micrograph of image of a cross-section of a nitrided 
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film deposited to reach a thickness of 10 μm (the topmost white treated film or nitrided layer). 

The nitrided layer does not show any evidence of diffusion layer into austenitic stainless steel.  

 

 

Figure 2.1:  Shows a cross-section micrograph of austenitic stainless steel film grade 304 deposited at 420C for 70 
min [24].  

 

 

2.1.2 Surface Nitriding Methods  

 
Several methods have been recently used in order to improve the properties of stainless steels 

surfaces by implanting or diffusing nitrogen to create a hardened surface layer. The most 

common methods involve exposure to a nitrogen-containing plasma at elevated temperatures, 

which [25–33] can be achieved using the following methods:  

Plasma immersion ion implantation (PI3) [33,34] which is a surface modification technique 

where ions from a plasma are accelerated towards a target by applying a pulsed DC or pure DC 



15 
 

voltage on the target. The target is held at a specific temperature (300-500C) to allow the ions 

to implant themselves within the target’s crystal structure. 

Conventional ion implantation (CII) [25,35-36], where nitrogen ions are accelerated by an 

electrical field and impacted into a solid. In one notable study, a low-energy ion beam (700 eV) 

with a high-flux (2 mA cm−2) of ions was be used [36]. 

 
Nitriding stainless steels at elevated temperatures (above 400C) are widely used in industry for 

improving wear resistance but this method does not improve stainless steel mechanical 

properties without loss of corrosion resistance, because the above techniques are applied at 

high temperature, which degrades the steel’s corrosion resistance [25,37-40]. One potential 

reason for this is that nitriding at higher temperatures can lead to the precipitation of CrN 

which removes Cr from the solid solution [39]. 

In this regard, many researchers have shown that processing deposition temperature is a 

critical parameter. It has been cited that a low processing temperature (below 450C) is required 

during nitriding to preserve the stainless steel’s corrosion resistance. The process of reactive 

sputter deposition can also be used to obtain the desired properties in the form of an overlay 

coating.  Reactive sputtering technique is advantageous because it is carried out at lower 

temperatures, including room temperature, thus enabling nitride formation to take place at a 

higher concentration of nitrogen without precipitation [30]. This in theory creates a thin film 

that exhibits high hardness, good wear resistance, and high corrosion resistance.  
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2.2 Expanded austenite (S-Phase)    

 
The incorporation of nitrogen into stainless steels by plasma nitriding or sputter-deposition 

techniques results in an expansion of the fcc (austenite) lattice, and this phase is often referred 

to as “expanded austenite’’;  the term “S-phase” is also used. In this section, the history, 

formation within surface hardening, and x-ray spectral characteristics of the S-phase is 

reviewed. Also, the main hypotheses explaining the displacement of the (200) XRD peak and 

the diffusion of nitrogen in the ‘S-phase’ will be reviewed. 

2.2.1 S-Phase History 

 
Expanded austenite, which is known as ‘S-phase’, is a nitrogen- rich microstructure formed on 

the stainless steels’ surfaces when nitrided at a comparatively low temperature. In 1985, this 

surface layer was first discovered when trying to enhance austenitic stainless steels’ mechanical 

properties. It was given the name ‘’S-phase’’ by Birmingham University professors Z.L Zhang 

and Tom Bell [39] and Kansai University professor Kazuo Ichii [40]. These researchers, who were 

the first scientists to study the advantageous effect of supersaturation of interstitial austenitic 

stainless steels, talked about the S-phase as a way to enhance the hardness of stainless steel 

without losing its good corrosion resistance.  

Many studies deposit coatings by keeping the processing temperature below 450C 

[21,25,33,39,42-45,46-49]. In this case, the wear resistance can be improved without adversely 

affecting the corrosion performance of the austenite stainless steels. At these lower processing 

temperatures, it was found that the nitride layer is free from chromium nitride participation. 

Also, nitrogen remains in solid solution, producing a supersaturated fcc phase. 
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Throughout the literature, researchers and scientists have been variously calling this surface 

hardened surface layer ‘S-phase’, ‘expanded austenite’ [48,49], ‘γN phase’ [25,36,39,42] or ‘m 

phase’ (50,51). Throughout this thesis, the term S-phase will be mostly used describing the 

nitrided surface layer. However, it should be pointed out that the use of the term S-phase is not 

limited to nitride-based compounds, and, for example, is also used to describe austenitic 

carbon-based compounds with an fcc-based structure [52].    

 

2.2.2 Microstructure and characteristics: 

 

2.2.2.1 Crystallography of S-Phase            

                                
The nature or the structural details of the S-phase are still controversial over 30 years of 

research investigation. Even the name, ‘S-Phase’, has been disputed too since its discovery in 

1985, and this is due to an inability to completely characterize the crystal structure  of the 

interstitially supersaturated austenitic phase (S-phase).  

The S-phase has been frequently characterized using X-ray diffraction. Fig. 2.2 shows that a 

typical x-ray diffraction (XRD) patterns for type of AISI 316 stainless steels films deposited at 

two different nitrided potentials (KN) (KN= 0.293 bar-1/2 and KN= 2.49 bar-1/2) and a film 

deposited without using a nitrogen gas (untreated one). These three films were heat treated at 

4450C. 

The austenite peaks for the three austenitic stainless steels films are shown in Fig. 2.2. The 

Bragg reflections (111) and (200) positions for nitrided films are shifted to lower angle (2 
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angles) compared to the untreated film. This shift shows a change in the stainless steels’ lattice 

dimensions, caused mainly by the incorporation of nitrogen into austenitic interstitial sites . In 

addition, the film which has a higher nitride potential has a higher nitrogen content, creating a 

crystal structure with larger dimensions than another structure with lower nitrogen content 

[53].   

 

 

Figure 2.2 XRD patterns showing broadening peaks for an untreated film and nitrided films deposited at 445C. γN 
which is known as expanded austenite or the S-phase for nitrided films for (111) and (200) reflections are shifted 
to lower angles[52] 
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2.2.2.2 Anomalous Diffraction Observations in the S-phase       

 

Saker et al. [30] reported that the increase in the lattice spacing of the (200) crystal plane was 

greater than of the (111), (220), (311) or (222) planes. Also, they proposed that because of the 

nitrogen in the films the S-phase acquires an fcc structure with an expanded lattice parameter 

(this result is commonly observed in either by plasma immersion ion implantation (PI3) or 

reactive magnetron sputtering). For a cubic structure, the calculated lattice constant, ahkl, 

should be independent of the (hkl) used in its calculation and is given by equation (2) [49]:  

                  (2) 

where ao is the lattice parameter based on the given Miller indices (hkl) and dhkl is the 

interplanar spacing. However, the lattice constant (now written as ahkl) for the expanded 

austenite structure has been found to follow the relationship:   

        a
200

 > a
111

 = a
220

= a
311           (3) 

This anomaly in the lattice constant measurement has yet to be resolved.
 

2.2.3 S-Phase Formation within Surface Hardening  

 
There are several methods and ways to form S-phase. The most common procedures are to 

diffuse or implant nitrogen into the S-phase surface hardening, which can be done through 

plasma immersion ion implantation (PI3) and conventional ion implantation (CI2). In addition, S-

phase can be produced by sputtering, using reactive magnetron sputtering method. 

2 2 2

hkl hkla d h k l  
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2.2.3.1 S-phase Formation by Nitrogen Implantation or Diffusion  

  
Stainless steels surface hardening can be performed by nitrogen diffusion and implantation. 

These techniques work well at temperature range from 2500C to 400C. The conventional ion 

implantation (CI2) method was used by Öztürk and Williamson [25] to implant nitrogen into AISI 

304 Stainless steel films by using 80% nitrogen in a mixed Ar/N2 atmosphere. In their study, the 

S-phase (they called it γN) was produced with the anomalous shift in the (200) peak to lower 

angle in comparison with untreated subtrates. In addition, the plasma immersion ion 

implantation (PI3) was used by Samandi et al. [34] to implant nitrogen into 316 stainless steel at 

substrate temperatures of 350C, 450C and 520C. They observed S-phase at films deposited at 

350C and 450C. At these given temperatures the corrosion resistance was examined and 

showed that S-phase has a similar corrosion resistance in comparison with untreated 

substrates. Also, they examined the hardness of the S-phase and obtained hardness levels up to 

2400HV. In contrast, CrN was formed at 520C, which degraded the corrosion resistance. 

Menthe et al. [26] achieve a maximum Knoop hardness (HK) levels of about 1400HK for S-phase 

at 450C which was five times higher than untreated steels. This was accomplished by treating 

304L stainless steel in a mixed gas composition of N2/H2 and applying a pulsed d.c. plasma.  

2.2.3.2 S-phase Formation by Sputter Deposition 

 
Reactive sputter deposition (reactive magnetron sputtering) [30,38,41-45] has been used since 

1990 to form S-phase by depositing stainless steel nitrides. In addition, reactive sputter is a 

common technique that allows the production of different phases and amounts of nitrogen 

incorporation into the films by varying the sputtering gas mixture’s nitrogen concentration. 
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Increasing the nitrogen/argon ratio in the plasma has been seen to strongly decrease the 

deposition rate and increase the nitrogen concentration in the coating [44]. Saker et al. [42] 

made films from AISI 310 stainless steel nitride by reactive magnetron sputtering. A nitrogen 

content of up to 42% was obtained and the S-phase was confirmed by x-ray diffraction. At a 

nitrogen concentration of 15%, a maximum hardness of nearly 1500 Kg/mm2 was obtained. In 

addition, Kapaganthu and Sun [38,43] grew nitride films using a 316L stainless steel target in a 

high vacuum with a pressure of 5*10-3 Torr, in a mixed argon/nitrogen atmosphere. They 

studied how increasing the nitrogen from 0 to 75% in the gas composition affected the nitrogen 

content in resultant films. Furthermore, the S-phase was produced in their study, and the (200) 

reflection peaks of films that have nitrogen content between 35-45% shifted from their 

predicted position. As shown in Fig. 2.3, increasing the nitrogen fraction in the sputtering gas 

increased the nitrogen contents in the films and reached a 50% nitrogen:50% metals 

component (M) (where M are Fe, Cr, Ni, and Mo) at 50% of N2 in the gas composition. This 

proposed the S-phase films had a zinc blende (ZnS)-type lattice structure. Moreover, they 

showed that raising the amount of nitrogen to more than 50% in the mixed gas led to a 

constant nitrogen content in the resultant films: for example, when they tried to increase the 

N2 content in the gas to 75%, they still obtained 50% of nitrogen in the resultant films. 
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Figure 2.3: The nitrogen content in sputter-deposited films vs. the nitrogen composition in a mixed gas (after 

Kapaganthu and Sun [38,43])  

Additionally, Shedden at al. [54] deposited coatings from 316 stainless steel using magnetron 

sputtering and a substrate temperature of 350oC.  They found the nitrogen content in the films 

increased with the proportion of N2 in the sputtering gas, and reached a maximum of about 

40%.   

2.2.4 Theories on the structure of the S-phase 

The S-phase is expected to have an fcc crystal structure with expanded lattice compared to the 

substrate. The first peak for an fcc structure is (111) and based on the position of this peak the 

(200) position can be calculated. The displacement of (200) from its expected position has led to 

research to try to understand how the structure of the S-phase is different than that of a normal 
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fcc lattice. These researchers have been trying to investigate its real structure since 1985. There 

are four main hypotheses explaining the displacement of the (200) peak. The four possible 

hypotheses for this diffraction anomaly are:  

1. The S-phase has non-cubic structure; 

2. Their may be multiple phases present; 

3. The anomaly may be due to the effect of stacking faults; 

4. It could be the result of a large anisotropy in elastic constants. 

These various hypothesis are examined more closely below. 

 

2.2.3.1 Non-Cubic Structure or Possibility of Multiple Phases 

 

The S-phase might possess a non-cubic crystal structure, such as tetragonal, triclinic, or 

monoclinic. It has been proposed in past studies [50,52] that the (200) peak being at lower angles 

than expected (based on calculations of the (111) plane’s position) could imply a tetragonal or 

monoclinic structure. Marchev et al. [50,52] proposed that S-phase (they called it m-phase in 

their study) had a body-centered tetragonal (bct) structure with lattice constants of a = 3.99A 

and c = 3.69, which makes c/a = 0.925. Based on their results, x-ray diffraction patterns in this 

situation should display split (200)/ (002) peaks, but as shown in figure 2.4, no such splitting was 

observed. However, it was claimed the absence of this split might be related to the pronounced 

crystallographic texture in their films.   
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Figure 2.4 The XRD pattern of “m-phase” observed from a 316 stainless steel grade for film with a nitrogen content 

of 30 at. % [50].  

 

To investigate the structure in more detail, Fewell et al. [49] carried out diffraction studies of 

stainless steel plasma-nitrided samples using synchrotron radiation, which allowed the S-phase 

to be studied at higher orders of diffraction,  and permitting measurements of  the d-spacings 

up to the (622) reflection. They suggested that the (200) reflection has a triclinic type structure 

even though they have failed to produce the expected (100) and (221) peaks with good 

matches. Also, they made several comparisons using other non-cubic crystal structures but 

their result failed to fit well with any of these structures. 

Another explanation of the anomalous (200) peak is the possibility of multiple phases [25,27]. 

Fewell. et al. [49] also tested this hypothesis using the synchrotron radiation method and 

measured the d-spacing between lattice planes by changing the angle of the incident beam. 
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Their study did not find any extra phases, and this discredited the possibility of the multiple 

phases hypothesis. 

2.2.2.3 Effect of Stacking faults and Residual stresses    

Residual stresses are generally produced close to surface interfaces when modifying a sample’s 

mechanical properties. The effects of residual stresses in S-phase layers have been discussed 

frequently. One particular experiment, performed by T. Christiansen and M. Somers [55], used 

x-ray analysis data to recreate residual stress profiles in 316L stainless targets applying a low 

processing temperature. They reported that large values of residual stress of about - 7.5GPa 

could be obtained for treated austenitic steel samples. These values were found when 

examining the sample with the (200) expanded austenite reflection. In addition, Grigull and 

Parascandola [31] found that increasing the nitrogen content in the nitride layer leads to an 

increase in the residual stress and a compressive stress of 2.5-3 GPa was obtained when the S-

phase contained 23% N2.  

In another study by Wanger [56], when a residual stress is produced in a film, the change in the 

lattice parameter ∆ahkl is given by the following equation 

∆ahkl = a0 (S1)hkl σ       (4) 

Where (S1)hkl  is defined as an elastic constant for the hkl plane; their values for multiple 

reflections are given in Table 2. The variable σ is defined as the system’s residual stress. 

The values of the (S1)hkl  for the expanded austenite are tabulated in Table 2.1. The shifting in 

the (111) and (200) peaks is a result of the presence of a compressive residual stress [55]. The 
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(200) peak shifted to more than two times higher 2 angles in comparison to (111) plane. This is 

due to the fact that the elastic constant in (200) direction is greater than (111) direction.   

 
Another explanation for the peak shifting from its predicted positions is due to the effect of 

stacking faults in the face-centered-cubic (fcc) lattices. Paterson [36] and Warren’s [58] theories 

stated that if there is a presence of stacking faults with probability α in a film (1/α is the 

stacking fault spacing in terms of number of lattice planes), then the relationship between the 

changes in lattice parameter ∆ahkl  and α is given by equation (5): 

∆ahkl = a0 Ghkl α   (5) 

Where Ghkl is an hkl-dependent constant as seen in table 2.1 [59]. Based on the parameters 

shown in Table 2.1 and because of the presence of stacking faults, the (111) peak positon is 

shifted to a higher angle while (200) peak is shifted to lower angles.  

 

 

 

Table 2.1 The calculated values of stacking fault parameter Ghkl and elastic constant (S1)hkl  for different 

reflections [59].  
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Other studies also reported that the anomalous (200) peak in the fcc structure is due to 

stacking faults on the (111) plane [60-63]. The stacking faults’ effect on the peak positions was 

determined by Warren [48] and gave equation (6) in order to explain the peak shifting:  

 

  
2

90 3 tan
(2 )o hkl

hklc
 




 
                (6) 

Where α is the stacking fault density and is usually measured based on the change in the 

shifting angles Δ(2θ), which is calculated from the (200) peak shift. In addition, chkl is constant, 

and its values are determined by Warren and have constant values of c111 = +1/4, c200 = -1/2, 

and c400 = +1/4. The number of planes between stacking faults can be determined by 1/α.  

Blawert et al. [60] used Warren’s model to calculate the stacking fault density (α) for S-phase 

samples and found α = 0.167. Also, Christiansen and Somers [61] found that when α = 0.03, their 

results would fit their data. Another research [62] showed that α relies on the nitrogen content 

and doesn’t have a specific number as it varies with the nitrogen content. Recently, a study was 

given by Stroz and Psoda [63] used high-resolution transmission electron microscopy (HRTEM) to 

examine the stacking fault density  of nitrided stainless steels samples independently of 

diffraction data. They found that stacking faults with a high density can be present in the 

expanded austenite phase with stacking fault density (α) value of ~0.1. Nonetheless, they 

proposed (200) reflection was shifted because the S-phase has a non-cubic structure (they 

suggested a rhombohedral structure).  
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2.5 Nitrogen Diffusion and Thermal Stability within S-Phase   

 

When dealing with nitriding below 450C, precipitate-free interstitially supersaturated systems 

can be formed. The primary condition for this is having the interstitial diffusivity being 

significantly higher than substitional element diffusivity. For the system of stainless steels, 

nitrogen is considered as an interstitial element while Cr, Fe and Ni are typically substitutional 

elements. Based on the presence of these elements, a precipitate free system should form 

because nitrogen has a diffusion coefficient that is significantly higher than chromium in the 

range of several orders of magnitude [64]. 

 

Figure 5 Figure 2.5 Shows an examining of a nitrogen profile as a function of a depth from a film deposited by ion 

implantation using a 321 stainless steel grade [64]. 

 

Examining a nitrogen profile, seen in Figure 2.5 [64], several regions can be seen with different 

characteristics. The first region portion, closest to the surface, shows a relatively fixed 

composition. This indicates that the region has a constant concentration of nitrogen. As the 
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sample is examined further from the surface, though, two more regions emerge. The first is a 

slowly decreasing nitrogen region, followed by a region with a very rapid nitrogen drop. An 

explanation for this behavior comes from two phenomena: an expanded austenite crystal 

structure and an octahedral site “trapping” mechanism [66]. The expanded austenite crystal 

structure is notable because it is characterized by a very high interstitial diffusion rate. It should 

be noted that, this is one reason why nitrogen can diffuse so quickly into a structure. This 

scenario creates a profile that tends to have a shallow diffusion profile. The second portion (i.e. 

– the rapid decline of nitrogen) in Figure 2.5 can be additionally explained by the ability of the 

crystal structure to trap interstitials. Researchers have hypothesized that chromium within the 

stainless steel creates octahedral “trap sites” that need to be filled with nitrogen before the 

nitrogen can continue diffusing through the system. This leads to a profile with a gradual 

decline in concentration as shown in figure 2.5. 

From a mechanical perspective, one way to affect nitrogen diffusivity is to apply a tensile force 

on the system, expanding the crystals mechanically and helping diffusion occur. Similarly, high 

plastic deformation or other mechanisms that decrease grain size can also help to increase 

nitrogen diffusion through a system by increasing the number of low-energy diffusion paths 

[67].  

 
Thermal stability within an expanded austenitic system is an essential matter because the 

treatment of the surfaces of the nitride/carbide stainless steels thermally might degrade the 

coatings previously made. Thermally speaking, decomposition of the S-phase results in 

chromium nitride (CrN) or chromium carbide (CrC) precipitation.  Consequently, the good 
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corrosion resistance of the S-phase will be lost when the chromium nitride/carbide is 

precipitated, and this leads the Cr to be removed from the solid solution [38,43].  Furthermore, 

it has been observed that the S-phase relies on the nitriding/carbide progress where the 

temperature and the time are important. Chromium nitrides/carbides precipitate when the 

process temperature is above 4000C or when the time of the depositing films is too long [53]. 

Also, studies vary on the factors that allow this precipitation to occur. Li et al. [68] found that at 

500C for stainless steel nitride and at 650C for stainless steel carbide, Cr precipitation could 

start happening under 1 hour. Bodycote discovered that the precipitation of Cr for materials 

modified with the Kolsterising treatment should not exceed 3000C [68- 70].  

 

2.6 Tribology  
 

Tribology is defined as the study of interacting surfaces as they move relative to each other. 

Typically classified as a branch of materials science and mechanical engineering, it studies and 

applies the principles of friction, lubrication, and wear [71]. 

Even though these principles are found in people’s daily lives, they are not commonly taken 

into consideration when designing or engineering solutions. However, these principles are 

responsible for technical problems in modern society and their associated costs. This makes 

their use in design imperative to create lasting products and engineered solutions [72]. 

One major field within tribology is designing surfaces that slide or roll against each other while 

in the meantime the friction and wear is minimized. Reducing the friction and wear has many 

economical advantageous where the life time of tools or methods will be longer. In addition, it 
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has benefits in environmental where reducing friction between machine components creates 

fewer heat-based energy losses, consuming less input energy [73]. 

Even though austenitic stainless steels are frequently used in many industries due to their good 

corrosion resistance, they are known to have poor friction and wear properties. When 

austenitic stainless steel comes into contact with other materials, they tend to wear out 

quickly. This is mostly due to strong adhesion junctions between the contacting surfaces and 

the resulting plastic deformation that occurs on the surface or subsurface of the parts. As a 

result, the iron, chromium and nickel which are the composition of the austenitic stainless 

steels will most likely fail due to mechanical wear instead of corrosion degradation. To combat 

this, the surface and subsurface of these components must be altered to undergo less 

mechanical wear while maintaining a high level of corrosion resistance. Attempts to do so have 

evolved over time, leading to the development of low temperature nitriding [74, 75]. In terms 

of sliding, friction force coefficients ranging between 0.5 and 0.7 have been found for a large 

set of conditions [76-78].  

Given this summary of friction and wear mechanics, it is noted that austenitic stainless steels 

generally have poor tribological characteristics which limits its application in the many 

applications. Since this a major concern in designing systems, the steels must be modified to 

improve these mechanical properties while retaining their good corrosion resistance [79].  
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2.7 Thin Film Growth 

            
Thin film deposition can be defined as the transportation of a material into gas phase either by 

physical vapor deposition (PVD) or chemical vapor deposition (CVD) methods. This material 

during this gas phase will then be transported towards a substrate in order to form a thin film. 

In general, there are two types of deposition techniques. Firstly, physical vapor deposition 

(PVD), which is a large group of techniques that are used to synthesize thin films in vacuum 

conditions where high vacuum conditions are required in the deposition system to minimize the 

incorporation of large impurity concentrations [80]. Examples of PVD methods include thermal 

evaporation, cathode arc deposition, pulsed laser deposition (PLD) and reactive sputtering 

deposition [81]. Generally, in these techniques, the material is vaporized by bombardment of 

the target with ions, electrons or photons. The second kind of deposition techniques is chemical 

vapor deposition (CVD). In CVD when the chemical reactions are applied, the vapor will be 

produced and the thin film will be formed [81]. 

 
In addition, the concept of the mean free path (MFP) is important in the deposition process. 

Here, the mean free path is defined as the average distance that a particle, molecule, or other 

atomic structure travels between collisions with other molecules. 
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Figure 6 Figure 2.6 Shows the mean free path between two collisions 

The mean free path is given by [70] 

 = 5 ×10-5/P (meter)         (7) 

Where   is the mean free path and P is the pressure (m-torr). 

 

In this thesis all films deposition were grown under a high-vacuum system (base pressure of 10-

6 Torr = 1.3×10-4 Pa) using reactive magnetron sputtering technique which, is a PVD process. The 

mean free path for all stainless steel coated films was typically 1 cm. A brief describing of this 

deposition technique is given in the following sections. 

 

2.7.1 Sputter Deposition Basic Principle  

 
Sputtering can be described as a method where atoms are ejected from a target source onto a 

substrate, creating a thin film of atoms. This target source is also known as a sputtering target 

or a target. This material target includes elements that are expected to be deposited on the 

substrate. The sputtering process is started by creating a plasma [80]. This plasma is formed by 

producing the inert (argon) gas into a high vacuum chamber as well as by creating a voltage bias 
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between the anode (substrate) and the cathode (target). The target, which has a negative 

electric charge and performs as a negatively charged electrode (cathode), will be then mounted 

in a magnetron [79]. In Fig 2.7 [54], a schematic of sputter system is illustrated and shows that 

an electric discharge is formed by applying a high voltage within the plasma to the target. This 

applied voltage will ionize the gas in this plasma. The ionized gas will then impact the target 

with a high kinetic energy. Upon striking the target, some of the target atoms will be driven out 

from their original lattice sites, becoming high energy neutral atoms or clusters of neutral 

atoms. These atoms tend to travel towards the substrate, and due to their high energy, will 

create a thin film on the substrate’s surface [80].  

   

Figure 2.7 Shows a magnetron sputtering schematic [54] 
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2.7.2 Magnetron Sputtering 
 

Magnetrons are widely used in the sputtering methods [80,82]. In the magnetron, behind the 

sputter target, magnets are placed as can be seen in Fig. 2.8a and 2.8b. The presence of the 

magnetron is important in the sputtering process because of the using of magnetic fields which 

help to confine ionizing electrons and to make the plasma facing the target. It does so by 

influencing electrons via the Lorentz Force where  

 

F⃗ = q ∗ (E⃗⃗ + v⃗ × B⃗⃗ )               (8) 

 

Where B ⃗⃗  ⃗is the magnetic field, E⃗⃗  is the electric field, q is the charge and v⃗  is the velocity. 

Using a magnetic field to strongly modify the behavior of the electrons. The resulting force 

causes electrons to follow the magnetic field lines in oscillating, spiral-like paths when they are 

ejected in any path that is not parallel to the magnetic field. This creates an environment that 

helps to confine ionizing electrons using the magnetic field lines as a guide, keeping the 

electrons closer to the target surface. Since the electrons tend to follow these distinct paths, a 

higher ionization probability occurs in these regions, inducing more efficient sputtering and a 

higher rate of sputtering. This, in turn, creates erosion tracks on the target while making the 

deposition rate higher. As a result, magnetrons cause an improved overall sputtering rate and 

enhance the resulting film’s properties by allowing the sputtering process to run at lower 

sputtering gas pressures.  
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The type of magnetron depends on the configuration of the magnets and the resulting fields. A 

balanced magnetron is one that has balanced magnets. However, this can create an 

environment that confines a plasma too strongly. To counteract this, some magnetrons have 

unbalanced magnets and fields [66]. Two configurations of an unbalanced magnetron exist. In 

Type I, the inner magnets are stronger while in Type II the outer magnets are stronger [83]. 

Figure 2.8b shows a Type II configuration where a “magnetic bottle” allows the plasma to reach 

out farther towards the substrate, improving transport phenomena and enhancing the growing 

film.   
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Figure 2.8a‘’Schematic drawing of a cross section of a balanced magnetron, displaying the magnetic field lines as 
closed loops above the target surface. Between the inner and outer magnetic rings the target displays an erosion 
track, or the so-called race track (taken from ref 83).  

 

 

              

Figure  2.8b ‘’Schematic drawing of a cross section of an unbalanced magnetron (type II), displaying the magnetic 
field lines as only partially closed loops above the target surface. Here, the electrons can more easily escape and 
travel towards the substrate region (taken from ref 83).  
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2.7.3 Gases Used during Sputtering Process 

 
Argon is the most widely used gas for the sputtering process. This gas is commonly known as a 

noble gas and will not interact chemically with atoms that are sputtered. However, in some 

cases, if the distance between the substrate and the target is fairly short, argon atoms can 

become trapped within the substrate, affecting the substrate’s morphology [80,84,85]. It 

should be noted that argon gas can be utilized with any sort of a source material. Besides argon, 

reactive gases, like nitrogen or oxygen, can also be used in a similar process called reactive 

magnetron sputtering. The difference here is that the reactive gases form compound materials, 

such as nitrides and oxides. In addition, the first researcher who used nitride as a reactive 

sputtering was Vezsi [86], who in 1953 depositing tantalum nitride (TaN) as a thin film. 
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Chapter 3: Experimental Procedures 
 

3.1 Film Deposition 

 
Thin films of stainless steel nitride (SSN), stainless steel titanium nitride (SS-Ti-N), stainless steel 

chromium nitride (SS-Cr-N), and stainless steel carbide (SSC) were fabricated at the University 

of New Hampshire using rf-magnetron sputtering. Commercial targets of AISI 304 stainless steel 

(with a composition of 8% Ni, 18% Cr, and 74% Fe), titanium, chromium, and carbon were used 

for deposition onto silicon wafers.  

Fig. 3.1 shows an image of the reactive magnetron sputtering system that was used in this 

research. The depositions were performed in a high-vacuum system (base pressure of 10-6 torr 

(1.3 X 10-4 Pa). This low pressure was always used in order to minimize the amount of impurities 

in the film. A turbo molecular pump was utilized to achieve high-vacuum conditions. In the 

system, two 50mm-diameter sputter guns were inserted in the top lid of the chamber are water 

cooled during deposition. The sputter guns are driven by RF-power supplies which helps to 

transfer the power to the sputter targets. The substrate holder which is placed inside chamber 

vacuum can be heated at temperature up to 6500C by connecting it with an AC power supply. 

To measure the resultant temperature, a thermocouple is inserted in the samples holder.  

Silicon (100) wafers were used as substrates in this thesis. They were first cleaned by alcohol 

and rinsed by ethanol. After that, a silver paint was pasted and stuck between a piece of a 

silicon substrate and the substrate holder and bonded by heating it at 1000C. The use of silver 

paint is common and provides a good thermal connection between the substrate holder and 

the Si substrate. To improve adhesion of the nitride films to the Si substrates, a metallic 
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stainless steel film was first deposited using only Ar and applied at a bias of -50V. The thickness 

of these bond layers were approximately 50nm for co-sputtered films (SS-Ti-N, SS-Cr-N and SSC) 

and 60nm for SSN films. Immediately following this deposition, desired nitrogen gas was added 

to the chamber (except for the SSC films for which Ar gas was the only gas used during the 

process). The ratio of argon and nitrogen gases was adjusted by mass flow controllers. The film 

thickness during deposition was monitored by a quartz crystal microbalance using a Sycon STM-

100/MF device and later verified using SEM cross-sections.  

A summary of the deposition parameters for chapters four to eight are given below: 

Chapter 4: SSN Films 

SSN films were deposited in a mixed Ar/N2 gas, with the proportion of N2 in the sputter gas 

varied by changing the Ar and N2 flow rate. Three cases were used with the following gas 

flowrates (in sccm): 20Ar/5N2; 15Ar/10N2; and 12Ar/12N2.  The total gas flow rate remained 

approximately constant at 25 sccm. All depositions with mixed Ar/N2were carried out at 150W. 

The target-to-substrate was 8cm. Deposition times of 2h were used, with a typical rate of 1 

μm/h; several samples were deposited for 5 h to improve peak position measurements in XRD 

studies. The substrate temperature were varied between 150C-600C. 

 
Chapter 5: SS-Ti-N Films  

Deposition of the co-sputtered films from the stainless steel/ titanium targets were carried out 

in a mixed Ar + N2 gas mixture with flowrates of 20 sccm Ar and 5 sccm N2.  Four different sets 

of parameters were used for the for SS-Ti-N films. The substrate-to-target distance in the 

deposition of these films was approximately 9 cm. Different film compositions for the SS-Ti-N 
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films was obtained by varying the gun power ratios. A radio frequency (Rf) power supply was 

used to deliver 25-175 watt to each sputter target. During deposition, the substrate holder was 

held at a temperature ranging from room temperature to 450 0C.   

 
Chapter 6: SSN/SS-Ti-N Films 

Several films were co-deposited using the stainless steel target as well as a titanium target. All 

nitride film depositions were carried out with 20 sccm Ar/ 5sccm N2 gas flow and a target-to-

substrate distance of 60 mm. The substrate temperature of the films were varied between 25C-

350C and bias levels varied between -60V-140V. The films are designated as “S” for those 

deposited using only the stainless steel target and “S-Ti” from those co-deposited from stainless 

steel and titanium.  Each film designation also shows the substrate temperature and bias, and 

additional designations are “L” for the lower-titanium level films, “H” for the higher titanium 

levels, “LR” for the lower rate film depositions. 

Chapter 7: SS-Cr-N Films 

Numerous parameters were applied for SS-Cr-N coatings in the goal of studying the effect of 

applying different power, substrate temperature and levels of bias. Substrate temperature was 

varied between 25-350C and power ratio were 2:3, 1:1, 3:1 and 1:3. The bias levels were 

ranging from 100-160V. 

Chapter 8: SSC Films 

Different film compositions for the SSC films were obtained by varying the power at various 

ratios. Mass flow controllers were used to set the flow rates of argon gas. A radio frequency (rf) 
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power supply was used to delivered 25-150 watt to the carbon sputter target. During 

deposition, the substrate holder was held at a temperature ranging from room temperature to 

450 0C.   

 

Figure 3.1: The reactive magnetron sputter deposition system used in this research. 
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3.2 Film Characterization  

The microstructure and mechanical properties of the deposited films were characterized using a 

variety of methods after making these films by reactive magnetron sputtering. These methods 

include: X-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Scanning electron 

microscope (SEM), Transmission electron microscope (TEM), micro-hardness and pin-on-disk 

tests. These characterization methods are explained in more detail in the following sections:  

 

3.2.1 X-ray Diffraction (XRD) 
 

X-ray diffraction is a common phase identification analytical technique that is frequently used 

by materials scientists. In x-ray diffraction (XRD), diffracted beams are detected coming out 

from a structure that has had an incident beam fired into it. Based on the orientation of the 

sample and the distance between the sample’s crystallographic planes, the intensity of the 

detected radiation will vary greatly [87]. Figure 3.2 [88] shows an illustration that demonstrates 

the principle of the technique. In it, Bragg’s law can be described as the path length difference 

of reflected atomic planes, which occur at an integer number of wavelengths and allow 

constructive interference of the reflected beams to occur. 

As a result of the pathway difference between the atomic layers, defined as 

n= 2dhkl sin      (9) 

Where λ is the x-ray wavelength, hkl are Miller indices defining the atomic plane and n is an 

integer. 
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Figure 3.2 An illustration that demonstrates the principle of the X-ray diffraction technique 

 

A maximum intensity will occur at an integral number of wavelengths. These intensities are 

then dependent on the structure factors and multiplicity of crystal planes. Certain crystal 

structures, which are smaller than 2 to 5 nanometers, may not be properly characterized by this 

technique, encountering peak broadening. These samples are known as being x-ray amorphous 

[89].  

To quantify the peak shift in the FCC structure, as it will be seen in chapters 5 and 6 a term 

denoted the “R-value” was used, which for an FCC structure is given by:   
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In this thesis, the spectra of the resultant films were analyzed by a Shimadzu 6100 equipped 

with Cu Kα radiation (the wavelength λ=1.5406 Å) using PDF-2 database function of the Jade 9 

(MDI, Inc) software program.  Another XRD was also employed, a Bruker/ AXS general area 

detector diffraction system (GADDS), which employed Co Kα tube (λ=1.79 Å). These two XRD 

https://en.wikipedia.org/wiki/File:BraggPlaneDiffraction.svg
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analyses were done because substrate peaks sometimes overlap with film peaks; these two 

scans allow these overlapping peaks to be differentiated, allowing the distinct peak of the film 

to be characterized.  

  

3.2.2 X-ray Photoelectron Spectroscopy (XPS)  
 

X-ray photoelectron spectroscopy (XPS) is a non- destructive and surface sensitive method that 

is used to measure and analyze the elemental composition of a material. XPS can provide a 

depth information of as low as approximately 10 nm [90]. One advantage of this equipment is it 

is capable of detecting all elements in the periodic table that have atomic numbers greater than 

2, meaning it cannot detect Hydrogen (H) and Helium (He) elements.  

 
The basic principle of operation of this equipment is that x-rays are used to eject electrons from 

the molecular shells. The kinetic energy of the photoelectrons which are emitted from the film 

surface are measured and the elemental composition on the surfaces of the films are 

determined from the elements that the electrons are dislodged from [90]. To calculate the 

binding energy (EB) for each individual element, equation (10) ca be used 

EB = hν – EK – ϕ           (10) 

Where hν is the x-ray photon energy, EK is the kinetic energy for electrons and ϕ is the work 

function which is dependent on the material.   
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Figure 3.3: Principle of generating of a photoelectron in the XPS [91] 

 

In the thesis the composition of the coatings was evaluated by x-ray photoelectron 

spectroscopy (XPS) to determine the atomic percentage of each element. The analysis was 

carried out on a Kratos AXIS-HS Analytical instrument using monochromatic Mg Kα x-ray source 

operating at 15 kV and running at a current of 10 mA. A high vacuum of about 10-8 Torr is 

needed to complete XPS process of analyzing the kinetic energy of the electrons.  The accuracy 

in nitrogen concentration measurements is estimated to be 2-4 at. % N. To remove surface 

contaminants, a 4 keV Ar+ ion beam was used to etch the surface before analysis.  

 

3.2.3 Scanning electron microscope (SEM) 
 

Scanning electron microscopy (SEM) is a technique that is extensively used in academia and in 

industry. This is because SEM gives a lot of valuable data and it is an easy equipment to be 

utilized. SEM additionally has a wide depth of field which helps the operator to control the 

microscope in an extensive magnification range, allowing captured images to have full focus 

even when dealing with very complex or contoured surfaces. An SEM works by generating 

collimated, focused electrons from a source (tungsten, LaB6, or field emission gun) and 
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rastering them over a surface. The electrons that backscatter off the surface, or secondary 

electrons (where secondary electrons are referred to as ‘’secondary’’ because something else 

beforehand has knocked these electrons off the samples atoms) emitted by the surface atoms, 

are detected and ultimately processed into an image. To achieve high magnification and high 

resolution, a large electron mean free path is required, which necessitates high vacuum [92].  

 

 

 

 

Figure 3.4: Electron beam-specimen interactions in the SEM [93]. 
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In the thesis, the secondary electron was used for imaging the samples and the samples were 

prepared by cutting the cross-section of films using a specimen preparation tool called diamond 

saw. This tool helps to cut thin films by rotating a blade at a controlled speed. A cross-section is 

prepared by cutting both ends of the thin film and its substrate, but not all the way through. 

After making these notches, the thin film sample is then snapped off from the bulk by hand. 

After that, the films were examined with a Tescan Lyra FIB-SEM system operating at 6 KeV. It 

should be noted that surfaces of the films in this thesis were not coated with either gold or 

carbon before analysis using SEM technique. 

3.2.4 Transmission electron microscope (TEM) 
  

TEM is a highly sophisticated technique used by scientists to study and characterize materials 

down for atomistic level. TEM can provide atomic resolution images of materials under defects 

[94]. 

In TEM electrons are accelerated (normally by 120KV potential) and by using the electrons 

lenses they are focused on the sample. When the electrons pass through the film, two states 

can be observed, a scattered or transmitted electrons. These two states again are focused and a 

visible image can be produced by projecting both images (see fig. 3.5). 
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Figure 3.5: Transmission electron microscopy (TEM) schematic diagram [95]. 

 

In this thesis, TEM cross-section samples were prepared in the TESCAN instrument using the FIB 

attachment and a Ga+ ion source.  The samples were examined in a Zeiss LEO922 TEM operating 

at 120 kV.  
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3.2.5 Hardness:      
 

Hardness is a property that used to assess the mechanical properties of materials. The hardness 

describes how a material can be able to resist indentation. 

The hardness of the films was measured using micro-indentation equipped with a Knoop 

indenter (Fig. 3.6). Micro-hardness testing is a method that allows evaluation of material’s 

hardness on a microscopic length scale. Various loads, from grams to a kilogram, can be applied 

to a precision diamond indenter, pushing it into the coated film at different locations [96]. 

 

 

 

Figure 3.6: Schematic of the Knoop indenter and the indentation shape [97].  
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In this thesis, hardness testing was carried out using a 10-gram load, and each film was 

measured ten times, and the average is reported. For each measurement, a dwell time of 15 

seconds was applied. Then the indenter was removed from the surface after making a diamond 

shaped indentation. Generally, the hardness value is determined when a surface of the material 

is indented and a projected area is acquired from the longer diametrical length of the 

indentation (d). The Knoop hardness (HK) is calculated using the following equation    

HK= F/A =F/c.d2 =14.23 × F (Kg)/d2 (mm2)                       (11) 

Where F is the test load in Newton (N) and usually has a Kgf unit, A is the indentation projected 

area, c is a constant (=0.070279) and d is the longer diametrical length of the indentation.  

The indentation depth is nearly 1/30 of the diametrical distance. To avoid the effect of a 

substrate on thin films, it is essential the depth of the indent should not overtake 10% of the 

film thickness [98,99]. 

In chapter 5, the hardness of the SS-Ti-N films was first measured using micro-indentation 

equipped with a Knoop indenter and a 10-gram load as tested in most of the coatings in this 

thesis.  Due to the limited thickness of the films, these results were primarily used as a 

screening test to select films for further testing using nano-indentation.  The nano-identation 

tests were carried out on a Micro Materials NanoTest indentation testing platform (Micro 

Materials Ltd., Wrexham, UK) using a diamond Berkovich (3 sided pyramid) indenter. The 

indentation tests were performed by increasing the indentation force until the desired 

indentation depth (approximately 10% of the coating thickness, to avoid the substrate effect) 

was reached.   
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In general, for films with hardness levels near or above 1000 kg/mm2, the depth of indentation 

was ~15–20% of film thickness. Films which have lower hardness levels can possibly have 

substrate effects. However, higher indenter loads were used in some cases when the coated 

films had rough surfaces, and this could help to get better results. Micro-hardness tests provide 

information about how the bias, substrate temperature and film composition effect the relative 

film hardness.  

 

3.2.6 Pin-On-Disk        

A large number of methods are available to determine the tribological (friction and wear) 

properties of the coatings. In this thesis, the tribological behavior of the deposited films was 

measured using an equipment called pin on disk set-up [100] in an air at room temperature. 

The pin or a ball is pushed into a flat coated disk with a chosen load (100g was used as a chosen 

load for this thesis). The sliding track is formed on the films while it is rotating for thousands of 

cycles against the pin [96]. The materials in the ball or pin (in this thesis Aluminum Oxide (Al2O3) 

material was used) and the disk are easily changed and the load, sliding speed and diameter of 

the wear track can be adjusted to the desired value. During the test, the sliding force of the pin 

on the coated sample is measured, and the friction coefficient calculated continuously by 

dividing the sliding force by the normal force. Following this test, the wear track image of the 

coating is examined using an optical microscope. This is done to evaluate the wear patterns on 

the sample and to see if the coating has been worn off during the test.  

The friction force is defined as  

Ff = μk N                (12) 

Where F is the friction force, μk is the friction coefficient, and N is the normal force 
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Figure 3.7: Pin-on-disk working principle [100]. 
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Chapter 4: Structure and morphology of stainless steel coatings sputter-

deposited in a nitrogen/argon atmosphere [101] 

 

While previous studies have been made using sputter-deposition to create N-supersaturated 

stainless steel films [21,25,33,39,42-45-49], a comprehensive study examining both the structure 

and mechanical properties of the deposited film has not been reported.   Therefore, this research 

program began by examining magnetron-sputter deposited films using 304 stainless steel targets 

with deposition carried out in a mixed Ar/N2 gas.  The deposition variables included the substrate 

bias and temperature as well as nitrogen concentration.  

 

4.1 Film Composition Analysis 

 
 Films were deposited under a wide variety of deposition conditions and substrate 

temperatures as shown in Table 4.1. The results of the composition analysis by XPS for are also 

shown in Table 4.1.  The relative concentrations of Fe, Cr and Ni should correspond closely with 

the nominal composition of 304 stainless steel.  To test this, the Cr/Fe and Ni/Fe ratios were 

calculated as shown in Table 4.1.  The average Cr/Fe ratio was 0.28, while for Ni/Fe the ratio 

was 0.11.  These values correspond well with the nominal values of 0.26 for Cr/Fe and 0.10 for 

Ni/Fe.  The oxygen content of the films is also shown, and in most cases the oxygen level was 

below the detection limit for the XPS (about 2%).  In samples where oxygen was detected, the 

average concentration was 5.4%. 

 



55 
 

 

 

Table 4.1: Composition Analysis of Deposited Films 

ND= not detected  

Temp., oC At.% Fe At. % Cr At.% Ni At.% N At. % O Cr/Fe Ni/Fe 
 

N/(Fe+Cr+Ni) 

-100V Bias, 20 sccm Ar + 5 sccm N2 
 

25 42.04 11.07 3.55 42.51 ND 0.26 0.08 
 

0.75 

150 49.9 12 7.4 30.7 ND 0.24 0.15 
 

0.44 

250 48.3 12.6 5.8 33.3 ND 0.26 0.12 
 

0.50 

350 49.5 13 5.7 32.7 ND 0.26 0.12 
 

0.48 

450 50.3 13.6 7.1 28.9 ND 0.27 0.14 
 

0.41 

550 59.1 19.8 5.36 17.7 ND 0.34 0.09 
 

0.21 

-140V Bias, 20 sccm Ar + 5 sccm N2 
 

25 47.76 11.36 5.63 34.92 0.34 0.24 0.12 
 

0.54 

150 45.2 12.2 4.15 30.8 7.6 0.27 0.09 
 

0.82 

250 43.9 10.5 4.5 29.2 11.8 0.24 0.10 
 

0.76 

350 50.8 14.7 3.87 30.7 ND 0.29 0.08 
 

0.58 

450 46.2 13.0 5.8 34.6 0.55 0.28 0.12 
 

0.54 

-100V Bias, 15 sccm Ar + 10 sccm N2 
 

150 39 10.1 3.6 43 4.2 0.26 0.09 
 

0.82 

250 38.3 10.3 5.1 40.7 4.4 0.27 0.13 
 

0.76 

350 43.4 11.7 4.8 35 4.1 0.27 0.11 
 

0.58 

450 42.4 14.7 7.7 35.1 ND 0.35 0 .18 
 

0.54 

-100V Bias, 12 sccm Ar + 12 sccm N2 
 

150 40.1 11 2.9 46 ND 0.27 0.07 
 

0.82 

250 40.1 12.2 3.9 42 1.7 0.30 0.10 
 

0.76 

350 41.2 11.3 4.5 37 5.4 0.27 0.11 
 

0.58 

450 45.4 11.8 5 33.6 4.3 0.26 0.11 
 

0.54 
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The nitrogen content of the film was measured as an absolute value as shown in Table 4.1 and 

then the ratio of nitrogen to metal (Fe + Cr + Ni) was calculated from these results. Fig. 4.1 shows 

the N/ Me ratio vs. substrate temperature for films deposited at various substrate bias levels and 

sputter gas compositions. The general trend observed here is for the nitrogen level to decrease 

as the substrate temperature increases, although the extent of this varies with deposition 

conditions. The samples deposited at −140 V (20Ar/5N2) show the least overall impact of 

substrate temperature on nitrogen content. The corresponding samples deposited at−100 V 

show a small decrease up to 450 °C, followed by a sharp decline. The effect of process gas 

composition is also shown, and it can be seen that at higher N2 concentrations, 15Ar/10N2 and 

12Ar/12N2, the nitrogen levels in the films are general higher, but undergo a significant decline 

with substrate temperature. However, little difference is seen between these higher two gas 

concentrations in terms of nitrogen content in the films. 
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Figure. 4.1: The nitrogen/metal ratio vs. substrate temperature for films deposited at various substrate bias levels 

and sputter gas compositions.  The ratio increases with fraction of N2 in the sputtering gas, but decreases with 

increasing substrate temperature. 
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4.2 X-ray Diffraction  

 
 Fig. 4.2 shows the x-ray diffraction patterns for films deposited on Si substrates at -100V 

bias, 20Ar/5N2, with substrate temperatures ranging from 150-600oC.  In addition, reference 

peak position patterns are shown for CrN, N (S-phase), and bcc-Fe.  The results show two general 

forms of x-ray patterns: one for samples ranging from 500-600oC and a second for 150-350oC, 

with the pattern at 450oC representing a transitional state.  At higher temperatures, the patterns 

match well with the CrN and bcc-Fe reference patterns.  In addition, the small peak near 2=52o 

is close to the expected (200) reflection for Ni (note the (111) of Ni (44.6o) would be nearly 

coincident with the (110) bcc-Fe peak, at 44.7o).  Therefore, the films appear to have a multiphase 

structure containing CrN, bcc-Fe and a small amount of fcc-Ni.   

 Films within the lower temperature range are nominally consistent with an fcc diffraction 

pattern, showing (111), (200), (311) and (222) reflections, as expected within the scanned ranges. 

(The (220) cannot be observed due to Si substrate peak overlap).  The reference N pattern was 

calculated using a lattice parameter based on the position of the (111) peak.  The corresponding 

(200) peak is shifted significantly from position that would be expected based on this calculation.  

This is a common observation for this phase, as discussed in the above.  The position of the fcc-

reflections within the films varies with deposition parameter, as shown in Fig. 4.3, which shows 

the lower 2 range for four selected films as well as a detailed comparison of the (111) peaks.  

Increasing the bias to -140V resulted in a small increase in peak position, consistent with the 

small reduction in N content (as shown in Fig. 4.1) At higher N2 gas levels (15Ar/10N2 and 
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12Ar/12N2), the (111) peak positions are shifted to lower angles, also consistent with the higher 

nitrogen content in the films and an increase in the lattice constant. 

 

Figure 4.2: XRD results for films deposited at -100V and a range of substrate temperatures (indicated).  Also shown 

are possible matches to known phases.  The upper temperature range (500-600oC) matches CrN, bcc-Fe and Ni 

(see text), whereas below 450oC the structure is primarily S-phase 
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Figure 4.3: XRD scans for four selected films in the vicinity of the (111)/(200) peaks, with further detail of the (111) 

peak positions shown on the right.  The substrate bias levels and gas flow rates are indicated for each scan. 
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In order to further examine the nature of the anomalous (200) peak position, several samples 

were examined in an x-ray diffraction system employing an area detector.  This enables 

diffraction patterns to be acquired over a continuous range of  angles, where  is the angle of 

tilt of the diffraction vector off of the surface normal.  An example of an area detector frame is 

shown in Fig. 4.4.  As shown in the figure, a small segment of the Debye ring was selected and 

integrated to find peak positions.  For the complete analysis, the Debye rings within each frame 

were divided into 10 segments, and the peak positions within each segment were determined by 

fitting the results with a Pseudo-Voigt peak fit model.  The standard deviation for each peak fit 

was also calculated and is shown as well using error-bars on the plotted points, although in many 

cases the error bar range is smaller than the symbol size and hence is not visible.  Along with 

examination of the sample of interest, a sample of pure Cu powder was run to verify detector 

alignment, particularly along the Debye ring.  In order to minimize error in peak positions, a larger 

diffracting volume was desirable, and therefore additional samples, deposited at 200 and 300oC, 

were deposited to obtain ~5 m thick films.  In general, the area detector scans showed the same 

peaks as diffractometer scans, i.e., no additional peaks were observed at any ψ values.  This tends 

to discredit the concept of multiple phases or non-cubic structures. 
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Figure 4.4: Example of an area-detector frame showing the (111)/(200) Debye rings, selected integration segment 

and integration results.  Ten integrations were carried out along the Debye ring to obtain the lattice constant vs.  

data shown in Figs. 4.5. 

 

  

 



63 
 

Fig. 4.5 shows the results for films deposited at 200 and 300oC, both with a bias of -100V and a 

20Ar/5N2 process gas composition. The nitrogen content of the films was again determined by 

XPS and the 200 0C film had a slightly higher measured percentage of 33.6% vs. 32.6% for the 

300 0C film. The plot shows ahkl, which is the value of the lattice constant calculated from the 

indicated (hkl) reflection, vs. the  angle.  The lower plot shows a similar result for Cu (based on 

the (111) peak), and as expected the lattice parameter is constant and does not vary 

significantly with .  For the deposited films, for  near zero, the lattice constant based on the 

(200) reflection (denoted a200) is significantly larger than a111.  In addition, the peak position for 

(200) and hence the calculated a200, as shown in the figure, is reduced as the  angle increases 

However, a111 is relatively constant over the same range. At the lower substrate temperature, 

the difference between a200 and a111 increases, or, in other words, the anomalous nature of 

the (200) peak position becomes more pronounced. The minor difference in nitrogen content 

may explain slightly larger a111 values for the 200 °C (33.6% N) vs. 300 °C (32.6%) shown in the 

figure, but the differences in a200 values are more significant and must be due to other factors. 

Further analysis of the structural implications of this result is presented in the discussion 

section 4.4. 
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Figure 4.5: Measured lattice constants based on (111) and (200) peaks vs.  angle.  The lower plot shows the 

results for a Cu powder standard indicating acceptable alignment over the range of  angles used.  The upper plot 

shows a111 and a200 for films deposited at -100V, 20Ar/5N2 and 200 and 300oC. The decline in a200 with  is 

notable and contrasts with the relatively constant values for a111. The peak positions were determined using a 

pseudo-Voigt peak-fit routine and the error bars represent the calculated variance in the peak position 
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The finding that the a200 values decline continuously with increasing ψ suggests a residual stress 

effect.  However, the fact that a111 does not similarly decline and is not consistent with a residual 

stress effect.  Nonetheless, an additional experiment was carried out where the sample 

deposited at 200oC was subsequently annealed at 400oC in air for 30 minutes.   The intent of this 

experiment was to induce some stress relaxation and determine the effect of stress on the 

observed diffraction results.  Fig. 4.6 shows the results in plot of the calculated ahkl values vs.  

angle.  The slopes of the a200 and a111 curves remains largely unchanged, indicating that the 

sloping a200 curve is not a result of film stress.  In addition, both curves appear at a lower position.  

This is likely due to the out-diffusion of nitrogen during annealing, which reduces the lattice 

constant.  It should also be noted that a thin oxidized layer formed on the surface and was 

observed in the x-ray diffraction patterns as weakly diffracting Debye rings.  However, the bulk 

of the film still consisted of the S-phase.   
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Figure 4.6: Measured lattice constants v.  for a film deposited at -100V, 20Ar/5N2 and 200oC and then 

subsequently annealed at 400oC for 30 minutes.  There is a slight reduction in lattice constant after annealing, 

possibly due to the out-diffusion of nitrogen 
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4.3 Film Morphology 
 

  SEM cross-section images are shown in Fig. 4.7 for several of the deposited films, 

showing the effects of temperature and bias for films deposited at 20Ar/5N2. Fig. 4.7(a) shows 

the film deposited at 250 °C, −100 V bias, where the structure can be described as generally 

columnar, but with a faceted and angular morphology with small wedge shaped grains. The 

surface also shows highly faceted features on top of the vertical columns. The resulting 

morphology would suggest a high degree of porosity within the film. Fig. 4.7(b) shows a film 

deposited at the same gas concentration and temperature but an increase of the bias to −140 

V. This film shows somewhat coarser crystallites and larger voids, but more continuous 

columns. Fig. 4.7(c) shows the film substrate temperature to 350 °C. Here the columns are still 

coarser and surface roughness is also higher. Fig. 4.7(d) shows a film deposited at 500 °C and 

20Ar/5N2/−100 V, revealing a nodular or particle-like morphology, which is very different from 

the morphology shown in the three previous images. However, it can be recalled from Fig. 4.2 

that the phase content in the films changes at 450 °C, becoming a mixture of CrN, bcc-Fe and 

fcc-Ni above this temperature.  
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Figure 4.7: SEM cross-section images of selected films: (a) -100V, 250oC, 20Ar/5N2, (b) -140V, 450oC, 20Ar/5N2, (c) 

-100V, 500oC, 20Ar/5N2, (d) -140V, 250oC, 12Ar/12N2.  Films (a), (b), and (d) show generally columnar structure 

with a faceted and angular morphology, while (c) shows a more powder-like morphology. 
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Fig. 4.8 shows a series of samples deposited at−100 V bias and 12Ar/ 12N2. At 150 °C (Fig. 4.8a), 

a more typical columnar structure is shown and the columns are tilted, as is typically observed 

in off-axis deposition. In this case, the columns are less faceted than in Fig. 4.8(a) and (c) and as 

a result forms a smoother surface. In should also be noted that the N level in the film, N/Me = 

0.85, which was the highest level achieved in this study. Depositing under similar conditions but 

at a higher temperature of 350 °C, Fig. 4.8(b) shows a return of some of the morphological 

features shown in Fig. 4.8(a)–(c), namely an increase in faceting and a coarse, angular structure. 

At 450 °C, (Fig. 4.8c), a nearly “worm-like” morphology is observed, but with the retention of 

significant faceting. A commonly observed feature in many of these films was the appearance 

of a layer-like morphology, as evidenced by a “ribbed” appearance in the columnar structures.  

Fig. 4.9(a) shows an SEM image a film deposited at 350 °C,−100 V and 15Ar/10N2where these 

microstructural features are indicated. Fig. 4.9(b) TEM image of the same film, showing a 

segmented or mosaic appearance within the coarse columns present in the film. This 

morphological feature is not common to thin-film structures and hence cannot be fully 

explained at this time. Recent research has shown the presence of a high density of stacking 

faults in S-phase samples as revealed by TEM studies [43].  
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Figure 4.8: SEM cross-section images of selected films deposited at 12Ar/12N2 and -100V at temperatures of (a) 

150oC, (b) 350oC, and (c) 450oC. Film (a) shows a typical columnar morphology, but the structure becomes more 

faceted and discontinuous as the temperature increases 
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Figure 4.9: (a) SEM image a film deposited at 350 °C, −100 V and 15Ar/10N2, showing a layer-like morphology 

within the columns giving a “ribbed” appearance to the column edges. (b) TEM image of the same film, showing a 

segmented or mosaic appearance within the coarse columns present in the film. 
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4.4 Mechanical Properties 
 

 Several of the deposited films were tested using the Knoop hardness method.  Films 

deposited at 550oC and above had a very rough surface with a loose granular structure and were 

found to have very low hardness values (< 400 kg/mm2).  The remaining films were tested and 

the results are shown in Fig. 4.10.  It can be observed that for films deposited with 20Ar/5N2 the 

hardness generally increased with deposition temperature.  For the films at -140V bias, the 

maximum hardness reached was at 25 oC, where the value was 2104 kg/mm2.  The films 

deposited at 15Ar/10N2 and 12Ar/12N2 varied only slightly with increasing deposition 

temperature, and were consistently near 1000 kg/mm2.  Menthe et al. [26] showed plasma-

nitrided stainless steels to have a maximum Knoop hardness level of about 1000-1400 kg/mm2 

in samples where the surface layer was known to consist only of the S-phase, generally consistent 

with the results shown here. 
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Figure 4.10: Knoop hardness measurements vs. deposition temperature for films deposited at the indicated 

parameters.  The highest hardness achieved was near 2100 kg/mm2 for the film deposited at 450oC/-

140V/20Ar/5N2. 
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4.5. Discussion 
 

 Nitrogen-containing stainless steel films have been deposited using a variety of 

deposition parameters, with an emphasis on studying the effects of substrate temperature and 

nitrogen partial pressure during sputtering.  Compositional analyses of the deposited films 

showed that the nitrogen content generally decreased with increasing substrate temperature.  

Generally, the residence times of adatoms on a substrate surface obeys an Arrhenius relating and 

decreases as temperature increases [80]. This suggests the chemical reaction of nitrogen with 

atoms on the substrate is weak and incorporation of the nitrogen in the film is favored by longer 

residence times at lower temperatures.  In addition, higher nitrogen concentrations in the sputter 

gas favors nitrogen incorporation in the films, as shown by comparing the 20Ar/5N2 and 

15Ar/10N2 films in Fig. 4.1.  However, at a ratio of 12Ar/12N2 there was not further significant 

increase in nitrogen in the films, so that it appears a saturation point was reached.   

 The XRD results for the films deposited below 450oC show the typical FCC pattern with a 

slightly displaced (200) peak.  Further analysis using area-detector diffractometry gave the results 

shown in Fig. 4.5.  In particular, it is useful to compare values for = 0 and values at ψ = 54.74o, 

since this is the angle between the {200} and {111} planes in cubic systems.  For example, unit 

cells with the (200) planes parallel to the sample surface, examined at ψ = 0, have corresponding 

(111) planes at ψ = 54.74o where their interplanar spacings can be measured.  At 200oC, for the 

(200), Fig. 4.4 shows a200 = 4.045A, whereas the corresponding (111) planes indicate a111 = 

3.935A.  The possibility of these results implying a face-centered tetragonal structure (with c>a) 
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can be examined by using the equations developed by Fewell and Priest [29], where if we assume 

that a200 = c then: 

 

1/2
2 2

111 200

2 2

200 111

2

3

a a
a

a a

 
  

 
  [13] 

Using the above values this gives a = 3.883A and a c/a ratio of 1.042.  However, extrapolation of 

the a200 line to  = 90o gives a value of 3.954A, which is inconsistent with the calculated value.  

Furthermore, the f.c.t. structure allows only two values of {200} d-spacings and peak splitting, or 

at least broadening, should be observed.  However, no such effects were observed and instead 

we observed a gradual decline in a200 with . Therefore, the results are inconsistent with this 

tetragonal structure.   

 The film morphologies observed here for S-phase samples are somewhat atypical of the 

columnar-type thin film structures commonly observed.  The presence of sharp, angular facets 

was prominent in the cross-section views of many samples, as was the frequent observation of a 

layered morphology.  These morphological characteristics were specific to the samples with the 

S-phase, and at higher deposition temperatures where the bcc-Fe/CrN/Ni phases were observed 

a more powder-like morphology was found.   

 The film morphology as well as nitrogen content are expected to have a significant impact 

on the hardness.  Films deposited at lower temperatures and bias had a finer, discontinuous 

broken crystallite structure; as the temperature and bias increased (compare, for example Figs. 

4.7(a) and (c)) the grains become larger, possibly giving a reduced void concentration.  A second 

factor is the nitrogen content.  As the nitrogen fraction in the sputtering gas increases, the 
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nitrogen concentration of the film is higher, as demonstrated in Fig. 4.1.  It is well-known that 

stoichiometric nitrides, such as TiN and CrN, have very high hardness levels (~2500 kg/mm2).  We 

may expect more nitrogen-deficient metal nitrides to have lower hardness levels.  However, in 

the present case, the film deposited with 12Ar/12N2 at 150oC, which had a dense columnar 

structure (Fig. 4.8a) and a N/Me ratio of 0.85 should have the highest hardness, yet it is surpassed 

by the film deposited at 25oC (20Ar/5N2 and -140V) which has a N/Me ratio of 0.54 and hardness 

of near 2104.5 kg/mm2.   

 

4.6. Conclusions 
 

 Films for this study were deposited from a 304 stainless steel target in a mixed Ar/N2 

environment.  Samples were analyzed using x-ray diffraction, x-ray photoelectron spectroscopy, 

SEM imaging of cross-sections and micro-hardness testing.  Samples were deposited over a 

temperature range of 150-600oC, and it was found that the nitrogen content in the films 

decreased with increasing substrate temperature at a fixed nitrogen partial pressure.  

Increasing the nitrogen partial pressure increased the nitrogen content in the films, while 

increasing the bias slightly decreased it.  Films deposited at higher temperature (>450oC) 

consisted of CrN, bcc-Fe and Ni, whereas films deposited at lower temperatures were primarily 

S-phase.  The S-phase exhibited the well-known anomaly of a shifted (200) reflection in the XRD 

patterns, but the extent of this shift decreased with the degree of tilt of the planes relative to 

the surface.  The SEM images for the S-phase samples showed highly angular and faceted 

crystallites, while films deposited at higher temperatures had a powder-like morphology.  The 
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hardness of the films was also tested and a maximum of 2104 kg/mm2 was achieved in a film 

deposited at 25oC and -140V bias. 
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Chapter 5: The Effects of Ti Additions on the Structural, Mechanical and 

Tribological Properties of Stainless Steel-Nitride Thin Films 
 

5.1 Composition Analysis of SS-Ti-N Films 
 

Table 5.1 shows the deposited nitrogen-incorporated stainless steel and titanium films deposited 

onto silicon substrates.  The films are divided into four groups as indicated in Table 4, with each 

group having common bias and gun power levels: 

Group 1: Films were deposited using a power level of 150W on both sputter guns, a bias 

level of -100V, and a deposition time of 2h. The substrate temperature was ranged from 

room temperature to 350C. The nitrogen content in these films (absolute values between 

30.41 and 35.27%) was similar to the stainless-steel nitride films (deposited without 

titanium) previously studied [101].  

Group 2: The power to the SS gun was reduced to 50W to obtain a higher relative Ti 

concentration.  To compensate for the reduced overall deposition rate, the time was 

increased to 3 hours. The Ti concentration was about double that of the previous set, 

and in addition the nitrogen content in the films was between 46.48 and 52.61 at. %.  

Nitrogen concentrations in rocksalt-structured transition metal nitrides are typically 

slightly less than 50%, so the values reported here may reflect the error range in the XPS 

measurement (estimated above as ±2-4%).   

Group 3: Conditions here were similar to that of the second group except the bias voltage 

was increased to -140V. The bias did not appear to significantly influence the nitrogen 

content in the films.  
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Group 4:  Films were deposited at equal stainless steel and titanium target-to-substrate 

distances and power levels of 150W (SS) and 175W (Ti).  Here the nitrogen content 

average is 46.4%, which showed an enhancement of nitrogen content compared to the 

first group (33.8 at. % average).  This may be due to the higher substrate bias. 

In the discussion below films will be designated by group and temperature, for example, G1-

150 will refer to the group 1 film deposited at 150oC, with additional parameters as shown in 

Table 5.1.  

The effect of bias and the sputter gun power on the ratio of nitrogen (N) to metal (Fe + Cr + Ni + 

Ti) was calculated for all cases and the values are listed in Table 5.1.  For films in groups 1, 2 and 

3 increasing the substrate temperature does not lead to a substantial change in relative 

nitrogen content. The relative nitrogen content is mostly dependent on the concentration of Ti, 

as the Ti in the film acts as a getter for nitrogen. 
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Temp., 

oC 

At.% 

Fe 

At.% Cr At. % 

Ni 

At. % O At.% 

N 

At. % 

Ti 

N/ 

(Fe+Ni+Cr+Ti) 

    Group 1: -100V Bias, SS:150W, Ti:150W 

25 35.62 9.26 4.42 10.21 35.27 5.23 0.6468 

150 40.27 8.91 4.41 12.48 30.41 3.53 0.5323 

250 37.9 9.63 4.34 8.53 34.78 4.79 0.6138 

350 42.04 11.5 4.95 3.71 34.78 3.00 0.5654 

    Group 2:-100V Bias, SS:50W, Ti:150W 

25 23.7 6.85 5.22 2.65 50.32 11.23 1.0706 

150 23.03 7.17 4.27 2.97 52.18 10.38 1.1634 

250 22.42 6.15 5.87 4.45 46.48 14.63 0.9472 

350 19.18 6.82 5.20 4.30 51.61 12.89 1.1705 

    Group 3:-140V Bias, SS:50W, Ti:150W 

25 23.04 6.18 5.09 4.27 50.33 11.09 1.1085 

150 24.06 7.48 4.82 1.45 51.65 10.54 1.1012 

250 21.79 6.39 4.62 3.22 52.86 11.13 1.2032 

350 20.08 7.73 4.57 4.03 50.63 12.95 1.1169 

    Group 4:-140V Bias, SS:150W, Ti:175W  

25 28.98 9.22 3.37 5.04 47.94 5.45 1.0195 

150 33.24 9.67 4.52 1.87 44.41 6.30 0.8265 

250 26.15 7.62 5.29 4.53 46.89 9.52 0.9652 

350 34.83 9.35 4.90 9 35.14 6.78 0.6290 

Table 5.1: Deposition parameters and film compositions for the SS-Ti-N film 
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5.2 Crystal Structure  
 

The influence of deposition parameters on crystal structure was studied using x-ray diffraction 

and the results are shown in Fig. 5.1.  The main peaks (neglecting the peaks at 33o which are 

due to the Si substrate) are indexed as the (111), (200) and (220) reflections of the fcc 

structure.  The film orientations vary, but a preferred (200) orientation is most common.  The 

only film with a strong (111) orientation was the film G1-150.  In contrast, the other films show 

either a mixed or (111) preferred orientation.  Comparing the results for films in groups 1 and 2, 

where the bias remained constant but the gun power levels were altered to increase the Ti 

content in group 2 films, the peaks are observed to shift to lower angles indicating higher lattice 

constants.  This is a result of the higher Ti and N concentrations in the group 2 films.  Peak shifts 

are observed in comparing group 3 to group 4 films, where higher diffraction angles were found 

in the latter due to lower Ti and N concentrations.    

Films of stainless steel nitrides typically have an S-phase structure, whereas TiN films are found 

to deposit with a rocksalt structure [102].  The difference is usually identified by examining the 

position of the (200) reflection based on the (111) position.  The following equation can be used 

to assist in the evaluation of these structures: 

 

 
22

200111

2 2

200 111

sin

sin

d
R

d




    (1) 

 

For the standard fcc/rocksalt structure R = 0.75, but for S-phase structures R>0.75.  Table 5.2 

shows the interplanar spacings, lattice constants, and R-values for the films deposited in this 
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study that had sufficient intensities in both the (111) and (200) peaks to enable reliable R-value 

calculations.  All Group 1 films show R>0.75, indicating S-phase formation.  For films in Groups 2 

and 3, where the nitrogen is at stoichiometric levels, the R values are very close to 0.75, 

indicating a primarily rocksalt structure.  For films in Group 4, the films deposited at 25 and 

350oC show R>0.75, whereas for films deposited at 25 and 250oC the R-value is near 0.75.  The 

higher value of R for film G4-350 is consistent with its lower nitrogen content (35.14%).  Overall, 

the data suggests that for films with at least 10% Ti the nitrogen will be near the stoichiometric 

level and the rocksalt structure is formed, whereas below 10% Ti the films are sub-

stoichiometric (typically less than 40% N) and the S-phase is formed.   

For samples in Group 3, for the 25-250oC temperature range, only weak diffracting peaks were 

observed.  Therefore, samples in this group were examined using the Bruker area-detector 

system, and rocking curves were obtained for the (111) reflection.  The results are shown in Fig. 

5.2, where  is the angle tilted away from the film normal axis.  For the (nominally) room 

temperature deposition, there is some diffracted intensity near =0, but the strongest peaks 

are at 35-40o.  At 150oC, there is a broad peak centered near  = 8o, and this orientation 

effect may be due to the gun tilt (guns were held at 14o to the substrate normal during 

deposition).  At 250oC there is again a split in the rocking curve, which becomes wider at 350oC.  

This may be due to a grain coarsening effect at higher temperatures.   
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(a) (b) 

 

 

 

 

 

 

 

 

Figure 5.1: (a) XRD diffraction patterns of the films from groups 1 and 2, and (b) groups 3 and 4.  Indexed lines for 
(111), (200) and (220) reflections are shown. 
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Table 5.2: Interplanar spacing and Lattice Constant Data 

 

Figure 5.2: (111) rocking curves for the films in Group 3, for values ranging from -45 to +45o.  Deposited films are: 

(a) G3-25; (b) G3-150; (c) G3-250 and (d) G3-350. 

Sample d111, nm d200, nm a111, nm a200, nm R

G1-25 0.234 0.205 0.405 0.410 0.767

G1-150 0.231 0.204 0.400 0.408 0.778

G1-250 0.230 0.203 0.398 0.407 0.784

G1-350 0.229 0.202 0.397 0.403 0.776

G2-250 0.241 0.211 0.418 0.422 0.765

G2-350 0.243 0.211 0.421 0.422 0.753

G3-350 0.242 0.211 0.420 0.421 0.757

G4-25 0.237 0.207 0.411 0.415 0.763

G4-250 0.242 0.209 0.420 0.419 0.747

G4-350 0.235 0.208 0.407 0.416 0.783
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5.3 Microstructural Characterization  
 

SEM cross-section images are shown in Figures 5.3(a-d) for the films in Group 1. In Fig. 5.3(a), 

deposited at 25C, the film shows a granular-powder-like morphology.  Increasing the 

temperature to 150oC, Fig. 5.3(b), shows a distinct columnar structure.  Further increases to 250 

and 350oC show a coarse, faceted morphology with a voided columnar structure indicating a 

low film density.  The film thickness in these samples ranges from 2.4-2.9 m.   

Fig. 5.4 (a-c) show films from Group 3, where the bias was constant at -140V, and the power to 

the stainless steel target was reduced to 50W.  In these cases, the film thickness is significantly 

reduced, with film thicknesses measured at about 1000 nm.  While the deposition time was 

increased by 50% compared to Group 1, it did not completely compensate for the lower power 

to the SS target.  The films in this group show improved density and fewer voids compared to 

Group 1, and the film structure also shows less temperature dependence than Group 1.  In 

addition, the films showed reduced surface roughness compared to those in Group 1. Films 

deposited in Group 2 were also examined and similarly show higher density but reduced film 

thickness compared to Group 1. 
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Figure 5.3: SEM cross-section images for films: (a) G1-25, (b) G1-150, (c) G1-250, and (d) G1-350.  All images were 

taken in the secondary electron mode.   
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Figure: 5.4 SEM cross section images for films deposited from group 3 at substrate temperatures of (a) 150oC; (b) 

250oC and (c) 350oC.  
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5.4 Mechanical and Tribological Properties of SS-Ti-N 
 

Micro-hardness testing was first used to measure film hardness using a 10-gram load and a 

Knoop indenter.  This provided an assessment of the relative film hardness, and showed the 

samples in Groups 2 and 3 had the highest hardness.  However, due to the reduced film 

thickness in these samples, it was necessary to use nano-indentation to obtain an accurate 

measure of film hardness.  With nano-indentation, the appropriate load could be selected so 

that the indentation depth was close to 10% of the film thickness.  The results of the nano-

indentation tests for the selected films are shown in Fig. 5.4, where the hardness is shown.  For 

films in Groups 2 and 3 (in the 150-350oC range) the hardness values ranged from 18-24 GPa.  

These values are typical for transition metal nitrides [50], and are significantly higher than 

previously reported levels for nitrided stainless steels [103]. One additional film was tested, 

sample G4-250, which had a somewhat lower hardness of 15.8 GPa.  This film had a similar 

N/Metal ratio (see Table 4) as G2-250 as well as the same deposition temperature, although a 

higher bias level (-140V vs. -100V), which should improve hardness.  The reduced hardness may 

be related to the higher deposition rate, which may result in a higher defect concentration. 

.   
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Figure 5.4: Nano-indentation hardness and reduced elastic modulus, Er, for selected films.  The average standard 

deviation in the measured hardness values was ±1.6 GPa. 
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Pin-on-disk wear tests were used to evaluate the tribological behavior of selected SS-Ti-N films, 

primarily those exhibiting highest hardness levels.  Coated stainless steel substrates were 

tested at room temperature using an Al2O3 6.25-mm diameter ball as the counter face. The load 

was 100g (1N), and the disc was rotated at 200 rpm, and the tests were run to 1000 cycles. 

Track diameters were typically 0.7-1.2 cm.  Table 5.2 shows the results as the average friction 

coefficient () over the range of 50-1000 cycles, the minimum and maximum within this range, 

and the standard deviation. Data for the first sample listed, SSN-140V, was obtained from a 

previous study [101] in order to compare the effects of Ti additions.  This sample was deposited 

at the same sputter gas pressures (20Ar/5N2) and at a substrate temperature of 250oC.  The 

tribological behavior of this film as well as sample G2-25 were poor, and so further tests were 

not conducted.  Films deposited in group 3 (-140V bias) at 25 and 150oC showed better results, 

with an average friction coefficient of 0.39 for sample G3-150.  Films in group 4 all showed 

higher friction coefficients (not shown), indicating poor wear behavior, which was confirmed by 

optical microscope observations of the wear tracks.  Wear track images for several films are 

shown in Fig. 5.5.  Fig. 5.5(a) shows film G2-25, where the high friction coefficient is consistent 

with the track image showing a heavily oxidized metallic compound, indicating rapid wear of 

the film and excessive interaction between the ball and steel substrate.  Figs. 5.5(b) and (c), for 

films G3-25 and G3-150, show the coating is mostly intact, consistent with their lower friction 

coefficients.  For sample G3-250, Fig. 5.5(d), the surface is worn to the steel substrate, but 

visually in terms of look at it, does not appear to be oxidized but rather shows the bare steel 

track.  Nonetheless, the friction coefficient is higher due to interaction between the alumina 

ball and the steel substrate. 
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Table 5.3: Pin-on-disk friction test results 

 

 

 

Figure 5.5: Wear track optical microscope images showing a typical portion of the wear track after 1000 cycles: (a) 

G2-25, (b) G3-25, (c) G3-150 and (d) G3-250. 

 

Sample (average) (max) (min) Std. dev.

SSN-140V 0.69 0.78 0.63 0.04

G2-25 0.72 0.99 0.47 0.13

G3-25 0.47 0.63 0.13 0.07

G3-150 0.39 0.52 0.29 0.04

G3-250 0.67 0.86 0.32 0.11

G4-25 0.78 0.86 0.72 0.03

G4-150 0.69 0.77 0.41 0.07

G4-250 0.82 0.89 0.76 0.03

=0.72 =0.47 =0.39 =0.67 (a) (d) (c) (b) 
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5.5 Discussion   
 

Films of nitrogen-incorporated stainless steel have been modified by the addition of titanium by 

co-sputtering, and the structure and mechanical properties of the films have been examined.  For 

SS-N films with average Ti concentrations of 4.1% (group 1 in Table 4) the concentration of N was 

similar to films deposited without Ti [101].  However, additions of Ti at concentrations of 12.2% 

(Group 2 average) or 11.4% (Group 3 average) increased the N concentration to typical 

stoichiometric levels.  The elements within stainless steel have varying affinities for nitrogen.  

Both Fe and Cr are known nitride formers, with CrN being a commonly used and studied hard 

coating [104-106].  Fe-nitrides are less commonly used as hard coatings, but some studies have 

been conducted to examine their synthesis and mechanical properties [107-109].  In contrast, Ni 

has little affinity for nitrogen and is a poor nitride former, however, films of nickel nitrides have 

been synthesized and studied [110, 111]. Ti is a strong nitride forming element and will readily 

react with available molecular nitrogen.  Therefore, it is not surprising that Ti increases the N 

content in the deposited films.  However, there appears to be a threshold in Ti content required 

to significantly increase the N concentration in the films, and the current experiments indicate 

this is between 4 and 10%Ti (this would require between 8 and 20% in the metallic source or 

target material).  X-ray diffraction analysis of the higher-Ti films did not show any peak splitting 

or evidence of phase separation between Ti and the stainless steel constituents.  This suggests 

that the Ti atoms occupy random sites on the metal sublattice. As a result of the Ti additions, the 

hardness levels are significantly increased. Hardness levels for stainless steel nitrides are typically 

10-15 GPa [26,28,30,34,36,38] although in thin films nitrides, there is a strong dependence on 

deposition method and parameters used.  In our recent study we found a Knoop hardness of 
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1275 kg/mm2 for S-phase-structured films deposited at 350C and a bias of -140V bias.  Under 

similar conditions for the films in the present study, namely, sample G3-350, the hardness was 

23.9 GPa (equivalent to 2437 kg/mm2 , thereby representing nearly twice the hardness.  For the 

N-stoichiometric films in groups 2 and 3 the hardness ranged from 18.2-22.9 GPa, which is in the 

typical hardness range for transition metal nitrides such as TiN and CrN [113].   

The pin-on-disk test showed that films G3-25 and G3-150 had the best overall results.  It is notable 

the film G3-250, despite having a similar hardness levels as G3-150, did not perform as well.  This 

may be due to temperature effect on grain structure as well as the change in film texture as 

indicated in Fig. 5.3. 

 

5.6 Conclusions 
 

Films of nitrogen-incorporated stainless steel have been augmented by co-sputtering with 

titanium in a mixed Ar/N2 atmosphere. Calculated R-values and measured nitrogen contents in 

the films showed that either the S-phase or the rocksalt structure can be formed.  Increasing 

the substrate temperature leads to an increase in the 2 peak angles. It was found that with 

sufficient Ti in the films (~11-14%) the nitrogen content can be raised to stoichiometric levels.  

The hardness of the films also increased as a result, and a maximum of 23.9 GPa was obtained, 

which is well above hard levels typically reported for stainless steel nitride films without Ti 

additives or plasma-nitrided bulk stainless steels.  The tribological properties of selected films 

were also examined, and in one case an average friction coefficient of 0.4 was realized. 
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Chapter 6: A comprehensive study of the effect of R-Values on Nitrogen 

and Substrate Temperature on SSN-60V and selected films from 

Chapters 4 and 5 
 

6.1 X-ray diffraction spectrum Results 
 

Fig. 6.1 shows an X-ray diffraction spectrum from sample S-150-60 (150C, -60V Bias).  Two peaks 

are indexed, (111) and (200), based on an FCC structure.  An additional spectrum (not shown) 

covering the higher 2 range enabled the peak positions for (311) and (222) to be obtained.  (The 

(220) peak position could not be obtained due to interference from the Si substrate.)  The 

analyzed data shown in the figure demonstrate the deviation in the (200) lattice spacing 

compared to the remaining peak.  The expected position for the (200) peak, based on an FCC 

structure, should be at 45.5o, indicating a (200) shift of 1.4o to lower angles. XRD data for the 

remaining films were obtained and the results for the a111, a200 and R-values are shown in Table 

7.  Also, table 6.1 shows the atomic percent nitrogen and titanium, with the balance being 

metallic elements in 304 stainless steel (Fe, Ni, Cr in a distribution reflecting that of the target), 

as well as oxygen (up to 7 at.%).  The accuracy in nitrogen concentration measurements is 

estimated to be 2-4 at.% N. It can be noted that the R-values are all greater than 0.75.  The 

closest to 0.75 are the high titanium films (sample name terminating in “H”), where values only 

slightly greater than 0.75 were obtained.  These films also had the highest nitrogen content, with 

an average of 50.1% N.  In comparison, samples with lower Ti concentrations (terminating in “L”) 

had lower nitrogen concentrations and higher R-values.  One sample was deposited at 25oC 

where the R-value was 0.766.  For samples deposited without Ti, room-temperature depositions 
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did not result in a crystalline structure.  The addition of Ti promotes crystallization and therefore 

allowed measurement of the R-value. 

 

Figure 6.1: X-ray diffraction spectrum from a sputter-deposited SS304+N2 film, deposited at 150oC and -60V bias. 

The two peaks are indexed as (111) and (200) based on an FCC structure.  An additional spectrum (not shown) was 

obtained at the higher 2 range to obtain the peak positions for (311) and (222). The analyzed data are shown in 

the table, demonstrating the deviation in the (200) lattice spacing; the normal position for the (200) peak should 

be at 45.5o, indicating a (200) shift of 1.4o to lower angles. 

 

 

   



96 
 

 

Table 6.1: Description of Samples Deposited and Basic Parameters 

 

 

 

 

 

Sample Substrate 

Temp. (C)

Substrate 

Bias, -V

a111, A a200, A R-Value FWHM, 

Deg-2

% N  

(At.%)

% Ti  

(At.%)

S-150-60 150 -60 3.990 4.110 0.802 0.601 32.5 -

S-250-60 250 -60 3.973 4.071 0.787 0.468 38.9 -

S-350-60 350 -60 3.973 4.050 0.779 0.493 40.1 -

S-150-100 150 -100 3.923 4.033 0.792 0.540 30.7 -

S-250-100 250 -100 3.923 3.992 0.777 0.478 33.3 -

S-250-100-LR 250 -100 3.931 4.072 0.805 0.514 43 -

S-350-100 350 -100 3.903 3.950 0.768 0.416 32.7 -

S-250-140 250 -140 3.877 4.016 0.805 0.429 29.2 -

S-350-140 350 -140 3.877 3.956 0.781 0.523 30.7 -

S-Ti-25-100L 25 -100 4.060 4.102 0.766 0.429 35.3 5.23

S-Ti-150-100L 150 -100 3.908 4.083 0.818 0.485 30.4 3.53

S-Ti-250-100L 250 -100 3.977 4.072 0.786 0.478 34.8 4.79

S-Ti-350-100L 350 -100 3.976 4.040 0.774 0.434 34.8 3

S-Ti-150-100H 150 -100 4.233 4.251 0.757 0.535 52.2 10.4

S-Ti-150-100H 250 -100 4.185 4.216 0.761 0.468 46.5 14.6

S-Ti-150-100H 350 -100 4.213 4.227 0.755 0.511 51.6 12.9
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6.2 Effect of the variation in nitrogen concentration in the films and the substrate 

temperature 
 

The nitrogen content vs. the substrate temperature is shown in Fig. 6.2 for films deposited in the 

150-350oC temperature range (except the “LR” film which will be discussed separately).  For the 

films without Ti deposited at -60 and -100V bias, the nitrogen content first increases with 

temperature from 150 to 250oC and then remains essentially level to 350oC (For the films 

deposited at -140V bias, the film deposited at 150oC was amorphous, and therefore not included 

in this analysis). The effect of bias shows an overall decrease in nitrogen content as the substrate 

biased is increased from -60 to -140V.  The nitrogen content in these films can be influenced by 

sputtering as well as implantation effects, depending on the ion energy and incident angle.  The 

results shown here suggest that at -60V, the effects of sputtering or implantation are likely to be 

minimal.  Increasing the bias to -100V causes some sputtering of N atoms to occur, resulting in 

lower nitrogen contents.  Increasing the bias level to -140V may cause additional sputtering to 

occur, reducing nitrogen content further.   For the films co-deposited with Ti, with low Ti 

concentrations (an average of 4.1%) the Ti level was not sufficient to significantly impact nitrogen 

concentration. For films with high Ti concentrations nitrogen levels increased significantly and 

achieved stoichiometric levels.     
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Figure 6.2: Variation in nitrogen concentration in the films vs the substrate temperature.  Note there is no 
consistent temperature dependence observed within this temperature range. 
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6.3 Effect of Variation in R-value with Nitrogen Concentrations and Substrate 

Temperature  
 

The variation in R-value with nitrogen content for all films is shown in Fig. 6.3.  The intent here is 

to first set aside any possible dependence on deposition parameters and determine if there are 

any global trends that can relate the nitrogen concentrations in the film to the R-values.  R-values 

close to 0.75 correspond to films that are at or near 50 at.% N.  Overall, at higher R-values 

correspond to lower nitrogen contents, although there is significant scatter between these 

variables at intermediate nitrogen concentrations. The R-values for films deposited at different 

temperature and bias levels are shown in Fig. 6.4.  With the exception of the high Ti films, the 

temperature dependence shows a decreasing R-value with increasing temperature.  Starting with 

the -60V samples, we note that increasing the bias to -100V results in a nearly parallel line but at 

lower R-values.  The fact that the -60V films have higher R-values that cannot be attributed to 

their higher N content, as Fig. 6.3 shows the tendency would be to reduce, rather than increase, 

R.  For the films deposited at -140V, the R-values are higher than those deposited at -100V, 

despite the similar nitrogen levels.  This suggests that the extent of the anomalous (200) peak 

shift is not due to nitrogen-induced modifications in crystal structure, but may also be related to 

deposition-dependent properties such as stress, grain structure and defect formation in the films.  

The fact that substrate bias and temperature strongly influence R-values demonstrates a possible 

dependence on these microstructural effects.   
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Figure  6.3: Variation in nitrogen content with R-values for all data given in Table 4.1.  A systematic trend is 

observed where decreased N concentrations correspond to higher R-values. 
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Figure 6.4: R-values vs. substrate temperature for films deposited at different substrate bias levels as well as films 

co-deposited with Ti.   Except for the high-Ti films (which also had stoichiometric nitrogen levels) the R-values 

declined with increasing temperature. 
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6.4 Influence of R-values on the Morphology of Low Titanium Films 
 

In order to better understand the microstructural features that may be responsible for the 

change in R-values with substrate temperature, SEM cross-section images were examined.  Fig. 

6.5 shows SEM cross-section for the “Low-Ti” samples (designated S-Ti-X-100L where X is the 

substrate temperature), all deposited at -100V bias.  The R-values for these samples are indicated 

in Table 7.7.  The lowest R-value was for sample S-Ti-25-100L (25oC, R = 0.766), shown in Fig. 

6.5(a), showing a fibrous-to-columnar structure with small, faceted crystallites present at an 

angle to the growth direction.  The sample shown in Fig. 6.5(b), deposited at 150oC, had the 

highest R-value (0.818) of all samples, and showed a distinctly columnar structure, but still with 

faceted boundaries that terminate at the surface with faceted column tips.  Significant layering 

or a feather-like morphology is evident in this image. As the substrate temperature increase 

further (Figs. 6.5(c) and (d), 250 and 350oC, respectively) the overall structure continued to 

coarsen.  However, a close examination of the images shows continued effects of faceting, a 

layered morphology within the columns.  This type of layered morphology has been viewed previously 

[101], and It was suggested that this lamellar-type morphology may be related to stacking fault 

formation, which is one hypothesis for the anomalous (200) peak position shift [60-63]. The films 

deposited at -140V (S-250-140 and S-350-140) similarly showed faceted, angular crystallites, 

along with evidence of layered structures. 
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Figure 6.5: SEM cross-section images of films deposited at low-Ti concentrations: (a) S-Ti-25-100L, (b) S-Ti-150-100L, 

(c) S-Ti-250-100L and (d) S-Ti-350-100L.  Images all show evidence of a layered morphology within the columnar 

structures, and a general coarsening of the structures as the substrate temperature is increased. 
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In order to examine the structures in more detail, cross-section TEM samples were prepared.  Fig. 

6.6 (a-c) shows bright-field TEM images obtained for samples deposited at -60V.  Fig. 6.6(a) shows 

the microstructure of the sample deposited at 150oC with a corresponding R = 0.802.   In this 

case, the structure is open and porous but also shows a “feather-like” morphology exhibiting a 

structure with a central spine and branches growing at an angle to the surface.  In 6.6(b), 

deposited at 250oC and having R=0.787, this type of morphology is still present but overall the 

structure is somewhat denser.  At 350oC (Fig. 6.6c, R = 0.779) the structure is still more dense 

with less evidence of a feathered morphology.  As noted by Petrov et al. [114] the presence of 

inter- and intra-columnar voids as well as a characteristic dendritic pattern is due to limited 

surface diffusion, with films deposited under conditions of lower substrate temperatures or an 

insufficient ion flux. 
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Figure 6.6: TEM image samples deposited at -60V bias: (a) S-150-60, (b) S-250-60, and (c) S-350-60.  Examples of a 

layer-morphology can be found throughout (a) but the films become more dense as the substrate temperature is 

increased. (The top surface of the film is in the direction of the top of the micrograph). 
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6.5 Determination the Effect of Stacking Faults on The shift in the Peak Positions Using 

Warren’s Model 
 

The layered or branched morphology observed in the SEM/TEM images could be related to 

stacking fault or twin formation, which as noted above is a current hypothesis for the diffraction 

anomaly.  For the current samples, a preliminary estimate can be made for the value of .  Based 

on Figs. 6.5 and 6.6, the layer thickness is estimated to be t~30 nm. Using the experimental (111) 

interplanar spacing of ~0.23 nm, this gives 1/α = 130 or α = 0.0077.  Eq. 1 can then be used to 

calculate the expected peak shift, and gives 2 = 0.022o; for the samples listed in Table 7 that 

do not contain Ti, the average deviation of the (200) peak from its expected value (based on the 

position of the (111) peak) is 1.2o.  Therefore, there is poor agreement in the magnitude of the 

peak shifts, in fact the values disagree by nearly two orders of magnitude.  Alternatively, one can 

calculate the expected values of α based on the experimental peak shift, and the results show 

expected stacking faults every 2-3 atomic planes.     

 
In order to examine the effects of limited surface diffusion and crystallite domain size in a more 

comprehensive manner, the full-width-half-maximum (FWHM) was determined for the primary 

(strongest) peak for each diffraction pattern, and the results are tabulated in Table 6.1  

Examination of these data showed no correlation between the FWHM and R-values.  One might 

expect low R-values to correlate with larger domain sizes and reduced defect concentrations and 

therefore smaller FWHM values.  Within a given set of samples some correlation is observed, for 

example for the -100V samples as temperature increases from 150 to 350oC, the FWHM and R-

values both decrease.  However, the -60V samples show an inconsistent trend and the -140V 
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samples show a reverse trend where the sample with higher FWHM has a lower R-value.  The 

samples with low-Ti show a decrease in both R-value and the FWHM over the 150-350oC 

temperature range; the room temperature sample continues this trend, but it was surprising to 

find both a low FWHM (0.423) and R-value (0.766) in that sample as room temperature 

depositions for films without Ti are typically amorphous.  For the high-Ti films, the FWHM values 

were comparatively large, while the R-values were very low (close to 0.75).  Overall, the absence 

of a consistent correlation between the measured FWHM values and R-values indicates that fine 

crystallite domains and high defect concentrations, typically responsible for peak broadening, are 

not responsible for R-values deviating from the expected value of 0.75.  

One additional film was deposited is reported in Table 6.1 as sample “S-250-100-LR”.  This is a 

lower deposition rate version of sample S-250-100.  The latter had a deposition rate of 0.33 

nm/sec, and for the “-LR” film the power to the sputter gun was reduced in order to reduce the 

deposition rate by a factor of two.  The concept proposed was that reducing the deposition rate 

would reduce the density of defects as atoms arriving at the film surface would have a longer 

time to find equilibrium positions in the lattice.  Based on this approach, as well as the fact that 

the nitrogen concentration increased from 33.3 to 43% (see Table 6.1), the –LR film should have 

a lower value of R.  Instead, the value increased from 0.777 to 0.805.   
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6.6 Discussion 
 

In this study the extent of the well-known diffraction anomaly (the (200) peak shift) observed in 

the S-phase of nitrided stainless steel films has been characterized by calculating “R-values” from 

x-ray diffraction patterns.  R-values from 0.755 to 0.818 were obtained from samples deposited 

using a variety of deposition conditions.  While R-values have typically not been reported in the 

literature from previous studies, calculation of this parameter can be easily determined from 

published x-ray diffraction scans or tabulated data.  For example, in the study by Abronis et al. 

[115] for N-implanted 316 had R = 0.78; Sun et al. [59] examined plasma-nitrided 316 and 

obtained R = 0.81, and Kappaganthu and Sun [38] deposited films by reactive sputtering using a 

range of nitrogen gas concentrations and obtained R-values ranging from 0.764 to 0.781.  They 

also obtained stoichiometric films which had R-values of 0.75.  Therefore, the R-values 

determined from the literature are similar to those found in this study.   

For the samples examined here, the effect of nitrogen concentration in the films was first 

examined as shown in Figs. 6. 2 and 6.3.  Fig. 6. 3 shows data for the films deposited in this study, 

and the R-value is observed to generally increase with decreasing nitrogen concentrations, but 

there is significant scatter in the data.  Therefore, additional factors were examined.  The results 

showed a decrease in R-value with increasing substrate temperature (Fig. 6. 4), except for films 

with high titanium which were essentially stoichiometric nitrides with R-values near 0.75.  The 

effect of bias was less consistent: as bias increase from -60 to 100V the R-values decreased, but 

further increase to -140V bias resulted in substantial increases in the R-values.  The lower-
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concentration Ti films showed the effects of Ti in those films was to increase R (as shown in Fig. 

6. 4).   

Examination of the film morphology (Figs. 6. 5 and 6. 6) showed typical features (voids, faceted 

columns, and feather-like structures) indicative of surface-diffusion-limited film growth.  Coarser 

structures were observed at the higher deposition temperatures, and as shown in Fig. 6. 4, the R-

values generally decreased with temperature.  However, film S-Ti-25-100L had a fine-scale 

structure but also a relatively low R-value, and the films deposited with high-Ti had a higher 

FWHM but also a near theoretical values of R.  Our conclusion from these observations is that 

film morphology has little direct influence on the diffraction anomaly.  The presence of twin or 

stacking fault related domains also does not provide a suitable explanation for the diffraction 

anomaly.  The basis for this statement is that the extent of the shift of the (200) peak, calculated 

using Eq. (2), suggests very high stacking fault densities, and a high density of twins and stacking 

faults were generally not observed in TEM samples.   

As reviewed in chapter 2, there has been considerable effort to identify a crystal structure that 

would account for the observed diffraction patterns.  Fewell and Priest [49] attempted to fit 

extended diffraction data to rhombohedral, monoclinic, tetragonal and triclinic lattices but none 

were completely satisfactory.  Calculation of Bragg reflections for these lattices assumes long-

range order, with atoms in essentially fixed positions based on a repeated unit cell model.  The 

difficulty in using this approach for the S-phase structure is that there is a high concentration of 

vacancies on the nitrogen sublattice, and hence while the structure is nominally fcc, slight 

variations are expected that will cause deviations into slightly tetragonal, monoclinic, etc. unit 

cells.  The concept is illustrated schematically in Fig. 6. 7.  In Fig. 6. 7(a) a two-dimensional 
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representation is shown for the (100) face of the rocksalt structure.  In Fig. 6.7(b), the structure 

is shown with approximately one-half of the nitrogen atoms removed.  This creates locally 

unstable positions for the metal atoms and some distortions of the lattice are expected, as shown 

schematically in Fig. 6. 7(c).  In the actual S-phase structure for nitride stainless steels, the metal 

atoms of Fe, Cr and Ni are expected to be randomly located on the metal lattice.  It has been 

found that nitrogen atoms can be preferentially located near Cr atoms [116], but chromium 

nitride phases were not observed.  Therefore, the proposed structure is one of small domains of 

slightly distorted fcc unit cells which result in broad peaks in XRD.  A verification of this concept 

will require a full simulation of the structure and calculation of resulting diffraction patterns, 

which is beyond the scope of the present study.   
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Figure 6.7: Proposed model for the S-phase structure: (a) normal stoichiometric nitride structure; (b) nitride structure with 

approximately 50% nitrogen interstitials removed; (c) distorted lattice resulting from the relaxation of the metal sublattice due 

to a high concentration of vacancies on the nitrogen sublattice.   
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6.7 Conclusions 

 
Reactive magnetron sputter deposition was used to deposit films of stainless steel and stainless 

steel/titanium in a mixed Ar/N2 gas atmosphere.  A variety of deposition parameters were 

systematically investigated, including substrate temperature and substrate bias.  The extent of S-

phase formation was monitored by calculating the R-values for each sample, which accounts for 

the anomalous (200) peak shift.  Films with the least deviation from the ideal FCC structure were 

those with the highest titanium levels (10-14 at.% Ti), which also had nitrogen contents close to 

the stoichiometric levels (~50 at.% N). Sub-stoichiometric films had higher R-values (>0.75), and 

there was a weak correlation between decreasing N-content and increasing R-values.  The 

correlation of R-value to the substrate temperature for films deposited for sub-stoichiometric 

films showed that, for a given metal composition and bias, an increase in the deposition 

temperature led to a decrease in the R-value. The effect of the bias was less consistent, showing 

(for a given substrate temperature) a decrease in R-values from -60 to -100V but then increasing 

at -140V.  SEM cross-section analysis showed voided, faceted boundaries with a general 

coarsening as substrate temperature increased.  TEM examination also showed a faceted, 

dendritic structure, with improved film density at higher substrate temperatures.  The scale of 

the layered morphological structures observed in the SEM/TEM images did not agree with the 

calculated stacking fault density based on Warren’s equation (Eq. 6) for peak shifts.  It is 

concluded that the film morphology is not directly responsible for the extent of the diffraction 

anomaly.  Instead, it is proposed to be caused by the extent of lattice distortions that can be 

related to the limited degree of surface diffusion.      
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CHAPTER 7: The Effects of increasing Cr concentration on the Structural, 

Mechanical and Tribological Properties of Stainless Steel-Nitride Thin Films 
 

Chromium nitride, like TiN, is a commonly used hard coating that provides excellent wear 

resistance in severe operating environments.  CrN is also a common component in mixed 

transition metal hard coatings, such as Ti-Cr-N and TiAlCrN.  It is also a component of all 

stainless steel alloys, including the 304 SS used in this research.  However, in stainless steels the 

chromium concentration is limited to about 18% in order to maintain a single-phase structure 

and avoid embrittlement by intermetallic phases.  Therefore, increasing the Cr content in our 

coatings can only be accomplished by co-sputtering using Cr and SS targets, in a manner similar 

to that used for the Ti-SS-N films in Chapter 6.   In this chapter, the results on experiments for 

SS-Cr-N films are presented. 

7.1 Deposition Parameters and Composition Analysis of SS-Cr-N Films 
 

SS-Cr-N films were deposited using a variety of parameters, as tabulated in Table 7.1. The 

effects of sputter gun power, substrate temperature, gas composition and substrate bias on the 

composition of the SS-Cr-N coatings were examined. The power ratio of SS to Cr has a 

significant effect on the composition of films deposited at 250C with a constant SS power 

(150W) and various Cr power levels as shown in Table 7.1. An increase in power from 50W to 

100W (for SS gun) resulted in a similar N content but the Cr content decreased from 54.51% to 

45.02%. Also, increasing the Cr power further to 150W while the SS power kept constant 

(150W), showed more reduction in the Cr content as well as a decreasing in the N/Metal from 

0.68 to 0.55. In contrast, making films with powers of 50W for Cr and 150W for SS could reduce 

the N/M further to 0.51.  These results show that increasing the Cr content above the nominal 
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concentration found in stainless steels (which would be approximately 9% as an absolute 

amount in a stoichiometric nitride) increases the nitrogen content in the films only slightly.  

Therefore, Cr is not as effective a nitrogen-getter as Ti was found to be in Chapter 5.   

The effect of varying substrate bias on films deposited at 250C and SS:50W/Cr:150W was tested 

using bias level of -100V, -120V, -140V and -160V. In general, they showed a nearly similar level 

of N/M (0.67-0.68) except for -120V which indicated a slightly higher nitrogen/metal ratio of 

0.74.   

The effect of the substrate temperature on films deposited from 25-350C at SS:50W/Cr:150W 

and bias of -140V is also studied here. Table 7.1 shows that increasing the temperate from 150 

to 250C, does not show a significant increase in the N/M ratio. However, increasing the 

temperature to 350C indicated a slight reduced in the N/M to 0.64.  Overall, the temperature 

and bias had little effect on the film composition. 

The attempt to incorporate more nitrogen in the film by increasing its concentration in the 

mixed gas was also studied as indicated in Table 7.1.  
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Table. 7.1 The effect of power, substrate temperature and substrate bias on the composition of 

SS-Cr-N films  

 

 

 

 

 

 

 

 

 Temperature 
Co 

SS:Cr 
Power 
Ratio 

(Watt) 

Depositi
on Time 

Ar 
N 

Bias 
(V) 

 
% Fe   

 

 
% Cr   

 

 
% Ni   

 

 
% N   

N/ 
Metal 

 
 

Effect  
of  

Power 

250 50:150 3 20 
5 

140 5 54.01 0.48 40.51 0.68 

250 100:150 3 20 
5 

140 13.10 45.02 1.44 40.44 0.68 

250 150:150 3 20 
5 

140 20.77 41.39 2.12 35.71 0.55 

250 150:50 3 20 
5 

140 35.92 26.87 3.42 33.79 0.51 

 
Effect  

of  
Temper

ature 

150 50:150 3 20 
5 

140 5.06 54.31 0.48 40.15 0.67 

250 50:150 3 20 
5 

140 5 54.01 0.48 40.51 0.68 

350 50:150 3 20 
5 

140 6.23 53.86 0.69 39.22 0.64 

 
 

Effect  
of  

Bias 

250 50:150 3 20 
5 

100 6.25 52.74 0.66 40.36 0.67 

250 50:150 3 20 
5 

120 6 50.84 0.62 42.54 0.74 

250 50:150 3 20 
5 

140 5 54.01 0.48 40.51 0.68 

250 50:150 3 20 
5 

160 4.95 54.26 0.50 40.29 0.67 
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7.2 XRD Analysis  
 

Figures 7.1 a-c show x-ray diffraction patterns of films deposited at different sputter guns 

power, bias and substrate temperature on SS-Cr-N films. Further analysis of the XRD is shown in 

Table 7.2.  Fig. 7.1(a) shows the influence of applying varied levels of bias between -100 and -

160V. Generally, increasing the bias from 100-160V did not significantly effect the R-values. 

However, the texture of the films was significantly altered; at -100V, the film had a strong [111] 

texture whereas at higher bias levels the texture switched to [200].  Figure 7.1b shows 

increasing the substrate bias from room temperature 250C to 250C at a constant power ratio of 

50W/150W and bias levels of -140V showed an increase in the R-value from nearly 0.75 to 0.77. 

In these films the Cr content is still almost constant (54%. Cr).  The film texture was varied with 

one film showing a strong [111] texture (at 150C) and the remaining films having a [200] 

texture. The effect of applying different power ratios is shown in fig. 7.1(c) for films deposited 

at a constant substrate temperature (250C) and bias (-140V). The S-phase has been observed in 

these films using X-ray diffraction. Films with lower nitrogen concentration have displaced (200) 

peaks to higher 2 angles while films with higher nitrogen contents shifted the (200) peaks to 

lower 2 angles, indicating a larger lattice constant. In addition, films with higher Cr contents 

(54.01%) indicated lower R-value. However, increasing the ratio of stainless steel power to the 

Cr power led to a decreasing Cr content, from 54 to 41.39%, and an increase in R-value from 

0.77 to 0.81. 
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      (a)                                                                                (b)  

 

 

                                      

                                              (c) 

 

7.1: X-ray diffraction patterns showing the effect of (a) bias, (b) temperature and (c) gun power ratio on the 
structure and texture of the deposited films. 
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Table 7.2:  The interplanar spacing lattice constant values 

ND= not detected  

 

 

 

 

 

 

 

 

 Temp 
Co 

SS 
Power 

Cr 
Power 

Bia
s 

2 
d111, nm 

2 
d200, nm 

 
% N2 

 
% Cr   

 
a111, 
nm 

 
a200, 
nm 

 
R 

 
 
 

Effect 
of 

Power 

RT 150 150 140 37.317 
d=0.24077 

43.48 
d=0.20797 

ND ND 0.417 0.416 0.7460 

250 50 150 140 37.563 
d=0.23925 

43.067 
d=0.20986 

40.51 54.01 0.414 4.20 0.769 

250 100 150 140 37.86 
d=0.23744 

42.771 
d=0.21125 

40.44 45.02 0.411 0.423 0.792 

250 150 150 140 38.835 
d=0.2317 

43.294 
d=0.20882 

35.71 41.39 0.401 0.418 0.812 

250 150 50 140 39.019 
d=0.23065 

43.596 
d=0.20744 

33.79 26.87 0.403 0.415 0.801 

 
 

Effect 
of 

Tempera
ture 

RT 50 150 140 37.428 
d=0.24009 

43.591 
d=0.20746 

ND ND 0.416 0.415 0.7466 

150 50 150 140 37.490 
d=0.23970 

43.184 
d=0.20932 

40.15 54.31 0.415 0.419 0.7489 

250 50 150 140 37.563 
d=0.23925 

43.067 
d=0.20986 

40.51 54.01 0.414 4.20 0.769 

350 50 150 140 ND 43.283 
d=0.20887 

39.22 53.86 ND ND ND 

 
Effect 

of 
Bias 

250 50 150 100 37.542 
d=0.23938 

43.374 
d=0.20845 

40.36 52.74 0.415 0.417 0.758 

250 50 150 120 37.348 
d=0.24058 

43.111 
d=0.20966 

42.54 50.84 0.417 4.19 0.759 

250 50 150 140 37.563 
d=0.23925 

43.067 
d=0.20986 

40.51 54.01 0.414 4.20 0.769 

250 50 150 160 37.371 
d= 0.24044 

43.377 
d=0.20844 

40.29 54.26 0.416 4.17 0.7515 
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7.3 Microstructural Characterization 

 
SEM cross-section of SS-Cr-N films were examined as shown in Figures 7.2 a-d. Fig. 7.2 (a), 

shows a film deposited at 250C-100V and SS:Cr ratio of 1:3. This film shows a columnar 

structure, whereas increasing the bias as indicated in fig. 7.2 (b) further to -140V led to a denser 

structure. Fig. 7.2 (c), shows film deposited at equal SS and Cr sputter power guns (at 150W) 

and 250C/-140V. In this image the structure is somewhat fibrous. It should be noted that the 

thickness of this film is about 3900nm which the highest thickness observed while other films 

have thickness between 2700-3000nm. Figure 7.2 (d) indicates that increasing the substrate 

temperature to 350C with the same deposition conditions of fig. 7.2 (c) shows columnar and 

faceted structure.  
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 a     b 

 

c   d 

Figure 7.2 SEM cross-section images for films: (a) 250C, -100V, (SS:1/Cr:3) (b) 250C, -140V, (SS:1/Cr:3)  (c) 250C, -
140V, (SS:1/Cr:1)  and (d) 350C, -100V, (SS:1/Cr:1). 
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7.4 Mechanical and Tribological properties of SS-Cr-N 
 

Knoop hardness test using micro-indenter was used to measure the hardness of the coated 

films applying a 10-gram load. The effect of films deposited at different power ratios on the SS-

Cr-N films are shown in Figure 7.3.  The effect of substrate temperature is shown in Fig. 7.3(a) 

for a constant bias of -140V and power ratio of 50SS/150Cr. The film with substrate 

temperature of 250oC had the highest hardness with a value of nearly 4639 kg/mm2.  The effect 

of depositing films at bias varied between -100V and -160V at a constant substrate temperature 

of 250C and 50/150W power ratio is shown in Fig. 7.3(b) and shows a peak hardness (of 4639 

kg/mm2) was obtained at -140V, and then declined at -160V to a value of 2566.42 Kg/mm2.  Fig. 

7.3(c) shows the effects of power ratio.  The data point at a power ratio of zero represents a 

CrN films, which had a hardness of 2566 kg/mm2.  A small increase in the SS content had a 

dramatic increase in hardness, and then further increases in SS reduced hardness.  The last 

value shown at a power ratio of 3.0 had a hardness similar to the SS-N films examined in 

Chapter 4.   
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Fig. 7.3:  The hardness of SS-Cr-N films deposited at different effects (a) effect of substrate temperature; (b) effect 
of varied bias; (c) effect of applying different power ratio. 
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The tribological behavior of SS-Cr-N films was examined by pin-on-disk testing at room 

temperature. An alumina ball (6.25 mm diameter) was utilized as the counterface. A 100g (1N) 

load was applied, and the sliding track was rotated at 200 rpm and the coated disks were run to 

reach nearly 4500 cycles. Fig. 7.4 shows that the tribological properties of the SS-Cr-N films 

deposited at a constant power ratios of 50W/150W and different temperature and bias levels.    

The results are also tabulated in Table 7.3, showing the average, maximum, minimum and 

standard deviation in friction values. The film which was grown at 150C and -140V displayed the 

lowest average of the friction coefficient obtained in this study (0.35). Increase the deposition 

temperature to 250C at the same bias showed a higher friction. It is interesting to note that the 

friction coefficient higher in the latter film even though it had a higher hardness in comparison 

to the 150C film. Moreover, reducing the bias to -100V showed an even a worse result and this 

might be because this coating has a much lower hardness compared to the other films. Increase 

the substrate temperature further to 350C showed an improved friction coefficient with an 

average of 0.36. 

The wear track was observed after the pin-on-disk tests as shown in Fig. 7.5 (a-d) which shows 

optical microscopy images of the wear tracks of films deposited from 150-350C at -100V and -

140V.  Figures 7.5a and 7.5d which indicated the improved friction coefficient, showed uniform 

wear tracks. In these two images, there are spots on the coatings which are related to film 

defects. These spots also shown in the wear tracks as well, indicating the coating is still present 

in the wear tracks. The wear track in Fig. 7.5(b) show the film has worn off and this is consistent 

with the high friction coefficient (0.53) as shown in Table 7.3. 
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Figure 7.4: The friction coefficient of the SS-Cr-N films deposited at 150C-350C with bias varied between -100-140V 
and a constant SS/Cr sputter guns power of 50W/150W 

 

 

Sample μ(average) μ(max) μ(min) Std. dev 

150C-140V 0.35 0.339 0.327 0.018 

250C-100V 0.53 0.56 0.495 0.019 

250C-140V 0.47 0.51 0.38 0.028 

350C-140V 0.36 0.395 0.32 0.026 

Table 7.3: Pin-on-disk friction test results of SS-Cr-N selected films 
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Figure 7.5a SS-Cr-N-150C-140V-50W150W                               Figure 7.5b SS-Cr-N-250C-100V-50W-150W 

 

                   

Figure 7.5c SS-Cr-N-250C-140V-50W150W              Figure 7.5d SS-Cr-N-350C-140V-50W150W 

Fig. 7 (a-d) SEM cross-section 

 

 

 7.6 Summary and Conclusions 
 

Nitrogen containing 304 austenitic stainless steel and chromium targets were used to co-deposit 

SS-Cr-N films onto silicon substrates by reactive magnetron sputtering. The effect of power, 

substrate temperature, and substrate bias on SS-Cr-N coatings were evaluated in order to 

enhance the mechanical and tribological properties of the stainless steel. X-ray diffraction 

presented that SS-Cr-N structure is nominally FCC but the (200) peak shifted to higher 2 angles 

in samples where the N content is below about 40%. Chromium concentrations up to 54% were 
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observed and showed a very high hardness for several SS-Cr-N films a with hardness maximum 

of ~ 4639.8 Kg/mm2 at 250C/-140V. These films contain nitrogen concentrations of about 40%. 

The friction coefficient of the coated films were examined and showed an improved friction 

coefficient (0.35) for a film deposited at 150C/-140V. 
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CHAPTER 8: Expanded Austenite in Stainless Steel Carbide 
 

8.1 Film Composition Analysis of SSC 

 

Stainless steels-carbon (SSC) films were deposited by a variety of conditions as shown in Tables 

8.1 and 8.2. These films are tabulated into 3 groups according to common sputter gun power 

levels.  Within each group the substrate temperature is varied but the bias used for all films was 

constant at -140V.  These films were deposited at a targets-to-substrate distance of 9cm and a 

deposition time of 3h. The carbon contents of the deposited films were determined by XPS, and 

the C/M (M: metal) is calculated as shown in the tables.  Note that the metal concentrations are 

not specifically listed, but the metal fraction can be divided into the nominal alloy proportions 

for 304 stainless (0.74 Fe, 0.18 Cr and 0.08 Ni).  

The first group of films was deposited from room temperature to 450C and gun power levels of 

150W and 50W for the stainless steel and carbon sputter guns, respectively (C/SS power ratio 

of 0.33). Table 8.1 shows that increasing the substrate temperature first led to an increase in 

the carbon content up to 350C which has the highest C/M level in this group (0.33), after which 

there is a sharp decline at 450C. Group 2 shows films deposited at SS: 75W and C: 150W (C/SS 

power ratio = 2) and at different substrate temperature.  Overall, the carbon concentration was 

higher in these films, and increasing the deposition temperature from 25-250C led to a slight 

increase in the carbon concentration in the films, which peaked at 250C and declined slightly at 

350C (although these differences are close to the accuracy expected in XPS analysis).   

 

The effect of increasing the power from 25-150W at a constant substrate temperature 250C is 

shown in the third group as shown in table 2. This set shows an increase in the power of the 

carbon target to the stainless steel target from 25-50W led to an increase in the Carbon content 

from 16.58 to 19.23%. After that when the carbon power was more increased to 100W, the 

carbon content started to be decreased while increasing the power to 150W made the carbon 

content to increase again to reach 37.08 at%. C.  
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Temp., oC At.% C C/Metal 

Group 1: -140V Bias, SS:150W, C:50W 

25 13.03 0.15 

250 19.23 0.24 

350 24.89 0.33 

450 18.35 0.22 

Group 2: -140V Bias, SS:75W, C:150W 

25 44.37 0.79 

150 46.06 0.85 

250 52.45   1.10 

350 50.63 1.06 

 

Table 8.1: Deposition Parameters and Carbon Content for SS-Carbon Films for states 1 and 2 

 

 

Power, W At.% C C/Metal 

Group 3: -140V Bias, SS:150W, 250C 

25 16.58  0.19 

50 19.23 0.24 

100 10.44 0.12 

150 37.08 0.59 

 

Table 8.2: Deposition Parameters and Carbon Content for SS-Carbon Films; state 3 
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8.2 XRD Results 

 

Fig. 8.1 shows the XRD results for SS-carbon films deposited from room temperature to 450C at 

-140V and constant SS and C power levels of 150W and 50W, respectively. For films deposited 

from 150C-350C, the structure is consistent with an fcc-based phase. As the temperature 

increases, the lattice constant decreases, but the structure is maintained up to 350oC. In general 

Increasing the substrate temperature leads to an increase in the 2 angle of the (111) and (200) 

peaks. Also, the peak position of the (111) peak is near 44-45o 2θ, which corresponds to a lattice 

parameter of 0.349-0.356 nm, considerably lower than that found for SS/nitrogen films which 

were near 0.4 nm.  In fact, the lattice constant for these SS-C films is close to that found for 

austenitic stainless steels without carbon. At 450oC, the formation of iron carbide and possibly 

nickel are observed. 

 

 

Figure 8.1: XRD diffraction patterns for SS-carbon films deposited at -140V bias and temperature ranging from 25-
450C (state 1). 
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Figure 8.2 indicates XRD scans for SSC films (state 2) deposited to reach high carbon near 

stoichiometric where C/Metal is nearly 1. Possible matches include iron carbides (FeC), chromium 

carbide (CrC) and nickel (Ni) are found in this state. As shown in the graph as the temperature 

increases, the films showed more phases including FeC, CrC, and Ni. 

 

 

 

 

 

Figure 8.2: XRD diffraction patterns for SS-carbon films deposited at -140V bias.  As the temperature increases, the 
films showed more phases including FeC, CrC and Ni. 
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Furthermore, the crystal structure of the SSC was also studied for the third state as shown in 

graph 8.3 where films deposited at a constant substrate temperature 250C and varied carbon 

gun power from 25W-150W. S-phase was determined at films fabricated at 25W, 50W and 100W. 

Also, (111) and (200) refection peaks were not shifted when the power was increased. In fact, 

the film deposited at a carbon power of 150W, the film doesn’t show S-phase, and this is might 

be as a result of the high carbon content that this coating had.  

 

 

 

Figure. 8.3: SSC films deposited at a 250C and varied carbon power ranging 25W-150W with keeping the stainless 
steel sputter gun power at 150W. 
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8.3 Mechanical Properties  

 

Fig. 8.4 shows the Knoop hardness of stainless steels-carbide (SSC) films deposited at states 1 

and 2. For state 1, the hardness remains constant from room temperature to 250C, and then 

increases at 350C to reach a value of 1700 Kgf/mm2. It should be noted that 350C has the 

highest carbon content (24 at. %) in this series. At 450C there is a sharp decreasing in the 

hardness, possible due to the formation of iron carbide. Additional films were deposited at a 

power ratio of SS: 75/C: 150W, and are shown in Fig. 8.4 as state 2.  The hardness increases 

when the substrate temperature increases until reaches a hardness of 2256 Kg/mm2 at 250oC 

thereafter decreases slightly. A previous study of stainless steel/C samples reported hardness 

level of about 1400 Kgf/mm2, but in this study, the hardness for the SS-C films has been strongly 

increased in comparison. 

 

Figure 8.4: Hardness data for SS-carbon films.  The higher hardness levels observed in state 2 films were due to 
higher (near 50 at. %) concentrations of carbon in the films. 
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Fig. 8.5 shows the Knoop hardness of SCC for films deposited at different powers ranging from 

25W to 150W at a constant substrate temperature 250C. The hardness increases with 

increasing the power from 25W-100W. However, the film with equal stainless steel and carbon 

powers (150W for each sputter gun) shows a sharp decreasing in the hardness with a value of 

1277.13 Kg/mm2. This film has the highest carbon content in state 2 with 37.08 at. %.  

 

 

 

 

Figure 8.5:: The Knoop hardness of SCC for films deposited at state 2 where films deposited at powers varied 
between 25W and 150W as a function of the Knoop hardness. 

 

 

4 Discussion  

 

Films of stainless/steel carbon have been deposited by co-sputtering. Three states were 

examined in order to study the composition, structure and enhance the hardness of these films.  

X-ray diffraction showed the structure maintained S-phase when these films have carbon 

contents between 10-19% as seen in most deposited films in states 1 and 2. In state 1 which is 

seen in graph 8.1, increasing the substrate temperature for films deposited from room 

1220
1240
1260
1280
1300
1320
1340
1360
1380
1400
1420
1440

0 20 40 60 80 100 120 140 160

K
n

o
o

p
 H

ar
d

n
es

s 
K

g/
m

m
2

Power (Watt)

Case 3



134 
 

temperature to 350C showed an increasing in the 2 angle of the (111) and (200) refection peaks. 

Furthermore, increasing the temperature further to 450C multiple phases were obtained where 

the film contains FeC, CrC and Ni. State 2 has carbon contents near stoichiometric where these 

films don’t include S-phase. In fact, these films show multiple phases. The effect of applying 

different power at a constant substrate temperature 250C and stainless steel power of 150W 

was studied as shown in graph 8.3 (state 3). These films maintain S-phase at films deposited from 

25W-100W. At C: 150W the film contains multiple phases (FeC, CrC and Ni) and this is because 

this film has a high carbon content (37.08 at. %). 

  

The hardness of the SSC films also examined.  State 1 showed that increasing the substrate 

temperature led to an increase in the hardness up to 350C where this film has the highest 

hardness in this state nearly 1700 Kg/mm2. Increasing the temperature further to 450C made the 

hardness to start sharply decreasing which has a hardness of 1015.58 Kg/mm2. The higher 

hardness levels are observed in state 2 where these films have carbon concertation of nearly 50 

at. %. State 3 showed almost a stable hardness level with increasing the power from 25-150W 

where the observed hardness is between 1200-1400 Kg/mm2.   

 

8.5 Conclusions 
 

Stainless steel co-sputtered with carbon (SSC) films were studied at varied substrate 

temperature, bias, and power. These films maintained S-phase structure when deposited below 

450oC as well as having carbon contents <25% but the lattice constant is close to that of the 

austenite stainless steel that deposited without carbon. In these films, It was found that 

increasing the substrate temperature led to an increasing in the (111) and (200) peaks. Higher 

concentrations of carbon near 50% were obtained in several cases results in Fe/Cr carbide 

formation. These films tended to have the highest hardness amongst the three SSC states and 

reached a maximum of over 2200 kgf/mm2.  The best film observed in this study is the film that 

deposited at SS: 75W and C: 150W where the obtained hardness was 2256.05 Kg/mm2. Films 

that contain S-phase structure has a hardness level of about 1700 Kgf/mm2. 
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Chapter 9: Summary and Conclusion  

 

Reactive magnetron sputtering was used to deposit coatings from a 304 stainless steel target 

(nominal composition 18%Cr, 8% Ni, balance Fe).  Deposition was carried out in a mixed 

argon/nitrogen atmosphere. Co-sputtered of SS-Ti-N, SS-Cr-N and SS-C were also deposited with 

the same method. Results of the work are summarized shown below: 

                        1-    SSN films were deposited in a mixed argon/nitrogen atmosphere with Ar:N2 

ratios of 4, 1.5 and 1, and a total gas flow of 25 sccm for all cases.  Substrate temperatures ranged 

from 150 to 600oC, along with substrate bias levels from -100V to -140V.   

XPS determined that the nitrogen content increases with increasing the nitrogen in the gas 

composition. Also, XPS found that increasing the substrate temperature reduced the nitrogen 

content. However, increasing the bias only slightly decreased the nitrogen content. XRD analyses 

showed the structure of the coatings were strongly temperature dependent: above 450oC, the 

films were a mixture of CrN, bcc-Fe and Ni; below 450oC the S-phase (a N-supersaturated fcc 

structure) was observed and show the typical FCC pattern with a slightly displaced (200) peak. 

The shift of the (200) peak is decreased with increasing tilt of the surface plane.  

SEM cross-sections for samples deposited below 450oC, where the S-phase was found, had 

discontinuous, angular crystallites, whereas at higher substrate temperatures the structure had 

the appearance of a loose particle aggregate.  At higher nitrogen has concentrations (Ar:N2 of 

1:1) a more typical columnar structure was found.  TEM cross-sections showed a mosaic structure 

in coarse columns which is an uncommon observation for the film morphology. In addition, 

Hardness testing of the film deposited at 250C and -140V bias gave a value of 2100 kg/mm2. 
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                        2-    SS-Ti-N coatings were studied for the purpose of examining the mechanical 

and tribological properties of stainless steel films deposited to incorporate large concentrations 

of nitrogen along with varying amounts of titanium.  Deposition was carried out using 

magnetron co-sputtering of stainless steel and titanium from separate targets in a mixed Ar/N2 

gas. Titanium levels of up to ~14 at. % was obtained with near 46 at. %. X-ray diffraction showed 

that the films all had a nominally f.c.c. structure with no additional phases, but sub-

stoichiometric films had an S-phase structure whereas stoichiometric films had TiN-type 

rocksalt structure. The stoichiometric films also had a superior hardness 18-24 GPa (1800-2447 

Kg/mm2) compared to the sub-stoichiometric films. A tribological analysis of the films was 

conducted using a pin-on-disk test with an alumina ball, and the best results were obtained on 

a stainless-steel/Ti/N film deposited at 150oC and -140V bias, where the average friction 

coefficient was 0.39.  

                     3- Thin films of AISI 304 stainless steel nitrides selected from chapter 4 and 

nitrogen-containing stainless steels co-sputtered with titanium selected from chapter 5 were 

deposited onto silicon substrates by magnetron sputtering in a mixed argon/nitrogen gas 

atmosphere. The effects of nitrogen and titanium concentrations, substrate temperature and 

substrate bias were examined. The structural nature of the films was assessed using a term  

R= [sin2(111)/sin2(200)], which nominally has a value of 0.75 for fcc-structured films; however, 

films in the present study had S-phase structures with R-values of up to 0.818. The higher R-

values generally correlated with the degree of sub-stoichiometric nitrogen concentrations in 

the films, but for substrate bias levels of 60-140V, the R-values decreased with increasing 

substrate temperature. The addition of titanium to the films by co-sputtering showed that with 
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a sufficient amount (~10-14 at.% Ti), stoichiometric levels of nitrogen were obtained and giving 

R = 0.75.  However, films which had Sub-stoichiometric levels of nitrogen concentrations 

showed higher R-values (>0.75). In addition, the relationship between increasing R-values and 

decreasing nitrogen content was weak. The correlation of R-value to the substrate temperature 

for films deposited without or with lower titanium contents was obtained and showed that 

increasing the deposition temperature led to a decrease in the R-value. In contrast, R-values for 

films with higher Ti content were independent of the substrate temperature. The effect of the 

bias was investigated and showed that the nitrogen concentration in the coated films 

decreased with increasing bias, and the R-value decreased when deposited films from -60 to -

100V then followed by an increase in R-value when deposited at -140V. The effect of the 

morphology on R-value was examined but could not consistently explain the R deviations.  

Instead, a structure is proposed involving lattice distortions due to the high concentrations of 

vacancies on the interstitial sublattice was proposed. SEM cross-section studies of films 

deposited at low Ti concentrations (3-5.24 at.% Ti) showed a coarsing structure with increasing 

the substrate temperature as well as voided, faceted columnar structure. TEM images revealed 

that a faceted, dendritic structure was observed for films fabricated at 150C and 250 oC with 

less branches at 350C. Additionally, increasing the substrate temperature from 150-350 oC 

which led to a decrease in the R-value, gave the structure of the films higher densities. The 

effect of the stacking fault density of the layered morphology, which were observed in the SEM 

and TEM images, was examined. According to Warren, the presence of stacking faults will shift 

Bragg peaks from their expected values. The determined number (2 = 0.022o) did not agree 

with the value of 2 that measured from our XRD (2=1.40) results. Based on the XRD 
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results, high stacking faults should be seen in the TEM images. Instead, TEM images showed 

dendritic pattern structures which is due to the limited amount of surface diffusion as reported 

in the literature.  

 
                    4- Nitrogen infused- co-sputtered of 304 austenite stainless steel and chromium (SS-

Cr-N) were deposited under a multiplicity of deposition conditions and substrate temperatures. 

Effect of applying different power, substrate temperature, gas composition and substrate bias 

on of the SS-Cr-N coatings were evaluated in order to improve the mechanical properties and 

the wear resistance of the films. X-ray diffraction showed that SS-Cr-N structure is basically FCC 

but the (200) peak diffracted at higher angles. Chromium concentration up to 54% was 

observed and showed a very high hardness at several SSS-Cr-N films with a maximum hardness 

observed of ~ 4639.8 Kg/mm2 at 250C and -140V bias. These films tend to have a nitrogen 

concentration of ~ 40%. The friction coefficient of the SS-Cr-N coated films was examined and 

showed an improved friction coefficient (0.35) for a film deposited at 150C/-140V.  

 
                      5- Co-deposition of Stainless steel/Carbon films (SS-C) using carbon target in Argon 

(Ar) atmosphere were studied at a variety of parameters. In general, increasing the deposition 

temperature led to an increase in the carbon concentration in the films and a maximum 

percentage of 52% were obtained for a film deposited at 250C/-140V. XRD results showed S-

phase could be produced when films have carbon concentrations between 10-19%, whereas 

films near stochometric showed multiple phases include FeC, CrC and Ni. The Knoop hardness 

showed SSC films that maintained S-phase structure had a hardness level of 1700 Kgf/mm2 
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while films near 50 at. % concentration showed a very high level hardness of nearly 2256 

Kgf/mm2.  
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