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ABSTRACT 

UNRAVELING DEPOSITIONAL AND DIAGENETIC SIGNALS IN MAGNETIC 
SUSCEPTIBILITY IN METHANE-BEARING SEDIMENTS ALONG THE INDIAN, 

CASCADIA, AND JAPANESE MARGINS 

by 

Stephen C. Phillips 

University of New Hampshire, September, 2015 

 Magnetic susceptibility is a bulk measure that reveals variation in ferromagnetic 

mineral content. High-resolution measurement of magnetic susceptibility in ocean drilling 

records reveals variability that can be attributed to primary depositional processes and/or 

secondary diagenetic processes that occur after deposition.  Each chapter of my dissertation 

investigates magnetic susceptibility records along with geochemical, mineralogical, and rock 

magnetic techniques in methane-bearing marine sediments along the Indian, Cascadia, and 

Japanese margins. The overall goal of this work is to improve the understanding of the effects of 

detrital and biogeochemical processes on magnetic mineralogy, and thus magnetic susceptibility, 

in these continental margin marine environments.. 

 In the first study (Chapter 1; Phillips et al., 2014), using a multi-proxy approach, I 

investigated variation in productivity and weathering over the last 110,000 years in the northern 

Indian Ocean within the core Indian monsoon rainfall zone. These results reveal an increase in 

productivity due to reduced stratification and a decrease in weathering during the last glacial 

period due to a weakened summer monsoon. This work reveals a relationship between Zr/Rb and 

magnetic susceptibility that can be utilized to predict primary detrital magnetic susceptibility. 
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 In the second study, I used an elemental analysis and rock magnetic approach to decouple 

detrital and diagenetic patterns in magnetic susceptibility at three sites along the Cascadia 

accretionary wedge. Each site reveals intervals of diagenetic loss in magnetic susceptibility that 

is balanced by an increase in sulfur due to dissolution of magnetite and precipitation of pyrite. 

The diagenetic loss of magnetic susceptibility is influenced by organic matter availability as well 

as upward methane flux. 

 In the third study, I used a rock magnetic approach to investigate the magnetic 

mineralogy in a deep sediment record down to ~2.5 km below the seafloor offshore northern 

Honshu, Japan. The magnetic susceptibility record reveals cm-scale increases that are likely the 

result of density sorting causing concentration of heavy minerals.  The magnetic mineral 

assemblage is dominated by titanomagnetite with an increase in Ti-rich titanomagnetite 

associated with deeply buried (~2 km) coal beds. This change along the titanomagnetite solid 

solution series, may represent selective dissolution of Ti-poor, iron(III)-rich magnetite during 

microbial iron reduction since burial.
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INTRODUCTION 
 

 Magnetic susceptibility is a measure of how readily a material can be magnetized in the 

presence of an applied field, and in essence, tracks the composition and concentration of 

ferromagnetic minerals within a material. In marine sediments, magnetic susceptibility is 

measured routinely using discrete sample, core logging, and/or wireline logging techniques. 

These measurements can be useful tools for first-order interpretation of depositional and 

diagenetic processes in a variety of environments (e.g. Verosub and Roberts, 1995; Liu et al., 

2012). Often, magnetic susceptibility measurements are a mixed signal of both primary 

depositional and secondary diagenetic processes, in which a detrital magnetic mineral 

assemblage is altered by post-depositional reactions within the sediments. The utility of magnetic 

susceptibility measurements becomes more effective when these data are integrated with rock 

magnetic, geochemical, and mineralogical data to reveal a more complete picture of a complex 

natural system. 

 Primary detrital ferromagnetic minerals are carried to the ocean via weathering of 

terrestrial rocks and transferred to the ocean via fluvial (e.g. Canfield et al., 1997; Chakrapani 

and Subramanian, 1990), eolian (e.g. Lowrie and Heller, 1982; Doh et al., 1988), or glacial (e.g. 

Hall and King, 1989; Richter et al., 2001) transport. Further transport and reworking of 

ferrimagnetic minerals can occur on continental margins via mass flows such as turbidites (e.g. 

Karlin and Abella, 1994; Wynn et al., 2002), and these heavy minerals can be concentrated by 

winnowing (e.g. Shor et al., 1984; de Menocal et al., 1988).  Aquatic magnetotactic bacteria can 

also contribute to the flux of magnetite to marine sediments (Bazylinski, 1996). After deposition, 

magnetotactic bacteria can precipitate magnetite or greigite (e.g. Karlin et al., 1987; Mann et al., 

1990), and during early diagenesis, magnetic iron oxides can be dissolved and re-precipitated as 



2 
 

paramagnetic and ferrimagnetic iron oxides (e.g. Canfield and Berner, 1987; Sweeney and 

Kaplan, 1973). 

 During scientific ocean drilling expeditions (e.g., the International Ocean Discovery 

Program/Integrated Ocean Drilling Program (IODP), the Ocean Drilling Program (ODP), Deep 

Sea Drilling Project (DSDP)) measurement of magnetic susceptibility using a multi-sensor core 

logger is a standard procedure that provides high resolution (cm-scale) data sets of magnetic 

susceptibility. Due to the interdisciplinary nature of most scientific drilling expeditions, 

downhole variation in magnetic susceptibility can provide a first-pass view of variation in 

magnetic mineral content that can serve to guide post-expedition research involving the 

geological and biogeochemical evolution of continental margins. 

 Each chapter of my dissertation is a project that further investigates patterns in magnetic 

susceptibility observed in records generated during scientific drilling expeditions. Chapter 1 is an 

investigation of cyclic variability in magnetic susceptibility, CaCO3, and the δ13C of total organic 

carbon (TOC) observed in Quaternary sediments of the Mahanadi Basin, offshore India (Phillips 

et al., 2014). In this work, monsoon-driven variation in weathering and productivity is inferred 

based on variation in CaCO3, δ13TOC, sedimentation rate, grain size distribution, magnetic 

susceptibility, and Zr/Rb. Based on a key result of the relationship of magnetic susceptibility and 

Zr/Rb from Chapter 1, I worked to decouple detrital and depositional signals in magnetic 

susceptibility at three sites along the Cascadia margin in Chapter 2.  Chapter 2 links the role of 

sulfate reduction and anerobic oxidation of methane in producing intervals of reduced magnetic 

susceptibility. In Chapter 3, I use rock magnetic results to further understand the magnetic 

mineral assemblage driving magnetic susceptibility in an IODP record offshore northern Honshu. 

These results are interpreted in terms of provenance, depositional environment, and 
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biogeochemical implications. Overall, the research presented in this dissertation integrates 

magnetic susceptibility with geochemical, rock magnetic and physical property data to more 

completely constrain and reconstruct the complex geological evolution preserved in methane and 

methane-hydrate rich continental margin settings. 
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1. MONSOON-INFLUENCED VARIATION IN PRODUCTIVITY AND LITHOGENIC 

SEDIMENT FLUX SINCE 110 KA IN THE OFFSHORE MAHANADI BASIN, NORTHERN 
BAY OF BENGAL 

 

ABSTRACT 

The Indian monsoon drives seasonal changes in precipitation and weathering across India 

as well as circulation and productivity in the northern Indian Ocean. Variation in paleo-monsoon 

intensity and its effect on productivity and lithogenic fluxes is poorly constrained in the Bay of 

Bengal. In this paper, I present analysis of a sediment record from the offshore Mahanadi Basin 

recovered during the Indian National Gas Hydrate Program Expedition 01 (Site NGHP-01-19B).  

I reconstruct variation in biogenic and lithogenic components during the last 110 kyr using 

measurements of total organic carbon (TOC), total nitrogen (TN), TOC/TN, CaCO3, biogenic 

silica (BSi), δ13TOC, δ15TN, bulk mineralogy from X-ray diffraction, bulk and lithogenic grain 

size distribution, magnetic susceptibility, bulk density, and Ca, Br, and Zr/Rb from X-ray 

fluorescence (XRF).  The mass-accumulation rate (MAR) of CaCO3, a function of marine 

productivity, drastically increased between 70 ka and 10 ka under glacial conditions and is 

correlated to previously-documented elevated Asian dust fluxes and increased Bay of Bengal 

salinity during a weakened southwest monsoon.  Decreased freshwater input over this period 

likely diminished stratification, allowing for increased mixing and nutrient availability, thus 

enhancing productivity despite weaker southwest monsoon winds. The MAR of lithogenic 

material is highest during the Holocene suggesting that sediment supply driven by monsoon 

intensity is a stronger control on margin sedimentation than sea level at the Mahanadi Basin. 

Over the entire record, magnetic susceptibility and XRF Zr/Rb are strongly correlated with 

CaCO3, suggesting higher primary mineral input under a weakened southwest monsoon. 
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TOC/TN and δ13TOC also increase under glacial conditions, suggesting higher relative input of 

terrestrial C4 organic matter.  These results highlight the Mahanadi Basin as a supply-dominated 

margin where terrigenous sedimentation is strongly influenced by monsoon intensity, and that 

productivity is limited by variation in monsoon-driven stratification on glacial-interglacial 

timescales rather than a direct response to monsoon winds. 

INTRODUCTION 

The northern Indian Ocean and peninsular India are influenced by monsoon-driven 

environmental variability occurring on orbital and suborbital timescales (e.g. Clemens and Prell, 

1990; Kutzback, 1981, Overpeck et al., 1996; Prell and Kutzbach, 1987; Sirocko et al., 1993).  

The modern Asian monsoon system varies in strength and precipitation across the region, and 

can be generally subdivided into the Indian, East Asian, and western North Pacific monsoons 

(Wang et al., 2001; Wang and Ho, 2002). The Indian monsoon system is a seasonal reversal in 

prevailing winds as a response to the migration of the intertropical convergence zone (ITCZ) 

driven by insolation of the Indian subcontinent and Tibetan Plateau (Chao, 2000; Chao and 

Chen, 2001; Gadgil, 2003).  The summer monsoon, or southwest (SW) monsoon, occurs during 

the northward migration of the ITCZ and the resultant southwesterly winds result in wet, higher 

precipitation conditions over the Indian region.  The winter monsoon, or northeast (NE) 

monsoon, occurs during the southward migration of the ITCZ and the resultant northeasterly 

winds produce drier conditions over the Indian region.  The monsoon is influenced externally by 

teleconnections with northern high latitudes (e.g. Gupta et al., 2003; Schulz et al., 1998; Sirocko 

et al., 1996; Wang et al., 2001), Pacific Ocean (e.g. Krishnamurthy and Goswami, 2000; Kumar 

et al., 1999; Mehta and Lau, 1997), and Southern Hemisphere climate (Clemens and Oglesby, 

1992; An et al., 2011).  Uplift of the Tibetan Plateau during the Late Cenozoic intensified the 
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Asian monsoon and influenced global climate (Molnar et al., 1993; Raymo and Ruddiman, 1992; 

Ruddiman and Kutzback, 1989; Zachos et al., 2001). The specific timing of uplift-driven 

intensification remains unresolved, but ranges between 24 and 2.6 Ma (e.g. Clift et al., 2004; 

Clift, 2006; Nie et al., 2008; An et al., 2001).  

 The Asian monsoon influences 11 of the 20 rivers with the highest sediment discharge to 

the oceans (Milliman and Meade, 1983), and also acts as a driver of marine productivity (e.g. 

Brink et al., 1998; Brock et al., 1991; Curry et al., 1992; Liu et al., 2002), thus making the 

monsoon a major factor in terrigenous and marine biogenic sedimentation in the northern Indian 

Ocean and western Pacific Ocean. Past changes in the monsoon, on time scales ranging from 

decadal to millions of years, have been investigated through a wide array of paleoenvironmental 

and paleoceanographic proxies applied to records including marine sediments (e.g. Clift et al., 

2008; Emeis et al., 1995; Oppo and Sun, 2005; Prell et al., 1980; Weber et al., 1997), loess and 

paleosol deposits (e.g. An et al., 1991, Ding et al., 2001; Guo et al., 2004; Kukla et al., 1988; 

Maher and Thompson, 1995; Quade and Cerling, 1995;), speleothems (e.g. Burns et al., 2002; 

Dykoski et al., 2005; Fleitman et al., 2007; Wang et al., 2001, 2008; Zhao et al., 2010), ice cores 

(e.g. Thompson et al., 2000), lake sediments (e.g. Enzel et al., 1999; Morrill et al., 2006; Wei and 

Gassse, 1999; Xiao et al., 1995), tree rings (e.g. Feng et al., 1999; Hughes et al., 1994), and 

corals (e.g. Charles et al., 2003; Tudhope et al., 1996).  Like the modern monsoon system, 

regional variation in the monsoon system can be reflected in paleomonsoon records (Wang et al., 

2003).  Many unresolved questions remain in understanding the past and continued evolution of 

the monsoon (see Wang et al., 2005 for a review of these issues and proxy methods), particularly 

involving uncertainties in the timing of the monsoon (e.g. Caley et al., 2011; Clemens and Prell, 

1990, 2007; Clemens et al., 2008, 2010; Kutzbach, 1981; Ruddiman et al., 2006).   
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As an archive for paleo-monsoon records, the northern Indian Ocean, the Bay of Bengal is 

relatively under-sampled compared to the Arabian Sea.  In the Arabian Sea, the strength of the 

monsoon has been shown to influence terrigenous sediment flux (e.g. Caley et al., 2011; 

Clemens and Prell, 1990;1991; Clift and Gaedicke, 2002; deMenocal et al., 1991; Kumar et al., 

2005), sea surface temperature (SST) and salinity (SSS) (e.g. Anand et al., 2008; Govil and 

Naidu, 2010; Prell et al., 1980;) and productivity (e.g. Altabet et al., 2002; Gupta et al., 2011; 

Hermelin and Shimmield, 1995; Kroon et al., 1991; Reichart et al., 1998; Schulz et al., 1998; 

Ziegler et al., 2010). Fewer records exist in the Bay of Bengal; however, the influence of the 

monsoon in the Bay of Bengal has been observed using terrigenous flux proxies (e.g. Burton and 

Vance, 2000; Colin et al., 1998; Weber et al., 1997), organic geochemical proxies (e.g. Fontugne 

and Duplessy, 1986; Ponton et al., 2012), and proxies of SST and salinity (e.g. Cullen et al., 

1981; Prell et al., 1980; Govil and Naidu, 2011; Rashid et al., 2011; Schulenberg, 2011) that 

indicate monsoon-influenced changes in surface ocean conditions and terrestrial weathering on 

glacial-interglacial and suborbital timescales. The research presented here using  a sediment core 

recovered during the Indian National Gas Hydrate Program Expedition 1 (NGHP01) provides an 

opportunity to investigate variability in lithogenic and biogenic sedimentary constituents in the 

western Bay of Bengal, as potential effects of monsoon-induced changes in erosion/weathering 

and biological productivity. 

GEOLOGIC AND OCEANOGRAPHIC SETTING 

Tectonic Setting and Terrigenous Inputs 

The Mahandi Basin is a sedimentary basin on the eastern margin of India formed during 

the Jurassic rifting of Gondwanaland (Rao et al., 1997; Sastri et al., 1981; Subrahmanyam et al., 
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2008). The basin extends both onshore and offshore, and the post-rifting evolution of the basin 

has involved multiple marine transgressions and regressions (Fuloria, 1993). The Mahanadi 

River drains the Precambrian Eastern Ghat province (Rickers et al., 2001) including one of the 

richest mineral belts on the Indian sub-continent, resulting in higher concentrations of trace 

metals in suspended river sediments compared to other rivers in peninsular India (Chakrapani 

and Subramanian, 1990a). Kaolinite, chlorite, quartz, dolomite, and minor montmorillonite and 

illite are characteristic suspended sediments discharged by the Mahanadi River to the Bay of 

Bengal (Chakrapani and Subramanian, 1990a; Subramanian, 1980). The Mahanadi River 

discharges approximately 15 x 106 metric tons of sediment to the Bay of Bengal each year, 

dominated by the coarse silt-size fraction (Chakrapani and Subramanian, 1990b). The monsoon 

is the primary control of present-day sediment discharge in the Mahanadi Basin with 90% of the 

annual sediment delivery to the Bay of Bengal occurring between July and September during the 

summer monsoon (Chakrapani and Subramanian, 1990b). 

Physical Oceanography and Biological Productivity 

Surface ocean circulation in the Bay of Bengal is driven primarily by the Indian 

monsoon, and consists of seasonally-reversing gyres (Potemra et al., 1991; Schott and McCreary, 

2001; Schott et al., 2009; Shetye et al., 1993; Varkey et al., 1996). These circulation patterns 

result in a seasonal reversal along the western boundary East India Coastal Current (EICC): 

northward during the SW monsoon and spring inter-monsoon, and southward during the NE 

monsoon and fall inter-monsoon (Shankar et al., 1996). During the SW monsoon, Ekman-driven 

coastal upwelling occurs along the eastern peninsular Indian margin, although this upwelling is 

limited to within 40 km of the coast due to stratification from enhanced freshwater input (Shetye 

et al., 1991).  These major circulation patterns initiate mesoscale eddy currents in all seasons 
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(e.g. Babu et al., 1991, 2003; Nuncio and Prasana Kumar, 2012; Prasana Kumar et al., 2004 

Shetye et al., 1993).  These seasonal variations also generate Kelvin waves along the east coast 

of India, which in turn instigate propagation of Rossby waves (Potemra et al., 1991; Yu et al., 

1991) that can also initiate the incursion of the Southwest Monsoon Current into the Bay of 

Bengal east of Sri Lanka (Vinayachandran et al., 1999) during the summer monsoon. 

Intermediate water masses in the Bay of Bengal are sourced from primarily Indonesian 

Intermediate Water, Antarctic Intermediate Water and Red Sea Intermediate Water (You et al., 

1998; Sengupta et al., 2013). Below 1500 m, deep waters are derived from beyond the northern 

Indian Ocean (Mantyla and Reid, 1995), but are primarily composed of Indian Ocean Deep 

Water (Varkey et al., 1996; Sengupta et al., 2013).  Sediments in the Bay of Bengal are a source 

of nutrients and a sink of oxygen for bottom water (Broecker et al., 1980). 

Seasonal variation in precipitation results in a large, seasonally-shifting salinity gradient 

in the surface waters of the Bay of Bengal. Annual average salinities in the mixed layer range 

from 27 to 35 ‰ increasing from the northern reaches of the bay to 5° N (Antonov et al., 2010; 

Talley, 2013; Varkey et al., 1996).  This salinity gradient becomes more extreme during the 

summer monsoon due to increased precipitation, ranging from 21 to 35 ‰ along the north-south 

gradient.  The water balance of the surface Bay of Bengal results in net precipitation and runoff 

gain of 63.7 cm during the summer monsoon, and net evaporation of 11.5 cm during the winter 

monsoon, resulting in an overall annual net excess of precipitation (Varkey et al., 1996).   

Biological productivity in surface ocean of the Bay of Bengal is generally high but 

significantly less than that observed in the Arabian Sea, due to strong stratification driven by 

freshwater runoff that limits nutrient recycling by wind-driven mixing, as well as cloud cover 

and suspended particulates that disrupt light availability for phytoplankton (Gomes et al., 2000; 
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Madhupratap et al., 2003; Prasanna Kumar et al., 2002).  During the summer monsoon, 

chlorophyll-a is approximately 4 to 5 times lower in the Bay of Bengal compared to the Arabian 

Sea (Prasanna Kumar et al., 2002).  Productivity and downward particle flux is highest during 

the southwest monsoon, but also elevated during the northeast monsoon (Guptha et al., 1997). 

Overall, productivity in the Bay of Bengal is driven not by regional upwelling, like in the 

Arabian Sea, but by local upward pumping of nutrient-rich water by eddies most strongly during 

the southwest monsoon, but also during the northeast monsoon and inter-monsoon seasons 

(Prasanna Kumar et al., 2004, 2007; Vinayachandran and Mathew, 2003; Vidya and Prasanna 

Kumar, in press). 

NGHP Site 19 Lithostratigraphy 

Site NGHP-01-19B (Site 19) is located approximately 70 km offshore India (18° 

58.6568’N, 85° 39.5202’E) at a water depth of 1422 m (Collett et al., 2008) (Fig. 1-1).  Site 19 is 

bathymetrically shallower than the Bengal Fan, which contacts the lower continental slope of 

eastern India (Curray et al., 2003) at a depth of approximately 2000 m. Thus, terrigenous 

sedimentation at Site 19 is primarily influenced by peninsular India margin processes. Two holes 

were drilled and cored by advance piston core by D/V JOIDES Resolution at NGHP-01-19A and 

NGHP-01-19B to depths of 305 and 26 mbsf respectively. 

Relative to deeper sections, the upper 75 m at Site 19A shows increased variability in 

magnetic susceptibility (Collett et al., 2008), bulk mineralogy (Phillips et al., 2014), total organic 

carbon (TOC) (Johnson et al., 2014), calcium carbonate (CaCO3), and δ13C relative to the Vienna 

Pee Dee Belemnite (VPDB) of organic carbon (δ13TOC). Based on calcareous nannofossil 

biostratigraphy (Abel-Flores et al., 2014), this interval of increased and variable κ, CaCO3, and 
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δ13TOC corresponds to the past 1.96 Ma.  In this study I seek to understand the source of this 

variation through measurement of lithogenic and biogenic components at a substantially higher 

resolution (every 10 cm) in the upper 11.5 m (past 110 kyrs) at NGHP-01-19B (Site 19B) by 

integrating elemental, isotopic and physical property data. 

 

Figure 1-1. Location map showing the location of NGHP-01-19B and selected core locations where 
data are used or referenced in this study. 
 

METHODS 

Planktonic foraminifera of mixed species from seven samples were selected for 

radiocarbon analysis at the National Ocean Sciences Accelerator Mass Spectrometer (NOSAMS) 

laboratory at the Woods Hole Oceanographic Institution (WHOI) (McNichol et al., 1995). 
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Radiocarbon ages were calibrated to ages in yr BP using CALIB 6.0 (Stuvier and Reimer, 1993) 

and the Marine09 calibration curve (Reimer et al., 2009). Marine reservoir corrections were 

applied to the calibration curve using the standard marine reservoir correction of 400 years, 

which is close to the average of the two nearest reservoir corrections in the Bay of Bengal (Dutta 

et al., 2001; Southon et al., 2002). 

A total of 68 samples of benthic foraminifer Uvigerina peregrina in the upper 27 m of  

Site 19B were measured for δ18O and δ13C using a Finnigan MAT253 mass spectrometer at the 

Micropaleontology Mass Spectrometer facility at WHOI. Uvigerina peregrina δ18O 

measurements were used with the established orbital chronostratigraphy (Imbrie et al., 1984; 

Martinson et al., 1987) to extend the age model beyond the range of radiocarbon calibration. 

Sedimentary carbon and nitrogen were measured on 95 samples from the upper 12 m of 

Site 19B using a Perkin Elmer CHN 2400 Series II CHNS/O Analyzer at the University of New 

Hampshire (UNH) and the methods described in Phillips et al. (2011) for carbonate-bearing 

marine sediments. Approximately 1 g of each sample was crushed and dried with 20 mg of 

sediment used for each analysis. One split was measured for total carbon (TC) and total nitrogen 

(TN), while the other was treated with sulfurous acid to remove inorganic carbon for total 

organic carbon (TOC) measurements, with the difference (TC-TOC) used to calculate inorganic 

carbon (IC). Calcium carbonate (CaCO3) was calculated using the molecular mass ratio of 

CaCO3 and IC as CaCO3 = IC × 8.33.  C/N ratios were calculated using the atomic mass 

weighted ratio of TOC and TN as C/N = (TOC/12.011)/(TN/14.007). Bulk δ13C and δ15N of the 

organic carbon in samples were measured using elemental analysis-isotope ratio-mass 

spectrometry (EA-IR-MS) on a Delta Plus XP Mass Spectrometer interfaced with a Costech 

4010 Elemental Analyzer at UNH. Samples of approximately 30 mg were prepared for isotopic 
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analysis using the same preparation method as the TOC measurements.  Duplicate samples were 

run every 10 samples.  Uncertainty in TC, TOC, TN, C/N, and CaCO3 measurements are 0.04, 

0.02, <0.01, 0.63, and 0.44 wt. % respectively, represented by the average of error in duplicate 

samples (2 standard deviations). Reproducibility in δ13C and δ15N are 0.1 and 0.18 ‰ 

respectively. 

XRF core scanning was performed using a Cox Analytical ITRAX XRF core scanner at 

WHOI at a resolution of 4 mm. Details of this method and analytical capabilities are described in 

Croudace et al. (2006). 

The grain size distribution of samples from the upper 12 m of Site 19B was measured at 

UNH using a Malvern Mastersizer 2000 laser-diffractometer particle size analyzer with Hydro-G 

dispersion unit, calibrated with glass bead standards ranging from medium silt to fine sand. 

Approximately 0.5 mL of sediment was suspended in a solution of 20 mL of 5.4 g/L sodium 

hexametaphosphate, agitated, left overnight, and re-agitated before analysis (Sperazza et al., 

2004). The sample was introduced to the water dispersant at an obscuration rate between 15 and 

20% and subjected to 60 seconds of sonication to prevent flocculation.  Bulk samples were 

measured to include all lithogenic, biogenic, and authigenic components of the sample.  A split 

of each sample was treated with 15 mL of 30% H2O2 and 20 mL of 10% HCl at room 

temperature to measure the particle size distribution of the carbonate- and TOC-free fraction.  I 

present the grain-size distribution as median grain size (d(0.5)), 90th percentile grain size 

(d(0.9)), 10th percentile grain size (d(0.1)), as well as the clay, silt, and sand percentages, 

according to the scale of Wentworth (1922).  Two samples representing the range of CaCO3 and 

BSi in this record were treated in consecutive application of 10% HCl, 30% H2O2, and 0.1 M 
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NaOH (85 °C) to observe the effects of carbonate, organic matter and biosiliceous material on 

the grain size distribution. 

Relative to the sieve-pipette method, grain-size distributions measured by laser 

diffraction generally underestimate the clay-size fraction (e.g. Beuselinck et al., 1998; Eshel et 

al., 2004; Konert and Vadenberghe, 1997; Kowalenko and Babuin, 2013; Loizeau et al., 1994; 

McCave et al., 1996); however, laser diffraction methods allow for high-resolution 

measurements of grain-size distributions at high precision (Roberson and Weltje, 2014; Sperazza 

et al., 2004).   Konert and Vandenberghe (1997) and Ramaswamay and Rao (2006) suggest that 

8 μm or 6.2 μm respectively are more accurate boundaries between silt and clay when using laser 

diffraction methods. Applying this modified upper clay limit to our analyses suggests the clay 

fraction in our samples may be underestimated by 14 to 23% on average. In this study, the laser 

diffraction technique is sufficiently accurate for the purpose of identifying down core relative 

variation in major grain-size classes and median grain size, and the comparison of these records 

to other proxies. For bulk samples, average reproducibility (two standard deviations) for d(0.1), 

d(0.5), and d(0.9) are within 0.4, 1.1, and 180 μm respectively. Reproducibility of the clay, silt, 

and sand fractions in bulk samples are 3.5, 4.4, and 5.6 % respectively. For treated samples, 

average reproducibility (two standard deviations) for d(0.1), d(0.5), and d(0.9) are within 0.1, 

0.3, and 3.6 μm respectively. Reproducibility of the clay, silt, and sand fractions in treated 

samples are 1.2, 2.4, and 2.4 % respectively. 

Samples were measured for bulk mineralogy using powder X-ray diffraction (XRD) at a 

resolution of approximately every 0.5 m of the upper 12 m.  Approximately 0.5 g of dried and 

crushed sediment was analyzed using an InXitu Terra X-ray diffractometer at the U.S. 

Department of Energy-National Energy Technology Laboratory in Albany, OR. The sample was 
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exposed to Cobalt K-alpha radiation in a vertical sample holder with Mylar© windows, and the 

diffraction pattern was measured by a 2D Pelier-cooled CCD detector with a two theta (2θ) range 

from 5° to 55°. Mineral identification was performed using MDI Jade 9 software, and semi-

quantitative mineral weight percent was estimated by the pattern simulation function in Jade, 

utilizing a matrix-flushing method (Chung, 1974). Due to overlapping peak response for 

minerals such as kaolinite and chlorite, and plagioclase and K-feldspar, total clay and total 

feldspars are reported rather than individual mineral phases. For this analysis, four bulk 

mineralogical components are reported as percent relative abundance of quartz, feldspar, calcite, 

and total clays. 

Approximately 25 mg of dried sediment was subjected to leaching of BSi using a wet 

alkaline method (e.g. DeMaster, 1981; Mortlock and Froelich, 1989), followed by measurement 

of leached silica on a Spectronic 601 UV-Vis spectrophotometer (Strickland and Parsons, 1972).  

Leaching at 85°C over five hours with sub-samples collected at each hour, allowed for the 

accurate determination of biogenic silica by accounting for leaching of silicate minerals, as 

described in Cawthern et al. (2014).  Average reproducibility of BSi (2 standard deviations of 

replicate samples) is 0.08 wt. %. 

An age model for Site 19 was calculated using calibrated radiocarbon ages and oxygen 

isotope events from the benthic Uvigerina peregrina δ18O record. Sedimentation rates (SR) were 

calculated by interpolation between age control points. Sediment mass accumulation rates 

(MAR) in g cm-2 kyr-1 were calculated by the product of the shipboard dry-bulk density data 

(DBD) in g cm-3 (Collett et al., 2008) and SR in cm kyr-1.  During NGHP-01, DBD was 

measured using moisture and density analysis (MAD) at a resolution of approximately 1 m. To 

ensure that MAR incorporated down core variation in DBD, the linear regression between MAD 
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bulk density and DBD, as well as MAD bulk density and bulk density derived from gamma ray 

attenuation from shipboard multi-sensor core logger (MSCL) measurements were calculated.  

MSCL density (measured at a 2.5 cm resolution) and its two-step linear relationship to DBD, 

was used to estimate variation in DBD with depth at a higher resolution. 

MAR for specific components (e.g., TOC, CaCO3) was calculated by the product of 

MAR and the weight percent of each component.  Terrigenous MAR was calculated by 

subtracting the biogenic component MAR (sum of CaCO3, TOC, TN, BSi) from the bulk MAR 

(e.g. Gardner et al., 1997).   

RESULTS 

Age Constraints 

Six calibrated radiocarbon measurements, with ages between 1.4 and 31.3 ka establish 

age control for the upper 4 m at Site 19A/B. One radiocarbon measurement from 8.15 mbsf was 

beyond the radiocarbon calibration scale (48,000 radiocarbon years) and not used in the age 

model. Table 1-1 contains radiocarbon sample and calibration data. In addition, δ18O of 

Uvigerina peregrina foraminifers established a chronostratigraphy indicating a complete record 

extending to oxygen isotope stage (OIS) 5.4 (111 ka) at 11.5 mbsf.  Below this depth, the δ18O 

record was difficult to match to established oxygen isotope chronostratigraphies, due to possible 

unconformities and overprinting of the benthic foraminifers. Six isotope events were identified in 

the δ18O pattern between and 18 and 111 ka (Table 1-2).  In total, 12 age control points provided 

an age-depth model for the 12 m record (Fig. 1-2).  An ash layer observed at 8.42 to 8.46 m is at 

approximately 71 ka according to our age model. The presence of this ash layer is at the same 

time interval 73 ± 4 ka as that determined for the Toba eruption (Chesner et al., 1991; Westgate 

et al., 1998). 
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Physical Properties, Grain Size, and Mineralogy 

Volume-dependent magnetic susceptibility (κ) measured shipboard during NGHP01 is 

generally low (< 40 μSI) with a pronounced increase (40 to 84 μSI) between 33 and 15 ka (Fig. 

1-3).  κ is variable (20 and 60 μSI) between 80 and 33 ka, and is low (< 40 μSI) in the Holocene 

and between 100 and 80 ka, with a small increase to 50 μSI at 105 ka.  Mass-dependent magnetic 

susceptibility was calculated from the volume-dependent κ using density and then adjusted for 

the carbonate-free fraction (χnc) (e.g. Lean and McCave, 1998) to account for variation in the κ 

record driven by dilution by CaCO3.  The χnc pattern did not differ considerably from κ, other 

than a slight increase in χnc relative to κ between 26 and 18 ka.  Shipboard bulk density 

measurements show muted variation similar to κ and χnc, with a decrease in the Holocene and 

little variation 100 to 80 ka.  There is an anomalous decrease in bulk density between 65 and 62 

ka.  

Table 1-1.  Radiocarbon analyses by accelerator mass spectrometry (AMS). Calendar year 
calibrations were made using CALIB ver. 6.0 (Stuvier and Reimer, 1994). 

Depth 
(mbsf

) 

Core-
Sectio

n 
Site-
Hole 

Interva
l depth 

(cm) 

Radiocarbo
n age 

(radiocarbo
n kyr BP•) 

Radiocarbo
n age error 
(radiocarbo
n kyr BP•) 

Calibrated 
age (ka) 
lower 2σ 

Calibrate
d age (ka) 
upper 2σ 

Mean 
calibrate

d age 
(ka) Source 

0.01 1H-1 19-B 0-2 1.85 0.04 1.30 1.49 1.40 This study 

1.945 1H-2 19-B 44-45 9.69 0.04 10.47 10.64 10.56 
Schulenberg, 

2011 

2.585 1H-2 19-B 
108-
109 11.05 0.05 12.36 12.71 12.54 

Schulenberg, 
2011 

3.248* 1H-3 19-A 
23.8-
25.8 16.65 0.08 19.21 19.58 19.40 This study 

3.545 1H-3 19-B 54-55 22.90 0.08 26.73 27.74 27.24 
Schulenberg, 

2011 

3.958* 1H-3 19-A 
94.8-
96.8 27.60 0.12 31.11 31.48 31.29 This study 

6.188* 2H-1 19-A 
87.8-
89.8 48 0.65 

out of 
range 

out of 
range 

out of 
range This study 

          •Before present, where present is 1950 A.D. 
     

*The original depth of the samples in hole A were adjusted by additon of 3.8 cm to match the record of hole B by correlation  

of magnetic susceptibility records.   
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 XRD measurements of bulk sediment samples reveal a range in relative abundance 

among four components: total clay (34-66%), quartz (21-37%), calcite (0-29%), and feldspar (0-

13%) (Fig. 1-3).  Total clay increases from 27 to 10 ka, and decreases between 77 and 27 ka.  

Calcite follows an inverse pattern to clay, increasing from 77 to 30 ka, and then decreasing since 

30 ka.   Quartz increases from 20 to 35% since 18 ka, and there are small increases in quartz at 

26, 56, 61, and 103 ka.  Feldspar remains below 13% throughout the record. These ranges agree 

with the overall trends at Site 19 reported by Phillips et al. (2014). Quartz and feldspar exhibit 

little variation over the record compared to total clay and calcite. 

Table 1-2. Oxygen isotope events from δ18O of benthic foraminifers. 

Depth 
(mbsf) 

Core-
Section 

Site-
Hole 

Interval 
depth (cm) 

Foraminifera 
species 

Oxygen 
isotope 
event 

Age 
(ka) 

3.105 1H-3 19-B 104-106 Uvigerina peregrina 2.2 18 
6.105 1H-5 19-B 10-11 Uvigerina peregrina 3.3 50.2 
8.205 2H-1 19-B 90-91 Uvigerina peregrina 4.22 64.1 
10.005 2H-2 19-B 120-121 Uvigerina peregrina 5.1 79 
10.505 2H-3 19-B 20-21 Uvigerina peregrina 5.3 99.4 
11.505 2H-3 19-B 120-121 Uvigerina peregrina 5.4 110.8 

 

Comparison of bulk sediment, CaCO3-free sediment (HCl-treated), CaCO3 and TOC-free 

sediment (HCl and H2O2-treated), and CaCO3, TOC and BSi-free sediment (HCl, H2O2, and 

NaOH-treated) in two samples show a strong influence of carbonate on the grain size distribution 

(Fig. 1-4). These samples only show minor changes to the grain size distribution with TOC and 

BSi removal, suggesting that the record of grain size distribution in HCl and H2O2-treated 

samples represents primarily the lithogenic fraction. 

The bulk grain size distribution is predominately silt (43-71%) with a median grain size 

(d(0.5)) ranging from 4 to 14 μm (Fig. 1-5).  The clay size fraction comprises 17 to 42% of the 

distribution with the 10th percentile of the grain-size distribution (d(0.1)) ranging from 0.2 to 2.7 

μm.  The sand-sized fraction ranges from 0.4 to 31% with the 90th percentile (d(0.9)) ranging 
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from 17 to 915 μm. Bulk grain size exhibits a pronounced increase in sand-sized content, d(0.5), 

and d(0.9) between 65 and 10 ka and d(0.5) correlates closely with the XRF Zr/Rb mean grain 

size proxy.  Grain size distribution in samples treated to remove carbonate and organic matter 

from the sample exhibited largely different down-core variation compared to the bulk sample 

(Fig. 1-6), suggesting biogenic components strongly influence the overall grain size distribution 

(Fig. 1-7).  The bulk grain size distribution with secondary peaks at around 0.1 μm and 100-1000 

μm is consistent with similar measurements of hemipelagic sediments containing nannofossils 

and foraminfers (Trentesaux et al., 2001).  The carbonate-free, predominantly lithogenic-only 

grain size distribution is 56 to 86% silt with d(0.5) ranging from 5.2 to 14.1 μm (all but two 

samples were below 10 μm).  Clay comprises 11 to 37% with d(0.1) varying from 1.8 to 2.4 μm. 

Lithogenic sand-sized content (0-6%) and d(0.9) (16-38 μm) are much lower than in the bulk 

sample. Treated lithogenic grain size shows little variation in d(0.5) or d (0.9) with a minor 

increase between 79 and 56 ka.  Median grain size does not vary with lithogenic d(0.5) as in the 

bulk sample. At 12 ka, the lithogenic clay and sand-sized fraction increase abruptly and then 

decrease through the remainder of the Holocene. 

Biogenic Components 

TOC contents at Site 19 range from 0.89 wt. % to 1.96 wt. % with a mean of 1.39 wt. % 

(Fig. 1-8).  TOC increases to greater 1.5 wt. % between 12-14, 29-53, and 63-65 ka.  TOC is 

lower than 1.0 wt. % at 16, 56, 59, and 68-70 ka.  There is little variation in TOC between 10 ka 

and present and 110-72 ka.  Bromine measured by XRF is plotted with TOC as a marine organic 

matter proxy (McHugh et al., 2008; Ziegler et al., 2008), and there is a general agreement 

between TOC and Br, except since 10 ka, when there is divergence between the two records.  TN 

co-varies with TOC with small differences apparent in the TOC/TN ratio (Fig. 1-8).  TOC/TN 
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varies primarily between 10 to 12 between 110 and 80 ka.  Between 80 and 60 ka, variation in 

TOC/TN increases from 9 to 13, and then TOC/TN increases from 10 to 13 between 60 and 30 

ka.  Since 30 ka, TOC/TN decreases to 9. 

 

Figure 1-2.  Plot of depth versus age from radiocarbon ages and oxygen isotope events. 
Sedimentation rates (SR) from linear interpolation are listed for each interval in cm/kyr.  Error 
from calibrated radiocarbon ages is smaller than symbol size, and estimated method error of 3500 
years (Martinson et al., 1987) is plotted for oxygen isotope events.  Overall SR is 10 cm/kyr, with a 
notable increase in SR during the Holocene.  An ash at Site 19 at 8.4 m depth is at 71 kyr, and likely 
originated from the Toba eruption (Chesner et al., 1991; Westgate et al., 1998). 
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Figure 1-3.  Down-core variation in volume-dependent magnetic susceptibility (κ), mass-dependent 
magnetic susceptibility adjusted for the carbonate-free fraction (χnc), bulk density, and the relative 
abundance of four mineral components (total clay, quartz, feldspar, and calcite) from X-ray 
diffraction (XRD). κ, χnc, and calcite increase between 10 and 70 ka, and at 105 ka. 
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Figure 1-4. Comparison of bulk particle size distributions in bulk sediment, HCl-treated sediment 
(CaCO3-free), HCl and H2O2-treated sediment (CaCO3- and TOC-free), and HCl, H2O2, and 
NaOH-treated sediment (carbonate-, TOC-, and BSi-free).  The upper panel represents a sample 
with a minimum in CaCO3 and maximum in BSi, and the lower panel represents a sample with a 
maximum in CaCO3 and minimum in BSi. 
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Fig. 1-5.  Down-core variation in bulk untreated grain size as shown by the 10
th 

, 50
th

, and 90
th

 
percentiles, d(0.1), d(0.5), and d(0.9) respectively, of the grain size distribution, and the clay, silt, 
and sand percentages.  The Zr/Rb ratio from X-ray fluorescence (XRF) is shown with the median 
grain size as a high-resolution grain size proxy (Dypvik and Harris, 2001).  Median grain size and 
sand-sized content (foraminifers) increase between 10 and 70 ka. 
 

IC, presented as CaCO3, varies little (between 2-4 wt. %) between 99 and 72 ka, after an 

increase to 7 wt. % at 102-103 ka (Fig. 1-8). CaCO3 increases considerably between 71 and 10 

ka, increasing from 4 to 24 wt.% between 71 and 24 ka, then decreasing to 3 wt. % by 10 ka.  

Superimposed on the long-term trend, there is short-term variation on the order of the sampling 

interval (~1200 yr) to 7 kyr, between 71 and 10 ka.  Since 10 ka CaCO3 varies between 2-4 wt. 

%, similar to the interval before 71 ka.  Calcium from XRF is plotted with CaCO3, and the two 

records match closely.  Relative to CaCO3, BSi is low (0.27 to 0.63 wt. %) (Fig. 1-8).  Between 

110 and 69 ka, BSi varies primarily between 0.4-0.55 wt. %, then decreases to 0.3 and 0.4 wt.% 

between 68 and 19 ka.  BSi increases since 17 ka, reaching greater than 0.55 wt. % since 9 ka. 
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Isotopic Measurements 

δ13C of bulk organic matter (δ13TOC) varies between -20 and -16 ‰ VPDB at Site 19 

(Fig. 1-9).  There is an increase from -18 to -16 ‰ at 104-106 ka, before a long-term increase 

from -19 to -17 ‰ from 92 ka to 16 ka.  δ13TOC decreases to -21 between 15 ka and 9 ka, and 

remains between -21 and -20 since 9 ka.   δ15TN varies between 3 and 5.7 ‰ air.  Overall there is 

a slight increasing trend of δ15TN (4-5.7 ‰ air) between 83 and 12 ka, punctuated by an interval 

of decreased δ15TN (3.2-4.4 ‰).  After 12 ka, δ15TN decreases to 4-5 ‰.      

 

Fig. 1-6.  Down-core variation in HCl- and H
2
O

2
- treated grain size as shown by the 10

th 
, 50

th
, and 

90
th

 percentiles, d(0.1), d(0.5), and d(0.9) respectively, of the grain size distribution, and the clay, 
silt, and sand percentages.  The Zr/Rb ratio from X-ray fluorescence (XRF) is shown with the 
median grain size as a high-resolution grain size proxy (Dypvik and Harris, 2001).  Median grain 
size and sand-sized content (foraminifers) increase between 10 and 70 ka. 
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Fig. 1-7.  Grain size distributions of bulk samples (top) and samples treated to remove biogenic 
material (bottom).  Horizontal axes are grain size bins from 0.01 to 2000 μm and age in ka. Vertical 
axis is the  percentage of the total distribution.  Both bulk and treated samples show a main peak of 
lithogenic material spanning 1 to100 μm, primarily within the clay to fine-silt range.  The bulk 
sample shows additional peaks at 0.1 and 50 to 1000 μm corresponding to nannofossil and 
foraminifers. 
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Fig. 1-8.  Down-core variation in biogenic components: total organic carbon (TOC), total nitrogen 
(TN), TOC/TN ratios, CaCO

3
 calculated from inorganic carbon content, and biogenic silica (BSi).  

Bromine is plotted with TOC as a marine organic matter proxy and calcium plotted with CaCO
3
.  

CaCO
3
 increases to 5-25 wt% between 10 and 70 ka.  TOC/TN decreases since 20 ka, while BSi 

increases over the same period.  TOC content is high (greater than 1.5 wt. %) at 18 ka, between 30 
and 50 ka, and at 65 ka. 

 

δ18O of benthic foraminifer Uvigerina peregrina follows a pattern  matching global 

stacked benthic oxygen isotope records (Imbrie et al., 1984; Lisiecki and Raymo, 2005; 

Martinson et al., 1987) and was used to develop the age model, with tie points corresponding to 

oxygen-isotope events from the SPECMAP record.    There is some deviation in absolute 

variation between the globally-stacked record and Site 19; however, local maxima and minima in 

the record match well between records.  Uvigerina peregrina δ13C follows a pattern inverse to 

δ15TN, varying between -0.2 and -0.9 ‰ VPDB, with an increase in δ13C since 12 ka.   
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Fig. 1-9.  Down-core variation in isotopic variation bulk organic matter and benthic (Uvigerina 
peregrina) foraminifers.  δ

18
O and δ

13
TOC generally match sea level variation with an anomaly in 

δ
13

TOC at 105 ka. δ
15

TN  generally matches the pattern in δ
13

TOC  with a negative anomaly at 55-
60 ka. 
 

Mass accumulation Rates 

Sedimentation rate (SR), calculated by linear interpretation between twelve ages varied 

from 2 to 32 cm/kyr with an average of 10 cm/kyr (Fig. 1-2).   Between 110 and 25 ka, SR varies 

between 2 and 17 cm/kyr (Fig. 1-10).  Since 25 ka, there is a large increase in SR from the LGM 

(3-9 cm/kyr) to the early Holocene (32 cm/kyr between 11 and 12 ka), and SR remained high (21 

cm/kyr) since 11 ka.  Bulk MAR varies between 1 and 27 g/cm3/kyr, with minor variation from 

the SR pattern due to dry bulk density variation.   
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Fig. 1-10.  Down-core variation in SR and mass accumulation rates (MAR) in g/cm
3
/kyr.  Bulk 

MAR is partitioned into TOC, CaCO
3
, BSi, total lithogenic, and total biogenic MAR. χ

nc  
flux 

represents the flux of magnetic material per kyr.  SR is the primary control on MAR, except for the 
biogenic components, where CaCO

3
 shows a large increase between 10 and 70 ka, and BSi shows a 

small increase since 12 ka. 
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MAR of TOC varies from 0.03 to 0.44 g/cm3/kyr, largely following the trend in bulk 

MAR, with a slight relative increase between 53 and 29 ka due to high TOC content.   BSi MAR 

ranges from 0.01 to 0.16 g/cm3/kyr, also mirroring bulk MAR between 110 and 10 ka, but with a 

relative increase since 10 ka.  CaCO3 MAR shows two distinct modes of variation.  Between 110 

and 71 ka, and after 10 ka, CaCO3 MAR ranges between 0.01 and 0.6 g/cm3/kyr with little 

variation (Fig. 1-10).  Between 70 and 10 ka, CaCO3 ranges from 0.7 to 3.1 g/cm3/kyr with 

cyclic variation ranging from 3 to 7 kyr. 

Biogenic MAR (sum of CaCO3, TOC, TN, and BSi) is dominated by the influence of 

CaCO3, with the same two modes of variation.  Biogenic MAR ranges between 0.05 and 0.6 

g/cm3/kyr between 110 and 71 ka and after 10 ka (Fig. 1-10)   Biogenic MAR is enhanced 

between 70 and 10 ka, with higher-frequency variation between 0.8 and 3.4 g/cm3/kyr.  

Lithogenic MAR (bulk MAR – biogenic MAR) varies between 0.03 and 26 g/cm3/kyr.  The ratio 

of biogenic MAR to lithogenic MAR varies between 0.04 and 0.36 (Fig. 10) and closely matches 

the pattern in CaCO3 content (Fig. 1-8), explaining CaCO3 content as a balance of production of 

CaCO3 and dilution by lithogenic components. 

DISCUSSION 

Increased Marine Productivity, 70-10 ka 

CaCO3 measured at Site 19 correlates with observations of nannofossils and foraminifers 

in smear slide and coarse fractions observed during NGHP-01 (Collett et al., 2008).  Because 

authigenic carbonate content is negligible and detrital carbonates were not observed, CaCO3 

MAR predominantly represents biological production of calcareous marine organisms in the 

surface waters of the Bay of Bengal.  In general, blooms of coccolithophorids and foraminifers 

last on the order of several weeks (e.g. Bijma et al., 1990; Holligan et al., 1993) and EICC flows 
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at velocities at up to 20 cm/s (McCreary et al., 1996).  Based on these estimates, biogenic CaCO3 

accumulated at the Mahanadi Basin may have originated from up to several hundred km up-

current, a region spanning the Indian margin from offshore the Ganges-Brahmaputra Rivers to 

the Krishna-Godavari Basin, depending on season.  The water depth of 1422 m at Site 19 is 

shallow enough to be well above the lysocline in the Indian Ocean (Banakar et al., 1998; 

Bassinot et al., 1994). Carbonate dissolution has been observed above the lysocline in the Indian 

Ocean associated with decomposition of organic matter (Peterson and Prell, 1985; Schulte and 

Bard, 2003); however, variation in CaCO3 at Site 19 is much larger than the supralysoclinal 

dissolution events observed in the Indian Ocean and there is little correlation between TOC and 

CaCO3 (Fig. 8).  CaCO3 MAR accounts for SR-driven dilution by lithogenic material, making 

CaCO3 MAR a measure of CaCO3 production rather than a lack of dilution by terrigenous 

material (e.g. Babu et al., 2010). 

Enhanced CaCO3 MAR (productivity) between 10 and 70 ka at Site 19 correlates to a 

period of elevated cation content in the GISP2 ice core on the Greenland Ice Sheet (Mayewski et 

al., 1997) (Fig. 1-11).  Dust in Greenland ice cores has an East Asian provenance during the Late 

Pleistocene (Biscaye et al., 1997; Svensson et al., 2000), likely driven by changes in wind 

intensity in the source region (Fuhrer et al., 1999). During glacial conditions, South Asia was 

drier due to a weaker southwest monsoon and strengthened winter monsoon between 75 and 15 

ka (Prell and Kutzbach, 1987), which is in agreement with global dust fluxes compared between 

glacial and interglacial conditions (e.g. Maher et al., 2010; Mahowald et al., 1999; Lambert et al., 

2008; Werner et al., 2002) 
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Fig. 1-11. Comparison of CaCO
3
 MAR at Site 19 to calcium in the GISP2 ice core on the Greenland 

ice sheet (dust proxy, Mayewski et al., 1997 with dust shown to be Asian in origin by Biscaye et al., 
1997), δ18O of Globigerinoides ruber at 126KL, 31/11, RC12-344, SK218/1 and VM29-19 (Chauhan, 
2003; Govil and Naidu, 2011; Kudrass et al., 2001; Rashid et al., 2007, 2011), sea-surface salinity 
(SSS) at 126KL and SK218/1 (Govil and Naidu, 2011; Kudrass et al., 2001), δ18Osw at RC12-344 and 
VM29-19 (Rashid et al., 2007, 2011), sea-surface temperature (SST) at 126KL, RC12-344, SK218/1 
and VM29-19 (Govil and Naidu, 2011; Kudrass et al., 2001; Rashid et al., 2007, 2011) .  CaCO

3
 

production increased during a time of increased aridity in the Indian region and increased salinity 
in the Bay of Bengal and Andaman Sea.  Bsi MAR is approximately an order of magnitude less 
than CaCO

3
 and shows a relative increase during the last 12 kyr compared to the glacial low-stand. 

 

It is unlikely that dust deposition directly stimulated productivity in the Bay of Bengal.  

Enhanced dust fluxes during glacial conditions, have been suggested to stimulate productivity 

through iron fertilization in high-nutrient, low-chlorophyll regions (Maher et al., 2010; Martínez-

García et al., 2014; Wolff et al., 2006); however, the Bay of Bengal is not considered to be 

limited by iron (Wiggert et al., 2006).  It is more plausible that changes in Asian aridity that 
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increased dust fluxes also increased sea surface salinity (SSS) and reduced stratification in the 

Bay of Bengal, thus allowing for increased mixing and productivity. 

 A direct result of a weakened southwest monsoon is increased salinity in the surface 

waters of the Bay of Bengal. Multiple studies across the northeast Indian Ocean have 

characterized δ18O of seawater (δ18Osw) as a paleo-salinity indicator between the Last Glacial 

Maximum (LGM) and present, using paired measurements of Globigerinoides ruber (white) 

δ18O and paleo-sea surface temperature (SST) proxies using Mg/Ca or alkenone UK
37 (Govil and 

Naidu, 2011; Kudrass et al., 2001; Rashid et al., 2007, 2011).  These records indicate a general 

freshening of the Bay of Bengal from the LGM to the Holocene as shown by a negative trend in 

δ18O of seawater (δ18Osw) (Fig. 1-11).  Cullen et al. (1981) show a similar trend of decreasing 

salinity since the LGM using relative abundance of low-salinity tolerant planktonic foraminifer 

species.  Although these records show differences in δ18Osw and SST trends on sub-orbital 

timescales such as during the Bølling-Allerød and Younger Dryas, and along latitude gradients, 

these records show a general agreement in δ18Osw and SST trends between the LGM and 

Holocene, indicating a regional consistency at orbital timescales. G. ruber δ18O follows a 

broadly consistent pattern across sites on the eastern margin of India (Govil and Naidu, 2011; 

Rashid et al., 2011), offshore Ganges-Brahmaputra (Kudrass et al., 2001), Bengal Fan (Chauhan, 

2003), and Andaman Sea (Rashid et al., 2007) (Fig. 1-11). Measurements of δ18Osw from 

Globigerinoides sacculifer at sites in the eastern Arabian Sea show a decreased input of low-

salinity water from the Bay of Bengal during the LGM (Mahesh and Banakar, 2014). 

Unpublished analyses of G. ruber δ18O, SST, and δ18Osw from Site 19 (Schulenberg, 2011) are 

consistent with the broad LGM to present patterns across the northeast Indian Ocean. The 

longest Bay of Bengal δ18Osw  salinity record (core KL-126), extending to 80 ka, shows paleo-
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salinities ranging from 33-35 ‰ between 20 and 80 ka, with a pronounced decrease to 10 ka, 

where salinity varies from 31 to 33 ‰ (Kudrass et al., 2001).  Salinity and δ18Osw  records across 

the Bay of Bengal correlate well to the CaCO3 MAR at Site 19 and GISP2 dust/cation record, 

with higher CaCO3 MAR occurring during periods of higher dust flux and Bay of Bengal salinity 

(Fig. 1-11).   

Elevated primary production during this period, demonstrated by the increase in CaCO3 

MAR, may have been driven by regional aridification, that resulted in decreased freshwater 

influx to the Bay of Bengal, thus reducing stratification in the upper water column.  In the Bay of 

Bengal, freshwater runoff restricts the mixing and upwelling of deep nutrients in the photic zone 

(Madhupratap et al., 2003; Prasanna Kumar et al., 2002).  Freshwater runoff is not a significant 

source of nutrients in the Bay of Bengal (Madhupratap et al., 2003).  Instead, increased 

precipitation and river outflow serves to increase stratification and limit biological productivity.  

In the modern Bay of Bengal, relatively fresh, nutrient-poor surface waters overly more saline, 

nutrient-rich intermediate and waters (Talley, 2013). During periods of reduced freshwater 

runoff and precipitation, such as the last glacial period, the higher salinity in the surface waters 

would serve to weaken the density gradient across the pycnocline and promote mixing and 

upwelling of nutrient-rich waters that could enhance biological productivity. Additionally, 

cooling of the surface waters during the LGM would further weakened the density gradient. 

15δTN at Site 19 is enriched during glacial conditions, and then becomes more depleted in the 

Holocene, which is consistent with a decrease in productivity and denitrification (e.g. Altabet et 

al., 2002) with increased monsoon intensity. The shift in 15δTN observed in the Site 19 record 

may also be influenced by a decrease in terrestrial TOC inputs. 
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 Bolton et al. (2013) show reduced stratification of the upper water column in the 

southernmost Bay of Bengal (ODP Site 758) during periods of increased monsoon intensity, 

primarily due to wind-mixing at 5 °N, far from the sources of freshwater input.  Site 19 at 

approximately 19 °N, is located closer to freshwater sources in the northern Bay of Bengal and 

exhibits a strong stratification today that counteracts the effect of increased wind-mixing during 

the southwest monsoon.  Compared to ODP Site 758, the opposite relationship between monsoon 

intensity and stratification likely exists in the freshened Mahanadi Basin, where periods of 

reduced monsoon intensity result in diminished stratification which, in spite of reduced wind-

mixing, may stimulate productivity. Future work involving microfossil-based indicators of 

upwelling (e.g. Kroon et al., 1991) and stratification (e.g. Bolton et al., 2013) could further test 

the relationship of stratification and upwelling in the northern Bay of Bengal. 

Globally, productivity is thought to increase during glacial periods (e.g. Sarnthein and 

Winn, 1990; Sarnthein et al., 1998), however there is large regional variation in the glacial-

interglacial response of productivity, with some regions experiencing an increase of productivity 

during low stands (Pederson, 1983; Schrader, 1992), and in other regions an increase in 

productivity during high stands (Hermelin and Shimmield, 1995; Kumar et al., 1993), or even a 

varied response within a single region (Bertrand et al., 1996). The increase in productivity in the 

Bay of Bengal during glacial conditions shown by the elevated CaCO3 MAR at Site 19, opposite 

that observed in the Arabian Sea (Emeis et al., 1995; Singh et al., 2011) and equatorial Indian 

Ocean (Bassinot et al., 2011; Bolton et al., 2013) where productivity is enhanced during 

interglacials and diminishes during glacials. Despite the influence of the Indian monsoon over 

the entire region, the response of productivity to the monsoonal winds is affected by local 

oceanographic conditions, in this case, surface salinity conditions.  During the last glacial period 
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a diminished southwest monsoon and enhanced northeast monsoon could have resulted in 

conditions more favorable to productivity than the modern ocean in a less-stratified water 

column, even with a decrease in wind-driven mixing.   

As CaCO3 MAR decreases to 0.2-0.5 g/cm/kyr throughout the Holocene, BSi MAR 

increases to 0.07 to 0.17 g/cm/kyr.  CaCO3 remains dominant relative to BSi even when CaCO3 

MAR is at a minimum.  The range of BSi MAR between 0.01 and 0.17 g/cm/kyr is consistent 

with the longer term range of BSi observed at the Mahanadi Basin (Cawthern et al., 2014).  The 

relative increase in BSi during high-stands and decreased salinity surface waters suggests a 

limited recovery in siliceous productivity under interglacial conditions, possibly due to enhanced 

fluvial SiO4 delivery to the ocean, but overall decreased productivity (CaCO3 MAR + BSi MAR) 

during periods of intensified southwest monsoon.  The modern surface waters of the northern 

Bay of Bengal, while depleted in nitrate, have high silicate concentrations (Prasanna Kumar et 

al., 2002).  Enhanced silicate flux to the Bay of Bengal may create an advantage for siliceous 

organisms allowing for diatoms and radiolarians to comprise a larger component of 

microplankton community throughout the Holocene.  

Variation in marine productivity is not uniformly represented by CaCO3 MAR or BSi 

MAR, and the sum of these is a better representation of total marine productivity, although this 

does not account for the contribution of non-calcareous and non-siliceous production such as 

from cyanobacteria and dinoflagellates. Due to the high input of terrestrial organic matter and 

influence of decomposition rates at the Mahanadi Basin (Krishna et al., 2013). TOC is not a good 

indicator of paleo-productivity at Site 19, as it is in the Arabian Sea (e.g. Ziegler et al., 2010).   

Plankton communities in the modern Bay of Bengal are diverse; sediment trap and plankton net 

studies reveal a mixture of diatoms, foraminifers, coccolithophores, copepods, cyanobacteria, 
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dinoflagellates, and silicoflagellates (e.g. Gauns et al., 2005; Guptha et al., 1997; Jyothibabu et 

al., 2008; Madhu et al., 2006; Madhuprarap et al., 2003; Paul et al., 2007; Unger et al., 2003).  

Carbonate, opal, or organic carbon may be the dominant biogenic flux in these studies depending 

on location relative to mesoscale eddies and by monsoon season and this variability is not well-

constrained on a regional scale.  This modern diversity agrees well with the Holocene record of 

biogenic MAR at Site 19, in which CaCO3:BSi is less than 6.  Between 70 and 10 ka, CaCO3:BSi 

increases to as high as 74, with a distinctly CaCO3-dominant biogenic flux.   This relationship 

suggests that over kyr-scale orbital timescales, analysis of one biogenic component may 

misrepresent paleoproductivity in the northern Bay of Bengal.  During periods of a weakened 

southwest monsoon, BSi MAR will not capture the large CaCO3 flux associated with upwelling.  

In contrast, during a strengthened monsoon and decreased CaCO3 MAR, BSi becomes a 

relatively more important as an indicator of biological productivity. 

Organic Carbon Sources 

The δ13TOC and C/N record is closely correlated with Uvigerina peregrina δ18O (Fig. 1-

12) indicating a strong influence of sea-level and/or associated regional climate changes on the 

source of TOC. The presence of C4 plant carbon is necessary to explain δ13TOC greater than -20 

‰ that comprises most of the record at Site 19B. The C4 plant contribution to the Bay of Bengal 

has been significant since the Miocene, as shown by an increase in δ13TOC from -24 to -27 ‰ to 

-15 to -24 ‰ at 7 Ma in Bengal Fan sediments (France-Lanord and Derry, 1994; Freeman and 

Colarusso, 2001). Based on vegetation modeling by Galy et al. (2008), the present-day Mahanadi 

River drains a tropical savannah to tropical seasonal biome with plant biomass with δ13C 

between -26‰ to -14 ‰. During the LGM the Mahanadi watershed and other eastern Indian 

watersheds were largely semi-desert dominated by vegetation with δ13C ranging from -20‰ to 
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greater than -12‰ (Galy et al., 2008). Variation of δ13TOC at Site 19 between -21‰ to -16 ‰ 

with more depleted δ13TOC during low stands (Fig. 1-12) is consistent with the transition in 

terrestrial vegetation, reflecting increased δ13TOC during colder, drier intervals such as the 

LGM. However, this variation could also indicate a decrease in marine organic matter. The 

increase in δ13TOC through the Holocene in this record is consistent with aridification of the 

Indian subcontinent recorded in the Krishna-Godavari basin at NGHP-01-16A (Ponton et al., 

2012). Our results compare well to the variation observed in the western Arabian Sea, eastern 

Bay of Bengal, and Andaman Sea (Fontugne and Duplessy, 1986), which also show an increase 

δ13TOC during glacial intervals (OIS 2-4) compared to interglacials (Holocene and OIS 5) with a 

strong correlation to the benthic δ18O record.  Our δ13TOC record is also consistent with the 84 to 

18 ka record of δ13C in soil organic carbon and carbonates in the Ganga Plain observed by 

Agrawal et al. (2012). A combination of increased terrigenous organic matter and/or drier 

conditions that allow for the expansion of C4 plants in India during sea-level low stands explains 

the shift in δ13TOC observed in the Site 19B record.  

C/N ratios follow a similar pattern to δ13TOC, and a cross-plot of these parameters show 

a trend between a terrestrial end member with C/N > 12 and δ13TOC > -17‰ and a marine end 

member with C/N of approximately 5 and δ13TOC of approximately -20‰ (Fig 1-13).  During 

the LGM, eustatic sea level was approximately 120 m lower than present (Fairbanks, 1989), and 

Site 19 was approximately 40 km offshore India, 30 km closer than present day, possibly 

allowing for shorter transport distance (and less time for decomposition) of terrigenous organic 

matter.  In addition, decreased precipitation during a weakened southwest monsoon may 

decrease soil organic matter decomposition rates and increase the relative TOC content in 

terrigenous sediments. Rates of soil carbon decomposition, measured by soil CO2 efflux, have 
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been shown to decrease significantly under low soil moisture conditions (e.g. Davisdon et al., 

2000; Orchard and Cook, 1983; Raich and Schlesinger, 1992; Savage and Davidson, 2001), and 

decreased CO2 efflux has been observed during the NE monsoon in India (Gupta and Singh, 

1981; Mohanty and Panda, 2011). In the Godavari River, less-degraded particulate organic 

carbon (POC) is more prevalent during the dry season than during the summer monsoon (Gupta 

et al., 1997).  Likewise, in the Ganges-Brahmaputra and Indus Rivers, overall POC content and 

labile POC content in suspended material is higher during the low sediment discharge months of 

the NE monsoon (Ittekkot et al., 1986).  Over orbital timescales, decreased SW monsoon 

intensity and precipitation, may result in higher terrestrial TOC content of sediments delivered to 

the Indian margin, despite lower sediment discharge, thus affecting C/N and δ13TOC. 

This C/N ratio vs. δ13TOC trend approximately matches that observed across the northern 

Indian Ocean margins (Johnson et al., 2014) and other marine environments (Meyers, 1994). 

Potential caveats to using bulk C/N and δ13TOC to determine organic matter sources include 

sorption of inorganic ammonia to clays (Müller, 1977) and potential variation in the C3 versus 

C4 contribution to terrestrial organic matter in the region. However, error from the sorption of 

inorganic N on clays would tend to decrease C/N ratios, thus the observed increases in C/N ratios 

are indicative of increased terrestrial TOC. Lower C/N values, however, can be interpreted both 

as an increase in marine organic matter and increased inorganic N fraction. δ13TOC in the high 

range of our measurements (e.g. -16‰) strongly suggests the presence of C4 terrestrial plant 

organic matter. δ13TOC variation towards the lower end of the our measurement range (e.g. -

20‰) could be the result of either increased marine TOC or a shift in terrestrial plant biomass to 

C3 photosynthesis. However, using both δ13TOC and C/N combined strengthens the ability to 
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identify the presence of marine organic matter by minimizing the effect of potential errors and 

unaccounted factors in one measurement. 

 

Fig. 1-12.  Organic carbon sources correlated to glacial-interglacial changes in sea level and 
continental aridity.  Low-stands correspond to increased flux of terrigenous organic matter 
including C4 plant material. 

 

The range in TOC observed at Site 19 is similar to the range of TOC observed along the 

western Bay of Bengal margin (Krishna et al., 2013; Johnson et al., 2015), and the central and 

eastern Bay of Bengal (Fontugne and Duplessey, 1986).  TOC content or TOC MAR at this site, 

however, does not exhibit a correlation with CaCO3 or sea level, indicating a more complex 

relationship with paleoenvironmental conditions.  In a continental slope environment, such as at 

Site 19, not only is TOC content driven by productivity (e.g Müller and Suess, 1979), it is 
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influenced by terrestrial organic carbon fluxes (e.g. Burdige, 2005; Goñi et al., 2005; Hedges et 

al., 1997) and rates of decomposition (e.g. Canfield, 1994; Emerson et al., 1987; Versteegh and 

Zonneveld, 2002).  Exposure to oxic bottom waters is a major factor in the decomposition of 

organic matter, with oxygen as the most efficient electron acceptor for TOC oxidation (Froelich 

et al., 1979). TOC content in general increases at sites with high SR due to decreased oxygen 

exposure (Müller and Suess, 1979; Stein, 1990).  TOC MAR at Site 19 largely tracks lithogenic 

MAR and SR, suggesting higher SR enhances TOC preservation through burial. 

Lithogenic Fluxes 

Total lithogenic MAR, TOC MAR, and sand-sized content follow a similar pattern since 

23 ka (Fig. 1-14).  These parameters increase since the LGM with a slight decrease between 15 

and 13 ka, reaching a peak at 12 to 11 ka.  After the rapid increase at the glacial termination, 

lithogenic MAR, TOC MAR, and the sand size fraction decrease gradually throughout the 

Holocene.  These values follow the trend in insolation values at 30° N (Berger and Loutre, 

1991), varying on precessional timescales.  Elevated monsoon intensity during periods of 

increased insolation drives a stronger southwest monsoon and precipitation over India, and 

subsequent weathering and transport of terrigenous materials. As the modern sediment discharge 

from the Mahanadi River occurs mainly during the months of peak SW monsoon precipitation 

(July, August, September), the amount of terrigenous discharge from peninsular India to the 

continental slope should increase during intensification of the monsoon.  The increase in SR and 

lithogenic MAR at Site 19 since 12 ka (Fig. 1-14) is consistent with other studies in the Indian 

region that report increased erosion and sediment flux due to insolation-driven monsoon intensity 

during the early Holocene (Clift et al., 2008; Goodbred and Kuehl, 2000; Weber et al., 1997).   

This increase in lithogenic MAR is also consistent with Holocene increases in SR reported in the 
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Mahanadi Basin (Mazumdar et al., 2014) and Krishna-Godavari Basin (Mazumdar et al., 2009; 

Ponton et al., 2012). The age model by Mazumdar et al. (2012) at a nearby site in the Mahanadi 

Basin captures a large increase in SR (241 cm/kyr) since 1.2 ka that is not recorded at Site 19 

(core top age 1.4 ka). 

 

Fig. 1-13.  TOC:TN versus δ
13

TOC showing Site 19 sediments as a mixture of marine and 
terrestrial C4 organic matter.  After Meyers, 1994. 
 

 Prior to 23 ka, the relationship between insolation and the record at Site 19 becomes 

unclear.  Fewer age control points before 31 ka (seven since 31 ka and five between 100 and 31 

ka), may limit the ability to observe changes in MAR occurring on precessional time scales, as 

SR changes are occurring between observed oxygen isotope events.  A decrease in lithogenic 

MAR from 110 to 95 ka and increase from 85 to 79 ka, driven by changes in SR roughly 
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correlates to the insolation pattern.  There is a decrease in lithogenic MAR, however, that is  

driven by a decrease in bulk density and decreased sand-sized content between 69 and 60 ka that 

is close to an insolation minima at 72 ka, indicating a possible monsoon link.  Change in SR on 

this margin may require higher sampling density for oxygen-isotope stratigraphy to reveal 

changes in MAR that are occurring on timescales shorter than the oxygen isotope events revealed 

by our sampling interval.   

 

Fig. 1-14. Lithogenic MAR and TOC MAR plotted with solar insolation at 30°N (Tibetan Plateau) 
Since 23 ka, flux of lithogenic material and TOC increases solar insolation and Monsoon intensity.  
Before 23 ka, there is a weak correlation between solar insolation and MAR, possibly limited by the 
resolution of the age model. 
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The increase in MAR observed in the Holocene compared to the LGM suggests that this 

margin is supply-dominated and accumulation on the continental margin is controlled by 

sediment flux, rather than sea-level (e.g. Carvajal et al., 2009).  An increase in grain size or SR 

would be expected at Site 19 during low-stands according to classic sequence stratigraphy (e.g. 

Posamentier et al., 1988; Vail et al., 1977) that is widespread in Quaternary depositional systems 

(Sømme et al., 2009).  The increase in MAR and sand content since 12 ka at Site 19 indicates 

higher sediment accumulation on the continental slope occurs during high stands, as opposed to 

during low-stands via a shelf-edge deltas, suggesting that monsoon precipitation is a stronger 

control of sedimentation on the eastern Indian margin than sea-level.  

 Monsoon-influenced variation in MAR has implications for gas hydrates and early 

diagenesis in sediments of the Bay of Bengal Indian margin. SR and MAR have a direct 

influence on sediment overpressure (e.g Dugan and Sheahan et al., 2012), slope stability (e.g. 

Urlaub et al., 2012), and early diagenetic reactions dependent on diffusion of seawater (e.g. 

Kasten et al., 1998; Pruysers et al., 1993).  Specifically, SR influences sulfate availability and 

consequently anaerobic oxidation of methane (e.g. Hensen et al., 2003; Riedinger et al., 2005).  

Along the eastern Indian margin, variation in SR between the Holocene and Late Pleistocene has 

been suggested to influence sulfate profiles and TOC availability for methanogeneis (Hong et al., 

this issue; Mazumdar et al., 2009, 2012; Solomon et al., 2014).  Thus, the evolution Indian 

monsoon may be an important influence on the evolution of gas hydrate systems on the Indian 

margin. 

Zr/Rb and Magnetic Susceptibility 

 Zr/Rb measured by XRF has been used as a grain-size proxy (Chen et al., 2006; Dypvik 

and Harris, 2001) due to enrichment of Zr in the coarse fraction from heavy mineral (zircon) 
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content (e.g. Fralick and Kronberg, 1997) and enrichment of Rb in the fine fraction due to clays 

and/or muscovite/biotite (e.g. Heier and Billings, 1970).   Zr/Rb at Site 19 does not covary with 

median lithogenic grain size, but rather with median bulk grain size, which includes a substantial 

biogenic component (Fig. 1-15). Curiously, Zr/Rb shows a strong correlation with CaCO3. Zr/Rb 

is also highly correlated with κ and χnc suggesting that Zr/Rb is still a measure of the heavy 

mineral fraction that also contains ferrimagnetic minerals such as magnetite.   The observation 

that Zr/Rb and magnetic susceptibility do not correlate to the mean lithogenic grain size, but 

rather CaCO3 content that is driven by monsoon variability suggests that another factor other 

than grain size influences heavy mineral content and Zr/Rb. 

 

Fig. 1-15.  Correlation of XRF Zr/Rb with lithogenic grain size, bulk (lithogenic +biogenic) grain 
size, CaCO3, and magnetic susceptibility (κ).  Linear regression presented with equation and 
goodness-of-fit (R2).  Pearson correlation coefficient (r) presented as a strength of linear 
correlation.  There is no significant correlation between Zr/Rb and lithogenic grain size. Zr/Rb is 
strongly correlated with bulk grain size, CaCO3, and κ. 
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 Sediments at Site 19 are finer-grained and show little variation in grain size compared to 

other locations utilizing the Zr/Rb ratio (e.g. Chen et al., 2006; Dypvik and Harris, 2001), which 

may explain the deviation between Zr/Rb and carbonate-free grain size measurements.  Median 

lithogenic grain size at Site 19 varies from 5 to 14 μm, and mean lithogenic grain size varies 

from 4.1 to 8.4 μm.  Loess-paleosol sediments investigated by Chen et al. (2006) show more 

variation in grain size and are coarser-grained, with mean grain size ranging from 11.7 to 40.9 

μm, and there is a strong correlation between Zr/Rb and grain size.  The correlation between 

Zr/Rb and grain size is due to the increased abundance of heavy minerals in coarser sediments; 

the residual variation represents variation in Zr- and Rb-bearing minerals at a given grain size.  

In sediments where grain size variation is limited or with limited coarse mineral grains, the 

“noise” from variation in heavy mineral content at a given grain size may become the dominant 

signal over the co-variation of grain size and heavy mineral content. 

 If Zr/Rb and magnetic susceptibility are proxies of heavy mineral content, why do these 

parameters track with CaCO3? In continental slope environments, increased κ during glacial 

periods are often driven by increases in ferrimagnetic minerals associated with higher silt and 

sand-sized lithogenic content (e.g. Bloemendal et al., 1992; Vanderaveroet, et al., 1999).  

However, κ does not correlate to carbonate-free grain size at Site 19. A strong correlation with 

Zr/Rb (Fig. 1-15) suggests that κ is dominantly sourced by ferrimagnetic lithogenic minerals and 

not by magnetotactic bacteria or authigenic magnetic minerals such as gregite.  Colin et al. 

(1998) report increases in κ and magnetic grain size during glacial periods (MIS 2, 4, and 6) in 

the Bay of Bengal (Core MD77-180) on the continental slope offshore the Ganges/Brahmaputra 

Rivers), which they attribute to decreased chemical weathering during a weakened summer 

monsoon.  Sangode et al. (2001) and Tripathy et al. (2011) also report increases in κ during the 
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LGM in the western Bengal Fan (Core SK181/PC33, and SM43 cores, northeast of the Krishna-

Godavari Basin). This increase in κ is attributed to reduced input of Ganges-Brahmaputra 

sediment due to decreased monsoon-driven erosion (Rahaman et al., 2009) and increased glacial 

cover (Owen et al., 2002), leaving a relative increase in peninsular India-derived sediments 

which erode Deccan flood basalts high in titanomagnetite content (Courtillot et al., 1986; Sager 

and Hall, 1990). Elemental and isotopic sediment chemistry from the western Bay of Bengal also 

indicates reduced Himalayan input during the LGM (Tripathy et al., 2011; 2014). 

At Site 19, magnetic susceptibility (κ, χnc) are correlated with Ti/Fe, with an increase in 

χnc occurring when Ti increases relative to Fe (Fig. 1-16).  Total Fe, which is incorporated in 

ferrimagnetic iron oxides, as well as paramagnetic pyrite, pyroxene, amphibole, and clays (illite, 

smectite- and chlorite-group), decreases through the LGM. Total Ti increases through the LGM, 

representing heavy minerals such as ilmenite, rutile, sphene, and titanomagnetite.  The strong 

negative correlation between Ti/Fe and χnc suggests the Ti-bearing heavy minerals (magnetite-

titanomagnetite series) contribute to the magnetic susceptibility pattern, and the down-core Fe 

pattern is also influenced by paramagnetic clays and authigenic pyrite.   A small amount (1-2%) 

of iron sulfides were observed in smear slides of the upper 12 m at Site 19 (Collett et al., 2008) 

and Fe-bearing clays (illite, smectite-group, and chlorite group) were also observed via XRD 

(Phillips et al., this issue).  Based on the properties of magnetite (Blum, 1997), a small change in 

magnetite content on the order of 0.2 wt. % could drive the variability in χnc (30 to 130 x 10-8 kg 

m-3) observed at Site  19, a variation that seems plausible in the absence of significant grain size 

variation.   
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Fig. 1-16.  Variation in χnc, and Fe, Ti, and Ti/Fe measured by XRF (adjusted for the carbonate-free 
fraction).  Fe/Ti is highly correlated to χnc,. 

 

The same decrease in monsoonal precipitation during glacial periods that drives increased 

CaCO3 production could potentially reduce chemical weathering that increases Zr/Rb and κ.  The 

chemical index of alteration (CIA) (Nesbitt and Young, 1982) and other indicators of weathering 

intensity have been shown to decrease with a reduction in southwest monsoon intensity and 

subsequent rainfall (Colin et al., 1998, 1999, 2006; Limmer et al., 2012), increasing the ratio of 

primary (e.g. feldspars, pyroxene, magnetite, zircon) to secondary minerals (clays).  A similar 

effect may be evident at Site 19 and this mechanism likely could result in an enrichment of Zr-
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bearing heavy minerals during glacial periods relative to Rb-bearing minerals.  At Site 19, Rb 

decreases during colder periods and Zr increases (Fig. 1-17), consistent with an increase in 

zircon (primary mineralogy) and decrease in clays (secondary), even in the absence of substantial 

grain size variation.  This variation in Rb is opposite that observed by Colin et al. (2006) in 

sediments influenced by the Irrawaddy River with glaciated headwaters, where mechanical 

weathering increased Rb content even in periods of decreased chemical weathering. This 

discrepancy may suggest that the weathering response in sediments derived from the Indian 

Shield, may be different than in those derived from the Himalayas, Tibetan Plateau and Indo-

Burman ranges.  Lag times between erosion of Himalayan/Tibetan sources and marine 

deposition may exceed 10 kyr (Blöthe and Korup, 2013; Clift and Giosan, 2015). Thus, 

differences in terrestrial sediment storage may exist between rivers draining the Indian Shield 

and those draining mountainous regions, which could potentially impact the timing of variation 

of marine elemental proxy records.  Future work involving geochemical weathering proxies and 

provenance analyses could provide more direct indicators of chemical and physical weathering 

of peninsular India.   

 

Implications and Conclusions 

Measuring multiple lithogenic and biogenic sedimentary constituents and calculating 

MAR, along with isotopic analyses, allows for the partitioning of multiple monsoon- influenced 

terrigenous fluxes and biological productivity in a single marine sediment record from the 

northern Bay of Bengal. An implication of this multiple-proxy approach is that glacial-

interglacial changes in monsoon rainfall variation drive a regional response in productivity, 

weathering, and sediment accumulation rates on the Indian continental margin (Fig. 1-18). A 
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hemipelagic continental slope record such as that preserved at Site 19 allows for both terrestrial 

and marine processes to be reconstructed from the depositional record.  

 

Fig. 1-17.  Variation in Zr/Rb, Zr, and Rb as measured by XRF (adjusted for the carbonate-free 
fraction).  Zr increases, and Rb decreases during glacial periods. 

 

CaCO3 MAR at Site 19 is elevated and variable between 70 and 10 ka, and is correlated 

with dust and cation content on the Greenland ice sheet, as well as δ18Osw paleo-salinity 

indicators from multiple locations in the Bay of Bengal. A weakened southwest monsoon under 

glacial conditions, resulting in decreased precipitation, increased the salinity of the surface 

waters in Bay of Bengal. Biological productivity in the modern Bay of Bengal is limited by 

stratification due to freshwater runoff, and I suggest that the increased production of CaCO3 



50 
 

during glacial conditions was a result of decreased stratification due to increased aridity across 

the Indian subcontinent and Tibetan Plateau.   

 

Fig. 1-18. Schematic summary of enhanced productivity, reduced weathering, lower sedimentation 
rates, and increase in higher terrestrial C4 organic matter delivery in the northern Bay of Bengal 
during glacial periods compared to interglacials.  Productivity in the modern Bay of Bengal is 
limited by stratification from high freshwater input (Kumar et al., 2002; Madhupratap et al., 2003).  
Widespread aridity during the last glacial period increased surface salinity in the Bay of Bengal 
(Cullen, 1981; Kudrass et al., 2001; Rashid et al., 2011).  Decreased surface salinity reduced 
stratification and promoted mixing and upwelling of nutrient-rich water, stimulating productivity 
and CaCO3 MAR in the Bay of Bengal. Reduced precipitation and weathering increased primary 
mineral content, shown by elevated magnetic susceptibility and Zr/Rb. Reduced rainfall also 
increases the prevalence of C4 plants relative to C3 plants, and likely decreases rates of terrestrial 
organic matter decomposition, increasing the delivery of terrestrial TOC to the Indian margin. 
 

TOC variation at Site 19 is influenced by a variety of factors including terrestrial organic 

matter flux, biological productivity, and SR.  TOC MAR is correlated with lithogenic MAR, 
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suggesting preservation of organic matter is influenced by terrigenous sediment flux.  TOC/CN 

varies with sea-level, and higher terrestrial organic matter input occurs during low-stands which 

becomes more marine in source during the Holocene.  δ13TOC variation reveals increased C4 

plant input during low-stands that either contains more C3 plant material or marine organic 

matter during high-stands. δ13TOC and C/N are likely influenced by a combination of changes in 

C4 and C3 distribution, and changes in terrestrial organic carbon decomposition rates. 

 Lithogenic MAR, TOC MAR, and sand content track with insolation since 23 ka, 

suggesting monsoon-driven weathering strongly controls sediment supply.  The highest 

lithogenic MAR occurs during the Holocene, suggesting that the monsoon influences continental 

slope sedimentation in the Bay of Bengal more strongly than sea level.  Correlation between 

insolation and these measurements were not observed before 23 ka, possibly due to decreased 

resolution in the depth-age model. 

The grain size proxy Zr/Rb from XRF tracks closely with bulk median grain size, largely 

influenced by sand-sized foraminifers, and CaCO3, but not lithogenic median grain size.  Zr/Rb 

correlates strongly with magnetic susceptibility indicating covariation of heavy minerals (zircon 

and ferrimagnetic minerals such as magnetite and titanomagnetite.) I suggest that in fine-grained 

marine sediments the grain-size proxy Zr/Rb from XRF may be more specifically a proxy for 

heavy minerals, and that in sediments of limited grain size variation this proxy is decoupled from 

co-variation with grain size.  At Site 19, the increase in Zr/Rb under more arid glacial conditions 

likely represents increased primary mineral content relative to secondary minerals due to 

decreased chemical weathering. 

Overall, I provide a new record of deposition in the eastern continental slope of India.  

The Bay of Bengal, especially along the peninsular Indian margins are relatively under-studied, 
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and cores recovered during NGHP-01 have provided an opportunity to expand the record of 

monsoon-influenced sedimentation.  The analysis of the upper 11.5 m of Site 19, an interval not 

significantly altered by diagenesis, extends the understanding of the Indian monsoon by 

providing a record of the previous 110,000 years in the Mahanadi Basin.  Future work could 

improve the record of past monsoon variation on the Indian margin with higher resolution and 

back through multiple glacial-interglacial cycles to capture suborbital variation and address 

leads/lags with other sites influenced by the Asian monsoon system.  However, the interpretation 

of deeper intervals at this site and other regions along the Indian margin affected by methane-

related diagenesis (e.g. Collett et al., 2008; Mazumdar et al., 2009; 2014) may require 

consideration of the effect of diagenetic overprints on records of magnetic susceptibility and 

isotopic composition of foraminifers (e.g. Riedinger et al., 2005; Torres et al., 2003). The record 

I present here represents a 110 kyr segment of a Mahanadi Basin record that exhibits high 

variation in CaCO3, δ13TOC, and κ since 1.96 Ma.  The observations from this higher resolution 

record will allow for better interpretation Quaternary monsoon variability in the Bay of Bengal.  

Our results from Site 19 suggest that measurement of multiple proxies within the same record is 

essential for linking terrestrial flux proxies and paleoceanographic changes resulting from 

variation in monsoon intensity. 
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2. TRACKING ORIGINS OF DIAGENETIC ALTERATION OF MAGNETIC 
SUSCEPTIBILITY IN METHANE-RICH MARINE SEDIMENTS OF THE CASCADIA 

MARGIN 
 

ABSTRACT 
 
Magnetic susceptibility (κ) is a mixed signal in marine sediments, representing primary 

depositional and secondary diagenetic processes.  Production of hydrogen sulfide via anaerobic 

oxidation of methane (AOM) at the sulfate-methane transition (SMT), and organoclastic sulfate 

reduction above the SMT can result in the dissolution of iron oxides, altering κ in sediments in 

methane gas and gas hydrate bearing regions.  I investigated records of κ on the Cascadia margin 

(ODP Sites 1249 and 1252; IODP Site 1325) using a Zr/Rb heavy mineral proxy from XRF core 

scanning to identify intervals of primary detrital MS and predict intervals affected by magnetite 

dissolutions.  I also measured total sulfur content, grain size distributions, total organic carbon 

(TOC) content, and magnetic mineral assemblage.   The upper 100 m of Site 1252 contains a 

short interval of κ driven by primary magnetite, with multiple intervals (> 90 m total) of 

decreased κ correlated with elevated sulfur content, consistent with dissolution of magnetite and 

re-precipitation of pyrite. In the upper 90 m of Site 1249, κ  is almost entirely altered by 

diagenetic processes, with much of the low κ explained by a high degree of pyritization, and 

some intervals affected by precipitation of magnetic iron sulfides.  At Site 1325, κ between 0-20 

and 51-73 mbsf represents primary mineralogy, and in the interval 24-51 mbsf, κ may be reduced 

due to pyritization.  This integrated approach allows for a prediction of primary κ and the amount 

of κ loss at each site when compared to actual κ measurements.  In the case of magnetite 

dissolution and full pyritization, these drawdowns of κ are supported by sulfur measurements.  

The presence of methane and methane hydrates at these sites, as well as large variations in TOC 
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content, suggest that both variations in sulfate reduction rates and past migration rates of the 

SMT may influence κ alteration along the Cascadia margin.   

INTRODUCTION 

Magnetic susceptibility, measured as volume-dependent (κ) or mass-dependent (χ) 

magnetic susceptibility is a measure of the ratio of induced temporary magnetization to an 

applied field and is proportional to the quantity of ferromagnetic minerals in a material. 

Magnetic susceptibility is a widely-measured parameter applied to samples from sediment 

records, often applied with other rock magnetic techniques, to address a variety of environmental 

and diagenetic questions (e.g. Liu et al., 2012; Verosub and Roberts, 1995). 

Magnetic susceptibility is commonly measured in marine sediments, and κ is a standard 

measurement using MSCL core scanning in cores recovered during Ocean Drilling Program 

(ODP) and Integrated Ocean Drilling Program (IODP) expeditions (Blum, 1997).  Downcore 

variation in magnetic susceptibility can represent a variety of depositional features, including 

turbidites (Goldfinger et al., 2012; Karlin and Abella, 1994; Kirby et al.,1998; Sager and Hall, 

1990; Taira and Niitsuma, 1986), eolian transport (Bloemendal et al., 1992; Doh et al., 1988; 

Lowrie and Heller, 1982; Robinson, 1986), and ice-rafted debris (Hall and King, 1989; Richter et 

al., 2001; Stoner et al., 1995). These detrital patterns represent the accumulation of iron oxide 

minerals, such as magnetite (Fe3O4), hematite (Fe2O3), and goethite (αFeOOH) in marine 

sediments. 

After deposition, these magnetic iron oxides are subject to reaction with hydrogen sulfide 

produced during early diagenesis.  In marine sediments, hydrogen sulfide is produced by sulfate-

reducing bacteria via organoclastic sulfate reduction (Eq. 1) (e.g. Berner et al., 1970): 

2CH2O + SO4
-2  → H2S + 2HCO3

-   (1) 
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In addition, at the sulfate-methane transition (SMT) hydrogen sulfide is produced by a 

consortium of sulfate-reducing bacteria and methanotrophic archea (Eq. 2) (Boetius et al., 2000; 

Hinrichs et al., 1999; Hoehler et al., 1994) or by methanotrophic archaea alone (Milucka et al., 

2012) (Eq. 3), during anaerobic oxidation of methane (AOM) (Reeburgh, 1976): 

CH4 + SO4
2-  →  HCO3

- + HS- + H2O   (2) 

7CH4 + 8SO4
2- + 5H+ → 4HS- + 7HCO3

- + 11H2O   (3) 

 Hydrogen sulfide reacts with dissolved iron and reactive iron minerals through multiple 

intermediate reaction steps to ultimately form pyrite (Berner, 1970, 1984; Rickard et al., 1995; 

Schoonen, 2004).  Magnetite reacts readily with hydrogen sulfide to liberate iron and elemental 

sulfur (Eq. 4) (Pyzik and Sommer, 1981) which rapidly forms amorphous iron monosulfides, 

such as mackinawite (Eq. 5) (Berner, 1970; Pyzik and Sommer, 1981): 

Fe3O4 + HS- + 7H+ → 3Fe2+ + S0 + 4H2O  (4) 

Fe2+ + HS- → FeS + H+    (5) 

Further reaction of FeS to pyrite can occur via three possible mechanisms. These reactions 

include continued reaction with hydrogen sulfide (Eq. 6) (Rickard and Luther, 1997), addition of 

sulfur (Eq. 7) (Berner, 1970, 1984), and loss of iron (Eq. 8) (Wilkin and Barnes, 1996):   

FeS + H2S → FeS2 + H2   (6) 

FeS + S0 → FeS2    (7) 

2FeS + 2H+ → FeS2 + Fe2+ + H2  (8) 

Of these potential reactions, Eq. 6 is thermodynamically most likely, if hydrogen sulfide is 

present (Rickard, 1997).  
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Pyrite may also be formed from FeS via steps involving intermediate magnetic iron sulfides, 

such as greigite, which is a product of sulfur (polysulfide) and FeS (Eq. 9) (Sweeney and Kaplan, 

1973): 

3FeS + S0 → Fe3S4    (9) 

Similar to the reaction of FeS to FeS2, greigite may experience further sulfidization via further 

reaction with hydrogen sulfide (Eq. 10) (Neretin et al., 2004), addition of sulfur (Eq. 11) 

(Sweeney and Kaplan, 1973), and loss of iron (Eq. 12) (Furukawa and Barnes, 1995): 

Fe3S4 + 2H2S → 3FeS2 + 2H2    (10) 

Fe3S4+ 2S0 → 3FeS2    (11) 

Fe3S4 + 2H+ → 2FeS2 + Fe2+ + H2  (12) 

 Given the potential for dissolution of magnetic iron oxides and formation of diagenetic 

iron sulfides in marine sediments, their primary magnetic mineral assemblage may be altered 

(e.g. Nilsson et al., 2013; Roberts and Turner, 1993). Diagenetic overprints of primary 

depositional κ signals in methane-bearing stratigraphy have been identified in a variety of marine 

sediment records (e.g. Kasten et al., 1998; Musgrave and Hiroki, 2000). Magnetite dissolution 

occurs relatively rapidly during exposure to H2S with a half life (exposed to1 mM H2S) on the 

order of decades to centuries (Canfield et al., 1992; Poulton et al., 2004). This reactivity allows 

for observable alteration in magnetic susceptibility during early diagenesis. Often magnetite 

content and magnetic grain size decreases with depth in the sulfate-reducing zone as sulfide 

solids increase (Karlin and Levi, 1985, Karlin, 1990) due to pyritization of magnetite (Canfield 

and Berner, 1987). A prolonged pause in upward SMT migration (Riedinger et al., 2005) or high 

sustained methane flux at a methane vent (Novosel et al., 2005) may produce reductions in κ via 

dissolution of ferromagnetic magnetite and precipitation of paramagnetic pyrite. Magnetic iron 
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sulfides have been observed in gas hydrate settings (Housen and Musgrave, 1996; Kars and 

Kodama, 2013; Larrasoaña et al., 2006, 2007; Musgrave et al., 2006), maintaining or increasing 

κ. Thus, κ records in methane-bearing stratigraphy represent a potentially-mixed detrital and 

diagenetic signal (Johnson et al., 2010). Zr/Rb as measured by X-ray fluorescence (XRF) has 

been utilized as a grain size proxy (Dypvik and Harris, 2001). More specifically, Zr/Rb is an 

indicator of heavy mineral content in the absence of grain size variation, and in unaltered 

hemipelagic sediments can be highly correlated with κ (Phillips et al., 2014).  By using Zr/Rb to 

predict detrital κ, I can unravel the detrital and diagenetic components in the κ signal (Johnson et 

al., in prep). 

In this chapter, I investigate the source of magnetic susceptibility variation in the upper 

100 mbsf at three sites (Fig. 2-1) along the Cascadia accretionary wedge (ODP Sites 1252 and 

1249; IODP Site U1325) further applying and testing the method of (Johnson et al., in prep) to 

partition the κ signal into detrital and diagenetic components. I integrate the κ and XRF data with 

measurements of isothermal remanent magnetism (IRM), total organic carbon (TOC), and age 

models at each of the sites. These sites encompass a range in diagenetic environment from a 

methane vent site (ODP Site 1249) with high gas hydrate saturation to two slope basin sites 

(ODP Site 1252 and IODP Site U1325) with lower methane flux and observed gas hydrate. Each 

site shows intervals of very low κ that may represent diagenetic dissolution, which is now below 

the modern SMT (Fig. 2-2). By accounting for predicted κ, I estimate the loss of magnetite and 

pyrite sulfur precipitation to identify intervals of diagenetic alteration in these gas hydrate 

bearing records. 

GEOLOGIC AND OCEANOGRAPHIC SETTING 

Tectonic Setting and Terrigenous Inputs 
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The formation and continued evolution of the Cascadia accretionary wedge is a result of 

the oblique subduction of the Juan de Fuca, Gorda, and Explorer plates, where abyssal plain 

sediments are accreted and uplifted into a series of thrust ridges and slope basins. Abyssal plain 

sediments of these plates are dominated by turbidites and hemipelagic clays of the Astoria and 

Nitinat Fans.  In the accretionary wedge, uplifted sediments on the structural highs, such as 

Hydrate Ridge are eroded and re-deposited in the slope basins with interspersed hemipelagic 

clay.  Seismic reflection data across Hydrate Ridge sites (Tréhu et al., 2004) show the ridge is 

composed of uplifted and accreted abyssal plain fan sediments covered by various-age slope-

basin sediments, which are in turn uplifted and deformed during the continued evolution of the 

wedge.   

Primary detrital magnetic susceptibility in Cascadia margin sediments is sourced by 

sediment transport to abyssal plain and subsequent uplift and re-deposition of ferromagnetic 

minerals.  Erosion of magnetite and titanomagnetite-bearing Columbia River Basalts (Long and 

Wood, 1986) and Cascade Arc volcanism (Jicha et al., 2009) serve as potential provenance for 

magnetite delivered to the continental shelf.  These sediments are transported to the abyssal plain 

through turbidites and other mass flows, often through established submarine canyons e.g., 

through Astoria Canyon to the Astoria Fan, and through the Barkley and Juan de Fuca Canyons 

to the Nitinat Fan.  Along the Cascadia margin, magnetite is commonly observed in sediments of 

abyssal fans and in the accretionary complex (Chamov and Murdmaa, 1995).   

Physical Oceanography 

Marine organic matter along this margin is sourced by primary productivity that is 

influenced by the dynamics associated with the splitting of the North Pacific current into the 

Callifornia Current and the Alaska Current.  Phytoplankton production in the southern Cascadia 
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region is primarily driven by Ekman-driven coastal upwelling associated with the California 

current (Lynn and Simpson, 1987), the southward flowing component of the North Pacific Gyre. 

In spite of the downwelling nature of the Alaska current, the northern Cascadia region remains 

productive, due to upwelling driven by mesoscale eddies (Peterson et al., 2005) and injection of 

nutrient-rich bottom water to the continental shelf during summer weakening of the Alaska 

current (Childers et al., 2005).  Along the southern Cascadia margin, productivity and TOC 

accumulation are likely driven by the California Current, which influences productivity on 

glacial-interglacial and suborbital timescales further to the south along the California margin 

(Gardner et al., 1997).   

TOC measured along the Cascadia margin is a mixture of marine and terrestrial organic 

matter (Prahl et al., 1994; Kim and Lee, 2009).  The terrestrial component is highest on the 

continental slope (mean δ13TOC=-23.9‰), and decreases to the continental slope and abyssal 

plain (mean δ13TOC=-21.8‰ and -21.4‰ respectively) along the Washington margin (Prahl et 

al., 1994).  TOC generally increases at the slope and abyssal plain compared to the shelf.  At 

sites along the Northern Cascadia margin, δ13TOC is generally more depleted (-24 to -26‰) and 

the most landward sites of the IODP Exp. 311 transect, have slightly less depleted δ13TOC  

indicating the highest marine organic matter component (Kim and Lee, 2009). The differences 

between these sites suggest that TOC content and source vary along the slope depending on 

terrigenous flux and surface biological productivity. 

Lithostratigraphy and Geochemistry: ODP Sites 1249 and 1252; IODP Site U1325 

Site 1249 is located at the summit of southern Hydrate Ridge in 775 m water depth 

(Shipboard Scientific Party, 2003a) in a region of observed seafloor gas hydrate and methane 

venting (Heeschen et al., 2003, 2005; Suess et al., 1999, 2001). Unit I in the upper 51.5 m of Site 
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1249 is comprised of nannofossil- and diatom-bearing silty clay and diatom-rich silty clay. Unit 

II, between 51.5 and 90 mbsf is characterized by diatom-bearing to –rich silty clay, with intervals 

of nannofossil-bearing to –rich silty clay, and minor turbidite lithologies.  Mousselike and soupy 

textures are common throughout Site 1249 representing the dissociation of disseminated and 

massive gas hydrate (Shipboard Scientific Party, 2003a).  Iron sulfides were commonly observed 

throughout Site 1249 cores, and iron sulfide nodules and authigenic carbonate-rich clay were 

also observed. 

 The absence of sulfate and presence of methane at the seafloor at Site 1249 indicates 

direct flux of methane to the seafloor with an SMT at the sediment surface (Shipboard Scientific 

Party, 2003a). Observations of Beggiatoa microbial mats and seafloor AOM (Boetius et al., 

2000) and methane-derived authigenic carbonates (Bohrmann et al., 1998; Greinert et al., 2001; 

Ritger et al., 1987; Suess et al., 1999) at Hydrate Ridge suggests Site 1249 is representative of 

widespread methane expulsion at the summit of Hydrate Ridge.  Positive chloride anomalies in 

pore waters at Site 1249 suggest formation of gas hydrate and subsequent brine formation at 

rates faster than removal by diffusion or advection (Shipboard Scientific Party, 2003a). 

Enhanced salinity due to hydrate formation promotes a three-phase equilibrium between methane 

hydrate, dissolved methane, and water, and allows methane to be transported through the gas 

hydrate stability zone (Liu and Flemings, 2006). 

 Site 1252 is located in a slope basin approximately 4.5 km NE of the southern Hydrate 

Ridge summit in 1040 m water depth (Shipboard Scientific Party, 2003b). Unit I (upper 96.4 

mbsf) is comprised of diatom-bearing to –rich silty clay. There is a regional unconformity at 96.4 

mbsf and Unit II (96.4 -113.9 mbsf) is foraminifer-rich silty clay punctuated by layers of 

upward-fining turbidites.  Unit III (113.9-259.8 mbsf) is comprised of silty clay with sandy silt 
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turbidites. Iron sulfide mottles and nodules were commonly observed at this site. Sulfate 

decreases linearly to the SMT at approximately 5 mbsf (Shipboard Scientific Party, 2003b) and 

methane is present in headspace samples below the SMT. Distinct chloride anomalies were not 

observed at Site 1252, but cold anomalies were observed at 83 and 99 mbsf (Shipboard Scientific 

Party, 2003b).  

 

Figure 2-1. A. Location map showing the location of ODP Leg 204 and IODP 311 transects. From 
Tréhu et al., 2006, Fig. F1. B. Location of Hydrate Ridge sited drilled during ODP Leg 204 and 
estimated gas hydrate saturations (From Tréhu et al., 2006, Fig. F2) (Seismic reflections lines across 
each site, not shown here, are also shown in Trehu et al, 2006). C. Seismic section of Expedition 311 
drilling sites. From Expedition 311 Scientists, 2006 Fig. F3. 
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Figure 2-2. Magnetic susceptibility profiles at ODP Hole 1252A, ODP Holes 1249BCDF, and IODP 
Hole U1325B, shown with the depth of the modern SMT. κ and SMT depth from Shipboard 
Scientific Party (2003a,b) and Expedition 311 Scientists (2006). 

 

Site U1325 is located in 2195 m water depth in the first slope basin landward of the 

deformation front on the primary transect drilled by IODP Expedition 311 (Expedition 311 

Scientists, 2006).  Unit I (0-52.2 mbsf) is comprised of silty clay containing diatoms, and sand 

layers ranging from mm to m in thickness. Unit II (52.2-102.3 mbsf) is comprised of silty clay 

and clayey silt interbedded with sand, silty sand, and sandy silt. Iron sulfide mottling and 

concretions are common throughout these records. The SMT is located between 4 and 5 mbsf at 
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Site 1325 (Expedition 311 Scientists, 2006). Freshened chloride anomalies below 70 mbsf 

indicate the dissociation of gas hydrate.  

METHODS 

Sediment core sections from Sites 1249, 1252, and U1325 were scanned at a 4 cm 

resolution using an Avaatech X-ray fluorescence (XRF) core scanner at Texas A&M University.  

The 4 cm measurement interval was adjusted in some intervals to avoid expansion cracks or 

moussey/soupy textures.  XRF scanning was conducted at 10 kV (no filter), 25 kV, (Pd filter), 

and 50 kV (Cu filter) energy levels.  Elements measured include Zr, Rb, S, Fe, Ti, Ba, and Br 

(see Table 1 for full list). Normalized ratios of XRF Fe to κ (Hepp et al., 2009) were calculated 

to identify intervals with abundant paramagnetic iron minerals (e.g. pyrite). 

Grain size distributions of discrete sediment samples (~0.5 cm3 of sediment 

approximately every 1 m) were measured for Sites 1249, 1252, and U1325 using a Malvern 

Mastersizer 2000 laser diffraction particle size analyzer and Hydro 2000G dispersal unit at the 

University of New Hampshire.  Bulk samples were measured, as well as samples treated with 10 

mL of 10% HCl and 15 mL of 30% H2O2 to remove carbonate and organic matter.  The grain 

size distributions were used to calculate median, 10% and 90% grain size classes, and sand, silt, 

and clay-sized fractions. 

Approximately 1 g of sediment was dried at 50 ° C, crushed and 10 mg subsamples were 

run using a Perkin Elmer 2400 Series CHNS/O Analyzer at the University of New Hampshire. 

Splits of untreated powder were used for total CHNS analysis and splits of 6% sulfurous acid-

treated samples were run for TOC according to the procedures in Phillips et al. (2011). Duplicate 

samples were analyzed approximately every 10 samples. Inorganic carbon (IC) was calculated 
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by the subtraction of TOC from total carbon (TC), and CaCO3 was calculated by multiplying IC 

by 8.333.  TOC/TN was calculated as TOC/TN = (TOC/12.011)/(TN.14.007).   

 A subset of powdered samples were analyzed for δ13C of TOC (δ13TOC) at Washington 

State University using a Costech ECS 4010 elemental analyzer interfaced with a Thermo 

Finnegan Delta Plus XP continuous flow isotope ratio mass spectrometer. δ13TOC results are 

presented relative to the Vienna Pee Dee belemnite (VPDB) in per mil (‰). 

To complement existing rock magnetic datasets at Sites 1249 and 1252 (Larrasoaña et al., 

2006, 2007), I measured mass-dependent magnetic susceptibility (χ) and isothermal remanent 

magnetism (IRM) in samples from Site U1325 in the Paleomagnetism Laboratory at the 

University of New Hampshire.  Sediment samples were measured for χ using a Bartington MS2 

Magnetic Suscepibility System.  Samples were then cut into 1 cm3 cubes, wrapped in foil, and 

subjected to stepwise acquisition of IRM with subsequent thermal demagnetization following the 

method of Lowrie (1990).   IRM was acquired in steps from 0 to 1100 mT, with backfield 

magnetizations at -100 mT and -300 mT, using an ASC Scientific IM-10-30 Impulse Magnetizer. 

Remanent magnetizations were measured using an HSM2 SQUID-based Spinner Magnetometer. 

Thermal demagnetization was conducted in steps from 25 to 680 °C using an ASC Scientific 

TD-48 Thermal Demagnetizer. 

Samples for rock magnetic analyses are typically sampled immediately after coring, 

sealed under nitrogen gas, and frozen until analysis. In this study, I attempted to measure 

magnetic properties on samples from cores stored at 4 °C and sealed under atmospheric 

conditions for approximately 8 years at the IODP Gulf Coast Repository since collection during 

IODP Expedition 311 in September 2005. Laboratory measured magnetic susceptibility was 
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compared to shipboard measurements to confirm the lack of alteration of the magnetic mineral 

assemblage since core collection. 

To identify intervals of altered magnetic susceptibility, I applied the method of Johnson 

et al. (in prep) to predict detrital κ using the relationship of a Zr/Rb magnetic mineral proxy at 

each site, quantified by regression analysis for best fit and 95% prediction intervals. Intervals in 

which there is a strong correlation between Zr/Rb and κ were used for regression analysis.  At 

Site 1252 there is strong correlation between Zr/Rb and κ between 75 and 80 mbsf, that is 

assumed to represent an interval in which κ is unaltered by diagenesis.  Additional XRF core 

scans between 0 and 13 mbsf at Site 1251 were combined in the Zr/Rb vs. κ regression analysis 

to strengthen the understanding of the κ-Zr/Rb relationship at Hydrate Ridge. At Site U1325 

separate regressions were analyzed for the intervals 4.5-20 mbsf and 51 to 73 mbsf. 

By subtraction of measured κ from predicted κ I estimate the loss of magnetic 

susceptibility. Based on the results of IRM analysis demonstrating magnetite as the dominant 

detrital remanence-carrying mineral, I used of a κ value of 1,000,000 x 10-6 SI for pseudo single 

domain (PSD) magnetite (Hunt et al., 1995) to estimate a minimum loss of magnetite content.  

The natural range of κ for pure magnetite is 1,000,000 to 5,700,000 x 10-6 SI (Hunt et al., 1995). 

This minimum value of PSD magnetite κ (0.001 mass fraction magnetite = 1,000 x 106 SI) was 

used for calibration of ODP/IODP κ measurements (Blum 1997), including those from ODP 

Sites 1249 and 1252 and IODP Site U1325. Assuming dissolution of magnetite and complete 

reduction to pyrite, I calculate sulfur precipitation in wt. % based on a stoichiometric ratio of 

1.12 mol of pyrite S produced for every 1 mol of magnetite iron reduced. 

In preparation for samples to create an age model for the sediment records, 20 cm3 of 

sediment were freeze dried at -48 °C and 0.006 kPa for 24 h, and dispersed  in 1 L of 5 g/L 
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sodium hexametaphosphate ((NaPO3)6) solution.  The dispersed samples were shaken on a wrist-

action shaker for 3 h and then sieved through 63 μm sieves.  From this coarse fraction, benthic 

foraminifer species Uvigerina peregrina, Uvigerina proboscidea, Bulimina mexicana, and 

Globobuliminia pacifica were selected for δ18O and δ13C isotopic analysis.   

Initial sampling focused on Uvigerina peregrina and were measured for δ18O and δ13C 

using a Finnegan MAT 252 isotope ratio mass spectrometer with Kiel III device at the Oregon 

State University Stable Isotope Laboratory.  Due to intervals lacking Uvigerina peregrina or low 

general abundance of benthic foraminifers, additional samples of Uvigerina spp., Bulimina 

mexicana, and Globobuliminia pacifica were selected and measured using a Finnegan MAT 253 

isotope ratio mass spectrometer with Kiel IV device at the University of Michigan Stable Isotope 

Laboratory. 

 Age models were developed using existing radiocarbon ages and benthic foraminifer 

oxygen isotopes (Johnson et al., 2010b), as well as new benthic formainifer isotopes. Ages from 

the oxygen isotope record were determined based on stacked benthic oxygen isotope records 

(Imbrie et al., 1984; Lisiecki and Raymo, 2005; Martinson et al., 1987). Sedimentation rates 

were determined by linear interpolation between ages. Mass accumulation rates (MAR) were 

calculated by the product of sedimentation rate and dry bulk density (Expedition 311 Scientists, 

2006; Shipboard Scientific Party, 2003). MAR for TOC was calculation by multiplying the 

weight fraction TOC by the bulk MAR. 

RESULTS 

Grain size, Zr/Rb, Ti/Rb, and magnetic mineralogy 

At Site 1249, median grain size varies between 8 and 12 µm, with coarser samples at 

41.44 and 86.09 mbsf (13.5 and 18.1 µm respectively) (Fig. 2-3). Zr/Rb varies between 1.2 and 
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1.8, and Ti/Rb varies between 2.1 and 3.1 (Fig. 2-3).  There is strong correlation between Zr/Rb 

and Ti/Rb, but little correlation between these proxies and median grain size. There is poor 

correlation between κ (Shipboard Scientific Party, 2003) and the XRF proxies. Measurements by 

Larrasoaña et al. (2006) demonstrate that much of the magnetic assemblage at Site 1249 is 

dominated by magnetite, with intervals of magnetic iron sulfide-dominant assemblages at 49.55, 

69.93, and 86.01 mbsf. 

 

Figure 2-3. Magnetic susceptibility (κ), XRF Zr/Rb, XRF Ti/Rb, median grain size, and IRM @ 
0.9/χ from ODP Holes 1249BCDF. κ from Shipboard Scientific Party (2003a) IRM from 
Larrasoaña et al. (2006). 

 

 At Site 1252, median grain size varies between 8 and 13 µm. Zr/Rb varies between 1.2 

and 1.5, and Ti/Rb varies between 1.6 and 1.9 (Fig. 2-4). Similar to Site 1249, there is a strong 
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correlation between Zr/Rb and Ti/Rb, but there is little correlation between these proxies and 

median grain size. For most of the record there is poor correlation between κ (Shipboard 

Scientific Party, 2003) and the XRF proxies, except between 75 and 80 mbsf. Previous work 

demonstrates that the magnetic assemblages at all depths at Site 1252 are dominated by 

magnetite (Larrasoaña et al., 2006). 

 

Figure 2-4. Magnetic susceptibility (κ), XRF Zr/Rb, XRF Ti/Rb, median grain size, and IRM @ 
0.9/χ from ODP Hole 1252A. κ from Expedition 311 Scientists (2006). 

 

 In the upper 26 m of Site U1325, median grain size varies from 10 to 113 µm, with a 

consistently finer interval (9 to 17 µm median grain size) between 26 and 81 mbsf (Fig. 2-5). At 
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83.5 and 86.2 mbsf median grain size increases to 22.5 and 21.4 µm respectively. In the upper 

20.2 mbsf at Site U1325, Zr/Rb exhibits the largest variability ranging from 1.0 to 8.6 (Fig. 2-5).  

Between 24 and 52.5 mbsf, Zr/Rb is less variable, ranging between 0.9 and 3.8.  Zr/Rb increases 

in the interval between 54 and 73 mbsf, ranging between 1.1 and 5.9.  Ti/Rb displays a down 

core pattern similar to Zr/Rb. Ti/Rb varies between 1.9 and 6.6 in the upper 20 mbsf, between 

1.4 and 3.0 in the 24-52.5 mbsf interval, and 1.5 and 3.6 in the interval 54-73 mbsf.  There is a 

strong correlation between κ and Zr/Rb and Ti/Rb proxies between 4.5 and 20 mbsf, and 

between 51 and 74 mbsf. IRM measurements indicate that magnetite dominates the magnetic 

mineral assemblage throughout most of the record at Site U1325, with samples of mixed 

magnetite and magnetic iron sulfides at 43.10, 66.60, and 75.32 mbsf (Fig. 2-5). Magnetic iron 

sulfides may have been altered via sulfide mineral oxidation during 7 years of exposure to 

oxygen during core storage. Sulfide mineral oxidation occurs at high rates (2-5 kg m-2 yr-1) 

(Kempton and Atkins, 2009) in rock surfaces containing less than 1 wt.% S, and visual 

inspection of U1325 cores showed oxidation of iron sulfide nodules. Comparison of shipboard 

and sampled laboratory magnetic susceptibility indicates no appreciable deviation between 

dataset (Fig. 2-6) measurements made immediately after coring and samples collected after years 

of storage. Magnetic iron sulfides were likely a minimal contributor to the magnetic 

susceptibility pattern observed at Site U1325. 

Relationship of Zr/Rb and magnetic susceptibility 

Using observed intervals in Sites 1252 (with additional data from Site 1251) and Site 

U1325, where there is good correlation between Zr/Rb and κ, I used regression analysis to 

predict best fit, and 95% prediction intervals. At Sites 1252/1251, there is an overall linear 

relationship between Zr/Rb (ranging from 1.3 to 1.8) and κ (ranging from 15 to 211 SI x 10-7) 
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with an r2 value of 0.76 (Fig. 2-7). At Site U1325, regression for the intervals 4.59-18.80 mbsf 

and 51-73 mbsf show a wider range in Zr/Rb and κ than at Site 1252, and are best fit by a 

logarithmic function. In the range of Zr/Rb<2, the overall fit is linear. Between 4.59 and 18.80 

mbsf, Zr/Rb varies from 1.0 to 8.6 and κ varies from 46.4 to 315 SI x 10-7. 

 

Figure 2-5. Magnetic susceptibility (κ), XRF Zr/Rb, XRF Ti/Rb, median grain size, and IRM @ 
0.9/χ from ODP Hole U1325B. 
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Fig. 2-6. Comparison of volume-dependent magnetic susceptibility (κ) at Site U1325 measured 
shipboard on the D/V JOIDES Resolution during 2005 and discrete samples measured for mass-
dependent magnetic susceptibility (χ) at the UNH Paleomagnetism Laboratory in 2012. The overall 
correlation indicates relatively little alteration to the magnetic mineral assemblage during storage. 
 

Drawdowns in magnetic susceptibility 

At Site 1249, predicted detrital κ is significantly higher than measured κ for much of the 

record (demonstrated by 95% prediction intervals), except for the intervals 34.5-54.4 mbsf and 

65.1-88.0 msbf (Fig. 2-8).  Actual κ varies from 2.0 to 44.3 SI x 10-7 (mean: 25.0), while best-fit 

predicted κ varies from 5.7 to 114.5 SI x 10-7 (mean: 49.3).  Intervals in which predicted κ is not 

higher than actual κ have samples that the magnetic mineral assemblage is magnetic sulfide 

dominant (Larrasoaña et al., 2006). The resulting loss of κ up to 63 SI x 10-7 is predicted in the 

upper 29 mbsf and up to 84 SI x 10-7 in the interval between 54 and 75 mbsf.  This loss of κ 

corresponds to dissolution of up to 0.8 wt. % magnetite, and precipitation of up to 0.7 wt. % S.  

Measured S varies from 0.11 to 0.7 wt. %. Fe/κ is relatively consistent over the upper 49 mbsf, 
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and below a peak at 50 mbsf, Fe/κ decreases and is more variable between 50 and 88 mbsf. TOC 

falls in the range of 0.80 to 1.76 wt%, and XRF-measured Br correlates to the downcore pattern 

in TOC. TOC/TN varies between 6.6 and 10.2 and δ13TOC varies from -23.3 to -22.8 ‰ VPDB. 

 

Figure 2-7. Relationship of XRF Zr/Rb and magnetic susceptibility at Sites 1252A/1251B (left 
panel) and U1325B (right panel). The correlation of Zr/Rb and magnetic susceptibility is best 
described as linear at the southern Hydrate Ridge sites, and logarithmic at Site U1325. The portion 
of the relationship of Zr/Rb and magnetic susceptibility is linear for the portion of U1325 where 
Zr/Rb is less than 2. 
 

At Site 1252, predicted κ is higher than measured for most of the upper 100 mbsf except 

for the interval 75-78 mbsf (Fig. 2-9).  Actual κ varies from 10.9 to 158.8 SI x 10-7 (mean: 26.4) 

while best-fit predicted κ varies from 22.3 to 141.7 SI x 10-7 (mean: 72.8).  The intervals with the 

highest predicted loss of κ and magnetite are 0-28.8, 31.8-41.7, 45.3-54.4, 58.5-70.9, and 78.2-

101.3 mbsf.  In these intervals, average predicted κ loss and magnetite loss is 48.6 SI x 10-7 and 

0.49 wt% respectively. Average predicted precipitated S gain in these intervals is 0.39 wt. %. 

Overall, measured S matches the downcore pattern in predicted S, with a notable mismatch 

between 45 and 52 mbsf. Mean measured S is 0.42 wt. %, varying from 0.29 to 0.72 wt. %.  

Normalized Fe/κ increases distinctly in the intervals of highest predicted loss of magnetite (Fig. 
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2-9).  TOC is relatively high with a mean of 1.53 wt. % and variable, ranging from 1.05 to 2.18 

wt. %.  Increases in TOC occur in the intervals with highest magnetite loss and S gain. Average 

TOC/TN is 8.8 and increase in intervals of elevated TOC. δ13TOC varies from -23.8 to -22.3 

becoming less depleted in higher TOC intervals. 

 At Site U1325, predicted κ matches measured κ closely in the upper 20 mbsf and between 

54-73 msbf (Fig. 2-10).  Predicted detrital κ is significantly higher than measured κ over the 

intervals 24.2-43.7 and 44.1-51.4 mbsf. Likewise, there is average κ loss of 154.7 SI x10-7 and 

1.5 wt. % average magnetite loss over this interval. Best fit S precipitation gain on average is 

1.25 wt. % over the interval of κ loss, while average measured S is 0.39 wt. %, with the overall 

pattern of measured S following predicted S.  Fe/κ is elevated from 1.5-2.1, 24.5- 57.2, and 69.3-

76.8 mbsf.  TOC is highly variable downcore, ranging from 0.07 to 1.73 wt. %.  Distinct 

increases in TOC occur in the upper 10, 15-43, and 71-79 mbsf. Increases in TOC match 

decreases in TOC/TN and increases in δ13TOC (Kim and Lee, 2009). 
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Figure 2-8. Actual and predicted κ, predicted diagenetic loss of κ, predicted magnetite loss, 
predicted and actual sulfur precipitation, normalized Fe/κ, TOC with XRF Br, and δ13TOC with 
TOC/TN at ODP Site 1249. 

 

 
 

Figure 2-9. Actual and predicted κ, predicted diagenetic loss of κ, predicted magnetite loss, 
predicted and actual sulfur precipitation, normalized Fe/κ, TOC with XRF Br, and δ13TOC with 
TOC/TN at ODP Site 1252. 
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Figure 2-10. Actual and predicted κ, predicted diagenetic loss of κ, predicted magnetite loss, 
predicted and actual sulfur precipitation, normalized Fe/κ, TOC with XRF Br, and δ13TOC with 
TOC/TN at ODP Site U1325. 
 

Age Models 

At Site 1249, foraminifers were not present in sufficient abundance for radiocarbon, and 

the age model is derived from oxygen-isotope stratigraphy only. Sediments at Site 1249 range in 

age from 18 ka at 10.6 mbsf to 175 ka at 79.11 mbsf, with an average sedimentation rate of 57 

cm/kyr (Fig. 2-11, 2-12). Based on combined radiocarbon and oxygen isotope stratigraphy, the 

age of Site 1252 sediments ranges from 13.7 ka at 0.25 cm to 123 ka at 96.18 mbsf with an 

average sedimentation rate of 80 cm/kyr (Fig. 2-11, 2-12). At Site U1325, sediment age ranges 

from 10.5 ka at 1.82 mbsf to 99 ka at 76.61 mbsf, with an average sedimentation rate of 86 

cm/kyr (Fig. 2-11, 2-12). 
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Figure 2-11. Sedimentation rates and mass accumulation rates (bulk and TOC) at ODP 
Sites 1249 and 1252; IODP Site U1325. Vertical depth scale. 

 

 
 

Figure 2-12. Sedimentation rates and mass accumulation rates (bulk and TOC) at ODP 
Sites 1249 and 1252; IODP Site U1325. Vertical age scale 
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Table 2-1: Radiocarbon ages and benthic oxygen isotope events for ODP Sites 1249 and 1252; IODP 
Site U1325. Radiocarbon data from Johnson et al., 2010a. 

ODP Site 1249 
 

ODP Site 1252 
 

IODP Site U1325 
 Depth (mbsf) Age (ka) OIE 

 
Depth (mbsf) Age (ka) OIE 

 
Depth (mbsf) Age (ka) OIE 

 10.6 17.85 LGM 
 

0.25 13.694 RC 
 

1.82 10.543 RC 
 29.11 79.25 5.1 

 
2.47 17.85 LGM 

 
7.92 16.992 RC 

 39.15 90.95 5.2 
 

2.49 19.527 RC 
 

24.91 38.978 RC 
 49.61 99.38 5.3 

 
3.03 20.677 RC 

 
26.46 43.369 RC 

 56.11 110.7 5.4 
 

4.33 24.328 RC 
 

33.18 48.693 RC 
 58.8 123.8 5.5 

 
6.97 31.433 3.13 

 
33.63 50.2 3.3 

 67.11 152.5 6.4 
 

8.815 34.894 RC 
 

46.32 64.09 4.22 
 79.11 175.05 6.5 

 
9.68 43.8 RC 

 
51.61 79.25 5.1 

 

    
20.05 48.754 RC 

 
55.85 90.95 5.2 

 

    
26.03 64.09 4.2 

 
76.61 99.38 5.3 

 

    
36.18 77.67 RC 

     

    
36.57 79.25 5.1 

     

    
40.8 84.39 RC 

     

    
70.72 90.95 5.2 

     

    
84.39 99.38 5.3 

     

    
96.18 123.8 5.5 

     

            RC: radiocarbon age 
          OIE:  Oxygen-isotope event 

         LGM: Last Glacial Maximum 
          

DISCUSSION 

Approach Limitations 

The prediction of primary detrital patterns in κ are necessary to be able to identify 

intervals of alteration.  Before discussing diagenetic drawdowns in κ, the limitations of this 

method that were encountered during this work should be considered. The first limitation to 

using Zr/Rb as a heavy mineral proxy to predict magnetic susceptibility is identification of 

intervals of original, unaltered κ that can be measured with XRF core scanning for Zr and Rb and 

used to establish a relationship between Zr/Rb and κ. Unaltered intervals, or nearby reference 

sites, in which κ matches the record of Zr/Rb are necessary to establish the relationship used to 

predict the detrital κ pattern. Thus, without the lower flux Sites 1252, 1251, and U1325, I would 
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be unable to predict κ and estimate loss of magnetite at Site 1249, in which κ appears to be 

entirely overprinted.  The relationship between κ and Zr/Rb is consistent between the Hydrate 

Ridge Sites 1251/1252 and Northern Cascadia Site U1325 (Fig. 2-7); however, this relationship 

likely is influenced by the mineralogical composition of the heavy mineral fraction (e.g. relative 

content of zircon vs. magnetite) and varies between region. Fig 2-13 shows the relationship 

between Zr/Rb and κ at these Cascadia margin sites and previously published work from the Bay 

of Bengal (Phillips et al., 2014; Johnson et al., in prep). 

 A second limitation is the dominant mineralogy used to estimate the amount of magnetic 

mineral loss.  At these Cascadia margin sites, detrital mineralogy is dominantly magnetite 

(Larrasoaña et al., 2006), allowing for a straightforward relationship between κ and magnetite 

content (Hunt et al., 1995).  With a complete pyritization of magnetite (e.g. Canfield and Berner, 

1987), a clear decrease in κ would be observed (e.g. Novosel et al., 2005; Riedinger et al., 2005). 

However, in the case that intermediate ferrimagnetic iron sulfide minerals, such as greigite or 

pyrrhotite are formed after dissolution of magnetite (e.g. Housen and Musgrave, 1996; 

Larrasoaña et al., 2007; Musgrave et al., 2006), κ could be increased, maintained, or otherwise 

only minimally decreased compared to the complete reaction to paramagnetic pyrite.  At Site 

1249, between 34.5-54.4 and 65.1-88.0 msbf predicted detrital κ and measured κ are not 

significantly different, yet there is no correlation between κ and Zr/Rb.  In this case, the presence 

of magnetic iron sulfides in these intervals (Fig. 2-3) (Larrasoaña et al., 2006) suggests that κ is 

higher than predicted given an assumption of complete reaction of magnetite to pyrite.  At sites 

where a variety of depositional processes (fluvial, eolian, ice-rafted debris, volcanogenic) result 

in sediment records in which κ is strongly influenced by hematite and/or goethite content in 
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addition to magnetite (e.g. Bloemendal et al., 1992;1993), additional quantification of magnetic 

mineral assemblage would be necessary. 

 

Figure 2-13: Relationship of XRF Zr/Rb and magnetic susceptibility at ODP Sites 
1251/1252, IODP Site U1325, and NGHP Sites 10/16/19 (Phillips et al., 2014; Johnson et al., 
in prep). The overall trends are consistent across sites but slightly offset. 

 
 

A third limitation demonstrated by the record in the upper 20 m of Site U1325 is the 

relationship of Zr/Rb and κ, and the relationship between κ and magnetite content in coarse 

sediments.  Despite a consistent detrital magnetic mineral assemblage of magnetite, the linear 

relationship of Zr/Rb and κ becomes logarithmic and the correlation weakens above Zr/Rb of 2 

(Fig. 2-7). In this case, Zr/Rb generally corresponds to a median grain size of greater than 20 µm 

(Fig. 2-14).  This suggests either (1) a possible increased variability and/or decreased content of 
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heavy mineral composition in coarse, graded sediments derived from turbidity currents, (2) the 

increased prevalence of multi-domain magnetite relative to single-domain or pseudo-single 

domain magnetite, or (3) non-linearity in the XRF response at low Rb values.  In turbidites and 

other mass-transfer deposits, high-energy transport of sand-sized quartz and lithic grains may 

dilute magnetite content compared to the clay/fine silt hemipelagic mud. Additionally, variable 

sorting may result in an inconsistent relationship between zircon (driver of the Zr/Rb signal) and 

magnetite (driver of the κ signal) in these intervals.  The presence of sand-sized, lithic grains 

may contain larger multi-domain magnetite which may have a decreased and variable κ response 

due to cancellation of magnetic moments in adjacent domains. In comparing the Zr/Rb versus κ 

relationship in samples that were measured for grain size distribution, samples in which the 

median grain size is greater than 50 µm contribute most strongly to the logarithmic pattern (Fig. 

2-15). Another possible contributor to this variation is the sharp increase in Zr/Rb at the lowest 

range of Rb peak areas measured by XRF (Fig 2-16). However, a potential nonlinear decrease in 

the X-ray response of Rb at a low range would cause an increase in Zr/Rb and would not 

contribute to a logarithmic response of magnetic susceptibility. Further work to investigate the 

non-linear relationship at Site U1325 should include independent, fully-quantitative 

measurements of Rb, rock magnetic analyses indicative of magnetic grain size, and heavy 

mineral analyses of zircon and magnetite to better understand the relationship of Zr/Rb and κ. 

Diagenetic Source of Magnetic Suscepbiliity Drawdowns 

After establishing the limitations of the method, I can then interpret the source of the 

drawdowns of κ in these records as the diagenetic dissolution of magnetite in the presence of H2S 

and precipitation of sulfides. Although some intervals are likely influenced by the presence of 

greigite or pyrrhotite, the magnetite-dominant assemblages suggest that magnetic susceptibility 
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loss is mostly balanced by precipitation of pyrite. Because marine organic matter has an S/C ratio 

of approximately 0.02 (Suits and Arthur, 2000), the direct contribution of sulfur from organic 

matter is between <0.01 and 0.03 wt. % in sediment samples from these sites. Mean TS at these 

Sites 1249, 1252, and U1325 are 0.26, 0.42, and 0.30 respectively, suggesting that the vast 

majority of TS is derived from post-depositional precipitation. 

 

 
Figure 2-14. Summary of grain size distribution at ODP Sites 1249 and 1252, and IODP Site U1325. 
Grain size distributions are more variable and coarser at Site U1325. 
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Fig. 2-15. XRF Zr/Rb versus κ segregated by median grain size (<10 µm, 10-50 µm and >50 
µm) at IODP U1325. The nonlinearity in the Zr/Rb and κ is driven largely by coarse-
grained samples with median grain size greater than 50 µm. 

 

 
Fig. 2-16. XRF Zr/Rb versus XRF Rb peak areas (left) and XRF Zr/Rb versus Zr peak 
areas (left) at IODP Site U1325. A sharp increase in Zr/Rb at the low range of Rb suggests a 
possible nonlinear decrease in Rb response at low values. 

 
At all three sites there are distinct intervals in which κ is less than predicted, while TS 

and Fe/κ is elevated (Fig. 2-8, 2-9, and 2-10).  This relationship demonstrates that magnetite loss 
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is balanced by sulfur gain that suggests precipitation by pyrite, thus replacing a ferromagnetic 

mineral with paramagnetic mineral. Measured TS falls within the range of pyrite S gain 

predicted from κ dissolution. Possible mechanisms include AOM or organoclastic sulfate 

reduction due to the production of H2S that can react with iron oxides to produce iron sulfides.  

At Sites 1252 and U1325 there is a strong correlation of TOC with κ loss, TS, and Fe/κ 

(Fig. 2-9 and 2-10), which may suggest an increased intensity of organoclastic sulfate reduction 

and dissolution of magnetite in these intervals.  Additionally, sediments with low TOC have been 

observed to have enhanced methane oxidation capacity (Pohlman et al., 2013), thus records such 

as Sites 1252 and U1325 which experience fluctuations in TOC greater than 1 wt. % may 

experience variations in depths of the SMT and rates of AOM due to variable TOC availability.  

The intervals of κ loss may represent past prolonged positions of the SMT. 

At Site 1249, there is little to no correlation between TOC and κ loss, TS, and Fe/κ. 

Because Site 1249 is a methane vent site located on the ridge, with observed gas hydrate 

(Shipboard Scientific Party, 1993) the reduced κ is likely due to sustained high methane flux and 

AOM (e.g. Novosel et al., 2005). This record indicates intervals of magnetic susceptibility loss 

and sustained or increased κ due to magnetic iron sulfides (Larrasoaña et al., 2006). 

Sedimentation rate influences the exposure time of magnetite in the sulfidic zone, 

potentially stalling or accelerating SMT migration (e.g. Riedinger et al., 2005). Decreases in 

sedimentation rate may explain the reductions in κ observed in IODP Site U1325.  Based on age 

models from radiocarbon and oxygen-isotope stratigraphy, there is a sharp decrease in 

sedimentation rate from ~250 cm/kyr to <100 cm/kyr. This decrease in sedimentation rate may 

have resulted in the increased time of exposure for magnetite during upward SMT migration, 

potentially causing the diagenetic loss of κ between 21 and 55 mbsf.  However, the correlation 
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between increased TOC and diagenetic drawdown of κ, may suggest the role of SR rather than 

prolonged position of the SMT. The decrease in sedimentation rate at IODP Site U1325 may be 

related to the increase in TOC by decreasing the amount of dilution by the lithogenic fraction.  

At ODP Site 1249 and 1252 age models show that changes in sedimentation rate are generally 

independent from intervals of diagenetic loss of κ, suggesting that SMT migration is not a likely 

driver of magnetite dissolution. Some intervals of reduced κ at Site 1252 exist during periods of 

high sedimentation rate, which is not consistent with a stalling SMT but possibly with periods of 

increased TOC burial, which can in turn drive SR and methanogenesis. 

As a result of sulfate reduction, modern marine sediments exhibit an average C:S ratio of 

approximately 3:1 when limited by organic carbon (Berner, 1982; Berner and Raiswell, 1983), 

and deviation from this trend suggests either additional iron sulfide precipitation from AOM or 

advective loss of H2S (Kaneko et al., 2010). I compare the TOC:TS ratio from Sites 1249, 1252, 

and U1325 relative to the global average trend in Fig. 2-17.  At Site 1249, TOC:TS is generally 

higher than this trend, likely due to the sulfur-limited environment of sediments below a methane 

seep, in which sulfate is depleted at the sea floor, resulting in lower TS relative to TOC. Instead 

of reacting to form iron sulfide minerals, H2S at seep sites can be vented to the overlying water 

column (Kuwubara et al., 1999).  At Site 1252, TOC:TS generally matches the global trend, 

suggesting a substantial role of sulfate reduction in precipitation of sulfur at this site. At Site 

U1325, most samples follow the global trend with several high-sulfur samples with a 

substantially lower TOC:TS, indicating the possibility of additional sulfide precipitation from 

AOM.  

While our method clearly shows the alteration of magnetite by decreased κ and increased 

TS, identifying the specific biogeochemical processes responsible for these observations can be 
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better identified via further work involving reactive transport modeling or by tracking other 

SMT-related proxies.  Reactive transport models incorporating the dissolution of magnetite by 

reaction to H2S and sedimentation rate might illuminate the role of organoclastic sulfate 

reduction or AOM in influencing these κ records. Measurement of δ34S of pyrite as a proxy of 

sulfur limitation (Peketi et al., 2012; Borowski et al., 2013) would likely indicate whether 

sulfide-rich, reduced κ intervals are a result of near-seafloor organoclastic sulfate reduction or 

AOM at the SMT. 

 

 

Figure 2-17. Total organic carbon versus total sulfur for ODP Sites 1249 and 1252; IODP 
Site U1325. Normal marine line (S derived from sulfate reduction) from Berner and Raiswell (1983) 

and marine TOC sulfur contribution from Suits and Arthur (2000). 
 

CONCLUSION 

I identify intervals of reduced κ using a Zr/Rb heavy mineral proxy from XRF.  These 

intervals correspond to increases in TS and Fe/κ indicating the pyritization of magnetite due to 
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reaction with hydrogen sulfide. I identify three limitations to guide the application of this 

approach: (1) the presence of unaltered intervals in which κ is dominantly of detrital origin must 

be present so that Zr/Rb can be calibrated with κ, (2) the magnetic mineral assemblage must be 

dominated by magnetite for the assumptions of pyritization to be valid, and (3) the presence of 

fine-grained sediments in which the magnetic signal is carried by SD or PSD magnetite, rather 

than multi-domain magnetite. 
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3. A SHIFT IN TITANOMAGNETITE COMPOSITION ASSOCIATED WITH 
DEEPLY BURIED COAL BEDS AS RESULT OF MICROBIAL IRON REDUCTION, 

OFFSHORE SHIMOKITA PENINSULA, JAPAN (IODP HOLE C0020A)  
 

ABSTRACT 

Sediments recovered at Integrated Ocean Drilling Program (IODP) Site C0020, in a 

forearc basin offshore Shimokita Peninsula, Japan, reveal a record of changes in the depositional 

environment encompassing a terrestrial-to-marine transition that includes numerous coal beds. 

Within a coal-bearing, nearshore sediment unit there are sharp increases in magnetic 

susceptibility superimposed on a background of consistently low magnetic susceptibility 

throughout the remainder of the recovered cores. I investigate the source of this magnetic 

susceptibility variability, as well as the overall changes in magnetic mineral assemblage 

throughout the entire record, using isothermal remanent magnetism (IRM) and demagnetization 

experiments. The magnetic mineral assemblage is dominated by very low-coercivity minerals 

with an unblocking temperature of 350-580°C, representing the titanomagnetite series. Samples 

with lower unblocking temperatures (350-400°C) are prevalent between 1925-1975 mbsf and 

1979-1995 mbsf within sediments deposited in a nearshore depositional environment and 

consistent with Ti-rich titanomagnetite. I suggest that the selective dissolution of Ti-poor, Fe3+-

rich titanomagnetite via microbial iron reduction, has resulted in Ti-rich, Fe3+-poor 

titanomagnetite as the remaining dominant magnetic mineral observed within these sediments. 

The anomalous increases in magnetic susceptibility within this nearshore unit are often 

associated with black sand laminations, which suggest hydraulic sorting, possibly in a placer 

deposit. The enrichment of titanomagnetite within this depositional environment adjacent to the 
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deeply buried coalbeds suggests the availability of Fe3+ as an electron acceptor for the deep 

biosphere regardless of the source. 

INTRODUCTION 

Rock magnetic techniques can reveal magnetic mineral properties that facilitate 

interpretation of depositional and/or diagenetic mineral processes in sediments and sedimentary 

rocks (Liu et al., 2012; Verosub and Roberts, 1995). Ferrimagnetic (magnetite-titanomagntite) 

and canted antiferrimagnetic (hematite, goethite) iron oxides can be transported to marine 

sediments via fluvial (e.g., Canfield, 1997), eolian (e.g. Robinson, 1986; Bloemendal et al., 

1993; Mahowald et al., 2005; Fan et al., 2006 ), and ice-rafted debris transport (e.g. Hall and 

King, 1989; Richter et al., 2001). Titanomagnetite minerals have a composition that exists along 

a solid solution series between magnetite (Fe3O4) and ulvӧspinel (Fe2TiO4) as end members. 

Magnetite can also be produced by magnetotactic bacteria in deep marine and coastal 

environments (e.g. Kirschvink and Chang, 1984; Karlin et al., 1987; Roberts et al., 2011). 

Magnetic iron oxides are subject to dissolution and precipitation of pyrite in anoxic sediments 

(e.g. Canfield and Berner, 1987; Karlin, 1990; Canfield et al., 1992; Poulton et al., 2004; 

Garming et al., 2005; Riedinger et al., 2005). In addition, Greigite (Fe3S4) and pyrrhotite (Fe1-xS, 

0 < x <0.13) are ferrimagnetic iron sulfides that form as an intermediate step of pyrite formation in 

anoxic environments (e.g. Sweeney and Kaplan, 1973; Furukawa and Barnes, 1995; Neretin et 

al., 2004), and are generally indicative of sulfur-limiting conditions, such as those present in gas 

hydrate-bearing settings (e.g. Housen and Musgrave, 1996; Larrasoaña et al., 2006, 2007; 

Musgrave et al., 2006; Fu et al., 2008; Kars et al., 2015). Often, marine sediment records reveal 

multiple detrital magnetic mineral sources and diagenetic processes that affect the magnetic 

mineral assemblage (e.g. Just et al., 2012).   
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Magnetic ferric iron oxides, such as hematite (1) , goethite (2), and magnetite (3), may 

directly serve as a source of Fe3+ electron acceptors for iron-reducing bacteria (e.g. Arnold et al., 

1988; Lovely, 1991; Kostka and Nealson, 1995), shown below as energetically favorable 

reactions (Lovely, 1991): 

 12Fe2O3 + C6H12O6  + 42H+ → 24Fe2+ + 6HCO3
- +24H2O  (1) 

  ΔG° = -1276.38 kJ/mol 

24FeOOH + C6H12O6  + 42H+ → 24Fe2+ + 6HCO3
- +36H2O  (2) 

  ΔG° = -1308.54 kJ/mol 

 12Fe3O4 + C6H12O6  + 66H+ → 36Fe2+ + 6HCO3
- +36H2O  (3) 

  ΔG° = -1872.95 kJ/mol 

As a result of these reactions, magnetic iron oxides are dissolved and Fe2+ is produced along with 

bicarbonate. When insufficient dissolved hydrogen sulfide is available to consume the free Fe2+ 

as iron sulfides, the Fe2+ is available to form siderite (Pye et al., 1990). Based on Gibbs free 

energy, the reduction of magnetite is the most favorable reaction.  

Magnetic mineral diagenesis can be influenced by depositional setting. In marine 

environments, the diffusion of seawater sulfate into near-seafloor sediments serves as an electron 

acceptor for sulfate reduction, and increases the potential for formation of pyrite and/or greigite. 

In marine environments iron oxides are consumed by microbial iron reduction and reaction with 

hydrogen sulfide at approximately equal rates. In freshwater environments, there is reduced 

sulfate availability, but microbial magnetite reduction, using Fe3+ as an electron acceptor, is 

optimal at pH 5 to 6 (Kostka and Nealson, 1995), in a typical range for terrestrial freshwater.  

In this study. I use rock magnetic approaches to identify ferrimagnetic mineral phases 

within a deeply buried (1.2 to 2.5 km) interval of sediment recovered in an ocean drilling record 
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(IODP Hole C0020A) in the Hidaka Trough offshore Shimokita Peninsula, Japan. Within this 

record, I utilize characteristic magnetic susceptibility, coercivity, and unblocking temperature 

properties to identify significant magnetic mineral assemblages, and discuss their relevance to 

the depositional environment and evaluate their potential role in iron and carbon cycling within 

the deep biosphere at this site (Inagaki et al., 2015) associated with the subsurface coal beds. 

GEOLOGICAL SETTING 

Site C0020A (Fig. 3-1) is located in a forearc basin formed as a result of the subduction 

of the Pacific plate beneath northeast Honshu (Von Huene, et al., 1982; Sacks and Suyehiro, 

2003). Forearc subsidence offshore Shimokita has been occurring since the Cretaceous, and 

through time the interaction between subsidence and eustatic sea level change has modulated the 

depositional environment.  The late Oligocene to early Miocene sediments within the basin 

record a broad transition in the depositional environment from a terrestrial to marginal marine 

dominated  (Von Huene et al, 1982) and the sediments from the Neogene to present represent a 

marginal marine to open marine transition. Previous drilling during Deep Sea Drilling Project 

(DSDP) Legs 56, 57, and 58 and Ocean Drilling Program (ODP) Leg 186 along the Japan Trench 

offshore northern Honshu (seaward of IODP Site C0020A) revealed Cretaceous to Holocene 

sediments primarily composed of hemipelagic clay, turbidities containing lithic fragments, 

siliceous/calcareous microfossils, and volcanic ash/pumice (Arthur et al., 1980). 

 

SITE C0020A LITHOSTRATIGRAPHY 

 IODP Hole C0020A (41°10.5983′N, 142°12.0328′E; 1180 m water depth) was drilled 

using riser drilling during IODP Expedition 337 as an extension of JAMSTEC Hole C9001D 

(Aoike, 2007) drilled during the 2006 D/V Chikyu shakedown expedition. Drilling began at 647 
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mbsf and continued to 2466 mbsf (Fig. 3-1) (Expedition 337 Scientists, 2013). One to three spot 

cores (rotary core barrel) were recovered approximately every 100 m between 1276.5 and 2466 

mbsf, except for continuous coring between 1919-2002.3 mbsf.  

 

Figure 3-1. A) Location map with the location of Site C0020A. Inset shows plate tectonic 
configuration and plate motions. B) Drilling depths with seismic reflection profile. From Expedition 

337 Scientists, 2013. 
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Lithostratigraphy at Site C0020A consists of a transition from a terrestrial wetland to a 

marine continental slope sedimentary environment (Expedition 337 Scientists, 2013). Unit I 

(636.5–1256.5 mbsf; late Pliocene to Miocene) consists of diatom-rich silty clay consistent with 

a marine hemipelagic environment. Unit II (1256.5–1826.5 mbsf; Miocene) is comprised of silty 

shale, siltstone, and sandstone. Observations of Cruziana ichnofacies and symmetric wave 

ripples, along with an increase in glauconite and plant material, suggest the transition to a 

continental shelf environment is preserved within Unit II (Expedition 337 Scientists, 2013). 

Lignite fragments were observed in cuttings in Unit II between 1526.5-1546.5 mbsf and 

downhole logging identified three coal beds, ranging from 0.3 to 0.9 m in thickness. Unit III 

(1826.5–2046.5 mbsf; early Miocene to late Oligocene) contains numerous coal beds 

interbedded with sandstones, siltstones, and coaly shale.  These coal beds range from 0.3 to 7.3 

m in thickness and are comprised of low maturity lignite. Flaser and lenticular bedding, cross-

bedding, and extensive bioturbation present within Unit III suggest a nearshore to 

estuarine/intertidal environment (Expedition 337 Scientists, 2013).  Unit IV (2046.5–2466 mbsf; 

early Miocene) is comprised of silty shale, sandstone, and siltstone. Fluctuations between fine- 

and coarse-grained beds suggest tidal flats and channels within a fluviodeltaic system. Unit III is 

mostly devoid of coal beds, except for a 0.9 m thick coal bed at 2448 mbsf, near the bottom of 

the hole. 

There are large increases in κ between 1919-1955 mbsf in Unit III (Fig. 3-2). The sharp 

increase in κ, up to 975 SI x 10-6 occurs in sediments adjacent to, but rarely within, coal beds. 

These increases are generally several cm thick and often are associated with dark laminations 

(Fig. 3-3). Average κ within coal intervals is 13.3 SI x 10-6 compared to 32.2 SI x 10-6 in all other 

lithologies. There is an additional sharp increase in κ at 1599.0-1599.16 mbsf associated with a 



93 
 

coarse-grained gravel containing rounded pebbles and cobbles of igneous rock. Just below the 

high κ interval, there is a spike in Fe/Al ratios from X-ray fluorescence (XRF) increase at 

1969.91, 1975.42, and 1992.35 mbsf. Fe/Al identifies samples in which non-clay iron minerals 

are more prevalent. Fe/Al increases to 2.1 to 18.7 from an average background of 1.0 in core 

samples and 0.4 in cuttings, suggesting an increase in non-silicate Fe, such as iron oxides and 

iron sulfides. 

 

Figure 3-2. Shipboard measurements of magnetic susceptibility, XRF Fe/Al, and coal 
thickness. a) all of Hole C0020A b) Unit III. 

 
METHODS 

Onboard D/V Chikyu, samples between 10 and 20 cm3 were selected from working half 

and whole round drill core sections, flushed with nitrogen and vacuum-sealed. No samples were 

collected from drill cuttings.  These samples were chosen based on the downhole pattern in 

shipboard κ measurements and to be representative of recovered lithologies. Samples were stored 
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at sea and shipped at 2 °C, and then stored in the laboratory at -20 °C.  Six additional samples 

were sampled from archived sediment cores after Expedition 337. A 1 cm3 sub-sample was cut 

from within each sample and measured for magnetic susceptibility and subjected to IRM 

acquisition and 3-axis thermal demagnetization analysis.  Semi-consolidated samples were 

wrapped in aluminum foil before IRM analysis to prevent loss of material during heating.  In 

total, 144 samples were analyzed for χ and IRM analysis at the University of New Hampshire 

Paleomagnetism laboratory. 

 

Figure 3-3. Example increases in κ with core image. Increases in κ often occur in laminated 
sediments with wavy laminations and flaser bedding. 

 
Shipboard measurements of κ were measured using a Geotek whole round multisensor 

core logger (MSCL). Mass-normalized magnetic susceptibility (χ) was measured using a 

Bartington MS2 magnetic susceptibility meter. Each sample was measured three times and the 
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average was recorded.   Both low-field and high field susceptibility was measured, and then used 

to calculate the frequency-dependence of magnetic susceptibility (fd %).   

Remanent magnetism was measured at six orientations (three axes in two directions) 

using an HSM2 SQUID spinner magnetometer or a 2G 755 superconducting rock magnetometer 

at the UNH Paleomagnetism Laboratory. Each sample was measured for natural remanent 

magnetism (NRM) and then subjected to a step-wise acquisition of IRM.  IRM was applied using 

an ASC IM-10 impulse magnetizer over sixteen steps from background to 1.1 T (Table 3-1), and 

measured after each step.  A magnetic field of 1.1 T is sufficient to approximately reach 

saturation IRM (SIRM) of magnetite, titanomagnetite, greigite, and pyrrhotite, but not hematite 

or goethite. 1.1 T was sufficient to reach saturation in all samples from Hole C002A. Coercivity 

was quantified from the acquisition curves using a linear acquisition plot (Kruiver et al., 2001) to 

obtain B1/2, the field that imparts one-half of SIRM.  A backfield IRM of -100 mT and -300 mT, 

in the opposite direction of the acquisition curve, were applied for the calculation of an S ratio 

(e.g. Verosub and Roberts, 1995; Quinton et al., 2011):  

𝑆
𝑥𝑥𝑥 = 𝐼𝐼𝐼−𝑥𝑥𝑥

𝑆𝐼𝐼𝐼
 

 This approach allows for the determination of whether a magnetic assemblage is dominated by 

low coercivity (e.g. titanomagnetite, greigite) or high coercivity (e.g. goethite, hematite) minerals  

After acquisition of IRM at 1.1 T along a primary axis, fields of 400 mT and 120 mT were 

imparted at right angles to the primary axis (Lowrie, 1990).  I refer to IRM along the 1.1 T, 400 

mT, and 120 mT axes as the hard, medium, and soft axes respectively.  Samples were then 

heated in a stepwise thermal demagnetization using an ASC TD48-SC thermal demagnetizing 

oven from room temperature to 680 °C over 21 steps (Table 3-2). 
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Table 3-1. Acquisition steps of the applied field (in mT) used during IRM and backfield analysis 

IRM acquistion steps 
(mT) 

0 
20 
50 
80 

110 
150 
200 
300 
400 
500 
600 
700 
800 
900 
1000 
1100 
-100 
1100 
-300 
1100 

 

RESULTS 

 Mass-dependent χ measured in the laboratory closely matches the pattern observed in the 

shipboard volume-dependent κ measurements (Fig. 3-4), suggesting little to no alteration of the 

magnetic mineral assemblage after core collection/sampling. The Pearson correlation coefficient 

between these two data sets is 0.93.  LF χ ranges from -7.7 to 265.6 10-8 kg/m3 (mean: 18.3 10-8 
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kg/m3, median: 9.0 10-8 kg/m3). HF χ ranges from -4.4 to 229.8 10-8 kg/m3 (mean: 17.2 10-8 

kg/m3, median: 9.1 10-8 kg/m3). 

 

Table 3-2. Heating steps (in °C) used during thermal demagnetization 
Thermal 
demagnetization 
steps (°C ) 

25 
50 
75 
100 
125 
150 
200 
250 
275 
300 
325 
350 
375 
400 
500 
540 
580 
600 
620 
650 
680 

 

All samples showed acquisition curves typical of low-coercivity minerals reaching SIRM 

below 200 mT (Fig. 3-5). Likewise, the soft axis (120 mT) contains the dominant fraction of 

IRM after three-axis magnetization. B1/2 ranges between 23 and 98 mT (mean: 48 mT), with the 

highest coercivities in Unit II at approximately 1500 mbsf and decreasing to Unit III (Fig. 3-6).  

S100 varies from -0.85 to 1.01 with a mean of 0.65. S100 is lowest in Unit II and in coal samples 
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from Unit III (Fig. 3-6). Mean S300 is 0.89 and 138 out of 144 samples are greater than 0.75. Few 

samples with low S300 ranging from -1.17 to 0.64 are restricted to coal or coaly shale lithologies.  

  NRM follows trends in magnetic susceptibility ranging from 0.3 to 68,600 mA/m 

(median: 12 mA/m) (Fig. 3-6). Similarly, SIRM follows a pattern similar to χ and ranges from 31 

to 221,100 mA/m (median: 1262 mA/m). SIRM/χ ratios are elevated in a substantial portion of 

samples in Unit II, and several samples in Units III and IV (Fig. 3-6). 

 

Figure 3-4. Correlation of shipboard volume-normalized magnetic susceptibility (κ) from MSCL 
and post-cruise mass-normalized magnetic susceptibility measurements (χ). Correlation between 
data indicates little to no alteration to the magnetic mineral assemblage since sample. The lower 
panel is a zoomed view of the lower magnetic susceptibility samples. 
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Figure 3-5. Example IRM and thermal demagnetization results showing increase in loss of 
IRM between 275-350°C. All samples show low-coercivity and saturation by 200 mT. 
Samples in Units II, IV, and the upper portion of Unit III show a relatively linear decrease 
in IRM to 580 ºC. Between 1930 and 1995 mbsf the fraction of IRM lost between 275 and 
350 ºC increases. 
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Figure 3-6. Down core rock magnetic results including laboratory-measured χ, shipboard κ, 
natural remanent magnetism (NRM), isothermal remanent magnetism (IRM) at 1.1T, IRM 
at 0.9T/ χ, -100mT and -300 mT S-ratios, coercivity (B1/2), and the IRM fraction removed 
between 275-350 ºC and 0-350 ºC. Range of magnetite, magnetitic iron sulfides, and mixed 
magnetite and magnetic iron sulfides from Larrasoaña et al. (2006). 

 
Thermal demagnetization removed all IRM by 580 °C or below in all samples, and in all 

samples the primary carrier of IRM was the Z (soft) axis. Demagnetization curves in samples 

from Unit II, Unit III between 1920-1925 and 1995-2002 mbsf, and in Unit IV are characterized 

by a linear decrease to 580 °C (Fig. 3-5a).  Samples between 1925-1973 mbsf have 

demagnetization curves in which soft IRM decreases overall to 580 °C but with a pronounced 

decrease between 275-350 °C (Fig. 3-5b,c).  In the interval 1979-1993 mbsf, demagnetization 

curves decrease linearly to 350-400 °C (Fig. 3-5d). The drop in IRM below 350 °C is represented 
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in downcore patterns by the fraction of soft IRM lost between 0-350 °C and 275-350 °C (Fig. 3-6 

and 3-7). There is a pronounced increase in the fraction of soft IRM lost 0-350 °C and 275-350 

°C at depths between 1925 and 1973 mbsf (Fig. 3-7).  Between 1979-1993 mbsf, and at 1826, 

2110, 2307, 2309, and 2463 mbsf, there is and enhanced fraction of soft IRM lost 0-350 °C, but 

no distinct drop at 275 °C. 

 

Figure 3-7. Unit III rock magnetic results results including laboratory-measured χ, 
shipboard κ, natural remanent magnetism (NRM), isothermal remanent magnetism (IRM) 
at 1.1T, IRM at 0.9T/ χ, -100mT and -300 mT S-ratios, coercivity (B1/2), and the IRM 
fraction removed between 275-350 ºC and 0-350 ºC.. Range of magnetite, magnetitic iron 
sulfides, and mixed magnetite and magnetic iron sulfides from Larrasoaña et al. (2006). 
Gray bars indicate coal intervals. 

 
 
 

 



102 
 

DISCUSSION 

Magnetic Mineral Assemblage 

 Results of IRM acquisition (low-coercivity) and demagnetization (580 °C) suggest a 

magnetic mineral assemblage dominated by magnetite for samples in Unit II, Unit III (except 

1925-1995 mbsf), and Unit IV.  All samples saturated below 200 mT suggesting the dominant 

presence of low-coercivity minerals. Plots of SIRM/ χ and B1/2 are consistent with 

(titano)magnetite for all except for three samples that are consistent with pyrrhotite (Peters and 

Dekkers, 2003) (Fig. 3-8). Two samples in Unit II and and one sample in Unit III show high 

SIRM/ χ ratios typical of magnetic iron sulfides (Dekkers, 1988; Roberts, 1995; Dekkers et al., 

2000). However, these samples do not show a characteristic unblocking temperature of 350 °C 

for greigite (Roberts, 1995) or 325 °C for pyrrhotite (Lowrie, 1990). These samples possibly 

represent precipitates associated with diagenesis of marine sediments, but these iron sulfides 

oxidized early during the thermal demagnetization process. 
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Figure 3-8. Cross plot of SIRM/χ and B1/2. Mineral ranges from Peters and Dekkers (2003). 

 Samples in Unit III that show a significant portion of soft IRM with an unblocking 

temperature at approximately 350 °C are consistent with the demagnetization of magnetic iron 

sulfides, maghemite, or titanomagnetite (Fe3-xTixO4, where x= ~0.25). However, few samples 

have SIRM/ χ and B1/2  that are consistent with greigite or pyrrhotite (Peters and Dekkers, 2003). 

Additional measurements of χ after long exposure to oxygen (approximately 2 years) do not 

show a decrease relative to the shipboard measurements, indicating that magnetic iron sulfides 

vulnerable to oxidation are not a likely significant component. A magnetic mineral assemblage 

with a large, metastable magnetic iron sulfide component would likely experience a loss in χ 

after prolonged exposure to oxygen (Hunger and Benning, 2007). 

 It is likely that the mineral associated with the 350 °C unblocking temperature is 

titanomagnetite. Along the titanomagnetite series, the Curie temperature drops as Ti content 



104 
 

increases, and for Fe3-xTixO4, where x=0.25 the Curie temperature is ~350 °C (Butler, 1992).   

IRM acquisition and χ results are consistent with the dominant presence of (titano)magnetite but 

cannot rule out a possible minor maghemite(γ-Fe2O3)/titanomaghemite(γ-TiFeO3) component. 

Maghemetization of (titano)magnetite can occur in oxygenated sediments, but is more common 

component in pelagic settings where low sedimentation rates yield long exposure to oxygenated 

bottom waters (Smirnov and Tarduno, 2000; Xu et al., 1997). In this record, surface sediments 

were likely exposed to oxygenated bottom waters, but due to high sedimentation rates and TOC 

throughout Site C0020 (Expedition 337 Scientists, 2013) (titano)magnetite was likey buried 

quickly into anoxic conditions. 

Depositional Environment 

 Overall κ and χ measurements indicate general differences between lithologies, with 

highest magnetic susceptibility in sandstone followed by siltstone, shale, and coal; however, 

there is significant overlap between individual samples of varying lithologies (Figure 3-9), 

implying a possible influence of grain size on magnetic susceptibility. 
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Figure 3-9. Cross plot of S300 and χ by lithology. 

 The ultimate source for (titano)magnetite at Site C0020A is mostly likely from 

weathering of rocks within northern Honshu. Angular lithic fragments were commonly observed 

within Unit III (Expedition 337 Scientists, 2013) indicating minimal transport from source to 

deposition. (Titano)magnetite is a common constituent in volcanic rocks in Japan (Akimoto and 

Katsura, 1959; Sakuyama and Nesbitt, 1986; Hoshi and Teranishi, 2007; Ohba et al., 2007; 

Suzuki, 2008), magnetite-series granitic rocks (Tagaki, 2004), and hornfels facies metamorphic 

rocks (Tsusue, 1962) within Honshu. Magnetite has been observed as the primary detrital 

magnetic mineral in the Nankai accretionary complex (Kanamatsu et al., 2012; Zhao etal., 2013; 

Kars et al., 2015), and Japan Sea (Razjigaeva and Naumova, 1992; Vigliotti, 1997). 

Paleomagnetic studies at DSDP and ODP sites in the Japan trench and forearc basin show stable 

remanance (Hall and Smeltzer, 1980; Niitsuma, 1986; Kanamatsu and Niitsuma, 2004), but do 
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not directly address magnetic mineral assemblage. The (titano)magnetite-dominant magnetic 

mineral assemblage at C0020A is consistent with sites around the Japanese margin. 

 The increases in magnetic susceptibility within Unit III are likely a result of density 

sorting of heavy minerals in the intertidal/fluvial environment of Unit III. Magnetite has a 

density (5.20 g/cm3) nearly double that of quartz (2.65 g/cm3) (Schön, 2004), and commonly 

shows hydraulic sorting in beach and fluvial environments (e.g. Slingerland and Smith, 1986; 

Komar, 1989). The anomalous increases  in χ (to ~100-400 10-8 kg/m3) are similar to the range 

observed in modern placer deposits at an iron sands lagoon in New Zealand (~50-2000 10-8 

kg/m3) (Badesab et al., 2012). Placer deposits of titanomagnetite, often referred to as iron sands, 

magnetic sands, or black sands, are prevalent on the North Island of New Zealand (Bryan et al., 

2007; Badesab et al., 2012) and the southeast and southwest Indian margins (Mallik et al., 1987; 

Angusamy et al., 2007). Iron sands deposits have been observed in Japan, and these deposits 

have been used industrially in Japan for at least a millennium (Erselcuk, 1947). Placer sorting is 

indicative of a partially erosive setting (Frihy, 1994) and in Unit III of Hole C0020A the 

presence of iron sands suggests that the sharp transitions between these sands and coal are 

disconformities between a high-energy nearshore or fluvial environment and a lower-energy 

terrestrial environment. Most intervals of increased magnetic susceptibility occur within fine-to-

medium sandstones which is consistent with an upper beach swash-zone (Hughes et al., 2000), 

fluvial, or lagoonal (Badesab et al., 2012) environment. Ti-rich and Ti-poor titanomagnetite only 

vary in density by approximately 3% (Hunt et al., 1995), and sorting via transport or wave action 

is unlikely a direct factor in driving a transition from Ti-rich to Ti-poor titanomagnetite. 

 A change in provenance could potentially explain the shift from Ti-poor to Ti-rich 

titanomagnetite. Geochemical analysis of titanomagnetite in Japanese volcanic rocks indicates 
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that Ti-content is higher within titanomagnetite in basalt (~15-25 mol % TiO2) than in 

intermediate andesite-dacite (~10-20 mol %) or rhyolite (~0-10 mol %) (Akimoto and Katsura, 

1959; Suzuki, 2008). Back-arc and intra-arc extension that led to the creation of the Sea of Japan 

occurred during the early to middle Miocene (Taira, 2001; Tatsumi et al., 1989, 1990; Yamaji) 

resulting in the widespread eruption of Miocene basalt in northern Honshu (Ujike and Tsuchiya, 

1993; Yoshida, 2001), before a return to more intermediate-to-felsic eruptions in northern 

Honshu during the late Miocene (Sato and Amano, 1991; Yoshida, 2001). The increased Ti-

content within (titano)magnetites in early Miocene sediments of C0020A may represent an 

increased input of basaltic provenance during the rifting phase of northern Japan. However, XRF 

measurements of Ti and Fe do not indicate a shift in overall sediment Ti-content within the 

interval of decreased Curie temperature in Unit III. In addition, in order explain the change in Ti-

content by this provenance change, the eruption of mafic volcanic rocks during the early 

Miocene would require deposition of the eroded materials within the forearc within the same 

time period, and subsequent cessation of this deposition later in the Miocene, even though early 

Miocene mafic volcanics are still common throughout northern Honshu (Geologic Survey of 

Japan, 2012). It is unlikely that provenance changes explain the shift in titanomagnetite Ti-

content that is associated with proximity to the Unit III coal beds.  

Biogeochemical Implications 

Iron may play a role in the deep biosphere as a potential source of Fe3+ for iron reduction, 

possibly coupled to methane oxidation (Riedinger et al., 2014). The presence of 

(titano)magnetite as the dominant magnetic mineral suggests the potential of bioavailable Fe3+ 

for past and present iron reduction in sediments offshore Shimokita since burial and presently 

within the deep biosphere. Pure magnetite (Fe2+Fe3+
2O4) is a mixed Fe3+ ,Fe2+ oxide, while pure 
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ulvӧspinel (Ti4+Fe2+
2O4) contains only Fe2+. Thus, the range in Fe content of the magnetite-

titanomagnetite series represents range in potential electron acceptor availability. The presence 

of any maghemite (γ-Fe3+
2O3) would be an additional source of Fe3+ for the deep biosphere. The 

increase in fraction of IRM removed between 275-350 °C and 0-350 °C in Unit III suggests a 

lower availability of Fe3+ that is likely a result of alteration of the magnetic mineral assemblage 

by iron reducing bacteria. Thin section observations of iron oxides under reflected light show 

irregular-shaped grains that may have been altered after deposition (Fig. 3-10). 

Phylogenetic analysis of 16S rRNA indicates an increased presence of Firmicutes 

phylum bacteria (Inagaki et al., 2015) in Units III and IV that likely include iron-reducing 

bacteria. The low-sulfur terrestrial/estuarine environment of Units III and IV (Expedition 337 

Scientists, 2013) and terrestrial microbial communities within these units (Inagaki et al., 2015) 

suggest a limited role for sulfate reduction/anaerobic oxidation of methane, thus alteration of 

magnetic minerals is not likely dominated by reaction with hydrogen sulfide. Iron-reducing 

bacteria are common in terrestrial soils (e.g. Achtnich et al., 1995; Dubinsky et al., 2010; Rakshit 

et al., 2009). Total sulfur (TS) decreases within Unit III relative to Units II and IV (Expedition 

337 Scientists, 2013), indicating a reduction in iron sulfide precipitation caused by a limitation in 

sulfate availability within a brackish-to-freshwater environment compared to a fully marine 

environment. Typical river water contains two orders of magnitude less sulfate and one order of 

magnitude more iron compared to seawater (Livingstone, 1963; Pilson, 1998). The presence of 

indigenous terrestrial microbial communities within the sediments of Units III and IV (Inagaki et 

al., 2015), also indicate a change in the availability of electron acceptors to that typical of a 

terrestrial, freshwater environment from the overlying sulfate-rich marine environment. 

Although there is a lack of porewater samples within the consolidated sediments of C0020A, the 
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original pH within the terrestrial sediments of Unit III was likely slightly acidic, which is 

favorable for microbial iron reduction of magnetite (Kostka and Nealson, 1995). I suggest that 

the apparent increase in Ti within titanomagnetite may be a result of the selective dissolution via 

iron reduction in which the more Fe3+-rich, Ti-poor magnetite is selectively removed over time, 

leaving the more Fe3+-poor, Ti-rich magnetite as a residual, less desirable electron source. The 

terrestrial environment of Unit III along with the potential presence of iron-reducing bacteria 

suggests the possibility that Ti-poor magnetite has been selectively removed over time.  

The presence of the shift in titanomagnetite content occurs within intervals with 

numerous coal beds, and coal may serve as an important source of organic carbon as an electron 

donor to the surrounding sediments. Coal can serve a bioreactor in which complex coal macerals 

are degraded into simple, more labile molecules (e.g. acetate, H2, CO2) that become mobile as 

electron donors that can fuel methanogenesis (Strąpoć, 2008). Peat is a major source of dissolved 

organic carbon (DOC) into underlying sediments (Dalva and Moore, 1991). During burial and 

through early coalification, the peat/lignite intervals at Site C0020 were a likely source of DOC 

to the surrounding low TOC sediments. Most coal beds within Unit III have little to no 

ferrimagnetic fraction, thus presenting a physical separation between electron donors and 

electron acceptors (iron oxides), necessary to fuel a shift in titanomagnetite composition driven 

by dissimilatory iron reduction. These coal beds are interbedded among fine-to-medium 

sand/sandstones indicating adjacent proximity of high permeability sediments, containing 

magnetite, directly adjacent to a DOC and CH4 source. Within Unit III, the presence of 

unconsolidated sands suggests that the connection of fluids between coal beds and the 

surrounding sediments is maintained, but increasingly constricted with depth. Porosity decreases 

with depth from >0.8 % at the top of overlying Hole C9001C to an average of 0.26 wt. % in Unit 
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III (Aoike, 2007; Expedition 337 Scientists, 2013).  Within carbonate-cemented coal intervals 

porosity is further reduced to <0.15 %. The decrease in porosity with depth due to compaction 

and diagenetic cements likely limits porosity, thus impeding the connection between magnetite-

sourced electron acceptors and coal-sourced electron donors. This presumed decrease in 

permeability, along with the decrease in cell concentration with depth (Inagaki et al., 2015), 

suggests that the maximum rates for iron reduction likely occurred during shallow burial and 

declined with further burial depth. 

Although iron reduction is thermodynamically more favorable than sulfate reduction and 

methanogenesis (Froelich et al., 1979), Fe3+-bearing iron oxides persist during burial of 

sediments through the sulfidic and methanic zones. The presence of Fe3+ in the crystalline 

structure of iron oxides serves as a barrier to bioavailability, and limits reaction rates due to the 

surface area necessary for contact to iron reducers. Humic acids comprise a significant fraction 

of lignite (e.g Allard, 2006; Cavani et al., 2003; Gonzales-Vila, 1992, 1994; Ibarra and Juan, 

1985) and can transfer electrons to iron oxides during acetate oxidation, alleviating the neccesity 

of direct contact between Fe3+-reducing bacteria and iron oxides (Lovely et al., 1996). The 

presence of peat/lignite in the subsiding environment at Site C0020A likely acted as a significant 

source of humic substances in DOC to the surrounding sediments, likely enhancing iron 

reduction within intervals in porewater contact with the peat/coal intervals. Maximum methane 

content occurs within the coal beds, including production by present-day methanogenesis 

(Inagaki et al., 2015). Methane oxidation may be coupled to iron reduction (Konhauser et al., 

2005; Beal et al., 2009; Segarra et al., 2013; Riedinger et al., 2014; Thauer and Shima, 2008), 

suggesting methane exporterd from peat/lignite as a potential electron donor for iron reduction. 

 



111 
 

 

Figure 3-10. Reflected light photomicrographs of polished thin sections from samples within 
Unit III showing iron oxides (light gray) with irregular edges and holes within minerals suggestive 

of post-depostional degradation. A. C0020A-19R-6 22 cm, 1955.90 mbsf, sandy siltstone. B. 
C0020A-20R-5 22 cm, 1964.00 mbsf, silty shale. 

 
The common occurrence of authigenic siderite nodules throughout Unit III also indicates 

a diagenetic environment consistent with microbial iron reduction. Fe2+ produced via iron 
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reduction is available to react with bicarbonate within the methanic zone when H2S is not present 

(Berner, 1981; Maynard, 1982) or in an environment in which rates of iron reduction are greater 

than sulfate reduction (Pye et al., 1990). Fe3+-reducing bacteria can produce microbially-derived 

siderite as a direct by-product of dissimilatory iron reduction (Lovely and Phillips, 1986; 

Mortimer and Coleman, 1997). The decrease in TS within Unit III (Expedition 337 Scientists, 

2013) indicates sulfur limitation and an environment in which the sink for Fe2+ liberated from 

magnetite via iron reduction is siderite rather than pyrite. 

Based on the relative increase in TiO2, we estimate that the average loss of magnetite due 

to dissimilatory iron reduction in Unit III is 0.1 wt. %, with samples with as much as 1.1 wt. % 

loss. This loss corresponds to an estimated rate of magnetite loss since burial in the Early 

Miocene (maximum 23 Myr) that occurs at a Miocene-to-present averaged rate of 0.33 µmol cm-

3 Myr-1 and a maximum rate of 5.1 µmol cm-3 Myr-1.  Magnetite loss occurs at rate on the order 

of 10-9 to 10-7 µmol h-1 cell-1 in modern cultures of iron reducing bacteria (Nealson and Saffarini, 

1994; Kostka and Nealson, 1995). The observed loss within Unit III would require rates on the 

order of 10-11 µmol h-1 cm-3 for the average magnetite loss, and 10-10 µmol h-1 cm-3 for the a 

maximum estimated loss.The estimated observed loss in Unit III is reasonable even below the 

lowest known rate of microbial magnetite dissolution, even for a single cell per cm3. Although 

magnetite loss has not been observed via iron-dependent AOM, rates of AOM with ferrihydrite 

as an electron acceptor can occur at 6 µmol yr-1 cm-3 (Beal et al., 2009). If AOM coupled to 

magnetite reduction can occur at a rate even several orders of magnitude slower than ferrihydrite 

reduction, AOM could explain the observed loss of magnetite. 

Overall, the combined influence of a sulfate-depleted, methane-rich, and likely humic 

acid-rich sediment could drive microbial loss of magnetite via dissimilatory iron reduction.  
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Further work involving cultures of the microbial communities at this depth, and experiments 

involving these microbes and titanomagnetites may provide additional insight to evaluate the role 

of dissimilatory iron reduction involving crystalling iron oxides at Site C0020A. 

CONCLUSIONS 

 I investigated the overall magnetic mineral assemblage, as well as the source of the 

anomalous increases in magnetic susceptibility at IODP Hole C0020A. The magnetic assemblage 

is dominated by low-coercivity magnetite-titanomagnetite series minerals. In Units II and IV, the 

linear loss of low-coercivity IRM during thermal demagnetization to 580 °C suggests the 

presence of Ti-poor magnetite. Within the intervals 1925-1975 mbsf and 1979-1993 mbsf partial 

or complete loss of low coercivity IRM to 350-400 °C suggests an increased Ti content in the 

(titano)magnetite. The most likely cause of the shift in titanomagnetite composition is the 

selective dissolution, via microbial iron reduction, of Fe3+-rich, Ti-poor magnetite, which would 

preferentially leave Fe3+-poor, Ti-rich magnetite in the geologic record. Anomalous increases in 

magnetic susceptibility are not simply explained by changes in lithology, but can occur within 

multiple lithlogies deposited within a nearshore-to-intertidal depositional environment. In this 

record, magnetic susceptibility increases often occur in fine-to-medium sandstones associated 

with dark laminations. The depostional environment, coupled with the observed range in 

magnetic susceptibility suggests these anomalous intervals of high magnetic susceptibility are 

thin placer deposits, formed by wave action and/or longshore transport. Early after deposition of 

this nearshore environment, microbial iron reduction most likely resulted in the alteration of 

(titano)magnetite in these sediments and served  as a source of  Fe3+ as a potential electron 

acceptor to drive potential humic acid or methane oxidation. 
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CONCLUSIONS 

The chapters of this dissertation are linked through the use, integration, and interpretation 

of magnetic susceptibility in continental margin sediments. These chapters document the key 

aspects to consider in the interpretation of down-hole magnetic susceptibility records along 

marine continental margins, both from a detrital and diagenetic perspective. In Chapter 1, detrital 

variation in magnetic susceptibility at Hole NGHP-01-19B occurs due to changes in the strength 

of the Indian summer monsoon, which drives weathering on the Indian subcontinent. Decreased 

monsoon rainfall and chemical weathering allows for an increased presence of detrital magnetite 

and decreased dilution by clay minerals. In Chapter 2, an increase in magnetic susceptibility 

tracks with grain size in the upper 25 mbsf of IODP Hole U1325B, representing detrital transport 

of sands into an accretionary wedge slope basin.  In Chapter 3, nearshore sediments in Unit III of 

IODP Hole C0020A may reflect a change in titanomagnetite source, from Ti-poor 

titanomagnetite in intermediate-to-felsic volcanic rocks to Ti-rich titanomagnetite in mafic 

volcanic rocks. 

Diagenetic overprints on magnetic susceptibility, especially when recorded as a stable 

transformation of magnetite to pyrite, can result in a long-lasting signature that reflects past 

porewater biogeochemical conditions. Modern porewater profiles represent a detailed snapshot 

of present day biogeochemical conditions; however, with continued sedimentation and evolution 

of continental margin systems, porewater conditions change and redox boundaries migrate. One 

approach to try to identify past diagenetic processes is to look for alteration of detrital magnetic 

mineralogy. In Chapter 2, predicting original detrital magnetic susceptibility allows for 
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identification of intervals of diagenetic reduction of magnetic susceptibility due to pyritization of 

magnetite.  This approach can be used as a tool to identify intervals in which organoclastic 

sulfate reduction and/or anaerobic oxidation of methane were occurring at high rates or for 

prolonged periods of time. In Chapter 3, the shift from Ti-poor to Ti-rich titanomagnetite in coal-

bearing Unit III of Site C0020A also suggests the possibility of selective dissolution of Ti-poor 

magnetite by iron(III)-reducting bacteria, leaving Ti-rich titanomagnetite. 

Overall, these results highlight the importance of understanding magnetic susceptibility 

records in methane-bearing marine sediments as a mixed signal of detrital and diagenetic 

processes. Decoupling these signals through the integration of other types of data, may 

illuminate tectonic and climatic processes influencing the transport of ferrimagnetic minerals to 

marine sediments and the reductive diagenetic processes that alter these minerals. 
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