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ABSTRACT

PLANT WATER USE AND CANOPY-FOG INTERACTIONS 

ACROSS A LAND USE CHANGE TRAJECTORY OF 

PASTURE TO PINE REFORESTATION IN A 

SEASONALLY DRY TROPICAL MONTANE CLOUD BELT

by

Maria Susana Alvarado Barrientos 

University of New Hampshire, May, 2013

Understanding evapotranspiration (ET) variation associated with land use change is 

critical for assessing impacts on water resources and improving the applicability of 

climate models to predict water availability under future climate scenarios. The overall 

objective was two-fold: i) to examine ET variation associated to a land use change 

trajectory foreseen to increase in tropical mountains, and ii) to assess fog effects on tree 

transpiration (Et) and the potential implications of projected diminishing fog occurrence. 

An actively grazed pasture (PAS) represented the land use change baseline, and young 

(YREF) and mature (MREF) Pinus patula plantations represented typical reforestation 

efforts and subsequent local forest management. A combination of process-based 

measurements of near-surface climate and plant physiology were used to derive rates of 

Ex and ET over a 1.5-year period in the seasonally dry tropical montane cloud belt of 

central Veracruz, Mexico. Four stand-alone articles are presented. In the first chapter, sap



velocity radial profiles are studied in detail as a critical initial step in up-scaling point 

measurements to whole-tree sapflow and deriving reliable estimates of stand-level Et. 

The second chapter presents ET estimations for the three land cover types. Ranking of ET 

normalized by available energy (net radiation) was: PAS (0.80) = YREF (0.80) > MREF 

(0.42). Results suggest that in this high radiation and non-water limited environment, 

planting P. patula on former pasture uplands would not result in substantial increases in 

ET after >10 years of planting. Next, the Et suppression effect of fog was examined in the 

third chapter. Given relatively low fog frequency under current climate, if all fog 

occurrences are replaced by overcast conditions, the potential change in annual Ex for 

YREF was estimated as a 2% increase; for sunny conditions, the increase was 17%. 

Lastly, in chapter 4, examination of nighttime Et in relation to the dynamics of fog 

occurrence revealed a slight increase in hourly rates during dry nights following fog 

events. These findings suggest that climate change-related decreases in dry-season 

precipitation, more than diminishing fog occurrence alone, presents a worrisome prospect 

for the study area due to potential reductions in soil water reserves.



INTRODUCTION

Ecosystems of tropical montane regions vary widely in appearance, structure and 

composition not only due to gradients of microclimate, edaphic conditions and natural 

disturbances (Bruijnzeel et al., 2011; Martin et al., 2007), but also due to past and present 

human intervention (Foster et al., 2003). Consequently, these landscapes are typically 

patchy, consisting of different types of montane forests o f varying degrees of 

conservation or regeneration, pastures, crops and agroforestry systems, tree plantations, 

and human settlements (Aide et al., 2010; Mufioz-Villers and Lopez-Bianco, 2008; 

Sarmiento and Frolich, 2002; Williams-Linera, 2007). The structure and species 

composition of a particular land cover has a substantial influence on the magnitude and 

rate of water moving through the soil-plant-atmosphere continuum; consequently, the 

replacement of one land cover with another may modify the fluxes of water and energy 

(Lambers et al., 2008; Monteith and Unsworth, 2007).

There are multiple potential consequences of land-cover alterations at different 

scales. For instance, the amount of precipitation available for infiltration, runoff 

production, and ultimately, for streamflow generation, is affected by the magnitude of 

total plant water use of a certain land cover (evapotranspiration -ET), as the hydrological 

cycle is intrinsically coupled to vegetation (Shuttleworth, 2012). Also, latent heat (i.e. ET 

in units of heat flux density) is a major driver of climate (Andre et al., 1989; Niyogi et al., 

2009; Pielke et al., 1998). Drastic alterations in structure and species composition may 

lead to important changes in surface net radiation and its partitioning into latent and 

sensible heat flux, as well as changes in the aerodynamic roughness of the land surface
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(Monteith and Unsworth, 2007), ultimately impacting climate forcing. The anthropogenic 

influence on regional and global climate via land-use changes is much less understood 

than that from the changes in the chemical composition of the atmosphere (Bonan, 2008; 

IPCC, 2007), and consequently, poorly taken into account in climate change models 

(Pielke et al., 2011; Pitman, 2003).

Therefore, understanding the variation in ET associated to alterations in land use 

is critical not only for the assessment of land-use change impacts on water resources 

(Bosch and Hewlett, 1982; Farley et al., 2005; Zhang et al., 2001) but also to elucidate 

the influence and feedbacks of land-use change on the weather and climate (Pielke et al., 

2011; Pitman, 2003) and, ultimately, improve predictions of water availability scenarios 

(Jackson et al., 2001). Moreover, without reliable estimates o f ET for different land 

covers at the same operational scale that land management practices are conducted (i.e. 

parcel-scale), it is not possible to develop local and sound land management policies 

(Betts, 2000; Calder, 2007; Kaimowitz, 2005; Tallis et al., 2008).

While in principle, the processes that drive and limit ET given a set of land 

surface characteristics are well understood, predicting changes in ET associated with 

land-cover variation is complex in practice (Zhang et al., 2010). Surface parameters 

required by models are oftentimes applied to a wider range of vegetation conditions from 

which they were derived in the first place, increasing prediction uncertainty particularly 

for tropical and mountainous regions (Zhang et al., 2010), from where 

hydrometeorological and plant physiological data are mostly lacking (Manley and 

Askew, 1993). Furthermore, the lack of local ground data limits the validation of 

modeling results (Pielke et al., 2011).
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On the other hand, ET and its components (i.e. plant transpiration and the 

evaporation of precipitation intercepted by vegetation and soil surfaces) are also affected 

by prevailing weather conditions (Shuttleworth, 2012). Frequent immersion in ground- 

level clouds, or fog, is a ubiquitous feature of ecosystems located within mountain cloud 

belts (Bruijnzeel et al., 2010). The direct hydrological effect of fog on the water budget of 

forest ecosystems (i.e. cloud water canopy interception) has been researched extensively 

(cf. Bruijnzeel et al., 2011; cf. Giambelluca and Gerold, 2011), but the indirect effects of 

foggy conditions, such as the suppression of plant transpiration, has been largely 

overlooked and not routinely quantified. This restricts a complete understanding of the 

net hydrological effect of fog. Also, it limits the understanding and predictability of the 

consequences of the projected reductions in ground-level cloud immersion under future 

drier and warmer climate in tropical montane regions (Barradas et al., 2010; Karmalkar et 

al., 2011; Lawton et al., 2001; Richardson et al., 2003; Van der Molen et al., 2006; 

Williams et al., 2007).

Given the importance of generating data and analyses that advance the 

understanding of complex ecohydrological interactions in tropical montane ecosystems, 

the purpose of the present dissertation was twofold: (i) to examine the variation of ET 

associated to a land-use change trajectory foreseen to increase in tropical uplands; 

and (ii) to assess the effect of fog occurrence on tree transpiration and the potential 

implications of the projected diminishing cloud immersion. The seasonally dry 

tropical montane cloud belt of central Veracruz, eastern Mexico, was selected as the 

study area because most attention has been given to ecosystems in wetter tropical cloud 

belts (e.g. Costa Rica, Hawaii, and Puerto Rico; cf. Bruijnzeel et al., 2010). Also because
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understanding the hydrological impacts of both land-cover and climate change are very 

important for sites that present seasonality with respect to rainfall. For the particular case 

of the study area, 80% of annual precipitation falls during 6 months of the year (May- 

October) and fog occurs more frequently during the dry season (Nov-April; Holwerda et 

al. 2010). Thus the present study area also enables the exploration of the notion that the 

hydrological role of fog may be more important for seasonally dry environments 

compared to wetter (Bruijnzeel et al. 2010).

The conversion of old-growth forests to pasture or other crops such as shaded 

coffee plantations has been the main land-use change trajectory in tropical uplands (Aide 

et al., 2010; Munoz-Villers and Lopez-Bianco, 2008). During the past decade however, 

there has been an increase, albeit small, of forested land cover worldwide (FAO, 2010). 

Natural forest recovery in tropical uplands is limited mainly by invasive species 

competition (e.g. grasses and ferns) and poor seed dispersal o f native tree species (c.f. 

(Aide et al., 2010; Muniz-Castro et al., 2006). For this reason, the main tool available to 

restore degraded tropical lands is tree planting, as it has the potential to catalyze forest 

regeneration (Parrotta et al., 1997; Pedraza and Williams-Linera, 2003). Indeed, tree 

planting is actively promoted as a solution for a wide variety of problems, from 

improving water quality and supply to mitigating climate change and alleviating rural 

poverty (Calder, 2007; Kaimowitz, 2005; van Dijk and Keenan, 2007). Therefore, tree 

plantations are foreseen to expand in tropical uplands with the increase of direct incentive 

programs (e.g. Pro-Arbol in Mexico; Valtierra Pacheco et al., 2008) including the 

establishment of plantations in the context of markets to offset carbon emissions 

(SEMARNAT, 2010; UNEP, 1998). Other important drivers o f the expansion of forested
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land cover in tropical montane regions are land-use policies and/or socio-economic 

causes that incentivize abandonment of pasture and crop lands and eventual forest 

regeneration (e.g. Aide and Grau, 2004; Calvo-Alvarado et al., 2010; Grau et al., 2003).

In the case of Mexico, the most widely used tree species in reforestation projects 

are conifers, and in central Veracruz, this includes the Mexican weeping pine (.Pinus 

patula-, Valtierra Pacheco et al., 2008). Pine reforestations established on former 

introduced pasture in the uplands are foreseen to expand (Carabias et al., 2007; Sanchez- 

Velasquez et al., 2009; SERMARNAT 2010) and stakeholders from lower-lying areas are 

eager for information about the hydrological impacts of these plantations (Perez-Maqueo 

et al., 2005; Scullion et al., 2011). Energy and water fluxes from old-growth lower 

montane cloud forest (LMCF), 20-year-old regenerating LMCF, and shaded coffee 

plantation have been examined recently (Goldsmith et al., 2012; Holwerda et al., 2013; 

Holwerda et al., 2010; Munoz-Villers et al., 2012; Munoz-Villers and McDonnell, 2012). 

With the aim to add to this growing body of knowledge and improve our understanding 

of the hydrological consequences of different land-use change trajectories in tropical 

montane regions, the present study focused on the estimation o f ET from pasture and P. 

patula plantations at two different stages of stand development: a young (10-year-old) 

reforestation near canopy closure, and a mature heterogeneous forest dominated by P. 

patula (canopy trees age ranging from 17 to >60 years). Both forested sites were formerly 

managed as pasture for grazing livestock with some scattered trees as remnants of 

previous old-growth forested land cover. The approximate years since establishment of 

the current land use for the mature pine forest was 30 years (local inhabitants, pers. 

comm.). This work also addresses the response of tree transpiration to the occurrence of
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ground-level cloud occurrence (or fog). Specifically, the suppressive effect of fog 

occurrence and the effect of prior fog immersion on nocturnal transpiration rates was 

assessed in detail for the young pine reforestation.

The present dissertation is organized as a collection of four independent research 

articles that build upon each other and address specific questions and objectives under the 

overarching twofold purpose described above. In Chapter 1, the characterization of sap 

velocity radial profiles for P. patula is presented as a critical initial step in up-scaling 

point measurements of sap velocity to whole-tree sap flow. This in turn, is necessary to 

reliably estimate stand-level tree transpiration, which is generally the main component of 

ET from forests (Shuttleworth, 2012). Chapter 2 addresses the estimation and comparison 

of ET across the land-use change trajectory of pine reforestation. Next, the effect of fog 

on stand-level tree transpiration is examined in Chapter 3. The implications of a projected 

rise of the cloud base on the annual amounts of transpiration from a young pine 

plantation are also addressed in Chapter 3. The interesting phenomenon of nighttime pine 

transpiration was examined in the context of diminishing fog occurrence and presented in 

Chapter 4. Lastly, a series of supplemental information and figures are presented in the 

Appendix.
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CHAPTER I

VARIABILITY OF THE RADIAL PROFILE OF SAP VELOCITY IN PINUS 

PATULA FROM CONTRASTING STANDS WITHIN THE SEASONAL CLOUD 

FOREST ZONE OF VERACRUZ, MEXICO1

Abstract

Characterizing the variability of the radial profiles of sap velocity (vs) is a critical step to 

improve upscaling point measurements of vs to whole-tree sap flow. One promising 

approach is the use of a probability distribution function (pdf) to model radial profiles of 

vs, because shape parameters could potentially be generalized to trees of the same species 

based on the premise that the shape remain consistent regardless of the tree size and age, 

and over time, even though the magnitude of vs may vary with environmental conditions. 

The objective of this study was to characterize and assess the variability of the radial 

profile and to examine the validity of the premises underlying this approach by applying 

it to Pinus patula, one of the most widely planted tree species in the uplands of central- 

eastern Mexico. We measured vs with the Heat Ratio method at various sapwood depths 

in 18 P. patula trees with a dbh between 7.3-59.7 cm and age between of 10-34 years, 

over a period of 1.5 years. Trees were growing in two stands: a  mature forest stand and a 

young plantation. By fitting the Beta-pdf to hourly radial profiles of V5, we derived a

' Reproduced (with permission) from copyrighted material:
Alvarado-Barrientos. M.S.. Hem&ndez-Santana, V., Asbjomsen, H., 2013. Variability o f the radial profile 
of sap velocity in Pinus patula from contrasting stands within the seasonal cloud forest zone o f Veracruz, 
Mexico. Agricultural and Forest Meteorology 168: 108-119
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lumped shape parameter (p) to denote the radial position relative to sapwood depth with 

average v$ and a scaling parameter (cs). The typwas unimodal, asymmetrical and with 

peak vs generally within the outermost 20-33% of the sapwood depth. However, tree-to- 

tree variability in p  was considerable among trees within the same stand and also across 

stands. Long-term and day-to-day variation of p  was marginal. The hourly dynamics of 

the radial profile, characterized by cs, can be explained by a linear combination of 

incoming shortwave radiation, vapor pressure deficit, the hour of day and their interaction 

(r2=0.74). An independent field evaluation confirmed that a radial profile of fixed shape 

can be effectively used to estimate whole-tree sap flow with relatively low bias (4-26% 

underestimation) relative to cut-tree water uptake, particularly for trees for which v$ 

observations covered at least 60% of the sapwood depth. Our findings emphasize the 

importance of conducting multiple vs point measurements covering most of the sapwood 

depth for accurate characterization of the radial profile, and demonstrate the utility of 

fitting a pdf to point vs measurements in order to assess the variability of vs radial profiles 

as well as to compute sap flow at the whole-tree level.

1. Introduction

Sap flow techniques that use needle-like probes inserted in tree stems using heat as a 

tracer for sap ascent, such as heat pulse velocity methods (Burgess et al., 2001; Huber 

and Schmidt, 1937; Marshall, 1958) are now widely used to derive estimates of whole- 

tree sap flow, which in turn, is used to upscale transpiration to the stand level 

(Asbjomsen et al., 2010; Cermak et al., 2004). Whole-tree sap flow is computed by 

multiplying sap velocity (vs) by the cross-sectional area of sapwood at the measurement
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height in the stem. As vs typically varies radially with sapwood depth (Cohen et al., 2008; 

Gebauer et al., 2008; Jimenez et al., 2000; Mark and Crews, 1973; Phillips et al., 1996), 

an accurate characterization of the radial profile of vs is critical to scaling point 

measurements to the whole-tree level (Delzon et al., 2004; Ford et al., 2004b; Hatton et 

al., 1990; Nadezhdina et al., 2002; Wullschleger and King, 2000), and ultimately, to stand 

transpiration (Fiora and Cescatti, 2006; Hatton et al., 1995; Poyatos et al., 2007). Several 

approaches have been used to characterize the radial variability o f vs and to integrate the 

radial profile across the sapwood depth and around the stem, including an area-weighted 

average (Hatton et al., 1990; Pausch et al., 2000) and a curve to fit several point 

measurements of vs (e.g. a second or higher degree polynomial (Cohen et al., 2008; 

Edwards and Warwick, 1984), a combination of a modified growth function with a decay 

function (Luttschwager and Remus, 2007), a four-parameter Weibull probability density 

function -pdf- (Gebauer et al., 2008; Kubota et al., 2005), a three-parameter Gaussian- 

pdf (Ford et al., 2004b), or the Beta-pdf (Caylor and Dragoni, 2009)).

Recently, an analytical framework was presented in which instantaneous vs at any 

point into the sapwood is defined as the product of a time-invariant and a time-varying 

term related to a species’ specific hydraulic architecture o f the trunk and to bulk 

atmospheric and soil moisture controls on transpiration, respectively (Caylor and 

Dragoni, 2009). This approach uses a bounded function, namely the Beta-pdf, to 

characterize the radial profile of vs and provide parameters to describe the time-invariant 

and time-varying terms. Furthermore, these authors proposed that the shape of the radial 

profile (i.e. the time-invariant term), among trees of the same species, is consistent if the 

location into sapwood of vs measurements is expressed in normalized units relative to the

9



tree’s size. They presented evidence of the consistency of the shape of the radial profile 

among trees of varying sizes for two diffuse porous species (Caylor and Dragoni, 2009). 

Furthermore, Dragoni et al. (2009) showed that the time-variant term of the radial profile 

can be strongly correlated to meteorological conditions such as atmospheric water 

demand and local soil water availability. An important implication of this framework is 

that a characteristic radial profile can potentially be generalized to trees of the same 

species regardless of their size, and the short-term dynamics of the radial profile modeled 

with meteorological variables. Moreover, it opens the possibility to model the radial 

profile, and consequently whole-tree sap flow, for periods of time with few or no vs point 

data. Given its promising applications, this framework deserves further examination, not 

only for more species including conifers, but also to determine the extent to which the 

‘time-invariant’ component remains invariant over longer periods of time, which was not 

addressed in (Caylor and Dragoni, 2009). Furthermore, an independent evaluation of sap 

flow estimates at the whole-tree level derived from this approach has not been reported.

Pinus patula is one of the most widely planted tree species in reforestation 

projects in the uplands of southeastern Mexico, a trend that has sparked concern over 

potential hydrological impacts of extensive plantations on downstream water supply 

(Munoz-Villers et al., 2012). Assessing such hydrologic impacts requires accurate 

information about whole-tree and stand water use of this species, currently lacking. 

Earlier sap flow studies on P. patula plantations were conducted in South Africa (Dye et 

al., 1991; Dye et al., 1996) and presented some insight into the radial profile of vs for this 

species. However, temporal and spatial variation was confounded in the characterization

10



of the radial profile as short-term dynamics were largely ignored (Nadezhdina et al., 

2002) casting doubts on the radial shape of vs reported for this species.

With the present study we aimed to characterize the radial profile of v$ in P. patula 

within its native distribution range in Mexico, assess its variability and to determine 

whether a simple model can be formulated to estimate whole-tree sap flow based on a 

characteristic radial profile and measured meteorological variables. Specifically, we 

addressed the following questions:

• Is there a consistent shape amongst the radial profiles o f vs in P. patula trees of 

differing sizes/ages and stand development stage, and over an extended time 

period?

• Does the shape of the radial profiles characterized with point observations of vs 

made in the outermost portion of the sapwood change when deeper observations 

are included?

• To what extent do meteorological conditions, namely incoming shortwave 

radiation (Rs) and vapor pressure deficit (D), explain the short-term (hourly) 

dynamics of the radial profile?

• How do whole-tree sap flow estimates derived by assuming a variable or fixed 

radial profile shape compare to direct empirical measurements of water uptake?

2. Materials and Methods

2.1 Study sites and sample trees

The study was conducted within the seasonal tropical montane cloud forest zone of 

central Veracruz, Mexico (19° N, 97° W), which has a temperate humid climate with an
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average temperature of 12-18°C and a mean annual precipitation (MAP) of 2000-3000 

mm (Garcia, 1973). Approximately 80% of MAP occurs between May and October 

consisting of frequent showers and thunderstorms, while a relatively dry season occurs 

between November to April characterized by an alternation of stable dry weather and 

cloud immersion events consisting of mixtures of rain, drizzle and fog (Holwerda et al., 

2010). A detailed description of the climate of this zone can be found in Holwerda et al. 

(2010) and Goldsmith et al. (2012).

Our sample of Pinus patula trees consisted of 18 individuals: 10 trees from a 

young plantation (dbh range: 7.3-11.8 cm), and 8 from a mature forest stand dominated 

by P. patula (dbh range: 28.7-59.7 cm). The young stand (19.4931° N, 97.0422° W; 

2,180 m a.s.l.) was planted in 2000 within the natural reserve “La Cortadura” of the 

Municipality of the city of Coatepec, Veracruz, with a density o f 3,783 stems ha'1 and had 

not received any thinning treatments at the time of this study. Formerly this site was 

covered with mature lower montane cloud forest, locally known as “bosque mesofilo de 

montana” (Garcia Franco et al., 2008). Further topographical and soil characteristics of 

this site are provided by Munoz-Villers et al. (2012). The mature stand (19.5054° N, 

97.0559° W; 2470 m a.s.l) was located near the locality of “Tierra Grande”, 

approximately 2 km from the young stand. The original pine-oak forest was cleared 

approximately 70 years ago and managed as pasture for grazing livestock with some 

remnant trees (P. patula, P. pseudostrobus and Quercus spp.) and later was both 

reforested with P. patula and allowed to regenerate naturally (local inhabitants, personal 

communication). At the time of this study, the mature stand was comprised of multi­

cohort patches of P. patula and other species, predominantly P. pseudostrobus and
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Quercus spp., with an estimated density of 580 stems ha'1. The two study sites had 

similar aspect (South-East) and slope (20-26°). Sample trees were located within a 20 m 

radius at each study site, with the exception of 3 Y and 4Y (located ca. 300 m from other 

young trees, but planted the same year and at the same elevation) and 18M and 20M 

(located ca. 100 m from other mature trees and located at the same elevation).

2.2 Meteorological measurements

Meteorological stations were installed in open grassy and shrubby patches with SE 

exposure and located at 350 m and 450 m from the young and mature stands, 

respectively. The following parameters were available as 10 min averages from 30 s 

sampling intervals: i) incoming shortwave radiation (Rs) [W m' ] measured with a CMP3 

pyranometer (Kipp & Zonen, Netherlands) at 3 m above the ground; ii) vapor pressure 

deficit (D) [kPa] calculated as the difference between actual vapor pressure derived from 

psychrometric data (dry- and wet-bulb thermocouples, VU University, Netherlands) and 

saturation vapor pressure derived as in Lowe (1976) using air temperature from a 

HMP45C (Vaisala, USA) installed at a height of 2m; iii) precipitation [mm] measured 

with a tipping bucket rain gauge (ARG100, Environmental Measurements) installed at a 

height of 1.15 m; and iv) horizontal visibility [m] obtained with a Mini Optical Fog 

sensor (Optical Sensors, Sweden) installed at 3m above the ground. The occurrence of 

cloud immersion (or fog) was defined as instances with visibility < 1000 m (Glickman, 

2000), and in order to avoid very short and isolated occurrences, cloud immersion events 

were defined as periods with at least 4 observations with visibility < 1000 m within 6 

consecutive 10-min observations (Tardif and Rasmussen, 2007).
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2.3 Sap velocity measurements

The Heat Ratio method (Burgess et al., 2001) was used to obtain point measurements of 

vs within the sapwood of the sample trees. Probe sets were custom-made in the laboratory 

following (Burgess et al., 2001). For the entire study period (Nov 2008 -  May 2010) all 

trees had one probe set with three copper-constantan thermocouples, such that heat pulse 

velocity was measured at three depths into the sapwood (0.5, 1.7 and 3 cm from the 

cambium). These probe sets were installed into the stem at breast height (1.40 m from the 

ground) at the north facing side and following standard installation guidelines as 

described in Hemandez-Santana et al. (2010). To avoid introduction of bias due to long­

term wounding effects, fresh installations where conducted every three months always on 

the north facing side of each stem, but 10 cm above or below and 3-5 cm to the left or 

right of the previous probe set (hereafter referred to as “Dataset I”)- A second dataset 

(hereafter “Dataset 11”) was obtained for a period of two weeks during May 2010 with 

longer probe sets installed into the stem of mature trees (with thermocouples at 3.4, 4.6, 

5.8 and 7.1 cm from the cambium), 5 cm to the right and 10 cm below the north side 

probe set. Both the original and longer probes were simultaneously measuring, as the 

purpose of Dataset II was to obtain vs data at deeper sapwood depths than those provided 

by Dataset I in larger individuals. Due to probe malfunction, not all thermocouple 

positions of these larger probes provided data for all mature trees, thus the total number 

of vs data points in Dataset II varied per tree (i.e. one to four additional points, with the 

exception of no additional points for tree 20M; Fig. 1.1). “Dataset I+II” hereafter refers to 

all available vs data points within the sapwood of a mature tree. For further analysis, the
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position into the sapwood where vs point observations were expressed relative to tree 

size, in this case, the sapwood depth (Fig. 1.1).

Each individual thermocouple junction circuit was connected with a 10 m long extension 

cable to AM 16/32 multiplexers and CR1000 dataloggers (Campbell Scientific, USA).

21M
20M - I  
18M - I
17M -j 
16M -j 
15M -j 
14M A 

Q 13M A
O 10Y1 
2  9Y -J
*”  8Y A

7Y I
6Y* -I
5Y 1 

4Y* A
3Y* -I
2Y* A
1Y II-----------------------1-----------------------1----------------------- 1-----------------------

0.0 0.5 1.0 1.5 2.0

Radial position relative to sapwood depth

Figure 1.1 Radial position of sap velocity point measurements within the sapwood of 
sample Pinus patula trees. ID = tree identification were Y=young, M= Mature and * = 
cut-tree; TC’s = thermocouples. Sapwood depth is depicted in gray, where light and dark 
gray show depth with and without sap velocity point observations, respectively. Hatched 
light gray area shows the additional extent of point measurements in mature trees that 
was achieved by installing longer probes for a short period of time (Dataset II). 
Heartwood depth (one sided) is shown in black. Sapwood and heartwood depths are 
normalized by sapwood depth such that zero is the cambium-sapwood interface and one 
is the sapwood-heartwood interface.

Heartwood (one side) 
Sapwood w/o TC's 
Sapwood w TC's (Dataset II) 
Sapwood w TC's (Dataset I)
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The datalogger recorded 10-min averages of initial temperature (n = 8 in 10 sec), 

controlled a heater bank to send a heat pulse of 3 sec, and recorded average temperature 

after the heat pulse {n = 25 in 40 sec). These data were then processed to compute heat 

pulse velocity using the nominal value of thermal diffusivity of green wood: 2.5 x 10'3 

cm2 h*1 (Marshall, 1958; Burgess et al., 2001), as well as to correct for “true zero (see 

below), verify misalignment, correct for wounding effects, and finally convert to v$ 

following Burgess et al. (2001). Wood density and water content of the sapwood were 

measured empirically from sapwood cores as in Burgess et al. (2001). Following 

completion of the measurement period, the reference heat pulse velocity (or “true zero”) 

was determined by cutting the flow of sap by drilling a hole of 11.5 mm diameter with an 

increment borer (Suunto, Finland) a couple of cm above and below the probes and to a 

depth exceeding the length of each probe. These values and reference heat pulse 

velocities obtained at the end of cut-tree evaluations (see section 2.5) were used to 

compute offsets (mean of absolute values: 0.33 cm h '1; 95%CI: 0.17-0.49 cm h '1) to 

correct all heat pulse velocity data (Burgess et al., 2001; Dawson et al., 2007).

2.4 Characterization o f sap velocity radial profiles

We adopted the approach proposed by Caylor and Dragoni (2009) to characterize the v$ 

profiles using a unimodal and bounded function, the Beta-pdf. As an initial simplification 

we also assumed circumferential homogeneity of the radial profile. By using a bounded 

function such as the Beta-pdf, the resulting radial profile is constrained at x = 0 and x = 1, 

that is, vs is zero at these locations by definition. We modified Caylor and Dragoni’s 

approach by normalizing the radial locations of vs point measurements by sapwood depth
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rather than by the stem radius (i.e. x = 1 in our case was the sapwood-heartwood 

interface, not the stem center as in the original approach). We introduced this variant 

because as pine trees increase in diameter and age, the proportion of radius that is 

composed of sapwood does not remain constant (Fig. 1.1; Delzon et al. (2004)), and thus 

the radial pattern of vs, in principle, would not remain invariable between trees of 

different sizes relative to the total stem radius as the proportion o f  non-conducting tissue 

(heartwood) would increase with tree diameter. Furthermore, Caylor and Dragoni (2009) 

added an additional zero velocity point at x that, for their analysis, represented the 

sapwood-heartwood interface relative to the stem center. With our modification we had 

no other radial position between the cambium-sapwood and the sapwood-heartwood 

interface in which it was reasonable to assume sap velocity to be zero. Consequently we 

did not add any additional zero velocity points. Hourly daytime radial profiles of vs were 

thus fitted with the non-linear least-squares method to (Eq. (16) in Caylor and Dragoni 

(2009)):

vs = cs (1 / B (a , p)) (r /Ls)a' 1 (1 -  (r ILs) f ~1 (1)

where r is the radial position of the measurement (i.e. depth below the cambium-sapwood 

interface at which a thermocouple was placed) [cm]; Ls is the sapwood depth[cm] 

measured from visual inspection of a core taken at breast height at the end of the study 

period; cs is a scaling parameter or the time-variant component of the radial profile of vs 

(“stem conductance” sensu Caylor and Dragoni (2009)) [cm h"1]; and B is the Beta-pdf 

with shape parameters a  and P [dimensionless]. A lumped shape parameter, p, can be 

derived for each hourly radial profile which denotes the radial location relative to the 

sapwood depth at which average vs is found, namely the mean o f  the Beta-pdf: a / (a +p).
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In addition, the radial location with peak vs can be derived, /3max, from the two shape 

parameters as the mode of the Beta-pdf: (a -  1) / (a +P -  2). We used the Curve Fitting 

Toolbox of Matlab R2008a (The MathWorks, Inc.) to derive maximum likelihood 

estimates of a, P and cs.

2.5 Independent evaluation o f whole-tree sapflow estimates

We performed an independent evaluation of whole-tree sap flow estimates to contrast the 

use of a constant against a variable shape to integrate the radial profile, that is, a constant 

or variable p  across trees and seasons, by performing a cut-tree procedure similar as 

described in Dye et al. (1996). We also used this independent field evaluation to assess 

the predictive performance of our model of the short-term dynamics of the radial profile 

of vs (see section 2.6). Trees 2Y, 3Y, 4Y and 6Y were secured with ropes to nearby trees 

and a small area surrounding their stem was flooded using a plastic skirt secured to the 

stem near the ground, and stakes placed away from the stem forming a temporary basin. 

Shortly before dusk, a sharp hand saw was used to cut the trees under water, and 

immediately, a bucket was set under the cut stem such that the cut section remained under 

water. Next, the water level in the bucket was fixed and marked using a metallic pin 

attached to the wall of the bucket such that its tip was breaking the water meniscus. A 

plastic cover was used to prevent evaporation from the bucket. While automated v5 

measurements were taking place, we used a graduated cylinder to refill the bucket every 

hour (i.e. replenish the water lost by tree water uptake); since the cylinder was graduated 

it was possible to measure the volume of water required to bring the water level up to the 

initial marked level. All trees were cut during a sunny or partially cloudy late-dry season
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day (3Y and 4Y on April 24 and May 5, 2009, respectively; 2Y and 6Y on May 12, 

2010).

The hourly and total accumulated water depleted from the bucket (Qb', [L]) was 

used as an independent evaluation of estimated whole-tree sap flow derived from Heat 

Ratio probes at corresponding time scales (i.e. hourly instantaneous (Fs', [L h"1]) and 

cumulative (Qs; [L]). Fs was calculated using the following expression (Eq. (10) in 

Caylor and Dragoni (2009)):

Fs(t) = 2 7i L i  (a / (a + p)) cs(t) (2)

where all terms are as defined earlier. Qs was computed as the sum of Fs throughout the 

evaluation period (7-11 hours).

Three different estimates of Fs, and corresponding Qs, were computed to be 

compared with Qb'- i) Fs varshape computed using maximum likelihood estimates of a, p 

and cs, or in other words allowing the shape of the radial profile to vary fitting the vs data 

points as described earlier; ii) FsJixshape using the median radial profile shape of all 

young trees, that is, a fixed value of p, and finding maximum likelihood estimates of cs; 

and iii) Fs modeled using a fixed value of p  but in this case using a modeled term cs from 

a mixed effects model as described in the following section. Table 1.1 shows the median 

and ranges of the parameters used to compute these three Fs estimates. Additionally, the 

area-weighted average of vs data points (Hatton et al., 1990), which is the simplest 

approach to integrate the radial profile, was calculated for comparison with Qb (i.e. Fh 

and corresponding Qh).
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Table 1.1. Median shape parameters (a, (3 and p) and scaling parameter ranges (cs) used 
to compute three different whole-tree sap flow estimates derived from the 
characterization of the radial profile of sap velocity (vs) by the Beta-pdf (Fsyarshape, 
Fs fixshape and Fs modeled). Median absolute deviations are given, when appropriate, 
between parentheses._________________________________________________________

2Y
Tree ID 

3Y 4Y 6Y
Fsjyarshape a 1.35 (0.03) 1.84(0.01) 2.16(0.09) 1.75(0.14)

P 1.70(0.02) 2.35 (0.01) 2.96 (0.09) 1.97(0.02)

P 0.44 (0.00) 0.44 (0.00) 0.43 (0.00) 0.47 (0.02)
cs [cm h'1] 1.36-12.69 4.81 - 9.67 3.97 -30.65 5.25-11.64

FsJixshape a 1.49 1.49 1.49 1.49

P 1.87 1.87 1.87 1.87

P 0.44 0.44 0.44 0.44
Cs [cm h'1] 1.30-12.54 4.90 - 9.79 4.14-31.72 5.38-11.66

Fsjnodeled a 1.49 1.49 1.49 1.49
P 1.87 1.87 1.87 1.87
P 0.44 0.44 0.44 0.44

cs [cm h'*l 1.36-12.69 6.49-10.63 3.63-11.80 4.72-11.15

2.6 Statistical analyses

To avoid being affected by outliers, p  for each sample tree within each dataset was 

characterized by its median value, and its variability was quantified with the median 

absolute deviation (MAD). Significant differences of p  among all sample trees using only 

Dataset I were tested with the Kruskal-Wallis one way analysis of variance on ranks and 

the Dunn's method for pairwise multiple comparisons (Dunn, 1964). We examined the 

effect that additional vs point observations deeper into the sapwood have on the 

characterization of the radial profile previously determined with only a few shallow 

points (20-40% of the sapwood depth) in mature trees by comparing median p  from 

Dataset I with that from Dataset I+II using the Mann-Whitney rank sum test. We repeated
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the test for significant differences of median p  amongst all sample trees by substituting 

Dataset I with Dataset I+II for mature trees to assess whether the earlier result changed. 

Linear regression analysis was used to examine trends over an extended period of time of 

p  with a serial time value and daily median p  as the independent and dependent variable, 

respectively. Due to technical difficulties arising from working in an inaccessible and 

humid montane environment, only a selected subset of eight trees was used in this 

analysis (four young and four mature), for which Dataset I included data spanning more 

than two weeks of complete days and covering at least 50% of the entire study period. 

The above statistical analyses were conducted with the Statistics Toolbox of Matlab 

R2008a (The MathWorks, Inc.).

A linear mixed effects model for nested data was constructed in which the 

response variable was cs and the explanatory variables (fixed effects) examined for 

inclusion in the model were D, Rs, hour of day, month and all possible interactions. Tree 

identity nested within stand (young or mature) was a random factor in the model 

specification per study design. The protocol described in Zuur et al. (2009) was followed 

to determine the optimal model structure for nested data, which uses the Akaike’s 

information criterion (AIC) to select the best random effects structure and the likelihood 

ratio to test for the significance of each fixed factor. The selected model thus included the 

fixed factors that significantly better explained the data variability (Zuur et al. 2009). The 

hour of day was incorporated as a fixed effect to take into account the hysteresis in the 

relationship of cs and both D and Rs, and month was included to examine possible 

seasonal effects. The coefficient of determination (r2) of the linear relationship of 

predicted versus observed cs data was used to determine the amount of variance
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explained by this model. The nlme R package version 3.1-102 (Pinheiro et al., 2011) was 

used to perform these analyses.

As a measure of agreement between each hourly instantaneous whole-tree sap 

flow estimate evaluated (i.e. Fs varshape, FsJixshape, Fs modeled and Fh) and hourly 

values of cut-tree water uptake (Q b), the coefficient of determination (r2) of the linear 

relationships between these values was calculated for individual cut-trees as well as 

altogether. Also, a % bias was used to evaluate the performance of each cumulative 

whole-tree sap flow estimate (i.e. Qs yarshape, QsJixshape, Qsjnodeled and Q h) relative 

to total iQb, calculated as: % bias = (X",=i (Q, - Q b j)  / ]£”i=i QbJ) * 100, where the index / 

refers to each hourly value and Q is the estimate for which the % bias relative to Q b  is 

being calculated for. The % bias was calculated for each individual cut-tree as well as 

altogether.

3. Results

3.1 Meteorological setting

Our observations encompassed two contrasting dry seasons and a wet season (Fig. 1.2a- 

f). Monthly precipitation at both sites followed a markedly seasonal pattern (Fig. 1.2a), 

but in spite of this, the soil at both sites remained wet throughout the study period (Fig. 

1.2b). Incoming solar radiation, air temperature and vapor pressure deficit from the 

automated tower near the young plantation (Fig. 1.2c-e) were in the range of values 

reported previously for this site (Holwerda et al., 2010; Munoz-Villers et al., 2012), with 

the particularity that the dry season of 2010 was wetter and with higher frequency of 

cloud immersion events (Fig. 1.2f) than previous years.
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Figure 1.2 Meteorological conditions during the study period: a) monthly precipitation 
totals (P); b) daily mean volumetric soil moisture at a depth o f 20cm (ff); c) monthly 
(solid lines) and daily (dots) mean incoming solar radiation (Rs); d) monthly (solid lines) 
and daily (dots) mean air temperature (7); e) monthly (solid lines) and daily (dots) mean 
vapor pressure deficit (D); and f) percent time with cloud immersion (or fog) events. 
Black bars, thick solid lines, and black dots depict data from the young Pinus patula 
plantation, while gray bars, thin solid lines and empty dots refer to data from the mature 
P. patula forest stand. Light-gray shaded areas indicate dry season periods.

3.2 Tree-to-tree variability in the shape o f  sap velocity radial profile 

A total of 18,405 daytime (7:00-17:00 hours) hourly radial profiles composed Dataset I, 

of which 59% and 41% were from young and mature trees, respectively. We did not find 

a consistent value of p  amongst all young or all mature trees, or between all young and 

mature trees by analyzing Dataset I (Kruskal-Walis test, p  < 0.001; Fig. 1.3).
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Figure 1.3. Distribution of the lumped shape parameter (/?) characterizing the radial 
profile of sap velocity for each sample young and mature Pinus patula trees (Dataset I). 
Each box shows the 5th, 25th, 50th (median), 75th and 95th percentile as lower dot, bottom 
whisker end, bar near middle of box, upper whisker end and upper dot, respectively. 
Different letters indicate statistically different median p  (Dunn’s pairwise multiple 
comparisons,/? < 0.05).

Despite the high degree of tree-to-tree variation, a greater similarity of p  was 

found among young trees than among mature trees (Dunn’s pairwise multiple 

comparisons, p  < 0.05; Fig. 1.3). The radial profiles of young trees generally showed both 

average and maximum vs at a radial position nearer the center o f the sapwood (median p. 

0.44 ± 0.03, median pmax'- 0.33 ± 0.09; Fig. 1.3 and 1.4a) compared to mature trees again 

when examining only Dataset I (median p. 0.24 ± 0.03, median p max: 0.14 ± 0.02; Fig. 1.3 

and 1.4c). However, median p  for each mature tree examined changed significantly 

(Mann-Whitney test, p  < 0.001) when vs observations made deeper into their sapwood 

were included in the characterization of their radial profiles. For most cases, deeper vs 

observations increased the value of p  compared to values obtained with observations 

made only in the outermost portion of the sapwood (median p. 0.28 ± 0.08; Fig. 1.4c-d 

and Appendix Al). Also, for Dataset I+II peak vs shifted more towards the center of the

a 9
1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y 13M 14M 15M 16M 17M 18M 20M 21M
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sapwood depth of mature trees compared to Dataset I (median pmax- 0.20 ± 0.08). 

Moreover, the variation among mature trees and between all trees was reduced, and in 

fact, there was not enough evidence to reject the null hypothesis of equal median p  for 

16% of the pairwise comparisons between young and mature trees (Fig. 1.5).
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Figure 1.4. Representative hourly dynamics of the radial profile of sap velocity (vs) of 
Pinus patula trees. Profiles of a young tree during: a) a sunny dry-season day (28 Feb 
2009), and b) during the following day in which a cloud immersion event occurred from 
9 am. Profiles of a mature tree also during a sunny dry-season day (30 May 2010) 
characterized by: c) using only three vs data points (Dataset I), and d) after additional 
points deeper into the sapwood were included (Dataset I+II). Tree ID’s are shown in each 
panel. Numbers with arrows indicate the hour o f the day and dots depict vs data points 
and added zero velocity points at the cambium-sapwood (r/Lf=0) and sapwood- 
heartwood (r/Ls =1) interfaces. Lines show the fitted Beta-pdf to data points where r2 was 
> 0.90. Light-gray shaded areas depict MAD ranges of p  for each particular tree and 
dataset.
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Figure 1.5. Distribution of p  of each sample young (Dataset I) and mature Pinus patula 
trees (Dataset I+II, except for tree 20M). Each box shows the 5th, 25th, 50th (median), 75th 
and 95th percentile as lower dot, bottom whisker end, bar near middle of box, upper 
whisker end and upper dot, respectively. Different letters indicate statistically different 
median p  (Dunn’s pairwise multiple comparisons, p  < 0.05).

3.3 Short and long-term consistency o f sap velocity radial profiles

Generally, p  was consistent during the day with slight variations at early and late hours of 

the day (Fig. 1.6a) and during rainy and cloud immersion conditions (Fig. 1.4b and 

Appendix A2). In contrast, the scaling parameter (cs) clearly varied with the hour of day 

(Fig. 1.6b) as expected, being the ‘time-variant’ component of the radial profile. 

Maximum cs, which is the maximum amplitude of the radial profile, was reached 

generally between 9 and 11 am during sunny days (Fig. 1.4 and 1.6b).

There was no consistent trend of daily median p  over extended periods of time 

among the trees examined, and we also did not observe a clear seasonal effect (Fig. 1.7a).

Linear regressions fitted to the relationship of daily median p  and time (i.e. serial day 

number), although generally significant, showed only a marginal trend over time for up to

1.5 years as these slopes represented a change in p  of ± 0.0001 per day. Moreover, the

distributions of daily median p  were generally strongly unimodal and peaked (Fig 7b),
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indicating the consistency of this parameter over an extended period of time. We found a 

relatively larger, yet arguably still small, day-to-day variation as the MAD of daily 

median p  ranged from 0.004 to 0.054 for each tree examined.
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Figure 1.6. Hourly variability of a) the lumped shape parameter (p) and b) the scaling 
parameter (cs), which characterize the radial profile of sap velocity in Pinus patula trees. 
Example young (Y; Dataset I) and mature (M; Dataset I+II) trees shown represent the 
overall tree-to-tree variability found in the parameters. Symbols and error bars are the 
medians and MAD, respectively.
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Figure 1.7. a) Trend over time of the daily median lumped shape parameter (p) 
characterizing the radial profile of sap velocity in young (Y; Dataset I) and mature (M; 
Dataset I) Pinus patula trees. For clarity, daily median p  data points for each tree are not 
shown, instead, their distributions are shown below in b). Light-gray shaded areas depict 
daily MAD ranges.

3.4 Meteorological controls o f the radial profile s short-term dynamics 

The linear mixed effects model that resulted optimal for our cs data, explaining 74% of 

the variation (Fig. 1.8 and Table 1.2), included incoming solar radiation (Rs), vapor 

pressure deficit (D) and the hour of day (H), with the interactions D*RS, D*Hand R*H , 

in the fixed effects structure. Other factors examined, such as the month of the 

observation and higher order interactions, were found not significant {p > 0.05) and thus 

were removed from the model specification. The optimal random effects structure was a
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random slope with correlated intercept for D, Rs and H  for each tree. Thus, the strength of 

this model changes randomly between trees ( I  = 12,384.08; df=  10,/? < 0.001).

Table 1.2. Estimates and statistics of the parameters of a linear mixed effects model 
relating the hourly dynamics of the scaling parameter of the sap velocity radial profile 
(cs) with meteorological conditions (csjnodeled  in Figure 8). D = vapor pressure deficit; 
Rs = incoming shortwave radiation; H  = hour of day.

Fixed effects 
Parameters Estimate SE t P

Random effects 
Variance

Intercept 4.172 1.568 2.660 0.008 2.567
D 4.392 0.597 7.358 0.000 1.526

Rs 0.023 0.001 23.965 0.000 0.060
H -0.242 0.101 -2.388 0.017 0.651
D : Rs -0.003 0.000 -20.973 0.000
R s : H -0.001 0.000 -36.375 0.000
D :H 0.136 0.023 6.029 0.000
Residual 1.651

Figure 1.8. Relationship between hourly values and modeled scaling parameter (c$ and 
csjpredicted, respectively). The former was obtained from the characterization of the 
radial profile of sap velocity with the Beta-pdf, while the later was determined with a 
linear mixed effects model based on few meteorological variables and hour of day (r2 = 
0.74,/? < 0.001; Section 3.3 and Table 1.4). Different symbols depict different trees and 
the straight line included for reference represents a 1:1 relationship.
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3.5 Estimates o f whole-tree sap flow compared to cut-tree water uptake 

In general, there was a good agreement between hourly volumes of water depleted from 

the bucket and Fs_varshape (r2 range: 0.61-0.95; Fig. 1.9a). For three out of four cut- 

trees, Qsyarshape underestimated the total cumulative cut-tree water uptake (Qb', Fig. 

1.9b), and while altogether Qs yarshape underestimated Q b  by 7%, there was 

considerable variation in % bias (range: 16% to -25%; Fig. 1.9b). The effects of ignoring 

tree-to-tree variation in the shape of the radial profile, that is, assuming a fixed value of p  

for all cut-trees using the median p  for young trees (0.44) when computing whole-tree sap 

flow, was only a slight reduction in the agreement of hourly values (Fs Jixshape r2 range:

0.56-0.94; Fig. 1.9a) and a consistent underestimation of cumulative values relative to 

Qb (Qsjixshape % bias range: -4% to -26%, overall: -10%; Fig. 1.9b). Fs modeled, 

which was derived from cs_modeled (Table 1.2, Fig. 1.8) and a fixed p, produced the 

worse hourly agreements with cut-tree water uptake (r2 range: 0.16-0.69; Fig. 1.9a). 

Qs modeled presented the widest variation in % bias (range: -52% to 12%; Fig. 1.9b), 

overall underestimating Qb by 25%. Whole-tree sap flow derived from the simpler 

approach to integrate the radial profile (i.e. based on an area-weighted average) yielded 

good agreements with hourly cut-tree water uptake, similar to those obtained with 

Fsyarshape and FsJixshape (Fh r1 range: 0.58 to 0.94; Fig. 1.9a). Q h  generally produced 

overestimated cumulative volumes (overall 14% bias; Fig. 1.9b). We found a sharp 

negative slope when contrasting % bias of Qsyarshape, QsJixshape and Qh with % 

sapwood depth of each cut-tree (Fig. 1.10).
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Figure 1.9. a) Relationship between cut-tree water uptake (Q b )  and hourly values of 
different whole-tree sap flow estimates for four young Pinus patula trees. Sap flow 
estimates were derived from the characterization of the radial profile of sap velocity (v$) 
by the Beta-pdf (Fsyarshape, Fs Jixshape and Fs modeled) and by the area-weighted 
method (F#; Hatton et al. (1990)). Linear regressions shown were made with pooled data 
of all cut-trees for each estimate; r2 ranges of tree-specific regressions are given in the 
text (Section 3.5). b) Percent bias of corresponding whole-tree cumulative sap flow 
estimates shown in the above panel relative to total cumulative Q b  for each cut-tree. The 
horizontal lines depict the overall % bias for each estimate.
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Figure 1.10. Relationship between percent of sapwood length sampled for sap velocity in 
four young Pinus patula trees and % bias relative to total cut-tree water uptake (Qb) 
found with different whole-tree sap flow estimates (Qsyarshape, QsJixshape and Qh)-

4. Discussion

4.1 Shape o f the radial profile characterized by the Beta-pdf

The choice of the function (or combination of functions) to characterize the radial profile 

of vs should be based ideally and primarily on the physical reality of the movement of sap 

through the tree stem. In light of evidence that vs approaches zero at the cambium- 

sapwood and sapwood-heartwood interfaces in conifers (Booker and Swanson 1979 cited 

by Swanson (1994)), we consider, in agreement with others (Caylor and Dragoni, 2009), 

that a bounded function such as, but not exclusively, the Beta-pdf, resembles closely the 

radial distribution of vs within a pine tree stem. In spite o f this, several different 

unbounded functions and combinations of functions have been used in recent studies 

examining the radial variability of sap velocity of coniferous tree species (Ford et al., 

2004b; Nadezhdina et al., 2002). Moreover, the use o f these functions requires the
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estimation of many parameters creating a risk of over-fitting the data available. This was 

an important consideration in our case because for half of our sample trees and most of 

the study period v$ data were only available for three depths within the sapwood. Thus, 

we considered that the Beta-pdf, despite requiring the same number of parameters as vs 

data points we had generally made, presented the most promising candidate for our study 

as it is a bounded unimodal function able to fit asymmetrical profiles with the least 

number of parameters required.

The use of a bounded function imposes the need to set the location of the 

sapwood-heartwood interface within a reasonable degree of accuracy. We did not reach 

this interface in any of the sample trees with sap flow probes and thus were unable to 

verify this location with vs data (Cermak and Nadezhdina, 1998). However, we measured 

xylem water content for both sap and heartwood separately from wood cores as proposed 

by Kozlowski and Pallardy (1997) and Kravka et al. (1999) confirming our visual 

localization of the interface (data not shown) and giving us confidence in the measured 

sapwood depths.

In general, the Beta-pdf was a good fit to our hourly radial profiles data as 70% of 

all the fits had an r2 > 0.90. One reason causing low or zero r1 values was that during low 

evaporative demand (i.e. cloud immersion events or rainy conditions) vs was almost 

homogenous throughout the sapwood or presenting a radial pattern not described by the 

Beta-pdf (e.g. negative v^at one or more points during cloud immersion events; Fig. 1.4b 

and Appendix 2A). For instance, only 24% of the radial profiles during cloud immersion 

events had an r2 > 0.90. It is important to point out that at very low values of v$ the 

uncertainty associated with setting the reference velocity or “true zero” may have
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affected the fits during cloud immersion (e.g. small negative values were possibly not 

negative). Nevertheless, values more negative than about -0.70 cm h’1 (i.e. beyond the 

95%CI of mean offset for reference velocity correction) may indicate the occurrence of 

reverse sap flow by hydraulic redistribution (Nadezhdina et al. 2010 and references 

therein) however, more work is needed to explore the underlying mechanisms producing 

the observed different radial profile patterns during cloud immersion events.

On an individual tree basis the % of radial profiles that fitted the Beta-pdf with an 

r2 > 0.90 varied considerably (range: 96-20%; median: 77% ± 13%). Three out of 18 

sample trees (6Y, 1Y and 18M) presented bimodal radial profiles at times such that the 

outer and inner portion of the sapwood had larger vs compared to the middle portion, and 

consequently, the Beta-pdf did not fit their radial profiles. Many previously published 

reports have shown that the radial profiles in pine species present a unimodal and 

asymmetrical shape (Cermak et al., 2008; Cohen et al., 2008; Delzon et al., 2004; Ford et 

al., 2004b; Nadezhdina et al., 2002; Nadezhdina et al., 2007a), in agreement with what 

we generally found. However, evidence of non-unimodal radial profiles has been also 

reported for coniferous species (Anfodillo et al., 1993; Booker and Kininmonth, 1978; 

Dye et al., 1991). The only other study examining the radial profile of vs in Pinus patula 

reported a multimodal trend where near zero vs and multiple peaks of vs were correlated 

with the location of late and earlywood rings, respectively (Dye et al., 1991). We did not 

observe such multimodal pattern, however the use of moving probes during mid-day 

hours for characterizing the radial profile in the Dye et al. (1991) study confound 

substantial short-term (hourly) and radial variation (Nadezhdina et al., 2002), thereby 

casting doubts on the reported radial variability of vs. Furthermore, there were no visually
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apparent differences between the trees with bimodal vs radial profile shape and the others 

among the same stand that may have explained these divergent patterns, such as crown 

position and exposure to incident radiation. We do not rule out the possibility however, 

that unexamined sapwood characteristics or other factors that affect xylem development 

(e.g. vertical distribution of leaf area (Fiora and Cescatti, 2008) or root distribution 

differences (Cermak et al., 2008)) may have contributed to the different radial profile 

shapes.

The radial location at which maximum or peak vs occurs i p max) is an important 

feature of a unimodal radial profile shape. Previous studies on conifer species have found 

that peak vs occurs in the outermost portion of the sapwood depth, typically pmax < 0.2 

(Cermak et al., 1992; Mark and Crews, 1973; Phillips et al., 1996; Waring and Roberts, 

1979). On the other hand, studies carried out in diffuse-porous species showed that v$ 

peaks within mature xylem in contrast to young xylem and thus pmax > 0.2 (Nadezhdina 

et al., 2007b; Gebauer et al., 2008). Our results indicate that generally pmax > 0.2 in all 

young and mature trees for which vs observations covered more than 50% of the sapwood 

depth (Dataset II; Fig. 1.3 and 1.4). These findings contradict the general expectation that 

maximum vs occurs within the youngest xylem in conifers (Phillips et al., 1996), 

particularly for mature trees. The values of p max  that we found for young trees are 

however, in agreement with previous reports if we consider that all of their xylem is still 

relatively young and that live branches were found down to two thirds of their stem 

height, thus presumably connected to actively transpiring foliage. Some authors point out 

that V5 peaks in deep portions of the sapwood more frequently during conditions of high 

evaporative demand (Domec et al., 2006; Ford et al., 2004a; Ford et al., 2004b; Medhurst
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et al., 2002; Saveyn et al., 2008) as a result of the interplay between larger water potential 

gradient from soil to canopy (Ford et al., 2004b) and the axial and radial tension gradients 

within the xylem (Domec et al., 2006) compared to times of low evaporative demand, 

which leads to increasing flow and consequently increasing vs in deeper portions of the 

sapwood. During our study, day-to-day variability in evaporative demand was often high, 

with daily average of vapor pressure deficits >1.5 kPa, combined with high soil water 

content throughout the year despite the seasonality in rainfall and cloud immersion (Fig. 

1.7a-d). Consequently, we hypothesize that these conditions contributed to the relatively 

deep Pmax values observed in our sample trees. It is important to point out that, as we 

showed, discrepancies amongst reported location of peak vs could also arise in relation to 

the location of vs measurements used in the characterization o f the radial profiles (Fig. 

1.4).

4.2 Tree-to-tree variability in the shape o f  the radial profile

We found considerable tree-to-tree variability in the shape of the radial profile (Fig. 1.5), 

in agreement with previous studies examining trees of the same species (Delzon et al., 

2004; Nadezhdina et al., 2007b; Poyatos et al., 2007). We expected that the radial profiles 

of vs among trees growing in a homogenous stand (young plantation) were more 

consistent compared to that of trees growing in a more heterogeneous setting (mature 

stand). We did not find strong evidence to confirm this, and in fact, we found 

considerable tree-to-tree variability in both stands, contrasting the results of (Caylor and 

Dragoni, 2009) who found consistent radial shapes among trees both from a homogenous 

(apple orchard) and a heterogeneous stand (deciduous forest). It is important to point out
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that small differences may have been amplified in our study given the flexibility of the 

Beta-pdf in instances when only three point vs observations were included in the 

characterization as discussed earlier. Further, as we were able to show, had we sampled 

deeper into the sapwood of mature trees, or had we sampled the same % of sapwood, 

their profiles may have resembled more closely those of young trees (Fig. 1.3 and 1.5).

4.3 Temporal dynamics o f  the radial profile

The approach we used to decouple the radial profile in two terms, one relating to its 

shape and another to its hourly variability, proposed by Caylor and Dragoni (2009), 

proved helpful to investigate its short-term variability, which was largely ignored in early 

studies on this species (e.g. Dye 1991). Also, it allowed us to assess the meteorological 

controls of this short-term variability. Our finding that the hourly dynamics of vs can be 

explained by a few meteorological variables, namely Rs and D, is in agreement with 

previous studies (Fiora and Cescatti, 2006; Ford et al., 2004a; Ford et al., 2004b; Kubota 

et al., 2005; Nadezhdina et al., 2002; Saveyn et al., 2008). However previous work had 

not taken into account the hysteresis that we (data not shown) and others have found in 

the relationship between vs and these meteorological variables (Motzer et al., 2005; 

Saveyn et al., 2008; Zeppel et al., 2004). By including the hour of day to interact with 

meteorological variables into the model specification we found that a great proportion of 

the overall variance of cs was explained (74%; Fig. 1.8). The month in which the radial 

profiles were assessed did not significantly explain the variability of cs indicating that 

there were no strong seasonal effects for Rs or D affecting their relationship with cs. We 

did not include in the model specification any variable indicative of the soil moisture
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status, as there was no evidence of soil water limitation in our study area (Goldsmith et 

al., 2012). The use of a mixed effects model was a valuable tool to incorporate the overall 

effects of tree-to-tree variability (random effects), which was overlooked in previous 

studies (Dragoni et al., 2009; Ford et al., 2004a) and we found to be significant. 

Improvements to this model are still necessary, particularly to better predict higher cs 

values. Our simple model based on linear combinations is not a  mechanistic model and 

thus non-linear responses of c$ to some of the explanatory variables were not captured 

(e.g. an observed asymptotic response of cs to D similar to what has been reported as the 

response of transpiration to D suggesting stomatal regulation during instances of high 

evaporative demand; Ford et al. 2011; Hemandez-Santana et al. 2008). These 

improvements would augment the model’s complexity however, and the development of 

tools to conduct more complex analyses is in the frontiers of statistical research (Zuur et 

al., 2009).

Most sap flow studies are not conducted over an extended time period, thus the 

long-term variation of the radial profiles is not generally examined. We chose to use a 

fixed value of sapwood depth throughout the study period to normalize our hourly radial 

profiles in order to avoid introducing an untested model of its increment into our analysis. 

Not taking into account changes in sapwood length, namely increasing sapwood depth 

thus decreasing the normalized location of each point measurement of vs (r/Ls), would 

potentially confound changes in p  with time. We expected a consistent decrease in p  with 

time among the trees examined if only the length of the sapwood was increasing while 

the radial location relative to this length remained constant. We did not find a consistent 

decrease among the trees examined (Fig. 1.7a), and given arguably small changes and
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general consistency (Fig. 1.7b), we consider that a fixed p  can be assumed to upscale 

point measurements of vs at least for a period of up to 1.5 years. Nevertheless, changes in 

p  over longer time periods deserve further investigation.

4.4 Implications for point vs sampling strategy

An important general implication of our results for designing a sampling strategy of point 

vs is that it is not safe to assume that the peak or average vs will be found strictly neither 

in the few outermost 20-40 mm nor strictly in the outermost 20% of the sapwood depth. 

Therefore, the sampling strategy for point measurements of vs should not be geared 

towards only sampling shallow points without taking into account the size of the tree (and 

consequently, the size of the sapwood depth). Furthermore we suggest, in agreement with 

earlier recommendations, a sampling strategy of distant points (Ford et al., 2004b), but 

proportionally distributed through the sapwood depth such that most of the sapwood 

depth is covered as opposed to sampling intensively only in the outermost 20%. A 

practical disadvantage still exists in that it is difficult to construct and install long probes 

in the case of trees with deep sapwood (but see James et al. (2002)). However, 

considering the possibility of high circumferential variability (which we did not 

examined here but could be important (Cohen et al., 2008; Nadezhdina et al., 2007b; 

Saveyn et al., 2008)), a proportional distribution of sampling points within the sapwood 

area should consider that the deeper portion of the sapwood represents less area than the 

outer portion. Thus, less deep points would be needed, yet these should not be neglected. 

We focused most of our attention on the radial position with average vs (p) because the 

scaling procedure of point measurements of vs to the whole-tree level we used here was
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based on this characteristic (Eq. (2)). Also, because we envisioned that once p  was 

known, future sampling in P. patula could be adjusted to aim for this location given the 

typical limited resources available to sample many points within the sapwood. However, 

the considerable tree-to-tree and moderate temporal variability preclude precise and 

practical sampling at a particular location.

4.5 Implications for scaling vs to the whole-tree level

The procedure of scaling up whole-tree sap flow to the stand level may carry 

considerable errors not only due to the difficulty in effectively capturing radial variability 

in vs with point measurements within trees, but also if this spatial variability is not 

consistent among the sample trees representing the stand (e.g. substantial variation 

among trees of different size). Errors stemming from the initial procedure of scaling up vs 

point measurements to the whole-tree level are rarely quantified. Given the considerable 

tree-to-tree variability shown here, we propose that the range o f % bias in Qs estimates 

relative to cut-tree water uptake can be used as a proxy for the expected error range of Qs 

estimates derived from Heat Ratio method measurements and the characterization of the 

radial profile of sap velocity (vs) by the Beta-pdf in future studies. While we did not 

perform cut-tree evaluations for mature trees, our results obtained for few young trees cut 

for the field evaluation provide a first approximation and are informative of the error 

range expected across trees of different sizes when this is related to the % of sapwood 

depth measured (Fig. 1.10).

Importantly, our results suggest that a fixed radial shape may be safely assumed 

for plantation P. patula trees to upscale point vs measurements to the whole-tree level,
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which simplifies and generalizes the procedure. The predictive performance of the simple 

model we constructed to determine Cs using meteorological data, which in turn was used 

to compute Fs modeled and Qs modeled, is not acceptable for high values of v$ (Figs. 8 

and 9) possibly due to linear simplifications of non-linear relationships (e.g. between cs 

and D). Its direct use for conditions that arguably are more important for applications 

such as water balance studies is therefore limited. We found considerably less overall % 

bias for our estimates of Qs varshape and Qs Jixshape (Fig. 1.9) compared to the average 

overestimation of 49% reported in a previous study that performed cut-tree evaluations of 

Qs estimates derived from the compensation heat-pulse method in P. patula (Dye et al. 

1996), and also compared to the average underestimation of 35% found in a laboratory 

and field evaluation of the same sap flow technique, but in a  diffuse-porous species 

(Steppe et al., 2010). Only an evaluation of Heat Ratio method-derived Qs estimates 

using potted eucalyptus trees reported less % bias than all of our estimates, namely an 

overestimation by 2-5% relative to the water loss measured by weighing lysimeters 

(Bleby et al., 2004).

An alternative approach to integrate the profile to estimate whole-tree sap flow is 

needed for instances in which the Beta-pdf does not provide a good characterization of 

the radial pattern of vs (only 30% of hourly radial profiles in this study). In the case of 

radially homogeneous vs, there is no need to characterize a radial profile however, and a 

single point measurement of v$ or a simple average should suffice to upscale to the 

whole-tree level. Now, for the case of bimodal radial profiles, or profiles containing 

negative values as during foggy conditions, other approaches should be explored, such as 

using another bounded function (or combination of functions) or the area-weighted

41



average. Our results confirmed however, that for the simplest scaling-up approach to be 

effective (i.e. the area-weighted average), point vs data must have equal areal weight 

otherwise large errors are expected when the portion with larger areal weight presents 

considerably different vs.

5. Conclusions

In this study we applied an analytical approach to assess tree-to-tree and temporal 

variability of a large data set of radial profiles of vs in a widely planted tree species. This 

approach proved useful to determine general characteristics o f the shape of the radial 

profile. Despite the considerable variation in the shape of the radial profile, we conclude 

that a typical radial profile for P. patula can be generalized as unimodal, asymmetrical 

and with peak vs expected within the outermost 20-33% of the sapwood depth. We show 

that a generalized radial shape may be assumed to upscale point vs measurements to 

whole-tree sap flow with relatively low bias compared to an independent measure of 

whole-tree water uptake. Our findings emphasize the potential error introduced by 

neglecting to conduct point vs measurements throughout the entire sapwood depth. We 

also show that hourly dynamics of the radial profile can be largely explained by a few 

meteorological variables easily obtained from routine measurements, such as Rs and D, 

and the hour of day. Further improvements to this model’s predictive performance are 

necessary (e.g. incorporating non-linear features) such that it can be successfully applied 

to predict whole-tree sap flow under a wide range of meteorological conditions, 

particularly instances leading to high sap flow rates.
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CHAPTER II

PLANT WATER USE VARIATION ACROSS 

THE LAND USE CHANGE TRAJECTORY 

PASTURE TO PINE REFORESTATION 

IN A SEASONALLY DRY TROPICAL MONTANE CLOUD BELT1

Abstract

Understanding evapotranspiration (ET) variation associated with land use change is 

critical not only for the assessment of impacts on water resources, but also to improve the 

applicability of climate change models. ET across a land use change trajectory of pasture- 

to-pine reforestation was estimated using a combination of near-surface climate and 

sapflow measurements for a 1.5-year period in the seasonal tropical montane cloud belt 

of central Veracruz, Mexico. An actively grazed pasture (PAS) dominated by Axonopus 

compressus represented the baseline land cover. A young (YREF) Mexican weeping pine 

(Pinus patula) reforestation near canopy closure and a mature pine plantation (MREF) 

under selective logging represented local reforestation efforts and forest management. 

Tree transpiration at the stand level was higher at YREF compared to MREF; however, 

normalized by leaf area index, the difference was minimized. The contribution of 

understory transpiration to total stand level transpiration for MREF was only about 5%. 

Rainfall interception loss (Ei) for the pine plantations was found to be low (5.4% and

1 Report as basis for manuscript preparation. Collaborators: F. Holwerda, H. Asbjonsen, L.A. Bruijnzeel, D. 
Geissert, A. G6mez-Tagle, G. Goldsmith, T.E. Dawson.
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7.5% of annual rainfall for YREF and MREF, respectively) and as such, did not increase 

ET beyond that of PAS. Land covers ranked from higher to lower ET normalized by 

available energy (net radiation) as: PAS (0.80) = YREF (0.80) > MREF (0.42). Similar 

ET per unit available energy for PAS and YREF, and higher for PAS compared to 

MREF, combined with similar soil hydrological properties and apparent functional 

rooting depth across land cover types, suggest that differences in energy partitioning and 

the relative importance of surface and aerodynamic conductance, may be the drivers of 

the observed patterns in ET across the land use change trajectory examined here. The 

present results further suggest that planting P. patula on former pasture lands in the 

uplands of central Veracruz, Mexico, would not substantially increase ET after >10 years 

of planting.

1. Introduction

The vegetation of a particular land cover modifies the exchange of water and energy 

between the surface of the Earth and the atmosphere by influencing evapotranspiration 

(ET). which consists of the combined processes of plant transpiration (i.e. soil water 

uptake by plants) and direct evaporation of water collected on vegetation and soil 

surfaces (Monteith, 1965). ET is also referred to as total plant water use. As summarized 

below, understanding the variation in ET associated with land use change is critical not 

only for the assessment of impacts on water resources (Bosch and Hewlett, 1982; Farley 

et al., 2005; Zhang et al., 2001), but also to elucidate the feedbacks of land use change on 

the weather and climate (Pielke et al., 2011; Pitman, 2003).
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The amount of precipitation available for infiltration, runoff production, and 

ultimately, streamflow generation, is affected by the magnitude o f ET as the hydrological 

cycle is inextricably coupled to vegetation (Shuttleworth, 2012). Therefore, reliable 

estimates of ET for different land covers at the same operational scale that land 

management practices are conducted (i.e. field, stand), are critical to developing sound 

land management policies (Kaimowitz, 2005; Tallis et al., 2008). Furthermore, latent heat 

(ET in units of heat flux density) is a major driver of climate (Andre et al., 1989; Niyogi 

et al., 2009; Pielke et al., 1998). Changes in land use usually involve drastic alterations in 

land cover structure and species composition, which in turn may lead to important 

changes in surface net radiation and its partitioning into latent and sensible heat flux, as 

well as in the aerodynamic roughness of the land surface (Monteith and Unsworth, 2007). 

Indeed, the processes that drive and limit ET given a set of land cover characteristics are, 

at least in principle, well understood (Calder, 1998; Moore and Heilman, 2011), but 

predicting changes in ET associated with land cover variation is complicated in practice 

(Zhang et al., 2010). Also, the anthropogenic influence on regional and global climate 

due to land use changes is more poorly understood than due to changes in the chemical 

composition of the atmosphere (IPCC, 2007), and consequently, rarely taken into account 

in climate change models (Pielke et al., 2011; Pitman, 2003). A better understanding of 

how ET varies with land use change will therefore improve the applicability of climate 

models and, ultimately, improve predictions of water availability under future climate 

change scenarios (Jackson et al., 2001).

ET was recently modeled at the global scale (Zhang et al., 2010) and large errors 

were found, particularly for tropical regions (up to 100 mm per year). Surface parameters
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required by models are often applied to a wider range of vegetation conditions from 

which they were derived, thereby increasing prediction uncertainty (e.g. Mata-Gonzalez 

et al., 2005). The lack of data for many land cover types arising from complex 

interactions between vegetation, soil types, topography and land-use legacy also limits 

the potential for modeling validation (Pielke et al., 2011). This issue is especially critical 

for areas such as tropical montane regions, were hydrometeorological measurements are 

mostly lacking (Manley and Askew, 1993).

The present study focuses on estimating and comparing ET under different land 

cover types with the aim of adding to the recently growing body of information on plant 

water use from tropical montane regions (e.g. Brauman et al., 2012; Holwerda et al., 

2013; Mufioz-Villers et al., 2012) and to improve our understanding of the hydrological 

consequences of different land use change trajectories in these regions. The conversion of 

old-growth forests to pasture or other crops is one of the most common land use change 

trajectories in tropical uplands (Mufioz-Villers and Lopez-Bianco, 2008). During the past 

decade, however, there has been an increase, albeit small, of forested land cover due to 

forest regeneration and tree planting world-wide (Aide et al., 2010; Evans, 1999; FAO,

2010). In the case of Mexico, reforestations established on former (introduced) pasture in 

the uplands is foreseen to increase (Carabias et al., 2007; Sanchez-Velasquez et al., 

2009), and stakeholders from lower-lying areas are eager for information about the 

hydrological impacts of these plantations (Perez-Maqueo et al., 2005; Scullion et. al,

2011). The most widely used tree species in reforestation projects in are conifers, and in 

the seasonal montane cloud belt of central Veracruz (eastern Mexico), this includes the 

Mexican weeping pine (Pinus patula-, Valtierra Pacheco et al., 2008). Therefore a typical
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pasture actively managed for grazing livestock was selected as the baseline land use, 

while two P. patula plantations at different stages of stand development (10-year-old 

reforestation reaching canopy closure and a mature plantation under selective logging) 

were chosen to represent local reforestation efforts and management practices. The 

specific objectives were:

• Estimate and compare plant water uptake at the stand level (total transpiration -£ f)  

between the two P. patula plantations.

• Determine and compare total plant water use (evapotranspiration -ET) among pasture 

and the P. patula plantations.

2. Material and Methods

2.1 Study sites

The study area is located in the upper La Antigua river basin (1325 km ), at the 

headwaters of the Los Gavilanes watershed (30 km2), on the eastern slopes of the Cofre 

de Perote volcano (4282 m a.s.l.), central Veracruz, Mexico (Fig. 2.1). The climate 

between 2000 and 3000 m elevation in this region is ‘temperate humid with abundant 

rains during the summer’, with an average temperature between 12 and 18°C and a mean 

annual precipitation (MAP) between 2000 and 3000 mm (Garcia, 1973). The region has a 

seasonal rainfall and cloud immersion regime, with a wet season between May and 

October, in which approximately 80% of MAP falls, and a relatively dry season between 

November and April. Rainfall in the wet season is of convective origin, brought by 

frequent showers and thunderstorms, while the dry season is characterized by an 

alternation of stable dry weather conditions and cloud immersion events, often

47



accompanied by rain and/or drizzle (Garcia-Garcia and Zarraluqui, 2008; Holwerda et al., 

2010; Munoz-Villers et al., 2012). More details on the area’s climate, geology, 

topography, soil characteristics and hydrology can be found in Holwerda et al. (2010), 

Munoz-Villers et al. (2012), Munoz-Villers and McDonnell (2012) and Goldsmith et al. 

(2012b).

Three study sites within the cloud forest zone where selected to represent three 

discrete stages of the land use change trajectory of pasture conversion to mature pine 

plantation. To represent the actively grazed land cover within the study area, a typical 

pasture site was selected (hereafter PAS), dominated by Axonopus compressus and 

Alchemilla pectinata, with remnant trees from the former land use (see below) and sparse 

shrubs and ferns such as Pteridium aquilinum (Fig. 2.2a). Two Pinus patula stands at 

different development stages were selected to represent local reforestation efforts and 

forest management: a 10-year-old reforestation near canopy closure (hereafter YREF; 

Fig. 2.2b) and a mature plantation under selective logging (hereafter MREF; Fig. 2.2d). 

YREF and PAS are located within the La Cortadura Forest Reserve, property of the 

municipality of Coatepec, Veracruz (Fig. 2.1). MREF is located near the locality of 

Tierra Grande, approximately 2 km from YREF (Fig. 2.1).

Both PAS and YREF were formerly (at least >30 years ago; local inhabitants, 

pers. comm.) covered with mature lower montane cloud forest (LMCF) locally known as 

“bosque mesofilo de montafia” (Garcia Franco et al., 2008). YREF was established in 

2000, after supporting marginal grazing land with remnant LMCF trees, and had not 

received any thinning treatments at the time of this study. MREF was formerly covered 

with cloud-affected pine-oak forest, which was cleared ca. 70 years ago and thereafter

48



managed as pasture for grazing livestock with some remnant trees (predominantly P. 

patula, P. pseudostrobus and Quercus spp.). Approximately 30 years ago, the pasture 

was reforested with P. patula and thereafter allowed to grow and regenerate naturally 

without further intervention other than selective logging (local inhabitants, pers. comm.). 

At the time of this study, MREF was comprised of multi-cohort patches dominated by P. 

patula and an understory dominated by Miconia glaberrima and Dryopteris filix-max. 

Table 2.1 provides further characteristics of each study site.

Figure 2.1. Location of study area in central Veracruz, Mexico, study sites (PAS = 
pasture; YREF = young Pinus patula plantation; MREF = mature P. patula forest) and 
automated weather stations (La Cortadura and Tierra Grande). Altitude at the sites and 
highest nearby points are given in m a.s.1..

C o f r e  d e  P e r o t e  
4,282

MR E F
2.470

T i e r r a  G r a n d e  
2,400

C i ty  of  C o a t e p e c
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Figure 2.2. View of the study sites and selected instrumentation: (a) PAS, (b) YREF and (c) weather station at La Cortadura; (d) 
MREF and (e) weather station at Tierra Grande; (f) HBM sapflow sensor (prior to insulation) installed in a branch of Miconia 
glaberrima at MREF.



Table 2.1. Characteristics of the study sites a pasture dominated by Axonopus compressus 
(PAS), a 10-year-old Pinus patula reforestation (YREF) and a P. /?n/«/a-dominated 
mature stand under selective logging (MREF). LAI = leaf area index; DBH = diameter at 
breast height; LUC = land use change; DS09 = dry season 2008/09; DS10 = dry season 
2009/10; LMCF = lower montane cloud forest. Standard deviations are given between 
parentheses where available.

PAS YREF MREF
Elevation [m a.s.l.] 2100 2180 2470
Coordinates 19.4956° N 19.4931° N 19.5054° N

97.0418° W 97.0422° W 97.0559° W
Area [ha] ~3 ~1 -20
Plots exposure and slope 3°, SE 20°, SE 25°, SE
Mean canopy height [m] 0.05 (0.02)a 7 (1.5)b 23 (2.80)b
Canopy LAI [m2 m'2] DS09: 6.0 (0.6) d DS09: 3.0 (0.8)d

DS10: 1.2 (0.4)c DS10: 6.5 (0.2) d; DS10: 3.0 (0.9)d;
5.2 (0.1)e 3.2 (0.3)e

Understory LAI [m2 m'2] - - DS10:0.6 (0.3)c
Tree density [stems ha'1] b - 3,783 (652) 662 (92)
Tree basal area [m2 ha'1] b - 34.3 (9.6) 46.7(15.3)
Tree DBH range [cm] - 9.6-11.8 20.4-61
Former land use LMCF remnant LMCF remnant pine-oak

and PAS forest and PAS
Years since LUC1 >30 10 -30

a Actively grazed pasture measured throughout late DS09 and DS10 in 20 random points. 
b Hemandez-Hemandez (2010) and this study.
c Miconia glaberrima only (dominant in terms of crown area coverage per unit land area) 
and determined from destructive measurements (Appendix C). 
d From photosynthetically active radiation attenuation measurements (Appendix C). 
e From diffuse light attenuation obtained with a LAI-2000 canopy analyzer (Appendix C). 
f Approximate years since establishment of current land use (local inhabitants, pers. 

comm.).
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2.2 Meteorological measurements

Automated weather stations (Figs. 2c and 2e) were installed in open areas with south-east 

exposure at a distance of 350 m (“La Cortadura”; 2128 m a.s.l.) and 450 m (“Tierra 

Grande”; 2400 m a.s.l.) from YREF and MREF, respectively (Fig. 2.1). Meteorological 

data were available as 10-min averages from 30-s sampling intervals and during a 1.5- 

year period (November 2008-April 2010). Variables measured at standard height above 

the ground (2 m) included: incoming solar radiation (Rs [W m '2]), air temperature (T 

[°C]), vapor pressure deficit (e [kPa]), wind speed (U [m s '1]), horizontal visibility (VIS 

[m]), and rainfall {P [mm]).Vapor pressure deficit [D [kPa]) was computed as the 

difference between e and saturation vapor pressure (es; computed as in Lowe (1977) 

using 7). Fog events were defined as periods with fog occurrence (VIS > 1000 m) 

separated by a fog-free period of at least three hours (see further details in Chapter 3).

Additionally, a metallic tower was installed at YREF and a mast at PAS, to 

measure Rn with a REBS Q7.1-L net radiometer at each site. The measurement height at 

YREF was 9 m (2 m above average canopy height) while at PAS it was 2 m. Gaps in the 

time series of Rn (19% and 38% of total hours for YREF and PAS, respectively) were 

filled with Rs data collected at the La Cortadura weather station. The linear regression for 

YREF was: Rn = 0.68Rs - 27.96 (r2 = 0.96; RMSE = 43.08), and for PAS was: Rn = 

0.52RS - 9.5 (r2 = 0.83; RMSE = 64.53). Rn for MREF was estimated from net longwave 

radiation (Rn\) calculation at daily time steps (Allen et al., 1998), daily Rs from Tierra 

Grande weather station and average daily albedo for clear-sky days determined for YREF 

(1 - (7?n - Rn\) / 7?s). The use of equal albedo for YREF and MREF was an initial 

simplification, subject to future examination given their very different canopy LAI and
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height. The tower at YREF was also instrumented with a LI-190SL quantum point sensor 

(LI-COR) to collect photosynthetically active radiation above the canopy (PARa). PARa 

at MREF was not logistically possible, and was therefore, obtained from Rs measured at 

the Tierra Grande weather station using an empirical linear model relating Rs and PARa 

measured at La Cortadura and YREF, respectively: PARa = 1.64RS (fixed bound at the 

origin; r2 = 0.90; RSME = 192). Additionally, PAR below the canopy (PARb) was 

measured at MREF with a LI-191SL quantum line sensor (LI-COR) installed on a leveled 

wooden bench at -30  cm from the ground and with a north-south orientation.

The mast at PAS was also instrumented with a RM Young 03101 Wind Sentry 

anemometer to measure U, and a Vaisala HMP45C probe to measure T and RH. 

Furthermore, D at PAS was calculated as described above but e in this case was derived 

from RH (Allen et al., 1998).

2.3 Soil moisture dynamics and other soil characteristics

Soil moisture was monitored continuously from April 2009 with soil moisture probes 

installed at five depths on an undisturbed wall of a pit dug at each site (-1.5 m deep). At 

MREF, two pits were dug (MREF1 and MREF2) adjacent to plots where sapflow was 

monitored (see Section 2.4 below). The depths at which soil moisture was monitored 

coincided with different soil horizons characterized at the time of sensor installation (see 

Appendix D for more details). In addition to other standard soil physical characteristics, 

field capacity and permanent wilting point were determined for each horizon and site, in 

collaboration with the Soil Laboratory of Instituto de Ecologia A.C., Xalapa, Veracruz 

(Appendix Table Dl). S616 probes connected to a CR1000 datalogger (Campbell

53



Scientific) were used at PAS and YREF, while EC5 probes connected to an Em50 

datalogger (Decagon) were utilized at MREF. Volumetric water content (6 [m3 m'3]) was 

determined from raw data and site- and depth-specific calibration curves (Appendix 

Tables D2 and D3) as recommended for volcanic soils (Frumau et al., 2006).

2.4 Tree sapflow measurements and stand level tree transpiration (Et)

Measurements of sap velocity at breast height (1.4 m above ground) were conducted in 

the stem of 8 and 10 trees at YREF and MREF, respectively, following the Heat Ratio 

method (Burgess et al., 2001). Sample trees were growing within circular plots of 10 m 

radius. One plot was set up in YREF, while in MREF three plots were necessary to cover 

the variation in DBH classes (see Appendix B). Two plots in MREF were adjacent to 

each other (MREF1), while the third was at a distance of ca. 100 m from the others but at 

the same elevation (MREF2). All plots had similar aspect (south-east) and slope 

(20-26°). A detailed description of sap velocity data collection, characterization of the 

radial profile of sap velocity for all sample trees, and calculation of whole-tree sapflow 

(Fs) is given in Alvarado-Barrientos et al. (2013). Transpiration at the whole-tree level 

was assumed equal to Fs, that is, we ignored any time lag due to stem capacitance, and 

considered it a reasonable assumption as discussed in more detail in Chapter 4.

Sapflow-derived stand level tree transpiration (Et [mm h"1]) for YREF was 

derived by averaging hourly Fs across all sample trees and multiplying by stand density 

(Table 2.1), as the stand was even-aged and tree spacing was fairly homogeneous 

(Cermak et al., 2004). Given the more complex structure o f MREF, scaling up was based 

on quantifying sapflow for trees representing the distribution in DBH classes in the stand
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(Cermak et al., 2004). Briefly, a survey of trees (DBH > 1 0  cm, non-suppressed trees) 

was conducted to determine stand characteristics such as stocking density (trees ha '1). 

Five circular plots of 1000 m'2 were selected in patches were P. patula dominated. Data 

from the plots were pooled and the distribution of stocking density in DBH classes was 

derived. To scale Fs to the stand level (Et), each sample tree was assigned to a DBH class 

(Appendix B).

The time series of hourly Et was not complete for the entire study period due to 

equipment malfunction; 26% and 49% of total hours were missing for YREF and MREF, 

respectively. First, a complete time series of daily Et was produced for all days having 

complete 24-h values (36% and 42% of the total number days for YREF and MREF, 

respectively) were used to derive daily totals of Ex [mm day'1]. Next, these values were 

regressed against daily reference crop evapotranspiration (ET0) computed with the 

Penman-Monteith equation (Monteith, 1965) using measured meteorological variables 

from the respective nearby weather stations and following (Allen et al., 1998). The Curve 

Fitting Toolbox 3.2 of Matlab R2011b (The MathWorks, Inc.) was used for non-linear 

least-squares optimization. Annual rates of Et were computed as the sum of daily totals 

for the study period divided by 1.5.

The ratio of seasonal and annual Ex to ET0 was used to compare between YREF 

and MREF as a direct comparison of Ex would be confounded by differences in 

meteorological conditions associated with the altitudinal differences between the sites. 

Furthermore, the ratio was recalculated with Ex normalized by the LAI (derived from 

PAR attenuation measurements; Table 2.1 and Appendix C) of the corresponding site to 

account for tree age and size differences, as well as stand structural differences, between
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the plantations. Because LAI data were only available for the dry seasons, LAI from the 

previous season was used for the wet season (i.e. dry season of 2008/2009).

Uncertainty bounds for seasonal and annual Ex totals were computed by 

propagating errors from: (i) up-scaling sapflow from individual trees to the stand level; 

and (ii) modeling daily totals of Et. Errors stemming from (i) included the error in 

average Fs due to variability amongst trees, i.e. SE of the mean, and uncertainty in the 

scaling factor, i.e. SE of tree density (cf. Kostner et al., 1998). Thus, the total scaling 

error was estimated as the propagation of errors in a simple product. The modeling error, 

in turn, was the RMSE of the relationship between Et and ET0. Total errors for annual Et 

totals were computed as the quadratic sum of total scaling and modeling errors (Mufioz- 

Villers et al., 2012).

2.5 Understory sapflow measurements

YREF did not have significant understory vegetation, in contrast to MREF (Fig. 2.2). The 

understory vegetation in MREF was surveyed in three transects 100 m long positioned 

within a quadrangular area of one hectare enclosing both sapflow monitoring plots at this 

site. The location of these transects was randomly chosen and the distance between 

transect 1 and 2 was 30 m, and 20 m between transect 2 and 3. Nine circular plots 

covering an area of 10 m2 were placed every 10 meters within transects, such that the 

total area sampled was 270 m2. The area covered by the crown of each understory 

shrub(s) was measured in each plot, as well as the % that each species covered. Miconia 

glaberrima was the dominant species, with a crown coverage estimated at 2260 ± 629 m2
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ha'1, and therefore selected for sapflow monitoring. The next most dominant species was 

the fern Dryopteris filix-max covering 981 ± 279 m2 ha'1.

The heat balance method (HBM; Sakuratani, 1981) was used to collect sapflow 

data for M. glaberrima. Briefly, the HBM consists of solving the heat balance for a 

segment of stem constantly heated by a known amount supplied to the surface via a film 

heater tightly surrounding the stem, and determining the contribution of sap flux to the 

loss of the supplied heat, or the loss of heat upwards and downwards within the stem 

segment (Sakuratani, 1981). Mass flow rate of xylem sap of the understory (Fsu [g s '1]) 

was calculated with as follows:

Q - J r , z l M l ^ l A _ kE
p  = _____________Ax----------------- /j'j

c(Td ~Tu)

where Q is the heat supply to the stem segment [W]; 7a and Tu are the stem temperatures 

measured down- and upstream from the heated segment [°C], respectively; 7V is the stem 

temperature at Ax [m] downward from the measuring point o f Tu; similarly, 7V is the 

stem temperature at Ax upward from where Td was measured; A and A is the thermal

1 1  9conductivity [W m °C' ] and cross sectional area [m ] of the heated stem segment, 

respectively; kE is the electromotive force [W] of the heat sensing element attached to the 

stem; and c is the specific heat of water (4.18 J g _1 °C 1).

The HBM sensors consisted of a pair of thermocouples (upper and lower) and a 

thermopile, both mounted on flexible cork making a collar to wrap around a segment of a 

stem. Sensors for 7 mm stem diameter were constructed at Iowa State University 

following (Senock and Ham, 1995). In total, 5 individual shrubs were instrumented, each 

with one sensor on an exposed branch (Fig. 2.2f). The sensors were insulated with tube
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foam insulator tied with cable ties, and lastly wrapped with tin foil. A constant power 

system (including a Dynamax voltage regulator) was used to supply 2.0 V for periods of 

36 h in order to obtain daily courses while avoiding overheating the stems. The electrical 

power was supplied with two (12 V, 12 Amp) batteries that were recharged by a solar 

panel located next to the Tierra Grande weather station. Voltage and temperature 

readings were taken every 60 seconds with a data logger-multiplexer system (CR1000- 

AM16/32, Campbell Scientific) and stored as 10-min averages.

At the end of the measurement period all the leaves downstream of the heated 

stem segment from each branch were collected in separate bags and their leaf area 

determined with a LI-3100C leaf area meter (LI-COR). Average Fsu per unit leaf area [L 

m‘ ] was up-scaled to the stand level (Eu [mm]) by multiplying by leaf area index (LAI) 

of the understory (0.6 ± 0.3 m m" ). See Appendix C for details on understory LAI 

determination. For days with complete Fsu hourly values, the ratio of mean daily Ea to 

daily Ex for MREF was calculated: v -  Eu /Et. Due to logistical limitations, data for only 

three full days were available during DS10 (March 29, April 3 and 4).

2.6 Total transpiration (Ej) o f  Pinus patula plantations

Total sapflow-derived transpiration (Ej) for MREF was computed on a daily time scale 

as the sum of Et and vEt, while for YREF it was equal to Et. Annual rates of Et were 

computed as the sum of daily totals for the study period divided by 1.5. Uncertainty 

bounds for seasonal and annual Ej totals in MREF were computed by propagating errors 

from: (i) total errors in Et (see Section 2.4); and (ii) modeling the contribution of daily Eu. 

Errors stemming from (ii) included the error in average Fsa due to variability amongst
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branches (i.e. SE of the mean), uncertainty in the scaling factor (i.e. SE of understory 

LAI) and the RMSE of the relationship between t> and Et.

2.7 Evapotranspiration (ET) and comparison among land uses

ET from PAS was computed by applying the Penman-Monteith equation using a 

daily calculation following Allen et al. (1998) and using meteorological data collected at 

the site. The following surface parameters were used: (i) albedo as calculated from Rn 

measurements on site, i?s from the La Cortadura weather station, and estimated Rn\ (cf. 

Allen et al., 1998); (ii) aerodynamic resistance calculated using an average crop height of 

10 cm; and, (iii) canopy resistance, using a fixed of 70 s m'1 (i.e. the reference value used 

for a ‘well-watered grass’; Allen et al., 1998). Using this approach was an initial 

simplification as no measurements were taken to constrain surface conductance. 

Therefore, it must be noted that ET for PAS was conceptually not different from 

reference crop evapotranspiration (ETo) computed for the site (La Cortadura). Annual 

rates were computed as the sum of daily totals for the study period divided by 1.5.

For the forested sites, annual ET was simply the sum o f its components: annual 

Ej, interception loss (E) and soil and forest floor evaporation (Es). Estimated Ex was 

derived from a combination of throughfall measurements at YREF and MREF (plus 

stemflow at YREF) and modelling following methods described in Holwerda et al. 

(2010). The measurements were conducted during the same time period of the present 

study. Ex as a percentage of rainfall was found to be 5.4% and 7.5% for YREF and 

MREF, respectively (F. Holwerda, unpubl. data). Evaporative losses from the soil and 

forest floor (Es) were considered negligible for YREF given its closed canopy. However,
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overlooking Es for a forested land cover structured as MREF may substantially 

underestimaate ET given its open canopy and high rainfall rates of the study area 

(Denmead, 1984). Unfortunately, direct observations that could be used to estimate Es 

were not performed. Nevertheless, an indirect approach using 0 data (down to a depth of 

-30 cm) to determine soil moisture depletion attributable to E j and Es, was explored. 

Briefly, it involved the subtraction of E t from the calculated volume of soil water 

depleted in a day (i.e. difference between the current day’s 0 and 6 from the previous 

day) such that Es is assumed to be the residual (Conrado Tobon, pers. comm.). However, 

this approach can only be applied for periods when 0 is below field capacity (Ibid.) and 

according to the data available for MREF, this did not occur during the study period (Fig. 

2.4). For this reason, a rough estimate of Es for MREF was derived using the ratio E*)E\ 

of 0.6, from a similarly structured mature pine plantation (P. caribeae planted on former 

grasslands in Fiji with LAI of 3 m2 m'2 and tree density of 621 trees ha'1; Waterloo et al., 

1999). Mean annual ET normalized by R„ (in evaporation equivalent units [mm year'1]) 

was used to compare the land cover types.

3. Results

3.1 Meteorological conditions and soil moisture dynamics

The study period included two contrasting dry seasons (November 2008-April 2009 and 

November 2009-April 2010, hereafter DS09 and DS10, respectively) and a wet season 

(May 2009-October 2009, hereafter WS09). DS10 was relatively wetter and foggier than 

DS09 as P and the % of time with fog events increased almost two-fold at the presently 

studied altitudes within the cloud belt (Fig. 2.3a-b). Annual P, calculated as the sum of P
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for the study period divided by 1.5, was 2484 mm for La Cortadura and 2231 mm for 

Tierra Grande (Fig. 2.3a). The proportion of time with fog occurrence recorded at the two 

altitudes was similar (Fig. 2.3b). While on average fog event occurrence was the same 

during DS09 and WS09 (26% and 27% of the time at La Cortadura and Tierra Grande, 

respectively), there was a considerable increase during DS10 at both altitudes (42% and 

36% of the time at La Cortadura and Tierra Grande, respectively), particularly in 

December, January and April, presenting a two-fold increase relative to DS09 (Fig. 2.3b).

As expected from the difference in altitude covered by the study sites (-290 m), 

monthly median Rs was generally higher at Tierra Grande compared to La Cortadura 

(Fig. 2.3c). For both altitudes, the highest monthly median Rs was observed just before 

the onset of the wet season, i.e. during March and April (Fig. 2.3c). Maximum T was 

observed during the wet season (Fig. 2.3d). Greater day-to-day variation in daily T and D 

were observed during the dry seasons than during the wet season at the two altitudes (Fig. 

2.3d-e). Monthly median T at La Cortadura (12.5 ± 0.5 °C and 15.8 ±0.1 °C for both dry 

seasons combined and WS09, respectively) was consistently higher than at Tierra Grande 

(11.6 ± 0.6 °C and 14.0 ± 0.2°C, for both dry seasons combined and WS09, respectively). 

Monthly median D was similar for both altitudes and followed the same seasonal pattern 

of Rs, reaching maximum daily values during the dry season up to -2  kPa at La Cortadura 

and Tierra Grande (Fig. 2.3e). U did not present seasonal variation at both altitudes and 

was generally low, although U was consistently higher at Tierra Grande (monthly median 

U range: 1.6-2.5 m s'1) compared to La Cortadura (monthly median U range: 1.26-1.68 

m s'1; Fig. 2.3f).
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Figure 2.3. Meteorological conditions during the study period at two altitudes within the 
seasonally dry montane cloud belt of central Veracruz, Mexico: La Cortadura (2128 m 
a.s.l.) and Tierra Grande (2400 m a.s.l.). (a) Monthly rainfall totals (P). (b) Percent time 
with fog events, (c) Median incoming solar radiation (Rs). (d) Median air temperature (7). 
(e) Median vapor pressure deficit (D). (f) Median wind speed (U). Solid lines and 
symbols depict monthly and daily data, respectively. Thick solid lines and dots 
correspond to La Cortadura, while thin solid lines and empty circles correspond to Tierra 
Grande. Light gray shaded areas indicate the two dry seasons under study (DS09: 
November 2008-April 2009; DS10: November 2009-May 2010), and the white area 
corresponds to the wet season (WS09: May-October 2009).
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■a i
Dynamics of calibrated mean daily soil moisture content (0  [m m' ]) at five 

depths, together with concurring P [mm], shown for each site in Fig. 2.4. All the sites 

presented relatively high 9 throughout the study period. Long periods without rainfall 

were rare at all sites (Fig. 2.4). Considering only days with 6 data, the longest rain-less 

period (P < 1 mm day'1) had a duration of 18 days and occurred in the last weeks of 

DS09. The minimum value of 9  was observed at the end of this period at all sites: 0.45 

m3 m'3 at PAS (depth: 5 cm), 0.42 m3 m"3 at YREF (depth: 19 cm), 0.44 m3 m'3 at 

MREF1 (depth: 35 cm), and 0.33 m3 m*3 at MREF2 (depth: 25 cm).

Notably, the minimum 6  values for all the forested sites approximated the 

respective field capacity 6  for these shallow depths (Fig. 4b-d; Appendix Table Dl), 

while for PAS (depth: 5cm), the minimum 9 value was below the field capacity 9 for 11 

days during this dry period (approximating permanent wilting point 9 of 0.41; Fig. 2.4a; 

Appendix Table Dl). In fact, the pasture vegetation was observed to start wilting in 

patches by the end of this rainless period, but it recovered shortly following the start the 

wet season.

Another interesting observation for PAS was that 9 at the deepest soil layer 

monitored (-100 cm) presented similar values as those recorded for the shallowest depth 

(-5 cm). This pattern was as not observed at the other sites. It should be noted that 

calibration of soil moisture probes yielded a different % bias (with respect to the equation 

provided by the manufacturer) for the depth of 100 cm compared to all other depths 

(Appendix Table D2).
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3.2 Stand-level transpiration estimates for YREF and MREF

Whole-tree sapflow (Fs) increased with tree size. An exponential function describes the 

relationship between Fs and tree basal area (Fig. 2.5). The derived empirical functions to 

predict Et at a daily time scale from reference evapotranspiration (ETo) at the two P. 

patula plantations are presented in Fig. 2.6. Despite some scatter, exponential functions 

fitted the data from both plantations very well (r2 > 0.80; Fig. 2.6). Mean annual Ex 

estimated for YREF was 645 ± 50 mm, and seasonally, DS09: 367 ± 58 mm, WS09: 302 

± 61 mm, and DS10: 299 ± 31 mm. In contrast, estimated mean annual Et for MREF was 

considerably lower, at 260 ± 45 mm, and seasonally, DS09: 143 ± 39  mm, WS09: 134 ± 

40 mm, and DS10: 113 ± 39 mm. The ratio Ft/ETo on a seasonal time scale was higher 

for YREF than for MREF for all seasons (Fig. 2.7a). Annually, ExlETo was 0.80 ± 0.06

for YREF, and 0.30 ± 0.05 for MREF. On a per unit leaf area, however, the differences of

the ratio between plantations are minimized (Fig. 2.7b).

An example of the daily course of understory (Eu) and tree transpiration (Et) at 

MREF, with concurring PAR above and below the canopy, is shown in Fig. 2.8a. It can 

be noted that the magnitude of Eu is relatively low compared to £ t. The ratio of daily Eu 

to Et (u) was found to change with the magnitude of Ex (Fig. 2.8b). Rather than defining a 

constant v to estimate total transpiration for MREF, the following empirical model was 

used to derive a daily value of v  for the study period:

Ex < 0.40; u = -0.11EX + 0.16 (2)

Ex > 0.40; v = 0.04F, ̂ 81 (3)
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were eq. (2) is the linear extrapolation to intersect with the y-axis o f (3), which in turn, is 

the best nonlinear fit for daily mean u against Et (solid line in Fig. 2.8b). At an annual 

scale, Eu was only 5 ± 2% of annual Ej.
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Figure 2.5. Relationship between tree size (basal area) and daily totals of whole-tree 
sapflow (Fs) of all sample Pinus patula trees for days with near clear-sky. Open circles 
show mean Fs for each DBH class (MREF), the open diamond show mean Fs for all 
sample trees at the young pine site (YREF). Closed circles and diamonds show individual 
tree data for MREF and YREF, respectively. The continuous line depicts the best non­
linear fit through all mean values: Fs = 5.01exp(9.03xl0'3basalarea) ; r2=0.93; RMSE: 
5.19.
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Figure 2.6. Relationship between daily reference evapotranspiration (ETo) and daily 
stand level tree transpiration (Et) derived from sapflow measurements in Pinus patula 
from contrasting stands at two elevations within the montane cloud belt of central 
Veracruz, Mexico: a young (YREF; 2180 m a.s.l.) and a mature plantation (MREF; 2470 
m a.s.l.).
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Figure 2.7. (a) Ratio of seasonal totals of stand level tree transpiration (Et) to ETo for a 
young (YREF; 2180 m a.s.l.) and a mature (MREF; 2470 m a.s.l.) Pinus patula 
plantation, (b) Idem with the ratio computed using stand level tree transpiration per unit 
leaf area ( £ l l a i ) .
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Figure 2.8. (a) Daily course of photosynthetically active radiation above (PARa) and 
below (PARb) the canopy and sapflow-derived stand-level understory (Eu) and tree (Et) 
transpiration at a mature Pinus patula plantation (MREF) on April 3, 2010. (b) Variation 
of u (the ratio EJEt) with Et for three days in late DS10 in which Eu data were available. 
Open symbols are data from five Miconia glaberrima shrubs, the closed circles depict 
their mean, and the solid line is the best nonlinear fit for the daily mean values (r2 = 0.97; 
RMSE = 0.006).
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3.3 Evapotranspiration (ET) across land cover types

Mean daily courses of Rn for clear-sky days show that there was more energy available 

on the surface covered by (young) Pinus patula than by pasture (Fig. 2.9). The mean 

daily measured albedo for clear-sky days was 0.14 ± 0.04 for YREF and 0.20 ± 0.05 for 

PAS.
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Figure 2.9. Mean daily course of net radiation (Rn [Wm2]) for clear-sky days measured at 
PAS and YREF. Error bars are one standard deviation. Hourly Rn data for MREF was not 
available.

Annual ET estimated for PAS was 815 mm (DS09: 438 mm; WS09: 432 mm; 

DS10: 352). For YREF, annual ET was estimated in 779 mm, of which 134 mm was 

annual interception loss (£, = 5.4% of annual P\ F. Holwerda, unpubl. data). For MREF, 

annual ET was 541 mm, with annual £, estimated at 167 mm (7.5% of P; F. Holwerda, 

unpubl. data) and annual Es estimated at 100 mm. The ranking of land cover types by the 

proportion of available energy (R„ in water equivalent units) used for ET at an annual 

scale was: PAS (0.80) = YREF (0.80) > MREF (0.42) (Fig. 2.10).
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Figure 2.10. Annual evapotranspiration (ET) and available energy (R„ in water 
equivalent) for three land uses in the montane cloud belt of central Veracruz, Mexico: 
pasture (PAS), 10-year-old Pinus patula reforestation (YREF), and a mature conifer 
forest dominated by planted P. patula (MREF). ET for forested land uses is separated in 
its components: tree transpiration (Ex), rainfall interception loss (£ j), understory 
transpiration (Eu; only for MREF) and soil evaporation (Es; only for MREF).

4. Discussion

Meteorological conditions during the study period were within the range of weather 

parameters reported previously for this site (Holwerda et al., 2010; Munoz-Villers et al.,

2011). The study included a period of La Nina during DS09, resulting in a more 

pronounced dry season (i.e. relatively less rainfall and fog occurrence compared to DS10 

as discussed in more detail in Chapter 3). Nevertheless, relatively high soil moisture 

content was maintained even during the driest period across sites (Fig. 2.4.). Furthermore, 

E j for both P. patula plantations was higher during DS09 compared DS10. These 

observations suggest that soil water availability may not have been a limiting factor for 

plant water use from P. patula plantations during the study period, similar to what has
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been reported for forests from other montane cloud belts world-wide (e.g. Chu et al., 

2012; McJannet et al., 2007; Schawe et al., 2007; cf. Bruijnzeel et al., 2011).

Similarly for PAS, cumulative ET was greater during DS09 than DS10. Although 

it is important to note that ET for PAS, as estimated here, is strictly speaking a potential 

amount (i.e. not different from ETo for this site). This is because surface conductance 

was a fixed value; that is, not constrained by limiting factors, such as using response 

functions as in the Jarvis-Stewart method for modeling surface conductance (Stewart, 

1988). The assumption that PAS was ‘well watered’ made by using Allen et al.’s (1998) 

approach to estimate ET, may not have applied throughout the study period. In particular, 

this assumption was likely invalid during the rainless period at the end of DS09 (Fig 4a) 

given the observations of temporary and partial wilting of pasture vegetation combined 

with soil moisture values near permanent wilting point at -5 cm. Therefore, soil water 

availability may have limited transpiration; however, this limitation does not appear to 

have been sustained for prolonged periods of time. A step forward towards estimating 

actual ET for PAS is to develop a response function for surface conductance using soil 

moisture data.

Furthermore, the depths that were observed to have greater fluctuation in soil 

moisture content in YREF and MREF are within the range of inferred depth of plant soil 

water uptake determined for the dry season (or functional rooting depth; 20-50 cm) based 

on a previous study that analyzed xylem and soil water stable isotopes in the study area 

(Appendix D Table Dl; Goldsmith et al., 2012b; G.R. Goldsmith and M.S. Alvarado- 

Barrientos, unpubl. data). Notably, there were no major differences in the inferred 

functional rooting depth between the two P. patula plantations (i.e. no effect of stand
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development stage, or tree age and size; however, isotope analyses have revealed a 

positive relationship, albeit weak, between tree size and inferred depth of water uptake; 

G.R. Goldsmith and M.S. Alvarado-Barrientos, unpubl. data). The functional rooting 

depth of PAS was not examined, but field observations of root density (Table D l) 

suggest that its rooting is also relatively shallow. As discussed in Goldsmith et al. 

(2012b), consistent shallow rooting across land cover types likely reflects the patterns of 

water and nutrient availability in the area. Analyses of soil nutrient concentration 

revealed that available nitrogen and phosphorous decline sharply below ~40 cm across 

land cover types (D. Geissert, pers. comm.). These observations are similar to previous 

reports of nitrogen and phosphorous being concentrated mostly at shallow soil depths (< 

20 cm) under forests in tropical montane regions (Cavelier, 1992; Silver et al., 1994). 

Moreover, it has been pointed out that high soil water content in cloud-affected 

ecosystems is the likely cause of reduced nitrogen cycling and consequently, of low 

nitrogen supply (cf. Benner et al., 2010).

The seemingly odd behavior of soil moisture dynamics at the deepest layer 

monitored in PAS (-100 cm), that is, showing lower values than expected and similar to 

what was observed at the shallowest layer (-5 cm), may be explained by differences in 

saturated hydraulic conductivity (Ksat; Table Dl). At the depth of 100 cm ATsat was 

higher than at the topsoil. This difference was likely produced by compaction of the 

topsoil (0-20 cm deep) due to grazing. Macro-pores and old root channels were observed 

at the deeper layers in PAS allowing preferential water flow and increasing drainage (A. 

Gomez-Tagle, pers. comm.). Such physical soil characteristics are likely the result of 

land-cover legacy, that is, remains of root systems of the former lower montane cloud
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forest. These observations suggest that the soils in the study area have relatively high 

resistance to degradation (Geissert et al., 2012; Gomez-Tagle et al., 2011).

Whole-tree Et increased with tree age and size, as expected (Fig. 2.5). Similar 

relationships have been reported for a wide range of species and ecosystems (c.f. Meinzer 

et al., 2005). Research involving plantation chronosequences has shown that generally, 

whole-tree Ex normalized by the size of trees (i.e. by unit sapwood area, leaf area or basal 

area) is higher for smaller and younger trees compared to older and larger (Delzon and 

Loustau, 2005; Magnani et al., 2008; Ryan et al., 2000; Vertessy et al., 2001; 

Zimmermann et al., 2000). These differences have been attributed to reduced stomatal 

conductance and leaf area with increasing age and size (Ibid.). The present findings on Et 

for P. patula are in line with these observations, in that at stand level, Ex for YREF was 

higher than at MREF (Fig. 2.6) due to higher LAI and stocking density (and higher 

sapwood per unit land area; not shown), and by having found a higher ratio of Et to ETo 

regardless of the season (Fig. 2.7a). By comparing the ratio EtfETo between YREF and 

MREF, the meteorological drivers of transpiration are normalized across sites, and thus 

the resulting pattern should reflect differences in Et due to structural variation and tree 

age and size affects without the confounding factor(s) arising from altitudinal differences 

among sites. On the other hand, after normalizing Et by LAI, YREF presented only 

slightly higher £,/ETo and therefore the difference with MREF was no longer significant 

(Fig. 2.7b). Moreover, ancillary data on leaf-level stomatal conductance under clear-sky 

conditions (Appendix E) suggest that mature pines have, on average, higher 

instantaneous rates than young pines. It is important to highlight, that higher leaf-level 

stomatal conductance for mature pines does not necessarily translate to higher Ex given
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that other considerations come into play with the change of scale, such as boundary layer 

conductance and leaf area (Monteith and Unsworth, 2007) .

The ratio of daily Ea to Ex (u) was found to change with the magnitude of Et (Fig. 

2.7b). This pattern may be explained by differences in light environment below the 

canopy compared to above the canopy, as illustrated by the daily course of PAR above 

and below the canopy (Fig. 2.7a). Clear-sky conditions produced higher daily Ex and 

highly variable PAR in the understory due to alternating shadows and sun flecks, with an 

overall result of low daily Eu, and consequently, low v. In contrast, radiation under 

cloudy and foggy conditions reduced Ex, but the larger diffuse proportion of radiation 

allows more light to penetrate the canopy into the understory, resulting in relatively 

higher Eu (and higher u) than under sunny conditions.

The proportional contribution of Eu (Miconia glaberrima) to Ej from the mature 

Pinus patula stand was unexpectedly small (5% of annual Ej), as an important turbulent 

transfer was expected between the understory and the overstory layers given the openness 

of the canopy and low tree density. Compared to many previous studies showing 

considerable contribution of Eu to E\ for stands with low tree density (e.g. Kagawa et al., 

2009; Kelliher et al. ,1990; cf. Roberts, 1983; Spittlehouse and Black, 1982; Vertessey et 

al., 2001; Wedler et al., 1996), t> found for MREF appears very small. For instance, in a 

German P. sylvestris plantation (LAI: 2.8 m2 m'2), Wedler et al. (1996) found that the 

understory (grasses and sedges with LAI of 1.5 m2 m'2) transpired 13% of the pine’s Et. 

Spittlehouse and Black (1982) found that the understory (Gaultheria shallon; LAI: 3.0 m2 

m'2) of a Douglas fir forest (LAI: 3.6 m2 m‘2) transpired 35% of Ex. Also, Roberts et al. 

(1982) showed that although Ex for a P. nigra stand was higher than for a P. sylvestris
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stand of similar age, the transpiration from vigorous understory (bracken) of the latter 

stand compensated for the differences in Et. Given such reports and the suggestion that 

“understoreys can be regarded as effective buffers to the canopy differences” (Roberts 

1983), it was expected that lower Et for MREF compared to YREF would be 

compensated by considerable Eu such that Ej would not differ much between P. patula 

stands.

Due to technical difficulties it was not possible to obtain an independent 

assessment of Eu from M. glaberrima shrubs in order to evaluate the uncertainty o f the 

heat balance sapflow method used, such as direct water uptake measurements with a cut- 

branch procedure analogous to that performed for the evaluation of HRM sapflow 

technique with young pines (see Chapter 1). Ancillary data of instantaneous rates of leaf- 

level stomatal conductance for M. glaberrima and mature pine trees (Appendix E) show 

higher and less variable rates for the former. These results, combined with the larger 

transpiration rates for the pines than for the understory shrubs, suggest that the leaf- 

atmosphere water vapour gradient in the understory o f MREF was probably smaller than 

at the pine canopy height (Lambers et al., 2008), besides the differences in LAI. Another 

source of uncertainty with respect to Eu, is that other understory vegetation such as fems 

and suppressed small trees were not taken into account due to logistical limitations. 

Nevertheless, given that these other understory species presented a relatively minor 

proportion of total area coverage and LAI relative to M. glaberrima, we consider that 

their contribution to Ej was likely small as well. Assuming that there was no important 

underestimation of Eu, the present results suggest that as P. patula plantations reach a
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mature stage of stand development, tree LAI and E j decreases, regardless of an increase 

in understory LAI.

The observed reduction of LAI at MREF may be related to productivity decline as 

a result of nutrient limitations because it is similar to the mid-rotation decline in LAI 

observed in loblolly pine (P. taeda) plantations in southern USA (Vose and Allen 1988). 

These observations suggest again, that the study area presents important nutrient 

limitations to primary productivity. Also, the decline in productivity may be due to 

maturity of the trees (Delzon and Loustau, 2005; Magnani et. al., 2008; Ryan et al., 2000; 

Vertessy et al., 2001).

In well-watered environments, ET has been shown to be similar (or even higher) 

in grasslands than in forests (Andre et al., 1989; Brauman et al., 2012; Kelliher et al., 

1993; Wolf et al., 2011), which agrees with the findings for the pasture and pine 

plantations studied here. This contrasts with observations that, given similar atmospheric 

conditions, trees generally have deeper roots and higher LAI, resulting in greater 

transpiration and higher wet canopy evaporation rates, and in turn, with overall higher ET 

than shorter stature vegetation with shallow roots and lower LAI such as grasses (Calder, 

1998; Zhang, 2001). Kelliher et al. (1993) reviewed surface parameters controlling ET of 

coniferous canopies and grasslands and found that regardless of structural differences, 

there were no important differences in maximum surface conductance, but rather, 

coniferous canopies presented light saturation reducing canopy conductance (and Et) after 

having attained maximum values at lower light levels than for grasslands. On a daily 

basis, the result was significantly higher ET for grasslands than for coniferous stands 

(Ibid.). In the present case, although ET was slightly higher for PAS compared to YREF
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and substantially higher compared to MREF, leaf-level stomatal conductance of the 

dominant grass species in PAS was on average lower than for both young and mature 

pines (Appendix E). It has been shown however, that for grasslands in humid climates 

(and under non-limiting soil water conditions), stomatal conductance explains a relatively 

small amount of the variation in ET (10-20%; Kateiji and Rana, 2011), while 

aerodynamic conductance is very low for short-statured vegetation (Calder, 1998); even 

lower at sites with low wind speeds such as the present study site (Fig. 2.3f). Therefore, 

ET of a well-watered pasture is driven mainly by solar radiation (Jarvis and McNaughton, 

1986; Kateiji and Rana, 2011). The ratio of ET to available energy (ET/i?n) was 

consistent with the relative rates of ET across land uses: PAS > YREF > MREF. This 

suggests that stomatal control appears to be limiting ET to some extent at the forested 

sites, which is consistent with findings that conifer canopies are well coupled to the 

atmosphere (Smith and Hinckley 1995). Furthermore, the low canopy interception loss 

(Ei) estimated for the pine plantations increased ET but not to the extent to be higher than 

for pasture, as has been reported for other forests in high rainfall areas (Calder, 1998). 

Despite the above, it is important to recall that ET for pasture as examined here (i.e. 

Allen et al., 1998) may be overestimating the evaporative losses for PAS, while for the 

pine plantations, the usage of sapflow techniques and rough estimations for soil 

evaporation may be underestimating ET. Eddy covariance measurements would have 

been a better approach perhaps (Wolf et al., 2011; Holwerda et al., 2013), but the 

mountainous terrain and patchy landscape present further important complications to the 

interpretation of data from such approach (Monteith and Unsworth, 2007).
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ET from a combination of modeling and measurements for a nearby old-growth 

lower montane cloud forest (LMCF), 20-year-old regenerating LMCF, and shaded coffee 

plantation, has been reported recently (Holwerda et al., 2013; Munoz-Villers et al., 2012). 

With an annual ET of 815 mm, the estimated total plant water use of PAS is lower than 

that of the old-growth and regenerating LMCFs (1350 mm and 1103 mm, respectively; 

Mufloz-Villers et al., 2012), as well as of shaded coffee (1066 mm; Holwerda et al., 

2013). Total plant water use of both pine plantations rank lower than all of these land 

uses (779 mm and 541 mm for YREF and MREF, respectively). The present values 

should be taken with care, as discussed above due to unknown relevance of not fully 

accounting (or roughly estimating) some sources of evaporative losses.

5. Conclusions and Future Research

Similar to higher total plant water use per unit available energy by PAS compared to the 

two P. patula plantations at different stage of stand development, combined with 

relatively similar soil hydrological properties and functional rooting depth, suggest that 

differences in energy partitioning and in the relative importance of surface and 

aerodynamic conductance, were the drivers of ET variation across land cover types. 

Furthermore, the implications of the present results are important for land use 

management and policy. It appears that reforesting former pasture-lands with P. patula 

would not substantially increase ET after >10 years of planting, contrary to findings from 

other studies (cf. Scott et al., 2005). Therefore, reforesting pastures with native tree 

species, such as P. patula, seem to have a relatively low impact on the amount of 

evaporative losses in environments such as the study area. This is contrary to what has
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been found in other environments where trees are planted in lands that do not naturally 

support forest ecosystems under current climate (e.g. afforestation of grasslands in 

Argentina and fynbos in South Africa; cf. Farley et al. 2005; cf. Scott et al. 2005). 

Significant hydrological impacts of land use change in environments such as the 

seasonally dry tropical montane area of central Veracruz, Mexico, may be more 

importantly driven by changes in hydrological properties of the soil (cf. Bruijnzeel 2004).

A modeling approach is recommended to assess ecohydrologic impacts of 

different land use change trajectories in the study area, and to test the response of ET to 

future climate scenarios. The approach used by Brauman et al. (2012) could be followed 

as a first step, to examine in more detail the drivers of potential ET for different land 

cover types. In such a way, the same methodological approach would be applied across 

land cover types, namely, the Penman-Montheith equation. Then, data as peresented here 

for the pine plantations, could be used as ground data to validate a model based on what 

is learned from analyzing potential ET. Furthermore, a hydrological modeling framework 

to sintethize data on other water balance components and hydrological processes in the 

study area (e.g. low cloud water interception across forest types, same functional rooting 

depth across land cover types, soils with high resistance to degradation, high infiltration 

rates, groundwater dominated flowpaths; Geissert et al., 2012; Gomez-Tagle, et al., 2011; 

Goldsmith et al., 2012b; Holwerda et al., 2010, 2013; Karlsen, 2010; Munoz-Villers et 

al., 2012a, 2012b), is the logical next step to ultimately determine whether land use 

change affects ecohydrologic function strongly, expressed as catchment water yield, for 

example.
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CHAPTER III

SUPPRESSION OF TRANSPIRATION DUE TO CLOUD IMMERSION IN A 

SEASONALLY DRY MEXICAN WEEPING PINE PLANTATION1

Abstract

Cloud immersion affects the water budget of fog-affected forests not only by introducing 

an additional source of water (via cloud water interception by plants), but also by 

suppressing plant transpiration. The latter effect is often overlooked and not routinely 

quantified, restricting a complete understanding of the net hydrological effect of cloud 

immersion and the possible consequences of projected reductions in cloud immersion 

under drier and warmer climates in tropical montane regions in the coming decades. This 

paper describes an approach to quantify the suppression of stand-level tree transpiration 

(Et) due to cloud immersion using measurements of sapflow, fog occurrence (visibility), 

leaf wetness, and near-surface climate. Estimates of fog-induced Et suppression in a 10- 

year-old Pinus patula plantation in the montane cloud belt of central Veracruz, Mexico, 

are presented for two contrasting dry seasons and a wet season. Fog occurred for 32% of 

total study period time, although showing pronounced seasonal variation (e.g. 44% 

during the second dry season). When fog occurred it was accompanied by rainfall during 

three quarters of the total time. Although the canopy was wet for almost a third of the 

time, fog-induced canopy wetness constituted only a very small portion of this total (2%).

1 Manuscript prepared for submission to Agricultural and Forest Meteorology. Alvarado-Barrientos. M.S.. 
Holwerda, F., Asbjomsen, H., Dawson, T.E., Bruijnzeel, L.A. Suppression o f  transpiration due to cloud 
immersion in a seasonally dry Mexican weeping pine plantation.
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Relative to sunny conditions, Ex was suppressed by 90 ± 7% under conditions of dense 

fog versus 83 ± 7% under light fog and 78 ± 10% during overcast conditions. 

Quantification of the potential change in annual Ex associated with two scenarios for 

future cloud immersion at the study site revealed that: (i) when all fog occurrence is 

replaced by overcast conditions, mean annual Et (645 ± 50 mm) is likely to increase by 

only 2 ± 1%; and, (ii) when sunny conditions replace all foggy conditions, the likely 

increase in annual Et is 17 ± 3%. As the rise in the regional lifting condensation level is 

likely to be on the order of only a couple of hundred meters and will probably result in a 

shift to overcast rather than clear-sky conditions, the present results suggest that the 

corresponding impact on Et may be relatively small. Consequently, climate change- 

related reduced dry-season precipitation, more than diminishing cloud immersion alone, 

presents a more worrisome prospect for plant-water relations and water yield from 

headwater catchments, due to the associated potential reductions in soil water reserves. 

The present results highlight the need for better projections o f  climate change-related 

alterations in cloud cover and immersion, as well as rainfall patterns for tropical montane 

regions.

1. Introduction

Frequent immersion in ground-level clouds, or fog, is the defining characteristic of cloud 

forests, which are widely regarded as biodiversity ‘hot spots’ and ‘water towers’, yet are 

among the most endangered terrestrial ecosystems in the world (Bruijnzeel et al., 2010; 

Viviroli et al., 2007). Projected future drier and warmer regional climate in many 

montane cloud belts world-wide is likely to cause an increase in the lifting condensation
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level (LCL) (Barradas et al., 2010; Karmalkar et al., 2008; Lawton et al., 2001; Nair et 

al., 2003; Ray et al., 2006; Richardson et al., 2003; Still et al., 1999; Van der Molen et al., 

2006; Williams et al., 2007). This would reduce the frequency o f fog occurrence and/or 

its liquid water content, and might, in turn, impact such vital ecosystem services provided 

by tropical montane cloud forests, as the stable supply of dry-season baseflows from 

(Brown et al., 1996; Martinez et al., 2009; Ponce-Reyes et al., 2012; Zadroga, 1981). This 

rise in LCL has been suggested to be on the order of a few hundred meters. For instance, 

theoretical estimates suggest that an increase in the cloud base by up to 300 m for Costa 

Rica (Karmalkar et al., 2008), while observations of fog frequency in central Veracruz, 

Mexico, suggest an increase of 200-400 m (Barradas et al., 2010). Hence, it is likely that 

many montane cloud belt zones will experience a shift in prevailing conditions from 

frequent cloud immersion to mostly overcast. It must be noted, however, that there are no 

reliable projections to date for the trajectory of the LCL and the associated changes in 

cloud immersion occurrence and frequency under future climate (Bruijnzeel et al., 2011; 

Karmalkar et al., 2011; Williams et al., 2007).

Cloud immersion is known to affect the site water budget of a forest ecosystem 

directly via the capture of cloud water (i.e. fog) by the canopy, producing drip to the 

forest floor once the canopy’s storage capacity is exceeded and increasing soil water 

availability above that maintained by rainfall alone (Bruijnzeel et al., 2011; Giambelluca 

and Gerold, 2011). The direct hydrometeorological effect of cloud immersion has 

attracted most attention (Garcia-Santos and Bruijnzeel, 2011; Giambelluca et al., 2011; 

Gomez-Peralta et al., 2008; Haeger and Dohrenbusch, 2011; Holder, 2003; Hutley et al., 

1997; Ingraham and Matthews, 1988; Juvik et al., 2011; Vogelmann, 1973), but the
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indirect hydrological effects of foggy conditions produced by the reduction of 

evaporative demand (i.e. attenuation of incoming solar radiation and increased 

atmospheric humidity) and increased canopy wetness, have become acknowledged 

comparatively recently. These indirect effects include, firstly, the suppression of 

transpiration (Burgess and Dawson, 2004; Chu et al., 2012; Johnson and Smith, 2008; 

Reinhardt and Smith, 2008; Ritter et al., 2009), and, to a lesser extent, foliar absorption of 

cloud water accumulated on the canopy (Dawson, 1998; Goldsmith et al., 2012a; Limm 

et al., 2009; Simonin et al., 2009). Such indirect effects may be o f greater importance for 

the water budget of fog-affected ecosystems in places where cloud-induced drip from the 

canopy contributes less to soil water reserves compared to rainfall (Dawson, 1998; 

Garcia-Santos, 2007; Hildebrandt et al., 2007). Thus, a substantial reduction in soil water 

uptake due to cloud immersion may be highly relevant in producing the high streamflow 

volumes reported to emanate from catchments covered by tropical montane cloud forests 

(Brown et al., 1996; Bruijnzeel et al., 2011; Martinez et al., 2009; Munoz-Villers et al., 

2012; Zadroga, 1981). Indeed, a growing number of studies have demonstrated that the 

occurrence of fog in fog-affected forests, including TMCF, results in strong instantaneous 

reductions of transpiration rates compared to those under sunny conditions (Burgess and 

Dawson, 2004; Chu et al., 2012; Garcfa-Santos, 2012; Hildebrandt et al., 2007; Hutley et 

al., 1997; Johnson and Smith, 2008; Reinhardt and Smith, 2008; Ritter et al., 2009). 

However, the associated decreases in seasonal and annual transpiration totals have not 

been quantified. Moreover, whilst the effect of fog on transpiration is usually evaluated 

by comparing transpiration under foggy conditions with rates observed during clear-sky 

conditions (e.g. (Ritter et al., 2009), an arguably more realistic evaluation of the influence
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of diminished cloud immersion would be to compare against overcast conditions, as these 

are more likely to replace foggy conditions in future (Barradas et al., 2010; Karmalkar et 

al., 2008).

The quantification of changes in seasonal/annual transpiration totals is especially 

relevant in seasonally dry regions experiencing not only changes in climate but also in 

land-use patterns, such as the expansion of planted forests observed in many fog-affected 

tropical headwater areas (Carabias et al., 2007; Evans, 1999; FAO, 2010) that supply 

water to lower-lying towns, agroecosystems and industries (Martinez et al., 2009; 

Munoz-Pifia et al., 2008). In the case of Mexico, the most widely used tree species in 

reforestation projects are conifers, and in the seasonal montane cloud belt of central 

Veracruz (eastern Mexico), this includes the Mexican weeping pine (Pinus patula) 

(Sanchez-Velasquez et al., 2009; Valtierra Pacheco et al., 2008).

This paper examines the effect of ground-level cloud occurrence, or fog, on stand- 

level tree transpiration (Et) for a young P. patula plantation, as well as the implications of 

a projected rise in LCL within the seasonal montane cloud belt of central Veracruz, 

Mexico, by analyzing sapflow dynamics and concurring meteorological conditions over a 

1.5-year period (November 2008-April 2010). Specific objectives were to:

• Characterize the local fog climatology and dynamics of leaf wetness in relation to 

fog occurrence and rainfall;

• Compare rates of Et and the controlling meteorological variables for sunny versus 

overcast and foggy conditions; and,

• Quantify the seasonal and annual degree of suppression of Et by fog relative to 

overcast and sunny conditions.
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2. Material and Methods

2.1 Study site

The present study was carried out in a young Pinus patula plantation (see Table 3.1 for 

stand characteristics), located within the La Cortadura Forest Reserve owned by the 

municipality of Coatepec (19.4931° N, 97.0422° W; 2180 m a.s.l.). The plantation was 

established in the year 2000 and had not received any thinning treatments prior to the 

present study. The site was formerly covered with mature lower montane cloud forest, 

locally known as ‘bosque mesofilo de montana’ (Garcia Franco et al., 2008). The 

seasonally dry montane cloud belt of central Veracruz, eastern Mexico ranges from 

-1200 to -3000 m elevation. As such, the investigated pine plantation is situated in the 

upper part of the cloud belt and near the level of the inversion layer marking the 

transition toward the (mostly coniferous) upper montane forest zone (Rzedowski, 1978). 

The climate between 2000 and 3000 m elevation in this region is ‘temperate humid with 

abundant rains during the summer’, with average annual temperatures between 12 and 

18°C and mean annual precipitation totals (MAP) between 2000 and 3000 mm, 

respectively (Garcia, 1973). The region has a seasonal rainfall and cloud immersion 

regime, with a wet season between May and October, during which approximately 80% 

of MAP falls, and a relatively dry season between November and April. Rainfall in the 

wet season is mostly of convective origin and brought by frequent showers and 

thunderstorms, while the dry season is characterized by an alternation of stable dry 

weather conditions and cloud immersion events, often accompanied by rain and/or drizzle 

(Garcia-Garcia and Zarraluqui, 2008; Holwerda et al., 2010; Munoz-Villers et al., 2012).
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Additional information on the site’s climate, geology, topography, soil characteristics and 

hydrology is given by Holwerda et al. (2010), (Munoz-Villers et al., 2012; Munoz-Villers 

and McDonnell, 2012) and (Goldsmith et al., 2012b).

Table 3.1. Characteristics of the young Pinus patula plantation under study within the 
seasonally dry montane belt of central Veracruz, Mexico. HRM = Heat Ratio method for 
sapflow measurements; n = number of sample trees; DBH = diameter at breast height; 
LAI = leaf area index; DS09 and DS10 correspond to the two dry seasons under study 
(November 2008-April 2009 and November 2009-April 2010, respectively). Standard 
deviations are given after the ± symbol where available.

Elevation [m a.s.l.] 2180
Area [ha] ~1
Mean canopy height [m]a 7 ± 1.5
LAI [m2 m'2] DS09: 6.0 ± 0.6 b

DS10: 6.5 ±0.2 b;5 .2 ± 0 .1 c 
Tree density [stems ha'1]3 3783 ± 652
Basal area [m2 ha'1]3 34.3 ± 9.6
Trees with HRM probes: n 8

tree age [years]d 10
______________________ DBH range [cm]d 9.6-11.8_________________________
3 (Hernandez Hernandez, 2010) and Chapter 2.
b Estimated from photosynthetically active radiation measurements above and below the 
canopy for clear-sky conditions from 11:00-14:00 (Chapter 2) and the Beer-Lambert Law 
with an extinction coefficient o f 0.52 (Pierce and Running, 1988). 
c Measured with a LI-COR LAI-2000 canopy analyzer throughout DS10 and a correction 
factor of 1.6 (Chapter 2). 
d As of 2010.

2.2 Meteorological and leaf wetness measurements

An automated weather station was installed in an open grassland area of south-easterly 

exposure at a distance of 350 m (2128 m a.s.l.) from the P. patula plantation. For the 

entire study period (November 2008-April 2010) meteorological data were available as 

10-min averages from 30 s sampling intervals. Incoming solar radiation (Rs [W m'2]) was 

measured with a Kipp & Zonen CMP3 pyranometer installed at a height of 3 m. Air
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temperature {T [°C]) and relative humidity (RH [%]) were obtained from a shielded 

Vaisala HMP45C installed at 2 m above the ground. Vapor pressure {e [kPa]) was 

measured with custom made dry- and wet-bulb thermocouples (VU University, The 

Netherlands), also at 2 m. Vapor pressure deficit (D [kPa]) was computed as the 

difference between e and saturation vapor pressure (es; computed as in (Lowe, 1977) 

using T). D derived in this way was preferred over D as derived from the RH probe 

because of the faster response of the thermocouples. Gaps in the thermocouple-derived D 

data were filled using data from the RH probe. Dew temperature (7d [°C]) was calculated 

with the following expression (Dingman, 2008): Td_c = (ln(e*10) - 1.810)/(0.0805 - 

0.0042l*ln(e* 10)). Wind speed (m [m s '1]) was measured with a Vector Instruments 

A100R cup anemometer at 2.5 m from the ground. Horizontal visibility (VIS [m]) data 

were collected with a Mini Optical Fog Sensor (Optical Sensors, Sweden) installed at a 

height of 3 m. Rainfall (P [mm]) was obtained from a tipping bucket rain gauge 

(ARG100, Environmental Measurements) installed 1.15 m above the ground.

Leaf wetness was measured with two Decagon LWL dielectric leaf wetness 

sensors installed at two heights within the canopy (4 and 6 m from the ground). The 

sensors were hung vertically to simulate the weeping orientation of P. patula needles. 

The canopy was considered to be wet when both sensors indicated that water was present 

on their surface (10-min readings >300 mV).

2.3 Definition o f rainfall andfog events and canopy wetness duration

Since the goal was to quantify the effect of cloud immersion on Et, and given that cloud

immersion in the study area was frequently accompanied by rainfall (see Section 3
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below), the inclusion of periods during which the canopy was wetted by rainfall was 

minimized by defining fog events as either fog-only or fog-plus-rainfall, as described 

below.

First, the occurrence of fog was defined as VIS < 1000 m (Glickman, 2000; Tardif 

and Rasmussen, 2007). Since the size spectrum of the fog droplets was not measured, the 

above definition of fog occurrence includes “true” fog (i.e. cloud droplets < 200 pm; 

Glickman, 2000), as well as any reduction in VIS related to rainfall or drizzle. From the 

10-min observations of VIS, hourly values of fog occurrence (in % of the time) were 

calculated. Next, fog events were defined as periods with fog occurrence separated by a 

fog-free period of at least three hours. Increasing the latter to six or nine hours resulted in 

a 12 to 21% decrease in the number of identified fog events, respectively, indicating a 

rather low sensitivity to the definition of the event separation period. The hourly median 

VIS observed during an event was taken as a measure of fog density. As can be seen in 

Fig. 3.1, the fog events can be divided roughly into two groups: a group with dense and 

persistent fog presence (median event VIS < 500 m), and a second group with light 

and/or intermittent fog presence (median event VIS ranging between 1000 and 4000 m). 

The events from the former group will be referred to hereafter as “dense fog events”, and 

those from the latter as “light fog events”.

Rainfall events were defined as periods with P > 0.3 mm, separated by a dry 

period of at least three hours (Gash, 1979; Holwerda et al., 2010). A fog event was then 

considered to be a fog-plus-rain event when a rainfall event occurred during or within the 

three hours preceding the onset of the fog event. Lastly, wet-canopy conditions were 

defined for all periods when the canopy was wet (as indicated by both leaf wetness
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sensors). Fog events were merged when canopy wetness data indicated the canopy 

remained wet between such events. This proved to be particularly important for fog-only 

events that were preceded by a fog-plus-rain or rainfall-only event. In such situations, 

canopy wetness was often “carried over” from the previous event, making it impossible 

to determine whether canopy wetness during the fog-only event was due to rainfall or 

fog. The fog-only events for which this was the case were reclassified as fog-plus-rainfall 

events.
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Figure 3.1. Relationship between median event horizontal visibility (VIS [m]) and mean 
event fog occurrence (expressed as % of time) as observed at 2180 m a.s.l. in central 
Veracruz, Mexico (19.4931° N, 97.0422° W). Open circles correspond to fog-only 
events, while closed circles denote fog-plus-rain events (see text for classification 
criteria). VIS threshold separating event-based fog density into two classes (“light” and 
“dense” fog) is represented by the dashed line.

2.4 Definition o f sunny, overcast andfoggy hours

In order to define daytime overcast conditions, an hourly cloudiness factor was computed 

as follows. First, daily values of theoretical clear-sky incident short-wave radiation (Rciear
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[W m'2]; cf. Dingman, 2008) and daily Rs were used to compute relative daily cloudiness 

using the following expression (Henderson-Sellers et al., 1987; Hildebrandt et al., 2007): 

( 7 ? c ie a r  -  Rs) / ^ c i e a r -  Next, clear-sky days, hereafter referred to as ’golden days’, were 

defined as days for which Rs > Rciear (Appendix Fla). Finally, hourly values of Rs as 

observed during golden days at different times of the year were used to construct month- 

specific diumal courses of Rs under clear-sky conditions ( i ? s_go iden ; Appendix Fib), 

thereby allowing the hourly relative cloudiness factor to be calculated as: (Rs golden - 7?s) / 

ŝ̂ goiden- No golden days occurred during the wet season, but given the sinusoidal 

seasonal trend of Rc\ear (Appendix Fla), golden days for the months of May, April and 

March were used to represent golden days for June-August, September and October, 

respectively.

Daytime (Rs > 7 W m ') overcast hours were then defined as fog-free hours with a 

cloudiness factor of > 0.7 and dry canopy conditions. Sunny hours were defined in the 

same way, but with a cloudiness factor of < 0.7. Two classes of foggy daytime hours 

were defined: (i) dense fog with > 60% hourly fog occurrence, and (ii) light (and/or 

intermittent) fog with < 60% hourly fog occurrence. To minimize the influence of canopy 

wetness induced by rainfall in the analyses of Ex suppression, only those foggy hours 

were considered that pertained to a fog-only event or that preceded the first rainfall 

occurrence in a fog-plus-rainfall event. Table 3.2 summarizes the percentage of daytime 

hours corresponding to each of the above-defined conditions for the dry and wet seasons 

examined.
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Table 3.2. Total daytime hours of different weather conditions per season (DS09: 
November 2008-April 2009; WS09: May-October 2009; DS10: November 2009-April 
2010). Values expressed as % of total. Values between parentheses indicate the % of total 
hours during which the canopy was wet for each foggy condition. Daytime was defined 
as having solar radiation levels > 7 Wm'2; see text for criteria to assign hours to a 
particular weather condition. NA = hours not taken into account in stand-level tree 
transpiration suppression analyses due to presence of a rainfall-induced wet canopy.

DS09 WS09 DS10
Total daytime [hours] 2048 2280 2048
Dense fog (wet canopy) 8 (1) 5(0) 11(1)
Light fog (wet canopy) 6 (0.1) 7(0) 6 (0.1)
Overcast 6 8 6
Sunny 65 56 49
NA* 15 24 28

2.5 Sapflow measurements and stand-level tree transpiration (Et)

The Heat Ratio method (Burgess et al., 2001) was used to obtain point measurements of 

sap velocity within the sapwood at breast height (1.4 m above ground) in eight P. patula 

sample trees. The sample trees were growing within a circular plot (of 10 m radius) with 

similar aspect (South-East) and slope (20-26°). A detailed description of the collection of 

sap velocity data as well as the characterization of the radial profile of sap velocity for all 

sample trees is given by Alvarado-Barrientos et al. (2013). In short, the median radial 

profile shape for each sample tree (represented by a fixed value of the lumped shape 

parameter p) found in this previous study was used to derive maximum likelihood 

estimates of the time-variant component of the radial profile (i.e. the scaling parameter cs 

[cm h'1]) by fitting the Beta probability density function (Beta-PDF) to hourly radial 

profiles of sap velocity. These two parameters, together with measured sapwood depth
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(Ls [cm]) of each tree were used to compute instantaneous hourly whole-tree sapflow, 

Fs(t): Fs(t) = 2 k Ls2 p cs(t) 0.001 [L h '1] (Alvarado-Barrientos et al., 2013). The Beta-PDF 

did not provide a good fit for 24% of measured hourly radial profiles. These proved to be 

associated with conditions of very low evaporative demand producing either a relatively 

homogenous distribution of sap velocity across the sapwood or radial patterns not 

conforming to the Beta-PDF (Alvarado-Barrientos et al., 2013). Thus, an area-weighted 

average point sap velocity (vwa) was computed after Hatton et al., (1990) such that Fs = As 

vwa> where As is measured sapwood area [cm ] for each tree.

Fs was assumed to be equal to transpiration at the whole-tree level, i.e. any time 

lags due to stem capacitance were ignored. This is a reasonable assumption because time 

lags between Fs and Rs after sunrise were never larger than 1 h (the finest time scale 

involved in the present study) and there were many instances when Fs increased in the 

dark after having declined at sunset and maintained steadily low for the first hours of the 

night (cf. Dawson et al., 2007). Consequently, sapflow-derived stand-level tree 

transpiration (Et [mm h'1]) was computed simply by averaging hourly Fs across all 

sample trees and multiplying times stand density (3783 pine trees ha'1), as the stand was 

even-aged and tree spacing was fairly homogeneous (cf. Cermak et al., 2004).

The time series of hourly Et was not complete for the entire study period due to 

equipment malfunction; 26% of total hours were missing. To produce a complete time 

series of Et, days with complete hourly values of Ex (36% of the total number of days in 

the study period) were used to derive daily totals of Et [mm d ay 1]. Next, these were 

regressed against daily reference evapotranspiration (ET0; computed with measured
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meteorological variables following (Allen et al., 1998)). The resulting regression was: Ex 

= -6.04exp'°25ETo + 5.3 (r2 = 0.88; RMSE = 0.43 mm day'1; see Chapter 2).

Uncertainty bounds for seasonal and annual Ex totals were computed by 

propagating errors from: (i) up-scaling Fs as measured in individual trees to the stand 

level; and (ii) modeling daily totals of Ex to fill gaps in the time series of sapflow-derived 

daily Et. Errors stemming from (i) included the error in average Fs due to variability 

amongst trees (i.e. SE of the mean) and uncertainty in the scaling factor (i.e. SE of tree 

density in this case) (cf. Kostner et al., 1998). Thus, the total scaling error was estimated 

as the propagation of errors in a simple product. The modeling error in turn, was the 

RMSE of the relationship between modeled and observed daily Ex. Total errors in 

seasonal and annual Et totals were computed as the quadratic sum of total scaling and 

modeling errors (Mufloz-Villers et al., 2012).

2.6 Quantification o f the Ex suppression effect offog

To quantify how much water was prevented from being transpired due to the occurrence 

of fog, subsets of hourly Ex data corresponding to each of the above-defined weather 

conditions (Section 2.4) were first grouped by season and then summarized by the hour 

of day. Next, mean daytime courses of Ex [mm h '1] were calculated for each weather 

condition and season; corresponding daytime totals o f Ex [mm] were computed by 

integrating the mean daytime courses. Average hour-specific Ex suppression rates for 

dense and light fog relative to overcast and sunny conditions were then calculated as the 

difference between the respective mean daytime courses. For example, the average 

suppression of Ex for light fog relative to overcast conditions was calculated as: EX owxcasXj
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-  £ t j i g h t  fo g , j  [mm h'1], where the index j  denotes the hour o f day. Finally, seasonal totals 

of Ex suppression were computed by summing the average hour-specific Ex suppression 

rates multiplied times the corresponding total number of hours with dense or light fog. 

For example, the total Ex suppression for light fog relative to overcast conditions was 

calculated as: £  ( - £ t_ o v e r c a s t ,  j  -  £t_iight fo g , j )  *  «ught fo g ,  j  [mm], where n is the total number of 

hours in a particular season. Uncertainty bounds for estimates of fog-induced Et 

suppression were computed by propagating errors from up-scaling Fs to the stand level 

(see Section 2.5) and from the standard error (SE) of Et of a specific hour of day and 

season.

2.7 Statistical analyses

Due to non-normal data distributions and the need to reduce the weight of long tails, 

meteorological data were characterized by their median values. The median absolute 

deviation (MAD) was used as the variability estimator (Sachs, 1984), and the data spread 

around the median was quantified by the standard error of the median (SEm). The latter 

was estimated with a non-parametric bootstrapping method (Efron, 1981). Significant 

differences between frequency distributions (e.g. time of day when fog-only hours 

occurred) were tested with the Kruskal-Wallis one-way analysis of variance on ranks, and 

post-hoc pair-wise multiple comparisons were carried out with Dunn's method (Dunn, 

1964).

The strength of the relationship between meteorological variables and Ex was 

examined by computing correlation coefficients. Only variables with the highest 

correlation coefficients were considered as meteorological controls of Ex {r > 0.50).
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Furthermore, analyses of covariance and post-hoc Tukey-Kramer tests (Hochberg and 

Tamhane, 1987) were conducted to compare each meteorological control of Et as 

observed during contrasting non-sunny weather conditions (i.e. subsets for dense fog, 

light fog, and overcast) relative to sunny conditions, thereby allowing an examination of 

the differences in the degree of reduction of these variables under the respective non- 

sunny conditions (i.e. test for significant differences between slopes and intercepts of 

individual linear regressions). The same approach was used to test for significant 

differences in Et between the respective non-sunny conditions relative to sunny 

conditions. In addition, the effect of weather condition on the relationship between E, and 

its main meteorological controls was examined using an analysis of covariance. The Et 

and meteorological data used in these analyses pertained to daytime conditions only. 

Moreover, data were summarized by the hour of day for each subset (i.e. weather 

condition and season) before computation of coefficients of correlation and hypothesis 

testing, to avoid any bias introduced by the diurnal variation in these variables, as well as 

to deal to some extent with the autocorrelation inherent to such data-sets. The 

significance level used throughout was 0.05. All statistical analyses were implemented 

with the Statistics Toolbox of Matlab R2012a (The Mathworks, Inc.).

3. Results

3.1 General meteorological conditions

The study period included two contrasting dry seasons (November 2008-April 2009 and 

November 2009-April 2010, hereafter referred to as DS09 and DS10, respectively) and a 

wet season (May 2009-October 2009, hereafter WS09). DS10 was relatively wetter and
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foggier than DS09, as P and fog event occurrence (in % of time) were almost twice as 

large (Fig. 3.2). Cumulative P was 430 mm and 752 mm for DS09 and DS10, 

respectively. In contrast, cumulative P during WS09 was 2545 mm (Fig. 3.2a). Further 

details of the meteorological setting of the study period are presented in Chapter 2.

3.2 Fog climatology

A total of 404 fog events were recorded throughout the 18-month study period. About 

half of the total number of fog events (53%) were classified as light fog. Then, 54% of 

the dense fog events and 45% of the light fog events were accompanied by rain. 

Furthermore, there was a clear seasonal pattern with respect to fog occurrence (Figs. 

2b-d). A larger number of fog events occurred during WS09 (about one per day) 

compared to the two dry seasons. However, wet-season fog events consisted mostly of 

light fog, while dense fog events were generally more common during the dry season 

(Fig. 3.2b).

Although much variability was observed in the duration of fog events (Fig. 3.2c), 

fog-plus-rain events were generally o f longer duration than fog-only events (median ± 

MAD: 11 ± 7 h versus 4 ± 2 h, respectively). Similarly, dense fog-plus-rain events were 

of longer duration than light fog-plus-rain events (median ± MAD: 13 ± 8 h versus 7 ± 5 

h, respectively), while dense fog-only events lasted longer than light fog-only events 

(median ± MAD: 6 ± 2 h versus 3 ± 1 h, respectively). Furthermore, dry-season fog 

events were generally of longer duration compared to wet-season events (Fig. 3.2c). The 

median duration of all fog events was also greater in DS10 relative to DS09, mostly due 

to the occurrence of longer dense fog-plus-rain events in the former (Fig. 3.2c). For
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instance, the longest fog event recorded during the entire study period lasted 128 h (8-13 

January 2010) with fog occurring for 76% of this time, a median event VIS of only 214 

m, and a total of 38 mm of concurring rainfall. Nevertheless, fog events lasting > 24 h 

were generally infrequent and totaled <10% of all fog events during DS09, 3% in WS09, 

and 22% in DS10.
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Figure 3.2. (a) Monthly total rainfall and (b-d) event-based fog climatology as observed 
at 2180 m a.s.l. in central Veracruz, Mexico (19.4931° N, 97.0422° W). (b) Total number 
of fog events, (c) Median fog event duration with standard error of the median (SEm) 
indicated by error bars, (d) Percentage of total hours per month with fog events. See text 
for criteria to classify fog events as dense or light, or as fog-plus-rain. Light-gray shaded 
areas indicate two dry seasons under study while the white area corresponds to the wet 
season.
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Fog occurred for 32% of the total study period, although it exhibited important 

seasonal variation. While the percentage of time during which the canopy was immersed 

in fog during DS09 and WS09 was the same (27%), fog occurrence in DS10 was much 

higher (44%). The increase in fogginess occurred mostly in December, January and 

April, representing a two-fold difference relative to DS09 (Fig. 3.2d). Notably, the 

increase in fog occurrence during DS10 reflected the greater frequency of longer dense 

fog-plus-rain events referred to earlier (Fig. 3.2d). Moreover, for the entire study period, 

conditions with fog-only occurred for only 8% of the time, whereas conditions with fog- 

plus-rain occurred for 24% of the time.

On a diurnal basis, both fog density classes showed higher frequency of 

occurrence during the late afternoon and early evening hours of the day (Fig. 3.3a). 

However, this higher frequency was much more pronounced for dense fog than for light 

fog, such that the distributions for the two fog classes were significantly different (Fig 

3a). Furthermore, there were only significant seasonal differences for dense fog (Fig 3a).

3.3 Canopy wetness

Overall, the canopy was wet for almost a third of the total time. Not surprisingly, all fog- 

plus-rain events produced a wetted canopy. The onset of rainfall during fog-plus-rain 

events typically occurred within 0-4 h after the onset of fog, whereas canopy wetness 

almost always concurred with the onset of rainfall or shortly thereafter (see thick lines 

along upper horizontal axis in Fig. 3.4). Only in a few fog-plus-rain events (2% of dense 

and 15% of light fog-plus-rain events) did rainfall start before the onset of fog, and 

consequently, in these cases the canopy was already wet before the fog started. Rainfall
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generally ended between 5 h before and 1 h after the end of fog occurrence in all fog- 

plus-rain events; however, variability was very large (range: 30 h before -  10 h after; Fig.

3.4). After the end of rainfall in fog-plus-rain events, the canopy typically remained wet 

for 3-10 h, whereas after the termination of fog during these mixed events the canopy 

remained wet most frequently for 2-7 h (Fig. 3.4).
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Figure 3. (a) Frequency distribution of fog-only conditions as a function of the time of 
day and separated by season. Different superscript upper-case letters indicate significant 
seasonal differences for each fog density class (i.e. between panels in the same line), 
while different superscript lower-case letters indicate significant differences between 
light and dense fog distributions for each season (i.e. between panels in the same 
column), (b) Idem for canopy wetness occurrence due to fog-only conditions. Differences 
among seasons and between dense and light fog were not large enough to discard the 
possibility of random variability.
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Figure 3.4. Examples of hourly dynamics of stand-level tree transpiration (Et [mm h'1]) from the young Pinus patula plantation under 
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Furthermore, canopy wetness associated with fog-only events occurred during 

36% of the events with dense fog, and only in 4% of the ones with light fog. Besides 

having mostly dense fog (median VIS ± MAD: 198 ± 50 m), fog events that produced 

wet canopy conditions occurred almost exclusively during the dry season (mostly DS10) 

and were of long duration (median ± MAD: 8 ± 3 h). Moreover, the onset of canopy 

wetness in these fog-only events generally occurred 3-7 h after the start of the fog, and 

the canopy remained wet generally between 1-5 h after fog occurrence had ended (Fig.

3.4).

On an hourly basis, very little daytime canopy wetness occurred during either 

dense or light fog-only conditions. During the two dry seasons studied, fog-induced 

canopy wetness duration totalized only 1.1% of daytime hours (Table 3.2 and Fig. 3.3b) 

whereas during the wet season fog-induced canopy wetness this did not occur (Table 3.2 

and Fig. 3.3b). Regardless of season, there were almost no daytime hours during which 

the canopy was wet after a fog-only event (0.1% of all daytime hours). The only 

instances observed concerned the first hour of the day following a nocturnal fog event 

(Fig. 3.4).

3.4 Et and its meteorological controls under different weather conditions 

Under clear-sky and dry-canopy conditions, hourly Ex increased sharply after sunrise 

(Fig. 3.4). Maximum hourly Et occurred typically between 10:00 and 12:00, i.e. a few 

hours before maximum hourly Rs, after which Ex started to decrease until sunset (Fig. 3.4 

and 7a). There was no indication of Et lagging behind Rs once it had reached steady state 

after sunset. However, on many occasions and regardless of the season, Et started well
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before sunrise; significant Ft was recorded during 15% of the total nighttime hours, at an 

average rate of 0.04 mm h' 1 and with maximum values of up to 0.2 mm h'1 (see Chapter 4 

for more details).

The strongest correlation between daytime Et and the respective meteorological 

variables was found with Rs (r = 0.85), followed closely by D (r = 0.82). Ex was also 

positively correlated with T, albeit less strongly (r = 0.56). Hence, Rs and D were 

considered to be the main meteorological controls of Ft.

During conditions of dense fog, daytime Rs was only 21 ± 5% of that common for 

sunny conditions at a given hour of day (based on the difference in slope ± 95% Cl for 

the relationships between Rs under conditions of dense fog versus during sunny 

conditions; Fig 3.5a). Light fog and overcast conditions, in turn, presented a very similar 

degree of attenuation of Rs (24 ± 6% and 25 ± 4%, respectively; the difference in the 

slopes of the respective regression equations were not significant: F  — 0.82, p  = 0.44; Fig. 

3.5a). However, the intercepts of the respective regressions differed significantly (F  = 

7.71, p  < 0.01); specifically, the intercept o f the regression for radiation under conditions 

of light fog was larger compared to values for either dense fog or overcast conditions 

(Fig. 3.5a). Also, there were no seasonal effects in terms of differences between the 

various non-sunny conditions (dense fog: F  = 2.09, p  = 0.15; light fog: F  = 2.94, p  = 

0.07; overcast: F =  2.64, p  = 0.09). There was, however, a marked seasonality in amounts 

of Rs under sunny conditions, such that during the wet season, values were (on average) 

74 ± 12% of dry-season values.

Not surprisingly, for the entire study period daytime D was the lowest (near-zero) 

during conditions of dense fog (median ± MAD: 0.005 ± 0.004 kPa), slightly higher

1 0 2



during light fog (median ± MAD: 0.06 ± 0.02 kPa), higher during overcast conditions 

(median ± MAD: 0.14 ± 0.03 kPa), and highest under sunny conditions (median ± MAD: 

0.65 ±0.12 kPa). The diurnal variation of D under sunny conditions was larger than 

under either type of non-sunny conditions; regardless of the time of day, D under non- 

sunny conditions remained within a rather narrow range (i.e. the slopes of the regressions 

in the ANCOVA contrasting D-values for non-sunny conditions with those for sunny 

conditions were not significantly different from zero; Fig. 3.5b). The range in D-values 

differed significantly between overcast and foggy conditions {F = 131.82,p  = 0; Fig 5b). 

The season did not affect daytime D for non-sunny conditions; however, D-values 

observed under sunny conditions were lower during the wet season compared to the dry 

season (Fig. 3.5b).

Daytime T observed during non-sunny conditions was not affected as strongly as 

found earlier for D and Rs. T was generally lower during dense fog than during light fog, 

which in turn decreased T to a greater extent relative to overcast conditions (Fig. 3.5c). 

However, during the course of the day for a given season, T under non-sunny conditions 

nearly converged with T for sunny conditions (not shown). Furthermore, there was no 

strong evidence to suggest significantly different slopes among the respective regressions 

for non-sunny conditions (F = 0.49, p  -  0.61), all of which were close to unity. The 

intercept of the regression for overcast conditions, however, was significantly different 

from those for either type of foggy conditions (F = lA 9 ,p  < 0.01; Fig. 3.5c). There was a 

more pronounced reduction of T relative to sunny conditions during the dry seasons, 

mostly because T did not vary much between weather conditions during the wet season
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(Fig. 3.5c). Moreover, minimum daytime T was higher (by 2-5°C) during the wet season 

compared to the two dry seasons for all weather conditions.

There was a fairly good relationship between daytime hourly Ex and Rs 

considering all weather conditions and seasons (r2 = 0.72; RSME = 0.04). Weather 

conditions did have a significant effect, however (Fig. 3.6a). Although the slopes of the 

individual regressions did not differ significantly (F =  0.93; p  -  0.43), the intercept of the 

regression for sunny conditions was significantly different from the ones associated with 

the respective non-sunny conditions (F  = 33.19, p  < 0.01). No seasonal effects were 

significant for given weather conditions (dense fog: F  = 0.97, p  = 0.39; light fog: F  = 

0.78, p  = 0.47; overcast: F  = 0.39; p  = 0.68; sunny: F — 0.74; p  = 0.48). Moreover, 

considerable scatter was present in most of the individual regressions, particularly for 

sunny conditions, which was related to hysteresis in the relationship between Et and Rs 

arising from the diurnal variation in the two variables (see clockwise loop for DS09 in 

Fig. 3.6a).

In contrast, weather conditions had no significant effect on the linear regression 

between daytime hourly Et and D (test for equal slopes: F = 0.09, p  = 0.96; test for equal 

intercepts: F = 0.39; p  = 0.76; Fig. 3.6b). The linear regression for all weather conditions 

and seasons had a reasonably good fit (y = 28x + 0.016; r2 = 0.75; RMSE = 0.04). 

However, while the intercept did not differ between seasons, the slope was significantly 

affected by season (F = 14.81,/? = 0; slope for DS09: 0.31; slope for WS09: 0.43; slope 

for DS10: 0.22). Again, an important source of variation in the regressions was the 

hysteresis of the relationship (Fig. 3.6b).
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3.5 Suppression o f Ex during non-sunny conditions

Hourly dynamics of Ex with concurrent meteorological variables during non-sunny 

weather conditions (Fig. 3.4), as well as the relationship between Ex and its chief 

meteorological controls (Fig. 3.6), demonstrate that Ex is suppressed considerably under 

non-sunny conditions compared to sunny conditions, particularly during fog. However, 

fog tends to be more frequent at certain times of the day (Fig. 3.3a) whereas the 

meteorological controls of Et also vary during the day. Therefore, in order to properly 

quantify the suppression effect of fog, the mean daytime course of Ex was analyzed, 

grouped by weather condition class and season (Fig. 3.7a). Notably, Ex under non-sunny 

conditions presented a damped diurnal course, to the extent that under dense fog Ex 

almost did not vary with the hour of day; however, during the wet season the diurnal 

course of Ex for the various non-sunny conditions were less damped compared to dry- 

season conditions (Fig. 3.7a).

At 2.6 ± 0.2 mm, total daytime Ex under sunny conditions was larger during DS09 

than during the 2009 wet season (2.3 ± 0.3 mm) or DS10 (2.1 ± 0.3 mm; Fig. 3.7b). For 

non-sunny conditions, a similar seasonal pattern was observed for total daytime Et\ the 

two dry seasons had relatively similar daytime total ^-values, both of which were lower 

than the ones observed during the wet season (Fig. 3.7b). Interestingly, total daytime Ex 

during overcast conditions was only slightly higher than that during light fog conditions 

throughout the study period (Fig. 3.7b). The lowest daytime Ex totals were associated 

with dense fog conditions during either dry season (0.3 ±0.1 mm: Fig. 3.7b).

107



Overall, hourly rates of Et under conditions of dense fog were suppressed by 90 ± 

7% relative to sunny conditions whereas light fog suppressed Et by 83 ± 7%, and overcast 

conditions by 78 ± 10% (based on the slope ± 95% confidence interval for the respective 

regressions in Fig. 3.7c). Interestingly, differences in slope between the regressions 

comparing non-sunny and sunny conditions were not significant (F  = 1.92; p  = 0.15). 

Neither were seasonal effects within the regression for conditions of dense fog (F = 0.67, 

p  = 0.52). However, for conditions of light fog the slope of the regression for wet-season 

data was significantly steeper than the ones for dry-season data (F  = 5.37, p  = 0.01). By 

contrast, seasonal effects within the regression for overcast conditions only affected the 

intercept (F=  10.33,/? < 0.01).

3.6 To what extent is Et suppressed by fog?

Relative to overcast conditions, the presence of dense fog suppressed Et by a mere 

seasonal total of 3.4 ±1.2 mm for DS09 versus 3.9 ±1.6 mm for DS10 and only 2.8 ± 1.1 

mm for WS09. Even smaller amounts of Et were suppressed by light fog relative to 

overcast conditions (DS09: 1.2 ± 1.0 mm; WS09: 2.6 ± 1 .6  mm; DS10: 1.1 ± 1.4 mm). 

Taking all foggy conditions together, total suppressed Et relative to overcast conditions 

represented only about 2 ± 1% of seasonal Et with little seasonal variation (Fig. 3.8a). 

Thus, for a scenario in which all fog occurrence is replaced by overcast conditions as a 

result of a rise in the LCL, annual Et (645 ± 50 mm on average) is likely to increase by 

only 2 ± 1%.

In contrast, taking sunny conditions as the reference, dense fog prevented a total 

of 21.2 ± 1.6 mm and 28.6 ± 1 .9  mm from being transpired during DS09 and DS10,
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respectively, while the corresponding amount during WS09 was only 9.7 ±1 .6  mm. 

Furthermore, light fog suppressed Et by a total of 17.8 ± 1.5 mm during DS09 and by a 

similar amount during the other two seasons (WS09: 18.8 ± 2.0 mm; DS10: 16.6 ± 1.7 

mm). Taking dense and light fog occurrence together, the combined suppression effect 

ranged from 9 ± 2% mm (WS09) to 15 ± 1% (DS10) of seasonal Et (Fig. 3.8b). Hence, a 

likely increase of 17 ± 3% of annual Ex may be expected from an extreme scenario in 

which all fog occurrence would be replaced by sunny conditions.
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Figure 3.7. (a) Mean daytime courses of stand-level tree transpiration (Et [mm h'1]) for a 
young Pinus patula plantation. Error bars represent standard error of the mean, (b) 
Daytime total Et [mm] for different weather conditions and separated by season (DS09: 
November 2008-April 2009; WS09: May-October 2009; DS10: November 2009-April 
2010). (c) Comparison of mean hourly Et under various types of non-sunny conditions 
with Et during sunny conditions. Seasons are indicated with different colors (red: DS09; 
blue: WS09; green: DS10). For each non-sunny condition the best linear fits are 
presented as solid lines and described in the legend, where different superscript upper­
case letters indicate significantly different slopes and lower-case letters indicate 
differences among intercepts.
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Figure 3.8. Total seasonal stand level tree transpiration (£t [mm]) for a young Pinus 
patula plantation, plus derived estimates of the amounts of suppressed Et due to both 
dense and light fog combined, relative to (a) overcast or (b) sunny conditions. Three 
seasons under study are shown (DS09: November 2008-April 2009; WS09: 
May-October 2009; and DS10: November 2009-April 2010).

4. Discussion

4.1 Variability in fog  occurrence

By observing sapflow dynamics and micrometeorological conditions during 1.5 years it 

was possible to examine not only seasonal variability in weather conditions (and Et 

responses), but also, to some extent, interannual variability. Seasonal characteristics 

observed in fog occurrence, fog event duration, and fog event density, reflect the 

seasonality in weather systems producing cloud immersion in central Veracruz (Garcia- 

Garcia and Zarraluqui, 2008; Holwerda et al., 2010). During the wet season, daily short- 

duration fog events composed mainly of light fog are due to the typical diurnal pattern of 

orographic-convective cloud development over the mountain. Conversely, during the dry 

season, there is an alternation of high pressure systems (i.e. no or very little fog 

occurrence) and cold front intrusions (i.e. long-duration fog events composed mostly of
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dense fog). Also, rainfall accompanying fog occurrence is typical of the foggy conditions 

produced by orographic clouds, as reflected by similar patterns documented for the 

montane cloud belt of Hawaii (Giambelluca et al., 2011), Canary Islands (Garcia-Santos 

and Bruijnzeel, 2011) and Puerto Rico (Eugster et al., 2006), for example.

The difference with respect to rainfall totals and fog occurrence between the two 

dry seasons studied here may have been related to the El Nino/La Nina-Southern 

Oscillation phenomenon (Ponette-Gonzalez et al., 2010). La Nina conditions prevailed 

during DS09, enhancing the dry season at the study site (i.e. relatively less rainfall and 

fog occurrence). The average monthly Southern Oscillation Index for DS09 was 10.6 

versus -3.4 for DS10 (http://www.bom.eov.au/climate/current/soihtm 1 .shtmlT It is 

unclear whether more frequent La Nina or El Nino conditions will be the norm under 

future climatic conditions for central Veracruz, although modeling studies have predicted 

reductions in dry-season precipitation and greater variability for Central America and 

Mexico (Karmalkar et al., 2011).

4.2 Et in seasonally dry fog-affectedforests

Trees growing in environments subject to frequent cloud immersion face strong (and 

often rapid) changes in solar radiation, air humidity and canopy wetness produced by 

alternating sunny, cloudy and foggy conditions (Cavelier, 1996). Therefore, Et rates can 

be expected to vary widely under different weather conditions as shown for the 10-year- 

old Pinus patula plantation studied here, as well as reported for many other fog-affected 

forests (Burgess and Dawson, 2004; Chu et al., 2012; Garcia-Santos, 2012; Goldsmith et 

al., 2012a; Hildebrandt et al., 2007; Hutley et al., 1997; Johnson and Smith, 2008;

1 1 1
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Reinhardt and Smith, 2008; Ritter et al., 2009). Also, in seasonal environments there may 

be periods when soil moisture limits Ex, thus producing additional seasonal variation in 

Et. Average daily Et for the P. patula plantation (1.7 ± 1.24 mm day'1) was high 

compared to values reported for other seasonal fog-affected forests such as ridge-top 

fayal-brezal forest (1.2 ± 0.12 mm day"1; Garcia-Santos, 2012) and Pinus canariensis- 

dominated forest (0.82 mm day-1; Luis et al., 2005) in the Canary Islands, or Anogeissus 

dhofarica-dominated forest in Dhofar, Oman (range of modeled Et: 0.55-0.96 mm day'1; 

Hildebrandt and Eltahir, 2007). The latter sites all have a very pronounced dry season 

(i.e. Mediterranean to semi-arid climates) causing periodic soil moisture limitation to Ex, 

in contrast to the present study site, which maintained high levels of soil moisture even 

during the driest period (> 0.4 m3 m'3 at a depth of 20 cm; Fig. 3.4 in Chapter 2). 

Moreover, there was a lower seasonal Et total for DS10, which had both higher rainfall 

and more frequent fog occurrence, compared to DS09 (Fig. 3.8). Therefore, soil water 

availability was not a limiting factor for Et, similar to what has been reported for other 

montane cloud forests (e.g. Chu et al., 2012; McJannet et al., 2007; Schawe et al., 2007; 

cf. Bruijnzeel et al., 2011). Consequently, the results suggest that the observed variability 

in Et rates is largely due to variable atmospheric conditions.

Average daytime Et for P. patula under clear-sky conditions (Fig. 3.7b) showed a 

distinctive seasonal pattern, which may be explained largely by the corresponding 

seasonal variation in Rs and D (Fig. 3.6). However, the two dry seasons presented similar 

radiation inputs (and average D-values), but different average daytime Et under sunny 

conditions (Fig. 3.7b). Therefore, other factors must have contributed to the reduction in 

daytime Ex under sunny conditions during DS10. Visual observations of a more closed
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canopy during DS10 relative to DS09, confirmed by a slightly higher measured LAI in 

DS10 (Table 3.1), suggest that perhaps a lower proportion o f the canopy was sun- 

exposed. On the other hand, the two dry seasons showed very similar average daytime Et 

values under non-sunny conditions, with higher rates during the wet season (Fig 7b). This 

may be explained by the higher temperatures prevailing during the wet season (Fig. 3.6c). 

The similarity in non-sunny daytime Et for the two dry seasons suggests that the higher 

proportion of diffuse light under these conditions overrides any effect of an increase in 

canopy closure and self-shadowing, in contrast to the situation under sunny conditions.

With a mean annual Ex of 645 ± 50 mm, the water lost via transpiration from the 

young P. patula plantation was less compared to that for nearby mature and 20-year-old 

regenerating cloud forest (787 ±126 mm year'1 and 788 ± 166 mm year'1, respectively; 

Mufloz-Villers et al., 2012). However, annual Et for the present study is very similar to 

the average value reported for lower montane cloud forests throughout the world (average 

± SD: 646 ±123 mm; n = 10; (Bruijnzeel et al., 2011).

4.3 On the processes causing Ex to be suppressed under foggy conditions 

Reports of the suppression of Et by foggy conditions relative to sunny conditions in fog- 

affected forests are variable. For instance, daily Et was suppressed by 40% for an 

emergent Sloanea woollsii tree in a subtropical rain forest in Queensland, Australia 

(Hutley et al., 1997), and by 43% for mature Abies fraseri forest (and up to 95% for 

seedlings) in the southern Appalachians (Johnson and Smith, 2008; Reinhardt and Smith, 

2008), whereas hourly Et was reduced by 10-90% for evergreen ridge-top heath-laurel 

cloud forest in the Canary Islands (Garcia-Santos, 2007; Garcia-Santos, 2012; Ritter et
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al., 2009). The high range reported for the latter site was probably because the 

comparison was made “with preceding hours without fog or rain” (Garcia-Santos, 2007), 

which could have been either sunny or overcast. Reductions in Et for P. patula ranged 

from 83 ± 7% up to 90 ± 7%, under conditions of light and dense fog, respectively. The 

large variation in earlier reported values for the suppression o f Et may be explained 

largely by the different characteristics of fog occurrence (e.g. fog density, leaf wetness 

patterns due to fog occurrence), site exposure and wind speeds across sites, physiological 

and structural differences between the species and forests studied, as well as 

methodological differences (e.g. daily versus hourly analyses, not taking into account the 

hour of day, or including both sunny and overcast hours in the comparison).

It has been argued that the suppression of Et due to fog may be explained mainly 

by strong reductions in meteorological variables such as Rs, D  and T, as these alter the 

leaf energy balance and reduce evaporative demand (Ritter et al., 2009). On the other 

hand, gas exchange reductions via stomatal blockage due to water deposited on leaf 

surfaces has also been pointed out as a process through which Et is suppressed under 

foggy conditions (Ishibashi and Terashima, 1995; Smith and McClean, 1989). The 

relative importance of these factors in explaining Et suppression depends on the site’s fog 

climatology and on the degree of leaf hydrophobicity (cf. Rosado and Holder, 2012). For 

instance, the duration of cloud immersion events, fog density and the type and amount of 

accompanying precipitation (i.e. ‘true’ fog, drizzle, or rainfall), combined with the 

canopy’s structure and degree of hydrophobicity of the leaf surfaces will dictate whether 

or not the canopy will be fully wetted, for how long it is kept wet after the termination of 

cloud immersion, and consequently, the extent to which canopy wetness suppresses Et.
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For the seasonally dry montane cloud belt studied here, fog was usually accompanied by 

rainfall, but during the occasional fog-only conditions, daytime canopy wetness was a 

rare phenomenon (1.1% of all dry-season daytime hours; Table 3.2). Moreover, P. patula 

is native to the cloud belt of the eastern Sierra Madre, Mexico (Dvorak et al., 2000; Vela, 

1990) and thus the surface of its needles may have some degree o f hydrophobicity as an 

adaptation to the wet and fog-affected environment (cf. Smith and McClean, 1989). 

Irrespectively, the needles of P. patula are clustered in fascicles hanging in a 

characteristic weeping fashion, such that intercepted water is easily shed. In combination, 

these results and observations suggest that in the seasonally dry fog-affected montane 

zone of central Veracruz, the reduction of evaporative potential (due to reduced available 

energy and high humidity) is relatively more important in suppressing Et by P. patula 

trees during fog-only conditions than the wetting of leaf surfaces by fog. The Ex 

suppressing effect of fog in the present pine stand was therefore associated mainly with a 

reduction in Rs ranging from -70% under light fog up to -80%  under dense fog, and 

near-zero D. Similar conclusions were reached in earlier investigations on the Et 

suppression effect of fog at other sites, including the Canary Islands (Ritter et al., 2009) 

and Taiwan (Chu et al., 2012).

Furthermore, there was a low frequency of early-morning fog occurrence (Fig. 

3.3a) as well as very few instances when nighttime fog-induced canopy wetness 

continued for more than one hour after sunrise. Therefore, fog-only conditions did not 

postpone the morning initiation of Ex to a large extent. On the contrary, it is possible that 

stomatal conductance was enhanced in the early morning as a consequence of conditions
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stemming from late-aftemoon/nighttime fog occurrence, similarly to what was observed 

for yellow cypress in Taiwan (Chu et al., 2012).

Significant hourly Et, albeit low, occurred both during dense and light fog-only 

conditions, instances in which canopy wetness data indicated that leaf surfaces were 

largely dry (Figs. 2 and 7). In contrast, non-significant (i.e. near-zero) rates of Ex were 

generally recorded during rainy conditions when the canopy could be considered wet 

(Fig. 3.2). Therefore, it is concluded that only the water deposited on the needle surfaces 

by rain was usually sufficient to produce stomatal gas exchange blockage. This agrees 

well with visual observations that canopy wetness due to rainfall caused the needles of 

various fascicles to clump together with a visible coat of water, while during conditions 

of fog-only the needles tended to feel humid to the touch but did not clump together. It is 

important to note, however, that the assumption that the canopy wetness sensor data 

closely resemble the actual wetting (and drying) of the P. patula canopy was not 

experimentally verified. And, the uncertainty in canopy wetness data remains unknown 

(cf. Klemm et al., 2002), therefore, instances of a ‘dry canopy’ recorded during many 

foggy conditions may actually have included periods when the canopy was partially wet. 

Nevertheless, the canopy wetness data are considered to satisfactorily reflect the general 

wetness status of the pine needles based on the various observations mentioned above. 

Also, in order to be as unambiguous as possible, and given the limitations posed by leaf 

wetness sensors (Klemm et al., 2002), a conservative designation of canopy wetness was 

achieved by considering it ‘wet’ only when both sensors indicated wet conditions.
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4.4 Implications o f  the rise in the lifting condensation level fo r E,

Based on several climate change modeling studies and some observational data discussed 

earlier (Barradas et al., 2010; Karmalkar et al., 2008; Lawton et al., 2001; Nair et al., 

2003; Ray et al., 2006; Richardson et al., 2003; Still et al., 1999; Van der Molen et al.,

2006), it is suggested that a rise in the LCL in tropical montane regions is likely to result 

in a shift from frequent cloud immersion to overcast, rather than to clear-sky conditions. 

However, there are no detailed projections of how changes in regional and global climate 

may affect the degree of cloud immersion frequency, fog density, or the potential 

increase in overcast conditions. Consequently, the effect on Et suppression was examined 

for two classes of fog density and overcast conditions (relative to sunny conditions) to 

determine whether this effect varied among the respective non-sunny conditions. To the 

best of our knowledge, only Reinhardt and Smith (2008) compared the suppression of Et 

for overcast conditions to that under foggy conditions (20% versus 43% for A. fraseri in 

the Apalachians). Consistent with these findings, results from the present study also 

indicate that Et was suppressed to a lesser degree for overcast conditions than for either 

light or dense fog, while adding a new finding: the reduction associated with overcast 

conditions did not differ greatly from that for light fog (78 ± 10% versus 83 ± 7%, 

respectively). This may be explained by the very similar reduction in solar radiation 

recorded during all types of non-sunny conditions examined here, even though vapor 

pressure deficit and temperature were generally higher under overcast conditions (Fig. 

3.5).

Given the inherent diurnal variation in Et and its meteorological controls, the 

timing of fog occurrence (from time of day to season of the year) is an important
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determinant of the magnitude of the Et suppression effect of fog (or its impact on 

seasonal and annual amounts of Et). For instance, if foggy conditions occur more 

frequently during the late afternoon and night, i.e. when the available energy for 

evaporation is very low (even under clear-sky conditions), the net effect of fog on 

monthly, seasonal and annual amounts of Et would be expected to be small. For the case 

reported here, fog occurrence in the late afternoon and early evening was the norm (Fig. 

3.3), as is typical for many fog-affected forests due to the diurnal pattern of orographic- 

convective cloud development over mountains, as mentioned earlier. Therefore, even if 

strong reductions in Et are found when comparing foggy with sunny (or overcast) 

conditions, the total amount of water prevented from being transpired seasonally and 

annually may be low, depending on the timing of fog immersion. As such, reports of 

strong instantaneous reductions in Et due to cloud immersion without the proper context 

may present an exaggerated picture of the impact of the Et suppressing effect of fog (e.g. 

Ritter et al., 2009).

The total amount of water prevented from being transpired annually from the P. 

patula plantation due to foggy (relative to sunny) conditions was 17 ± 3% of mean annual 

Et (i.e. 113 ± 19 mm). This is considerably higher than the amount of cloud water 

interception estimated for this stand (-35 mm year'1; F. Holwerda, unpublished data), or 

for the nearby mature and regenerating lower montane cloud forests (50 ±51 mm and 38 

± 46 mm, respectively; Munoz-Villers et al., 2012). However, since a shift to overcast 

(rather than clear-sky) conditions would seem a more realistic consequence of a climate 

change-related rise in the average regional cloud base, the present results suggest the 

impact of a rise in the LCL on annual Ex may actually be much lower (2 ± 1% of annual
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Et). In this case, the amount of annual fog-induced suppression o f Ex (13 ± 6 mm) would 

be comparable to the estimated additional water inputs from cloud water interception.

A related aspect concerns the uptake of water deposited on leaf surfaces by 

wetting events, or foliar water uptake, which has been highlighted recently as being a 

prevalent phenomenon across fog-affected sites and species (cf. Goldsmith et al., 2012a), 

including P. patula and other species at the present study site (S.G. Gotsch et al., unpubl. 

data; G.R. Goldsmith and M.S. Alvarado-Barrientos, unpubl. data). Moreover, it has been 

argued that a potential consequence of diminished cloud immersion and associated 

reduction in leaf wetting would be increased plant water stress (especially during the dry 

season), since foliar water uptake has been demonstrated to improve plant water status in 

fog-affected ecosystems (cf. Goldsmith et al., 2012a). Although foliar water uptake was 

not considered directly in the present study, it was possible to detect small sap velocities 

as well as the direction of the flow by using the Heat Ratio method (Burgess et al., 2001), 

such that significant reverse sapflow would suggest hydraulic redistribution within the 

stem, possibly due to foliar water uptake (Nadezhdina et al., 2010). However, hourly 

rates of reverse flow detected in the stem at breast height were mostly insignificant 

(<0.02 mm h '1) and typically associated with instances when the canopy was wetted by 

rain. Thus, the effects of foliar uptake for P. patula at the study site and under current 

climate conditions are not likely to extend beyond the leaf level, and are associated more 

with rain- than fog-induced canopy wetness.

More importantly, the present results suggest that dry-season precipitation, 

combined with suppressed Et due to cloudy and foggy conditions, as well as the favorable 

hydraulic properties of volcanic soils (Geissert et al., 2012), maintain high levels of soil
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water content during the dry season. Therefore, it may be argued that diminished dry- 

season precipitation, which has been projected to decrease by 14% in general for Central 

America and Mexico (Karmalkar et al., 2011), presents a more worrisome prospect for 

plant-water relations and soil water availability, beyond diminishing fog occurrence 

alone. As both dry-season precipitation and fog concur in central Veracruz, a 

considerable decrease in both may have a synergistic effect of increased water losses via 

transpiration and potentially reduced soil water storage with associated ecohydrological 

consequences (e.g. soil water deficit and reduced catchment water yield). This is 

particularly important in view of increases in tree planting in tropical montane headwater 

catchments, combined with the seemingly prolific water use by young stands of fast- 

growing species used in the reforestation such as P. patula.

5. Conclusions

The potential increase in the lifting condensation level is likely to be in the order of a 

couple of hundred meters and will probably result in a shift to overcast rather than clear- 

sky conditions. As such, the present results suggest that the impact on seasonal and 

annual Et may be relatively small. Moreover, reduced dry-season precipitation as a 

consequence of projected climate change for regions such as central Veracruz, more than 

diminishing cloud immersion alone, presents a worrisome prospect for plant-water 

relations and water yield from headwater catchments, due to the associated potential 

reductions in soil water reserves. Given the importance of examining these postulates for 

water management planning, the need for better projections o f climate change-related 

alterations in rainfall patterns, as well as cloud cover and immersion, in tropical montane 

regions is highlighted.
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CHAPTER IV

IS NIGHTTIME TRANSPIRATION ENHANCED AFTER FOG EVENTS?1 

Abstract

Fog occurrence has been shown to suppress transpiration (Ex). On the other hand foggy 

conditions during which leaf wetness does not block stomatal gas exchange may enhance 

stomatal conductance, and so Ex immediately after fog. Furthermore, although nighttime 

Et has been found to be prevalent for a wide range of species from cloud-affected forests, 

its magnitude relative to daytime Et has been reported to be generally small. Here, we 

report considerable variability in nighttime Et rates of Pinus patula trees associated to 

rapidly changing meteorological conditions typical for the dry season in the tropical 

montane cloud belt of the Eastern Sierra Madre, Mexico. Stand level tree Ex was derived 

from sapflow measurements with the Heat Ratio Method in the stem of P. patula trees 

growing in contrasting stands and at different elevations within the cloud belt: 10-year- 

old reforestation at 2180 m a.s.l. and mature forest at 2470 m a.s.l. The dry-season range 

of nighttime Et for the young and mature forest was 0-0.08 and 0-0.06 mm h'1, 

respectively. Expressed as a proportion of dry-season daily totals, nighttime Ex was high 

and variable (42 ± 28% and 19 ± 23% for the young and mature stand, respectively). This 

large variation was related to the wide range of air humidity, caused by the alternation of 

cold front intrusions bringing about fog events and high pressure weather characterized

1 Article in press: Alvarado-Barrientos. M.S.. Holwerda, F., Asbjomsen. Is nighttime transpiration 
enhanced after fog events? Proceedings o f the 9th International Workshop on Sap Flow, Acta Horticulturae
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by dry nights with vapor pressure deficits up to 2 kPa. Shortly after the end of fog events 

without concurring rainfall, nighttime Et for the young stand was higher (although not 

significantly) and more variable than for fog-free nights. Climate change-related 

alterations in lifting condensation level that have been projected for tropical montane 

regions will also affect the dynamics of the inversion layer, and as shown here, nighttime 

Ex may increase/decrease considerably depending on a lowering/rise of the cloud ceiling.

1. Introduction

Projected future drier and warmer regional climate in tropical montane regions 

worldwide is likely to cause a rise in the lifting condensation level, thereby reducing the 

frequency of fog occurrence in many cloud forests (Still et al., 1999). The reduction in 

cloud immersion may considerably affect the hydrological cycle in these environments, 

as well as many ecological functions. Frequent cloud immersion not only can introduce 

an additional source of water (via cloud water interception), but also can suppress 

transpiration (Ritter et al., 2009; Chapter 3). On the other hand, foggy conditions may 

enhance stomatal conductance (Reinhardt and Smith, 2008), and so transpiration (Ex). Et 

may be enhanced as long as stomatal gas exchange is not blocked by a film of water 

formed by fog deposition, as in light and/or intermitted fog with relatively low liquid 

water content and/or because of hydrophobic leaf surfaces (Rosado and Holder, 2012).

In many tropical montane regions, fog events occur more frequently during the 

late afternoon and nighttime due to the diurnal pattern of orographic-convective cloud 

development over the mountains. Furthermore, although nighttime Et has been found to 

be prevalent for a wide range of species from cloud-affected forests, its magnitude
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relative to daytime Et has been reported to be relatively small (Dawson et al., 2007). In 

order to better understand the net effect of fog on Eu we formulated the following 

research question: is nighttime Ex enhanced immediately after fog (as compared to nights 

without fog)?

Additional objectives were to determine the amount Et that occurs at night as a 

proportion of daily Ex, and to examine the strength of the relationship between vapor 

pressure deficit and nighttime Ex under different weather conditions. We investigated this 

for Pinus patula, a widely used tree species for reforestation projects in the tropical 

uplands of Mexico, as it is of public interest that the water use patterns of this increasing 

land use are well understood (particularly in the face of climate change-related alterations 

in cloud immersion frequency). We focused our analysis on the dry season, as this is 

when fog occurrence is more frequent in our study region (see below). We used 

observations from the dry seasons of 2008/09 and 2009/10. The present is a report of the 

first findings, and as such, this is a work in progress.

2. Material and Methods

The study sites are within the seasonally dry tropical montane cloud belt of central 

Veracruz, Mexico. Two Pinus patula stands were under study: a 10-year-old reforestation 

located at 2180 m a.s.l. (19.4931° N, 97.0422° W) and a mature forest located at 2470 m 

a.s.l. (19.5054° N, 97.0559° W). Table 1 summarizes their structural characteristics. 

More details on the study sites are given in Alvarado-Barrientos et al. (2013). The climate 

between 2000 and 3000 m a.s.l. in the study region is temperate humid, with an average 

temperature between 12 and 18°C and a mean annual precipitation (MAP) between 2000
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and 3000 mm. The region has a seasonal rainfall and cloud immersion regime, with a wet 

season between May and October, in which approximately 80% of MAP falls. The dry 

season (November-April) is characterized by an alternation of stable dry weather 

conditions and cloud immersion events, often accompanied by rain and/or drizzle 

(Holwerda et al., 2010).

Table 1. Characteristics of the two Pinus patula stands under study. HRM = Heat Ratio 
Method for sap flow measurements; n = number o f sample trees; DBH -  
diameter at breast height; LAI = leaf area index. Standard deviations are given 
between parentheses where available.

Young plantation M ature forest
Elevation [m a.s.l.] 2180 2470
Area [ha] ~1 -20
Mean canopy height [m]a 7(1.5) 23 (2.80)
LAI [m2 m'2]b 5.21 (0.10) 3.23 (0.32)
Tree density [stems ha'1]8 3,783 (652) 662 (92)
Basal area [m2 ha'1]8 34.3 (9.6) 46.7(15.3)
Trees with HRM probes: n 8 10

tree ages [years]0 10 17-34
DBH range [cm] 9.6-11.8 20.4-61

a Hemandez-Hemandez (2010) and M.S. Alvarado-Barrientos, unpublished data. 
b Measured with a LICOR LAI-2000 canopy analyzer throughout the dry season of 2010 
(M.S. Alvarado-Barrientos, unpublished data). 

c as of 2010

Automated weather stations were installed in open areas with SE exposure at a 

distance of 350 m (2128 m a.s.l.) and 450 m (2400 m a.s.l.) from the young and mature 

stands, respectively. Meteorological data were available as 10-min averages from 30 s 

sampling intervals. Variables measured included: incoming solar radiation (Rs [W m’2]), 

air temperature (T [°C]), vapor pressure (e [kPa]), wind speed (u [m s'1]), rainfall (P 

[mm]), and horizontal visibility (VIS [m]). Vapor pressure deficit (D [kPa]) was
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computed as the difference between e and saturation vapor pressure (es; computed as in 

(Lowe, 1977) using 7). Further details on meteorological data collection are also given in 

Alvarado-Barrientos et al. (2013). The occurrence of fog was defined as VIS < 1000 m 

(Glickman, 2000). From 10-min observations of VIS, hourly values of fog occurrence (in 

% of the time) were calculated and used to identify fog events, which were defined as 

periods with fog occurrence separated by a fog-free period of at least three hours.

Leaf wetness was measured with two Decagon LWL dielectric leaf wetness 

sensors installed hanging vertically to simulate the weeping orientation of P. patula 

needles at 4 and 6 m from the ground within the canopy of the young plantation. The 

canopy was considered to be wet when both sensors indicated that water was present on 

their surface (10-min reading > 300 mV). Visual inspection of sensors and needles 

confirmed that this best reflected the wetting and drying of the needles. At the mature 

forest, no leaf wetness measurements were performed because o f logistical reasons.

The Heat Ratio method (Burgess et al., 2001) was used to obtain point 

measurements of sap velocity within the sapwood at breast height (1.4 m above ground) 

for 8 sample P. patula trees in each stand. A detailed description of sap velocity data 

collection as well as the characterization of the radial profile of sap velocity for all 

sample trees is given in Alvarado-Barrientos et al. (2013). The median radial profile 

shape for each sample tree (i.e. fixed value of the lumped shape parameter p) found in 

this previous study was used to derive maximum likelihood estimates of the time-variant 

component of radial profile by fitting the Beta probability density function (Beta-PDF) to 

hourly radial profiles of sap velocity (Alvarado-Barrientos et al. 2013). These two 

parameters together with measured sapwood depth of each tree (Ls [cm]) were used to
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compute hourly whole-tree sapflow: Fs(t) = 2 n Ls2 p cs(t) 0.001 [L h '1]. The Beta-PDF 

was not a good fit for 24% of the hourly radial profiles, which were associated with low 

evaporative demand conditions producing either a relatively homogenous distribution of 

sap velocity across the sapwood or radial patterns not conforming to the Beta-PDF 

(Alvarado-Barrientos et al., 2013). Thus an area-weighted average of point sap velocity 

(vWa) was computed such that Fs = As vwa> where As is measured sapwood area [cm2] for 

each tree.

Fs was assumed equal to transpiration at the whole-tree level, that is, we ignored 

any time lag due to stem capacitance (see also further below). Stand level tree 

transpiration (Ex [mm h '1]) for the young stand was derived simply by averaging hourly Fs 

across all sample trees and multiplying by stand density (Table 1), as the stand was even- 

aged and trees were spaced fairly homogeneous (cf. Cermak et al., 2004). Given the more 

complex structure of the mature stand, the method of scaling up based on sap flow 

distribution in DBH classes was followed (cf. Cermak et al., 2004): sample mature trees 

were assigned to one of four discrete DBH classes of P. patula derived from a survey at 

this site to derive mean Fs values for each class, and subsequently, these were multiplied 

by the number of trees ha'1 in each DBH class and summed (see Chapter 2).

Nighttime was defined as between 19:00 and 5:00 local standard time (Rs < 7 

Wm'2). The ratio of nighttime Et to total daily Ex (i.e. night and daytime hours of the same 

calendar day) was computed using only those days for which all 24 hourly values of Ex 

were available; 36% and 42% of the total number of days were used for the young 

plantation and mature forest, respectively. To examine our driving research question, 

only data from the young stand were considered, as leaf wetness data were not available
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for the mature stand. Furthermore, even though we considered that capacitance-induced 

lags can be safely ignored at time scales larger than an hour in this study, to be 

conservative and minimize any flow related to recharge of internal water storage, we 

considered only hours belonging to the second half of the night (i.e. from midnight to 

5:00) for hypothesis testing. These hours were classified as: (i) ‘clear’, when the entire 

night was fog free and the preceding day was had a (near) clear sky; (ii) ‘foggy’, when 

fog occurred, with the event starting at the latest at 19:00; and, (iii) ‘clear-afiter-fog’, for 

those hours after the occurrence of a fog-only event (i.e. no concurring rainfall) that 

ended not earlier than at 19:00. With these criteria, we selected the data to test the 

hypothesis that mean nighttime Et is higher after the occurrence of fog as compared to 

that in nights not preceded by fog. Significant differences among frequency distributions 

of Et [mm h '1] for each of the three classes were tested with the Kruskal-Wallis one-way 

analysis of variance on ranks, and post-hoc pair-wise multiple comparisons were carried 

out with the Dunn's method. Also, to take into account the differences in D among the 

night categories defined, a general linear model (lm, R version 2.15.0) was fitted to the 

data with nighttime Et as the response variable, while D, night category and their 

interaction were the explanatory variables.

3. Results and Discussion

Under clear sky and dry canopy conditions for the young stand, hourly Ex increased 

sharply at sunrise, reached a maximum typically around 11:00 (i.e. few hours before 

maximum hourly Rs), started to decrease shortly after, and reached near-zero values 

almost immediately after sunset (Fig. la  and lc). However, in many occasions Et had
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actually already started well before sunrise; significant Et was recorded in 30% of total 

nighttime (dry-season) hours at this site, with hourly rates ranging from 0 to 0.08 mm h '1. 

At the mature stand, we observed similar patterns; however, hourly Ex rates were 

considerably lower compared to the young stand, regardless of the time of day (Fig. lb). 

Moreover, significant Et was recorded only in 2.5% of the total number of dry-season 

nighttime hours, and hourly rates reached up to 0.06 mm h '1. Differences in Ex between 

stands may be explained by differences in tree density and leaf area index; however, 

age/size effects can also not be excluded (Table 1; Chapter 2).

a) o 

_  1

<r 2
3

C) 0

3

b
Q.

9

W

I 1 i  M l  i i J M  1 1 1

looo «<r*

&  0 .2 -

~ i— i— i— i— i— i— i— i— i— i— i— i— I— !— i— i— i— i— r “ i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— r~
12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 6 12 16 20 0  4 6 12 16 20

Hour of day
15000 0.5

04-
1

fc 0 3 -

0 2 -2 uT
3

12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 18 20 0  4 6 12 16 20
Hour of day

i - l - L  I-LL-L-l—L-L 1 .1.1 .1 . L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ,  1 5QQ

1000*

11 [ n  1 1 1 1 1 1 1 1 1 1 1 I

E 0 .2- -500

E

_ t— r i — r n — i— \— I— T T - T — i— i— i— i— i— i— r n — i— I— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— r "  
0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20

Hour of day

Young stand

-R. 
-D  

P

Young stand

Fig. 4.1. Examples of stand level tree transpiration (Et) for Pinus patula and concurring 
incoming solar radiation (Rs), vapor pressure deficit (D), precipitation (P), fog events, 
and canopy wetness. These types of responses were observed throughout the 
investigation. Dark gray areas depict fog events, black bars on top x-axis show leaf 
wetness duration, and light gray boxes indicate nighttime hours used for hypothesis 
testing, (a) and (b) show December 21 (from noon) to 27, 2009, for the young and mature 
stand, respectively, (c) Shows January 14 to 20,2010, for the young stand.
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We consider that sapflow activity during the night did not represent xylem storage 

tissue recharge for P. patula trees o f any size sampled, because there was no indication of 

Et lagging after Rs after sunset, even following clear-sky conditions (Fig. 1; cf. Fisher et 

al., 2007). Moreover, there were many instances when Et increased in the dark, 

coinciding with relatively high D (sometimes >1 kPa), after having declined at sunset and 

maintained steadily low for the first hours of the night (Fig. 1; cf. Dawson et al., 2007). 

The observed nighttime Et in both stands under study is not unexpected, given the 

increasing evidence of nighttime Et, and stomatal conductance, in a wide range of woody 

species from many ecosystems, including tropical montane and cloud-affected regions 

(Dawson et al., 2007; Fetene and Beck, 2004; Garcia-Santos, 2012; Motzer et al., 2005). 

There was a high day-to-day variation in the total amount of Et observed during the night. 

For the young stand, the range of the ratio of total nighttime Et to total daily Et was 0.01 -  

1.28. A similar wide range was found for the mature stand (0 -1 .42) .  The average ratio 

we found for the young stand (0.42 ± 0.28) by far exceeded previously reported average 

or maximum ratios for other montane tree species, whereas the average ratio observed for 

the mature stand (0.19 ± 0.23) was at the high end of the range for these species. For 

instance, an average ratio of 0.05 was reported for Myrica faya  and Erica arborea in the 

cloud belt of the Canary Islands (Garcia-Santos, 2012), a maximum of 0.18 for 

Metrosideros polymorpha in a tropical montane forest of Hawaii (Dawson et al., 2007), 

and an average of 0.20 for P. ponderosa in the Sierra Nevada Mountains (Fisher et al.,

2007). At our study site, nights with high D were relatively common during the dry 

season and occurred primarily during conditions of high pressure following cold front 

passage. The often sharp increases in D  and temperature (not shown) observed during
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such nights suggest that an inversion layer descended below our study sites (Hubbart et 

al., 2007).

Interestingly, nighttime Et was occasionally higher following fog-only events 

compared to fog-free nights, and this was more pronounced for the young stand (Fig. 1). 

On average, rates of nighttime Et observed during hours classified as clear-after-fog were 

slightly higher and much more variable than for clear conditions; the difference was, 

however, not significant at the 0.05 level (Fig. 2a). D increased dramatically from near­

zero values up to >1 kPa after the passage of fog events at night (Fig. 1). Furthermore, 

nighttime Et was strongly correlated to D  for clear nights as well as for clear-after-fog 

conditions (Fig. 2b). The general linear model revealed that the variability in nighttime Et 

can be explained by D (F = 292.7 p  < 0.001), and that the interaction between D  and 

night category (i.e. clear, clear-after-fog, and foggy) is significant (F = 4.2; p  = 0.02).

Our data suggest that stomatal conductance might have been enhanced under the 

humid conditions associated with fog events. Consequently, the very dry air following 

immediately after fog may have resulted in higher Ex as compared to similar dry nights 

not preceded by fog. Increased stomatal conductance under foggy conditions has been 

reported previously for other conifer species in cloud-affected environments (Chu et al., 

2012; Johnson and Smith, 2008; Reinhardt and Smith, 2008). Canopy wetness data at the 

young stand indicated that the canopy remained dry during the majority of fog-only 

events. It can not entirely be excluded that even though the sensors indicated dry canopy 

conditions the canopy was in reality, partially wet. We believe however, that is unlikely 

that stomatal gas exchange was blocked by water deposited on the surface of the needles 

after the passage of fog-only events. The fact that the canopy could have been partially
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wet keeps open the possibility for some foliar water uptake (Burgess and Dawson, 2004; 

Goldsmith et al., 2012a; Nadezdhina et al., 2010) although probably very small quantities 

(near-zero and slightly negative rates shown in Fig. 2b), thus enhancing Et as soon as the 

canopy dried out, which we believe is very quick under the very dry conditions following 

fog occurrence. Importantly, a ‘wet-enhanced/dry-reduced’ water use strategy as 

postulated for yellow cypress (Chu et al., 2012) may also be the case for P. patula, 

indicating that it is prone to profligate transpiration to some extent, and young stands 

relatively more than mature stands.
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Fig. 4.2. (a) Comparison of mean nighttime Et under three classes of weather conditions 
for the young Pinus patula stand. See text for classification criteria. * = significantly 
different at the 0.05 level, (b) Nighttime Ex against vapour pressure deficit (D) for the 
young Pinus patula stand and the three classes of weather conditions. Correlation 
coefficients (r) are given in the legend.

4. Conclusions

Nighttime Et was much more pronounced for the young than for the mature stand. 

Improvements to be addressed in a forthcoming article are analyses at the whole-tree
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level to determine the relative importance of hydraulic differences between trees of 

different size (e.g. tree nighttime conductance) and microclimatic heterogeneity inside the 

stands. Under similar conditions of high atmospheric evaporative demand, rates of 

nighttime Et were occasionally higher immediately after the passage of fog compared to 

fog-free nights; the difference was not significant, however. Climate change-related 

alterations in the lifting condensation level that have been projected for tropical montane 

regions may affect both fog occurrence and the occurrence of nights with high 

atmospheric demand. This, in turn, may affect patterns o f nighttime Et in this 

environment. Given the considerable amount of nighttime Et from young P. patula 

reforestations, our results highlight the need for better projections of alterations in cloud 

immersion frequency and the occurrence of nights with high atmospheric demand in 

order to better predict ecohydrological impacts of expanding pine plantations in tropical 

uplands.
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APPENDIX A
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Figure A l. Additional examples of radial profiles of sap velocity (v s )  of mature Pinus 
patula trees during a sunny day. Panels a-d show profiles characterized with only three vs 
data points (Dataset I), and e-h show the same trees and during the same day, only with 
additional points deeper into their sapwood (Dataset I+II). Tree ID’s are shown in each 
panel. Numbers with arrows indicate the hour of day and dots depict v$ data points and 
added zero velocity points at the cambium-sapwood (r/Ls=Q) and sapwood-heartwood 
(r/Ls =1) interfaces. Lines show the fitted Beta-pdf to data points where r2 > 0.90.
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Figure A2. Additional examples of the hourly dynamics of the radial profile of sap 
velocity (vs) of Pinus patula trees during typical dry season conditions in the cloud forest 
zone of central Veracruz, Mexico. Panels a-d show a sunny day (28 Feb 2009), while e-h 
show the following day in which a cloud immersion event occurred from 9 am. Tree ID’s 
are shown in each panel. Trees selected represent the tree-to-tree variation in lumped 
shape parameter (/?) characterizing radial profiles (Figure 5) as well as different % of 
sapwood depth sampled (Fig. 1). Numbers with arrows indicate the hour of day and dots 
depict vs data points (Dataset I) and added zero velocity points at the cambium-sapwood 
(r/Ls = 0) and sapwood-heartwood (r/Ls =1) interfaces. Lines show the fitted Beta-pdf to 
data points where r2 > 0.90.
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APPENDIX B
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Figure Bl. (a) Frequency distribution of stocking density by DBH classes for the mature 
Pinus patula plantation (MREF). n = number of sample trees instrumented with Heat 
Ratio Method sapflow probes, (b) Relationship between basal area and daily totals of 
whole-tree sapflow (Fs [L day'1 tree'1]) of mature P. patula trees for days with near clear- 
sky. Open circles show mean Fs for each DBH class and the continuous line depict the 
best non-linear fit for the means, bounded at the origin.
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APPENDIX C

1. LAI from destructive measurements of pasture and MREF’s understory

Estimates of leaf area index (LAI) for PAS and the understory o f MREF were obtained 

by destructively sampling the dominant vegetation. Briefly, in several randomly selected 

sampling points at each site, all the foliage within a frame of known area was collected, 

projected leaf area (LA) of fresh subsamples was determined with a LI-3100C leaf area 

meter (LI-COR), and lastly, subsamples and all foliage collected were oven-dried and

D 1weighted. The ratio of LA to leaf dry mass (or specific leaf area -SLA [m kg' ]) was 

determined for each subsample and LAI [m2 m'2] was computed as: SEA * total dry mass 

/ area of the frame.

The frame used in PAS was a ring with an inner area of 53.5 cm and a total of 10 

samples were taken only once during late DS10. The subsamples consisted of about 10 

green leaves and the resulting SEA ± SD was 13.1 ± 2.2 m2 kg’1. And on average ± SD, 

LAI was 1.2 ± 0.4 m2 m'2.

At MREF, only Miconia glaberrima’s LAI was estimated and a square frame with 

an inner area of 0.25 m2 was used. The frame had strings and weights attached to each 

comer such that it could be elevated above the shrubs projecting the frame’s area and 

delimiting the foliage to be collected. The frame was positioned at random by throwing 

the frame at 10 different shrub conglomerates and it was leveled above the foliage using a 

hand level. The SEA ± SD was 14.1 ± 1.5 m2 kg'1 and LAI was 2.8 ± 1.4 m2 m'2.
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2. LAI from PAR attenuation and LAI-2000 measurements at YREF and MREF

Continuous measurements of photosynthetically active radiation (PAR [pmol s '1 m'2]) 

were obtained above (PARa) and below the canopy (PARb) at YREF throughout the study 

period. Above-the-canopy data were obtained with a LI-190SL quantum point sensor (LI- 

COR) installed on a metallic tower, while below-the-canopy data were collected with a 

LI-191SL quantum line sensor (LI-COR) installed on a leveled wooden bench at ~30cm 

from the ground and with a NS orientation. Due to logistical constraints, only PARb 

measurements were possible at MREF (starting in late Feb 2009), and the LI-191 SL 

sensor was installed as in YREF. PARa at MREF was therefore obtained from Rs 

measured at the nearby weather station using an empirical linear model relating Rs and 

PARa derived with YREF data: PARa = 1.647?s (fixed bound at the origin; r2 = 0.90; 

RSME = 192). This relationship was also used to fill gaps in PARa data from YREF (15% 

of the study period).

Mean canopy transmittance (t) for YREF and MREF was calculated by dividing 

PARb by PARa using the average of hourly values between 11:00 and 14:00 under near- 

clear sky conditions (i.e. near-zero cloudiness factor; Appendix E), and subsequently 

converted to LAI using the Beer-Lambert Law and an extinction coefficient (£) of 0.52 

(midpoint in the range k reported for conifer canopies; cf. (Pierce and Running, 1988)): 

LAI = -ln(T)/&. Only early dry-season values (Nov-Feb) were used because PARb data 

became noisier from March on (Fig. Cl and C2; this was noted also in Pierce and 

Running, 1988). An average LAI value for each dry season was then derived with this 

approach as reported in Chapter 2 (Table 1).
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A LAI-2000 plant canopy analyzer (LI-COR) was also available during DS10 

and used to derive LAI based on diffuse light attenuation. Two grids o f l O m x  10m per 

site were set up, and ten randomly selected points within the grids were measured during 

3 different days (under overcast conditions or after sunset) following the manufacturer’s 

instructions for one sensor mode. A correction factor of 1.6 for as recommended to 

account for dumpiness of conifer canopies (Gower and Norman, 1991).
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Figure Cl. Hourly values of photosynthetically active radiation above (PARa) and below 
the canopy (PARb) measured at YREF during the dry seasons of 2008/09 (DS09) and 
2009/2010 (DS10).
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Figure C2. Hourly values of photosynthetically active radiation above (PARa*) and 
below the canopy (PARb) measured at MREF during the dry seasons of 2008/09 (DS09) 
and 2009/2010 (DS10). * PARa was modeled using Rs from the Tierra Grande weather 
station and using the regression developed for analogous measurements at YREF: PARa 
= 1,64RS.
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APPENDIX D

Soil characterization and (calibrated) soil moisture dynamics

Pits for soil characterization, soil sample collection and installation of soil moisture 

probes were dug down to ~1.5 m deep next to the sapflow monitoring plots in YREF (1 

pit) and MREF (2 pits, ca. 100 m apart), and next to the mast with meteorological 

equipment in PAS (Fig. Dla-b). Soil characterization and determination of soil hydraulic 

properties were conducted by Dr. Daniel Geissert and Dr. Alberto Gomez-Tagle (Soil 

Laboratory, Instituto de Ecologia A.C., Xalapa, Veracruz); selected data is provided 

Table Dl. After the completion of the study period, the pits were reopened and soil 

moisture probes were extracted together with the surrounding volume of soil (-3x10"3 

m3) using PVC cylinders (Fig. Die). This was done to calibrate raw readings from soil 

moisture probes (Campbel Scientific S616 and Decagon EC5) as recommended for 

volcanic soils (Frumau et al., 2006). Simultaneous probe readings and gravimetric 

determination of soil moisture were conducted by Dr. Geissert and Edgar Hincapie at the 

Soil Laboratory, Instituto de Ecologia A.C. (Fig. Did) to develop site- and depth-specific 

calibration equations following the protocol described in (Frumau et al., 2006). Table D2 

and D3 provide the resulting equations for all probes used in this study.
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Figure Dl. Examples of soil moisture probes installation and calibration procedure, (a) S616 probes installed at PAS. (b) EC5 probes 
installed in MREF2 (c) Extraction of soil moisture probes together with surrounding soil volume at PAS. (d) Laboratory set-up for 
calibration equation determination at the Soil Laboratory of Instituto de Ecologia, A.C., Xalapa, Veracruz.
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Table Dl. Characteristics of soil horizons down to -1.5 m. Asat = saturated hydraulic conductivity; FC = field capacity; PWP = 
permanent wilting point; NA = not available.

Site Soil typeb Depth Horizon Bulk density Total Asat 0atFC 6 at PWP Roots dwu [cm]a
[cm] [g cm'3] porosity [%] [cm h'1] [cm3 cm'3] [cm3 cm'3] [# cm'2] c

PASa Humic 5 Ah 0.42 72 1.87 0.53 0.41 2 NA
Andisol 10 Ah 0.51 72 1.87 0.55 0.41 1.2

15 Ah 0.38 72 1.87 0.39 0.28 1.1
30 Bh 0.30 82 6.42 0.59 0.47 0.3
100 Bh 0.53 82 6.42 0.78 0.63 0.1

YREF Aluandic 5 Al 0.32 NA NA 0.42 0.30 1.3 20-50
Andosol 19 A2 0.33 86.1 65.4 0.42 0.30 0.8
Dystric 36 A3 0.28 85.3 22.88 0.53 0.46 0.8

70 Bw 0.28 87.4 38.22 0.54 0.49 0.5
123 BwC 0.33 85.7 14.05 0.63 0.58 0.2

MREF1 Silandic 10 Al 0.57 75.6 12.03 0.45 0.35 1 20-50
Andosol 35 A2 0.40 82.6 36.24 0.48 0.41 0.5
Dystric 58 A3-Bw 0.37 83.9 30.38 0.60 0.55 0.3

85 2A1 0.40 83.3 27.22 0.52 0.44 0.1
115 2Bw 0.41 82.9 11.66 0.54 0.46 0.02

MREF2 Silandic 10 Al 0.56 77.0 27.2 0.41 0.26 1 20-50
Andosol 25 2A1 0.42 82.6 24.22 0.41 0.26 0.5
Colluvic 40 2Bw 0.36 84.7 6.27 0.41 0.26 0.3
Dystric 87 3A1 0.43 82.3 5.2 0.60 0.54 0.05

115 3Bw 0.42 81.7 1.8 0.63 0.58 0
a Soil type, horizon, total porosity and Asat from (Geris, 2007). 
b (WRB, 2006)
c Count of fine roots (diameter < 2 mm) inside a 12 cm2 frame randomly relocated three times per horizon on the clean wall of the pit. 
d Depth of water uptake inferred from stable isotopes analyses of soil and xylem water (Goldsmith et al., 2012).
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Table D2. Probe specific calibration equations to estimate volumetric soil water content 
(6 [cm3 cm'3]) from raw data (dielectric constant -K) measured with S616 probes 
(Campbell Scientific).

Site Depth [cm] Calibration equation % bias a
PAS 5 -3x10* KJ + 3x\0'2 K2 - \ K+  11.5 -20%

10 lxlO-4 K3 - 0.01 K2 + 0.3 K -  3.3 -27%
15 -3x10^ K3 + 0.03 K2 - 0.8 K+  9.2 -28%
30 3x10^ K3 - 0.03 K2 + 0.9 K  - 10.2 -26%
100 -3x1 O'4 K3 + 0.03 K2 - 0.9 K+  10.2 -4%

YREF 5 -2x1 O'4 K3 + 2x10'2 K2 - 0 J K +  7.30 -32%
19 ^ x l O ^  + SxlO'2* 2 - 1.1 K+  11.30 -31%
36 2x10^ K3 - 2x1 O'2 K2 + 0.7 K -  8.88 -33%
70 -6x10'5 K3 + 6x1 O'3 K2 - 0.1 K  + 1.6 -26%
123 3X10-4 K3 - 3xl0'2 AT2 + 1.0 AT- 11.73 -27%

a Mean bias from# calculated with equation provided by manufacturer.

Table D3. Probe specific calibration equations to estimate volumetric soil water content•5 •>
(# [cm cm' ]) from raw data (dielectric permittivity -RC) measured with EC5 probes 
(Decagon).

Site Depth [cm] Calibration equation % biasa
MREF1 10 4xlO'vRCj - 1x10':,RC:2+ 1x10'2RC -4.9 -38%

35 6x1 O'8 RC3 - 2x1 O'4 RC2+ 0.3 RC -118.7 -50%
58 2x10'8 RC3 - 8xlO'5 RC2+0.1 RC - 51.0 -43%
85 6x10'9 RC3 - 2x10'5 RC2 + 3xl0'2 RC -12.8 -47%
115 7x1 O'8 RC3 - 3 xlO-4 RC2+ 0.4 RC - 188.8 -47%

MREF2 10 2x10 8 RC3 - 7xl0‘5 RC2+ 0.1 RC - 41.3 -31%
25 -7x10'8 RC3+ 3x10^ RC2 - 0.4 RC + 205.7 -39%
40 3x10'8 RC3 - 1x10'4 RC2 + 0.1 RC - 66.0 -21%
87 4x10'8 RC3- 2x10^ RC2+ 0.3 RC -123.2 -34%
115 2x1 O'8 RC3 - 9x10'5 RC2+ 0.1 RC - 59.6 -39%

a Mean bias from 0 calculated with equation provided by manufacturer.
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APPENDIX E
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Figure El. Hourly leaf-level stomatal conductance for young and mature Pinus patula 
trees, Miconia glaberrima shrubs (understory of the mature P. patula plantation) and 
Axonopus compressus (pasture) taken during dry-season days with clear sky. Symbols are 
mean (and error bars, standard error) of measurements on 5 individual trees/shrubs or 10 
individual grass blades obtained with a SC-1 Leaf Porometer; Decagon. Selected P. 
patula needles were from exposed branches. The metallic tower installed at YREF was 
used for access to the top of the canopy. At MREF, access to the canopy at the site of 
sapflow monitoring was not possible. Therefore, sparse mature trees (with similar DBH 
ranges as sapflow sample trees) growing at a pasture site nearby (-200 m away from the 
sapflow plots) were measured.
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APPENDIX F
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Figure El. (a) Daily values of theoretical clear-sky incident short-wave radiation (/?ciear 
[W m'2]; cf. (Dingman, 2008)) disaggregated into direct and diffuse components (/?ciear-dir 
and .Kciear-diff, respectively), and measured daily incoming short-wave radiation (Rs [W m" 
2]) from April 2008 to May 2010 as observed at 2180 m a.s.l. in central Veracruz, Mexico 
(19.4931° N, 97.0422° W). (b) Month-specific mean diurnal courses of Rs as observed 
during clear-sky, or ‘golden days’ (i.e. days when Rs > / ? c i e a r ) -  / ? s^ g o i d e n  represents 
maximum hourly Rs expected for each month and used to compute hourly a relative 
cloudiness factor as: ( / ? s_ g o id e n  - Rs)  / jR s _ g o id e n -  Error bars are one standard deviation.
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