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ABSTRACT  
Using character varieties: presentations, invariants, 

divisibility and determinants 
by

Jeffrey Allan Hall 

U niversity of New H am pshire, Decem ber, 1999

If G is a finitely generated group, then the set of all characters from G into a linear 

algebraic group is a useful (but not complete) invariant of G. In this thesis, we present 

some new methods for computing with the variety of SL2<C-characters of a finitely 

presented group. We review the theory of Fricke characters, and introduce a notion 

of presentation simplicity which uses these results. With this definition, we give a set 

of GAP routines which facilitate the simplification of group presentations. We pro­

vide an explicit canonical basis for an invariant ring associated with a  symmetrically 

presented group’s character variety. Then, turning to the divisibility properties of 

trace polynomials, we examine a sequence of polynomials rn(a) governing the weak 

divisibility of a family of shifted linear recurrence sequences. We prove a discrim­

inant/determinant identity about certain factors of Tn ( a )  in an intriguing manner. 

Finally, we indicate how ordinary generating functions may be used to discover linear 

factors of sequences of discriminants.

Other novelties include an unusual binomial identity, which we use to prove a 

well-known formula for traces; the use of a generating function to find the inverse of 

a map x11 i-> f^ x ); and a brief exploration of the relationship between finding the

vii
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determinants of a parametrized family of matrices and the Smith Normal Forms of 

the sequence.

viii

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Table 0.1 Notation used in the text

XP the character afforded by the representation p
C (Q, Z) the complex numbers (rationals, integers)
N the natural numbers N =  {1,2,3. • • -}

the free group on n  letters 
X(G) the character variety of a group G
R(G) the coordinate ring of the variety X(G)
L =  (P)SL2C the (projective) special linear group
H < G, H < G H is a  subgroup of G, H is a normal subgroup of G 
[G : H] the index of H <  G in G
[ct, 3 ] for elements a  3  of a poset, the interval between ct

and 3 , including a  and 3
< S >  the group or algebra generated by the set S, or freely

freely generated by S 
[cub] a - ’b - ’ab
G' the first derived subgroup of G, G' = <  [G, G} >
a b b- ’a b
I <  R, I < R I is a subring of R, I is an ideal of R
(S) the ideal generated by a set S
<  S|R >  the group freely presented by generators S, with relations R
V(I) the variety which is defined by an ideal I
\ / I  the radical of an ideal I
C[X]G the algebra of invariants of matrix group G acting on the

vector space C|x|
xM action of matrix M on variable xt: x[a^  =  Y]  ^ji*)
-<: an admissible term order
in^ S the set of initial terms with respect to -< in a set S
LT^f the monic leading term of f  with respect to -<
LC^f the leading coefficient of f with respect to -<
<Jn. the n-th elementary symmetric function
* the Reynolds operator: *f =  ^  X.geG ^9
St,. the permutation group on n  letters (1 , 2 , . . . ,  tl}. We use the

same notation for the group of n  x n  permutation matrices
/ __)

Six the group Sn, acting on m—element sets
distp, q the distance between p and q
S^ 1 the group Sn, acting on sets with m  or fewer elements
a  I- n  a  is a partition of integer n  (e.g., (3,2,2) b 7)

2
i an edge in a graph (an edge between 1 and 2)

1 2 3
a hyperedge in a hypergraph (a hyperedge on vertices 1, 2, 3)

ix
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w the floor of x (which is the largest integer smaller than x)
Res(f,g), A(f) the resultant of polynomials f  and g; the discriminant of f
Bt (z) the generalized binomial series with parameter t  (see

[79, chapter 5], where Bt (z) was introduced)
M|> the minor of matrix M. obtained by deleting the i—th  row

and the j—th column
Pn(j) the number of j—tableaux shape with u  or fewer rows
W(S) the “Whittemore variety” of a set of words
0 the end of a proof; q.e.d.
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Chapter 1

An introduction to the ring of Fricke 

characters

Boone’s construction of a group without solvable word problem in the 1950’s was a 

development which would have delighted Bishop George Berkeley: a  natural question 

about an algebraically important construction turned out to be algorithmically unde- 

cidable. There were two natural ways to explore this new territory: to construct new 

groups and semigroups with unsolvable word problem (respectively conjugacy prob­

lem, etc.), and to show that interesting groups and families of groups had solvable 

word problem (respectively conjugacy problem, etc.) The first approach has yielded a 

host of interesting (and often discouraging) undecidability results, the second has at 

least helped delineate the undecidable from the decidable in combinatorial group the­

ory. Neither approach interests us here directly. Instead, our goal is to introduce and 

examine some algorithms which exploit properties of finitely generated groups, and of 

objects which are related to the study of representations of finitely presented groups, 

which are semi-decidable (i.e., if the property is true, then there is a procedure to 

verify it, whose running time may not be bounded.) These provide us with properties 

of elements in groups, weaker than the conjugacy problem, which are decidable for

1
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all finitely-presented groups.

In this thesis, a representation of a  group G into a complex linear algebraic group 

L is a homomorphism p : G —» L. I f G is a  topological group, then we require that p 

be continuous. The character of G afforded by p is the function Xp • G —» C defined 

by XpCg) =  tr  p(g). If L is one-dimensional, then we call the character afforded by p 

linear. Our focus will be largely on the representations of finitely presented groups G 

into L =  SL2C, PSL2C, or C. In this chapter, all representations and characters will 

be into SL2C.

G is said to be a finitely generated group if it is the homomorphic image of a finite- 

rank free group under some homomorphism £,: Fn —> G. (If G is finitely generated, 

then there are in general many such homomorphisms.) Fix £,: Fn G, a surjective 

homomorphism from a finite-rank free group to G. Now, any representation p : G —» L 

determines a representation £, o p of Fn, and since Fn is free, this representation is 

defined by the images of the free generators of Fn. Thus, the representation p is 

uniquely determined by the images of a set of generators of G. The condition that p

2
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is a homomorphism is the same as the condition that the diagram

3£'

Fn — * G'

£ -I \  J.T

G — > SL2C 

P

commutes for any group G' of rank n  and any choice of t ; thus, the statement that 

a set of n  (d x d)-matrices are the images p(gO of a finite set {gj of generators 

of G is may be restated as the statement that a set of polynomial relations on the 

d2n  coordinates of the matrices is satisfied. By the Hilbert basis theorem, we may 

take this set of polynomials to be finite. The variety defined by these polynomials 

is called the representation variety of G. (Here, and in the future, we refer to the 

zero set of any set of polynomials over a field to be a ‘Variety.” We will not require 

that the set be irreducible: this is typical in the literature. Some authors might 

use the term “algebraic set.”) We denote by X(G) the quotient of the representation 

variety, obtained by identifying representations with equal traces. We embed X(G) 

into the image of the representation variety under the trace map tr  : SL2C —> C. 

This manifold is actually a variety itself, called the character variety of G . It is an 

important invariant of the finitely generated group G.

X(G), our main object of study, has a lesser role in the study of finitely presented

3
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groups than its distant cousin, the character table, plays in the study of finite groups. 

A finite group’s irreducible characters have bounded degree; and, by Cayley’s theo­

rem, every finite group of order m  has a faithful representation of degree m. Thus, 

knowledge of the representations up to degree m  completely determines the structure 

of the finite group.

But finitely presented groups do not, in general, have solvable word problem. On 

the other hand, given any set of matrices, and any finite word in this set, we may 

decide whether the product is the identity matrix by multiplying them together. In 

other words, the word problem for finite-dimensional matrix groups is algorithmically 

solvable [93]. The correctness of Buchberger’s algorithm now implies:

P roposition  1 .1  The following questions are algorithmically undecidable:

a) What is the smallest degree of a finite-dimensional faithful representation

of G?

b) What is the smallest index [G : ker p] among finite-dimensional represen­

tations p?

c) Does G have a finite-dimensional faithful representation?

(For an explicit proof, see [93].) The finite-dimensional representation theory of a 

finitely generated group G is a compromise between our desire to know the structure 

of a finitely generated group and the reality of the word problem. Despite the un­

solvability of the word problem, we may inquire into the behavior of homomorphic

4
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images of G in algebraic groups. In fact, although G may not have solvable word 

problem, its representations necessarily do.

We review the classical theory of X(G).

T heorem  1 .2  Let G = <  g i , . . .  , gn|R > be a finitely presented group. Then:

a) (Vogt) Let x  be an SLzC-character of G. Let g G  G. Then x(g) is determined

by the numbers

( t i  =  X9i} U  { tij =  X9i9i |1 <  i  <  j <  t l}  U  - • • U  {t123...n =  X9i 9 2  • • • gn}-

Indeed, more is true. The values of a character on the singletons, pairs, and 

triples in the above list suffice to determine the character on all of G.

Vogt’s theorem lets us index the characters with points

( t l ,. . . ,10x^12, . . .  , tfxx—i j-n., ti23, • • • > t(n—2}(n—

(A representation, of course, is determined by its value on generators. Part (a) 

is a finiteness theorem: characters are uniquely determined by their values on 

generators, and on ordered products of two and three generators.)

b) (H orow itz) The set of all possible characters is a variety, which is an invariant

of the group G; i.e., any relation between elements of X =  {ti, t^, tijk} is a 

polynomial. For example, i f n  = 2, then X(G) is all of C3.

5
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Proof: (a) We remind the reader that we are working with 2 x 2  matrices only. Each 

of the following identities is a trivial calculation. (1.2 is also a disguised version of 

the Cayley-Hamilton theorem, but that doesn’t  concern us here.)

tr(ABC) =  trA tr(B C )+ trB tr(A C )-F trC tr(A B ) — trA trB trC

— tr(ACB) (1.1)

tr(AB) =  (trA)(trB) — trA /B  (1.2)

tr(A) =  tr(A-1)

=  tr(AB).

tr(AB) =  tr(BA) (1.3)

tr(ABCD) =  ^  (trAtr(BCD) 4-trB tr(C D A )+  trC tr(D A B) (1.4)

+  trDtr(CAB) +  tr(AB) tr(CD) — tr(AC) tr(BD)

+  tr(AD) tr(BC) —trA trB trC D  — trC trD trA B  

— tr D tr  A tr BC — tr B tr C tr DA +  tr A tr B tr  C tr  D)

(1.4 is known as “Vogt’s relation,” the relation 1.1 is known as “Fricke’s lemma,” and

1.2 is called the “fundamental trace relation.”)

Given any word w  with more than three generators, we may use 1.4 to express
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tr w  using shorter words. Using 1.2, we can express traces of words of length 2 or 3 

in terms of traces of length 2 or 3 without using inverses of generators (e.g.,

tr ab -1 =  (tr a) (tr b_1) — tr  ab 

=  (tr a)(trb) — tr  ab 

tr  abc-1 =  (tr ab ) (tr c ) — tr  abc

etc.) By conjugation, traces of words that are mis-ordered cyclically can be re-ordered 

(e.g., trb c a  =  tr abc.) Finally, 1.1 lets us express traces of length 3 words which are 

mis-ordered non-cyclically.

(b) See [57] or [33].

We will now review in some detail the computational mechanisms with which one 

may manipulate trace polynomials. First, however, we introduce a somewhat unusual 

binomial identity.

Theorem  1.3 For any positive integers o, I,

m  /  \  /  k= l

Proof: We proceed via the Wilf-Zeilberger method. [99] The claim of the theorem 

is readily verified for o e  {1,2,3} and I G {1,2,3,4,5,6}. We exhibit a recurrence

7
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relation which is satisfied by the sequence

namely the first-order recurrence

2 ( 2 l - 2 o - l ) ( l - o - l ) ( k - 2 o  +  1)(k +  2o)S0 

—(I — 2o) (I — 2o — 1) (k + 1 — 2o — 1) +  (k + 1 — 2o — 1) =  1

where Sn is the backwards shift operator Snf(n) =  f(n  — 1). (This recurrence was 

found with Zeilberger’s implementation of his “creative telescoping” algorithm [99], 

although it is readily verified by hand.) A similar recurrence relation exists for I. 

Since we have verified the recurrence for I =  1, o =  1,2,3, by induction the theorem 

is true for all positive integral m  when 1 =  1. Likewise the theorem is true for all 

integral I, m.

Creative telescoping proofs, like the one above, are straightforward but unenlight- 

ening. We note that a proof of this identity by comparing the quotients of successive 

derivatives of Chebyshev polynomials is possible, but quite tedious, and not terribly 

insightful. I do not know a purely combinatorial proof of this result.

We use the identity to prove a useful formula, a form of which seems to be well- 

known among some applied mathematicians [81]:

8
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Theorem  1.4 Let K be a field. Consider the recurrence relation in K[x]

Tn+2 =  xTn+1( x ) - T u(x) (1.7)

Tt =  x

To =  2

Then, for n  >  1, Tn(x) is a degree n , monic polynomial, which is either either even

or odd, and the coefficient of zn~21 is

f - 1 )1 1-1
— n f j ( n - l - k )  (1.8)

k=l

for each 0 <  I < [j J .

Proof: Write Ci for the coefficient of zn~zi. Solving the recurrence relation for Tn by 

standard techniques, we see that

£ & ) ( : )  «
m = —oo x /  \  /

-  d-XO)
m =l x \  /

so, considering odd and even n  separately, we have by the identity of the previous

9
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theorem

0

C orollary 1.5 Let t  be the trace of a 2 x 2  matrix A 6  SLz- Then the trace of Au 

?-s given by

Proof: By the fundamental trace identity, equation 1.2, the trace of An is given by

C orollary 1 .6  The character variety of a finite group, or more generally of a finitely 

generated torsion group of bounded exponent, has zero dimension.

Proof: If S is the set of all exponents of elements of the group, then any group 

element’s SL2 trace must satisfy one of {Tn(x)|n e  S}. Each of these polynomials 

has a finite solution set, and so each of the coordinates takes on a discrete number of 

values. 0

For the reader’s convenience, the first few Tn’s are collected in table one.

The following formula, due to Jorgensen [75], extends the usefulness of 1.9 to 

arbitrary words on two letters.

K 2J

i=i

1.7. 0

10
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2
x
x2 — 2
x3 — 3x
x4 — 4x2 +  2
x5 —5X3 +  5x
x6 —6x4 +  9x2 —2
x7 — 7x5 +  14x3 — 7x
x8 — 8x6 +  20x4 — 16x2 +  2
x9 — 9x7 +  27X5 — 30x3 +  9x
x10 — 10x8 +  35 x6 — 50 x4 +  25 x2 — 2
x11 - l l x 9 + 4 4 x 7- 7 7 x 5 + 5 5 x 3 - l l x
x12 -  12x10 +  54 x8 -  112x6 +105 x4 -  36 x2 +  2
x13 -  13x71 +  65x9 - 1 5 6 x7 +  182x5 -  91 x3 +  13x

_  i4 x 12 +  77x10 -  210x8 +  294x6 -  196x4 +  49x2 -  2

Table 1.1 Trace polynomials of powers of an element

P roposition  1.7 Let

w =  xa,y b,xQ2y b2 • • -xak-ybk

be a cyclically reduced, word on two letters. Let x  be a character of F2, the free group 

on {x,y}. Write a +  a -1 for the number x*- and 3 +  3-1 for the number xy* Let 

p =  x(w), which by Vogt’s identity is a polynomial in variables a  +  a -1, 3 +  3-1? 

and x(xy). Then the degree of z  =  xC’cy) in V the number k of (a.i,bi) ^  (0,0) 

and the coefficient of zk is

We have generally found it more convenient to use Jorgensen’s formula in a  different

11
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form:

n ( ^ ) n ( < S f £ ) -

n  ) nz<p',,“'+p''b|)
i  V j /  i  J

=  f [ T .T ,
i= l

We introduce some notation. If w is a word in a free group F*., and if the character 

values

S =  {tw, =  trw ^ tw j =  trw 2, . . .  ,twm =  trw m |wt € Fn}

generate the images of each word in Fn under any (SL2) character x, then the poly­

nomial in Z[S] which defines the character image of w  is denoted either trw , or 

tw- (Both are standard notations.) Usually, it is convenient order the letters of Fn 

once and for all, and denote the character images of Xi, X2 , X3, . . .  , xiX2 , . . .  etc. by 

t i , t 2, t 3, . . .  , t i2, . . .  etc. We will furthermore sometimes overload this notation, by 

considering inverses of generators, i.e., I t—1 =  trx ^1 (=  trx i), t 12-i =  trx ix 2- i(=  

t i t 2 —112); and other powers of generators, e.g. t |2 =  tr(x ,) (= \ \  — 2 ).

Considering again a representation p of a finitely presented group G, we have 

maps:

12
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kerij) Fn —» 6

X X \  Xp

{0Sl2} SL2C -» SL2€

X tr X tr X tr

{2} C C D C

Let In be the radical ideal defining the variety X(G). The ring

R(Fn) =  C fa , t 2, . . .  , t i2, . . .  , t ^ , .. .] /In =  C[X]/In

is called the ring of Fricke characters of the free group Fn = <  g i , . . .  , gn >. (More 

generally, the ring of Fricke characters R(G) of a finitely generated group G is the 

coordinate ring of the character variety of G.) Computing inside R(Fn) can be hard 

for at least four reasons:

1- R(Fn) Las n  +  (J) +  (3) =  nfng+-  variables. The average and worst-case run­

ning times for most algorithms in computational commutative algebra depend 

exquisitely on the number of variables in ring presentations; for some illustrative 

examples, see [116] or [17].
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2. R(FU) has high regularity.

3. The polynomials generating In, the irreducible ideal which defines the ideal 

X(Fn) are the Gonzalez-Montesinos relations, whose definition we recall below. 

They are very symmetrical. Indeed, they admit an intransitive group of symme­

tries of order n!. Symmetry among the generators of an ideal cause algorithms 

such as Buchberger’s algorithm to do work which does not move it towards its 

termination condition (for examples, see [115].)

4. The Gonzalez-Montesinos relations have 2 (3) +  (n72) +  (nJ3) polynomials com-

(not all distinct) monomials. This imposes a real “book-keeping” cost as n  grows

For n  < 4 these are not serious objections to computing inside R(G). For n  =  1,2, 

In =  {0}, and so two characters f, g are equal if and only if f  =  g in C[X]. For n  =  3, 

the results of [68] suffice - I3 is principal over Z,

prised of

large.

I3 =  (ti23 — ^123 +  Q)>

where

14
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P = ti t23 + t?ti3 + t3ti2 — ti t2t3

Q  =  t l + ' t i  +  't 3 + ' t 12 +  t 1 3 + '^ 3  +  t l 2 t l 3 t 2 3

—t i t 2t i2 — t i t 3t i3 — t2t3t23 — 4.

— Pti23 +  Q is thus evidently a Grobner basis for I3 with respect to any term 

ordering, and so we have many normal-form a lg o r it h m s  for R(F3). Likewise, since 

Gonzalez- Acuna and Montesinos-Amilibia have provided an explicit set of polynomi­

als generating In, [57], we may in principle find a Grobner basis for R(Fn), and thus 

a normal-form procedure for R(In). But when n  =  4, this is already a non-trivial 

calculation, and for larger n, our objections 1-4 above seem formidable.

Our primary object of study is R(Fn). Its defining ideal is generated by the 

Gonzalez-Montesinos polynomials:

^abc ^abctabc "F Qabc Q. < b  <  C (1.13)

for

Pabc -j- t^t^c “F tctab tQtbt b

Qabc =  -F t£ +  +  t^b +  t^c +  t bc +  t abt act bc

la'l'b^ab la^c^ac Ib^c^hc 4,

15
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t? — 4 I t u - t - i t z  

2ti2 — tit2  t% — 4 

2 ti a ti t a 2t 2a t-2^a 

2tib ~  titb  2t2b — t 2tb

2 t | a — t i t a 2 tib — t]tb 

2 t 2a — t2t a 2 t2b — t 2tb 

t ^ - 4  2tab- t atb 

2tab- t atb tg -4

3 < a  < b <  n  (1.14)

t f - 4  2ti2 t i t 2 2 t13- t i t 3 2 tlQ- t 1t Q 

2t]2 — ti t 3 — 4 2t23 — t 2t3 2t2a — t 2t a

2ti3 — 2t23 -  t 2t 3 t f  - 4  2t3a - t 3t Q

2t lb — t]tb 2t 2b —t 2tb 2 t b3 — tbt3 2 t ab — t atb

3 <  a  <  b <  n (1.15)

("tl 23 ll3 2 )  ( 2 t abc la lb ^ c  la^bc Ib^ac Ic^ab)

*1 lla  tlb tic 

*2 t2a t 2b t 2c 

*3 t3a  t3b *3c 

2  t a t b t c

(1.16)

a  <  b <  c (1.17)

We introduce some useful notation. Let G be presented by <  g i , . . . , gn|R >; 

call this presentation P. By [57, Section three], the character variety X(G) is the

16
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intersection of two other varieties: X(Fn) and

V ((trR ') - 2 ) = V ( I W),

where tr  R' =  {tr |r e  ({e} U {gi, g2, . . .  , gn})R} for some arbitrary choice {tr} of trace 

polynomials in X, one tr representing each w  € R'. We will call the variety W(P) =  

V( (trR )) a Whittemore variety of the presentation < g i, . . .  , gJR  >, which we write 

VW(G) =  W(P). This is adouble abuse of notation: the group G’s Whittemore variety 

is really associated with the presentation P :< . . .  , g-nJR >, and we have a choice

of trace polynomials for each r  6  R whenever n  > 3.

E xam ple 1 .8  We will defer choosing a canonical way of generating Iw for a general 

finitely presented group until the next chapter, but we give here an ad hoc example 

for the group

< h J 2 , h  I f■i '»W 7 1, f z ' >

which is the finite Fibonacci group F(2,3)- The character variety X(F3) is the variety 

of the principal ideal

*123 — P l23*123  +  Q l23>

17
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where

P =  tit23 +  t2ti3 +  t3ti2 — ti t2t3

Q =  tf +  t |  +  tf +  tf2 +  tf3 +  t23 +  ti2ti3t23

_ *1*2*12 ~  t i t 2t i3 — t2t3t23 — 4, 

as in 1.13 above; while VW(F(2,3)) may be chosen to be the variety defined by

( trf1f2f j 1, t r f 2f3f r 1, trfsfif^1) (1.18)

=  ( t 3 t ] 2  — t i 2 3 , tT t 2 5  — t 12 3 , t 2 t i 3  — t i 2 3 ] .

Note that each polynomial has its degree-lexicographic leading monomial underlined. 

Since these terms are relatively prime, the set (1.18) forms a Grobner basis. (A 

Grobner basis like this one, where the leading terms are relatively prime, is called a 

structural Grobner basis. See [117].)

As the term ti23 occurs in none of the leading terms of this graded Grobner basis, 

the coordinate ring of VW(F(2,3)) has codimension of at least one. A coset enumer­

ation (using the system [40], for example) shows that |F(2,3)| =  8 <  oo, so that 

dimX(F(2,3)) =  dim X(FU) n  Vw =  0. and in so particular X(F(2,3)) 7  ̂ Vw, by 

corollary 1.6. <✓>

When we are calculating ~Vw for a group, the nicest sorts of relators which we might 

encounter are perfect powers, since we have an easy way to write down trw n — 2 =

18
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Tn(tw) — 2 "using corollary 1.5. We can also go backwards; the next theorem tells us 

how to write xn in terms of the -polynomials Tn(x).

T heorem  1.9 Define ((£)) by ((£)) =  (£) i f  n  and k are integers; ((£)) =  0 

otherwise. Define the polynomials Tn(x) by

Proof: The statement of the theorem is equivalent to the statement that the matrix 

illustrated in figure 1-1 is the inverse of the matrix in figure 1-2. Let Ni be the n  x n  

upper-left submatrix of M. Let N2 be the n  x n  upper-left submatrix of of the matrix 

in figure 1-2. Let a  be the a—th row of N2, 3 the b—th column of N i. Index the 

entries of a, starting at the right, with cxo the rightmost entry of the row. (Continue 

this sequence to the left, so that the sequence {cq} runs through all of the binomial 

coefficients.) Likewise index the entries of (3, starting from the top, with (30 the top

1 i f n  = 0

TnM i f n >  0 .

Then

This expression for xn as a linear combination of the polynomials Tn(x) is unique.

19
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entry of the column. The generating function of the sequence {cq} is clearly

Aa(z) =  (1 +  z2)azn-a_1.

Likewise the generating function of the sequence {3J is

Bb( z ) = z bn - z 2)(i + z 2r b- \

(Proof: The numbers Ni(x,y) satisfy the recurrence

Ni(x,y) =  N 1( x - l , y - 1 ) - N 1( x ,y -2 ) .  (1.19)

This is immediate from the defining relation Tn+2 =  xTu+1(x) — Tn(x). Multiply each 

side of (1.19) by zn , and sum over all n  >  0. We have

Y N i(x,y)zn =  y  N 1( x - l , y - 1)zn - N T( x , y - 2 )zn

Bx(z) =  zBx_t (z) -  z2Bx(z)

Bx(z) =  — ^ B x_-,(z).
I + Z z

20
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Since Bo (2) = — 1 , we have

B*(z) =

as claimed.)

Now consider the generating function of the convolution a* |3, which is the product

We examine the coefficient of zn 1 in this power series. There are three cases:

a  <  b Then (AaBb)(z) =  zn-1F(z), where F(z) is analytic at z =  0, so the coefficient 

of zn_1 in (AaBb)(z) is 0.

a  =  b Then the coefficient of zn-1 in (AaBb)(z) is obviously 1.

a  >  b Then (AaBb)(z) is a  polynomial. The coefficient of z71-1 in (AaBb)(z) is the 

coefficient of za-b in

Aa(z)Bb(z ):

(AaBb)(z) = z u" 1+(b- al(l + z 2)a- b- 1n  - z 2).

( l + z 2)a- b" 1( l - z 2).

This coefficient is 0 if (a — b) is odd, and is

21
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/ 1 \
0 1

-2 0 1
0 -3 0 1
2 0 -4 0 1
0 5 0 —5 0 1

-2 0 9 0 -6 0 1

V 0 —7 0 14 0 —7 /

Figure 1-1 The matrix M

(  1 ^ 
0 l
1 0  1
0 3 0 1
6 0 4 0 1
0 10 0 5 0 1
20 0 15 0 6 0

 ̂ 0 35 0 21 0 7

Figure 1-2 The inverse of matrix M

if (a — b) is even. By the symmetry property of Pascal’s triangle,

/ a - b - 1\  / a  —b —1\  A

when (a  — b — 1) is odd.

So (a*  (3)n-i is 0 if a  7̂  b, and 1 if a  =  b. But (a* (3)n_i is precisely the dot product 

of the a  — th. row of N2 with the b — th  column of N-], so the matrices Ni and N2 

are inverses of each other. 0
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Chapter 2

Simplification of group presentations: 

dimension theory aids string matching

In this brief chapter, we explore definitions of group presentation simplicity that use 

geometric information taken from the group presentation. Our approach is firmly 

experimental.

Suppose that G =  (Y |R) and H =  (Z |S) are two finite presentations of groups. 

Then it is a well-known theorem of Tietze that that G is isomorphic to H if and only 

if the presentation (Y|R) may be obtained from (Z|S) by a finite sequence of “Tietze 

transformations:”

1. Adding a new generator g, and a new relation gw, where w  is any word in Z

2. Deleting a generator g, and a relation gw, where w is a word in Z — {g}, and 

no other relation in S uses the generator g

3. Adding a relation that is a consequence of other relations in S

4. Deleting a relation that is a consequence of the other relations in S.

(If two presentations (Y |R) and (Z |S) of the same group are not finite, then in general 

we may not find a finite sequence of Tietze transformations transforming one into the
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other, even if |Y|, |Z| < oo. For example, (a  |a, a2, a3, . . . )  is clearly a presentation of 

the trivial group, and no Tietze transformation can ever yield a presentation where 

there are not infinitely many relators, which uses only one generator. But

(a ,b |a ,b ,w 2(a ,b ),w 2( a ,b ) , . . .)

is such a presentation of the trivial group, so it can’t be obtained from 

(a  |a, a2, a3, . . . )  in only finitely many steps.)

The search-space of Tietze transforms of a finitely presented group is an important 

object of study in computational group theory. A typical application of searching 

through the space of Tietze transforms of a finitely presented group is the problem 

of simplifying a presentation. What does it mean for one presentation of a finitely 

presented group to be “simpler” than another? Some typical definitions are that a 

presentation is simpler if it has fewer generators, or fewer relations, or smaller total 

relator length. Given a presentation < Y |R >, there is a  (finite) path of Tietze 

transformations that transforms <  Y |R > into a “simplest” presentation. But, for 

general finitely presented groups, the isomorphism problem is unsolvable; and thus, 

if our definition of simplicity admits a unique simplest presentation then the problem 

of finding this path is algorithmically undecidable.

In practice, then, before attempting to simplify a finite presentation of group G 

via a sequence of Tietze transformations, one chooses a binary relation < on the 

set of all group presentations, defining <  Y|R >  to be simpler than <  Z|S >  if
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< Y|R > < <  Z|S > . Our search space is an oriented graph, where the vertices are 

finite presentations of groups isomorphic to G, and where edges correspond to Tietze 

transforms. We search through this graph, until we find a locally minimal (or accept­

able minimal) element. The complexity of this graph gives the whole theory a very 

computational flavor. The hardest part of simplifying a presentation by searching the 

space of Tietze transformations is determining the search-space itself: transforma­

tions of type (2) and (4) require a common-substring search, which is much harder 

than merely transforming a presentation, or comparing the number of generators or 

relation lengths [113, Section 6.4] [64]. This is a distinctive aspect of this problem, 

which is often absent in other applications of combinatorial search.

In this chapter, we will explore a new definition of simplicity for a group presen­

tation. Our definition has the advantage that it allows us to avoid common-substring 

searching when deciding whether to apply Tietze transformations of type (1) and 

(2). Briefly, we will consider one presentation Pi = <  x i, . . .  ,XrJRi >  of a finitely 

presented group G to be simpler than another presentation ?z = <  Xi, . . . ,  xm IR2 >, 

if the Gonzalez-Montesinos presentation of the character variety of Fu “contributes” 

less, via presentation Pi, to the Hilbert polynomial of the ideal I(X(G)) than the 

corresponding presentation of Fm via presentation P2. (We will clarify what we mean 

by “contributes less” below.)

Let us first consider a simple example. The triangle group (2,3,00) may be 

presented as:
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r = <  g i ,92,931g? = (gig2)3 =  g3g ! 1 g | =  e > .

Its character variety’s Gonzalez-Montesinos presentation is

Tl =  {x? -  2, x f ,  -  3x 12, X!X2 , X73 -  X2X123 -  X1X3 +  x13, x^23 -  Px123 +  Q}

where P and Q are as defined in Chapter 1. Buchberger’s criterion states that a set 

G of polynomials is a Grobner basis if and only if, for each fi, f2 € P,

c f f  f   ̂ _  lcm(in(fi),in(f2)) lcm linlfO.inl^)) 
* l 1 ’ 2j LC(f,)m (f,) 1 LC(f2)LC(f2) 2

reduces to 0 on division by G. If we order, say, by total degree, then Ti is not a 

Grobner basis, since

S(xf — 2, xix2X3  -  x2x123 -  xtx3 +  x13) =  xfx3 +  xtx2x123 — xtx13 — 2x 2x 23

has remainder xtx2x123 — xtX13 — 2x7X3  — 2x3 on division by Tj. A Tietze transfor­

mation of type (2), however, yields a presentation

r =< 91,92! g? = (gi92)3 = e>
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whose Gonzalez-Montesinos presentation is

T2 =  {xf -  4, x f 2 -  3*12, xfx2 -  x, x 12 -  4x2, x?2xi -  x12x2 — xi — x2,

xf2x2 - x 12XT - x 2 - x ,}

which is a Grobner basis.

If we wished to use a search algorithm to simplify a group presentation so that its 

Gonzalez-Montesinos polynomials are closer to being a Grobner basis, then we would 

need a way to compare two polynomials and determine which is more “Grobner- 

like.” Some ways to measure how fax Ti is from being a Grobner basis include the 

number of terms in the remainders of the S-polynomials, or the maximum degree of 

the remainders. But these measures would be computationally difficult to compute, 

and this would dominate the cost of the search. Moreover, most of the polynomials in 

the set of Gonzalez-Montesinos polynomials for a presentation will be determinantal 

or Fibonacci-type polynomials, and there is no obvious way to use our knowledge 

of the special properties of such polynomials to hasten the computation of these 

the remainders of their S-polynomials. We will instead take a slightly roundabout 

approach.

Recall from Chapter 1, corollary 1.5, that if u  =  tr w, then the coefficient of u n-21 

in trw n is
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1, 1 =  0 

l > 0 -

This allows us to calculate the Fricke polynomials for relations of the form wn in T 

efficiently, since the coefficient of u n-21-2 may be found iteratively from the coefficient 

of u n-21.

But calculating the Fricke polynomial of each potential new relation would easily 

dominate a search for a simpler group presentation, and probably be impractical for 

most interesting examples. Instead, one reasonable approach might be to evaluate 

these polynomials at some integral point. Following the advice of [81], an efficient 

way to do perform this calculation is to use the relation for Chebyshev polynomials 

of the first kind

2Tu(x)Tm(x) =  Tn+m(x) +  Tn_m(x)

which implies the relation

(trxn)(trxm) =  trx n+m +  trxn~m

for Fricke polynomials. But the difficulty of guessing a good point (or a good set of 

points) at which to evaluate the trace polynomials in this manner makes this approach
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seem unpromising.

In our example above, we saw that T had a  presentation in which its ideal of 

character relations’ “natural” presentation was a structural Grobner basis. It would 

be nice if this were the norm, rather than the exception. In general, sets of polynomials 

whose leading terms with respect to a given term order are relatively prime are rather 

rare; and likewise, two randomly selected words in a free group will rarely have trace 

polynomials with relatively prime leading terms. (Of course, relators which arise in 

practical computations are not at all uniformly selected from the set of all words 

in a free group: they are, for purely physical reasons, restricted to words of some 

reasonable length.)

Since isomorphic finitely generated groups have isomorphic character varieties, 

the dimension of the character variety is invariant under Tietze transformations. For 

SL2C characters, the character variety of G = <  Y|R >, |Y| < 0 0  is the intersection 

of the character variety of the free group on |Y| letters, X(F|Y|), and the Whittemore 

variety arising from the relators R, W(R). The automorphisms of G induce morphisms 

of the character variety X(G). (Since inner automorphisms of G fix characters, we have 

an injection Out G Aut X(G).)

Neither of X(F|Y|) or W(R) are invariant under automorphisms of G. However, 

since there exists a smallest t l  such that G is generated by n  elements, the dimension 

of the smallest such X(Fn) is an invariant of the group G. Likewise, smallest dimension 

of a  Whittemore variety corresponding to a set of relators defining G is a well-defined
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invariant of G. Let’s denote the rank of G by rankG, and the smallest dimension of 

a Whittemore variety corresponding to a set of relators defining G (which may be 

on a larger set of generators) by dimw G. If G = <  Y|R >, with |Y| =  rankG, and 

if <  Z IS >is another finite presentation of G, then it is not necessarily true that 

W(R) =  W(S) implies that |Z| =  rankG (as may easily be seen, for example, by the 

Klein four-group

< *,y l*2 ,y2> fry )2 > = <  x ,y ,z |x * y 2, fry)2 ,xyz_1 > .)

But it is true that, if < Z |S >is obtained from <  Y |R >  by a Tietze transformation 

of type (1), then dimW(R) < dimW(S). For, adjoining a new generator to <  Y|R > 

adds 1 +  |Y| +  ^  j  new variables to the ideal of character relations, and adding new 

relation tw  for some w 6  Y adds the polynomial p =  (trtw ) — 2. p cannot depend 

only on traces of words in <  Y > . Furthermore, we have

P roposition  2.1 Suppose that < Z |S > is obtained from < Y |R > by a Tietze 

transformation of type (1), adjoining variable z  to Y, where z =  w. Then 

dimW(R) <  dimW(S), and furthermore dimW(R) <  dimW(S) if  t r z -1w  does 

not involve any of the new variable {tZ) t ^ t ^ ^ y  G Y}. In particular, a Tietze 

transformation of type (2) will always reduce the dimension of a Whittemore variety 

of a presentation, if the generator z deleted only appears in a word of form  z- 1w, 

where tr z-1 w does not involve each variable {tZ) try, tzxy|x, y 7̂  z}.
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We axe now in a position to define (and to try to justify) our definition of “simplicity3’ 

of a group presentation. We will say that a  presentation of a group is simpler than 

another if its Whittemore variety has smaller dimension. Why is this a reasonable 

definition of simplicity? First, we should note that, given any presentation P, it 

is possible to find a sequence of Tietze transformations which reduce P to “simplest” 

(really “locally simplest”) form P'; i.e., any transformation either makes P ' less simple, 

or keeps it equally simple. Secondly, by the above proposition, a Tietze transformation 

of type (1) which makes a presentation less simple increases the number of generators. 

What about transformations of type (3) and (4)?

T heorem  2.2 Let <  Y =  {glt g2, . . .  , gu} |R >  be a finite presentation. Then

a  A Tietze transformation of type (1) either increases the dimension of the Whitte­

more variety, or keeps it the same.

b  A Tietze transformation of type (2) either reduces the dimension of the Whittemore 

variety, or keeps it the same.

c A Tietze transformation of type (S) or type (4) does not change the dimension of 

the Whittemore variety.

Proof: Parts a  and b  were proved in the last proposition. We will show c for Tietze 

transformation of type (3); this implies the statement for transformations of type (4), 

since type (4) transformations are inverses of transformations of type (3). Suppose
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that a new relator r  is added, which is the consequence of two relators w, x in 

R; i.e., up to a cyclic permutation, r  =  xw. Adjoin variables trx , trw  to our set 

of indeterminates, and denote by I the ideal of character relations arising from the 

original relators. In particular,

I' =  (trx  — 2, trw  — 2, trxgt — ti, trw gt — t i , . . . )  C I.

We proceed by induction on the word-length of x. Suppose |x| =  1, say x =  gi. Then 

we have immediately that t r r  =  tr giw =  2 mod I'. Furthermore, it is easy to see 

that tr gtT =  ti mod I', since

trg ir  =  trgfw

=  t i t rg iw  — trw  

=  tf  — trw  mod I'

=  4 — 2 =  2 =  ti mod I'
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and for j ^  1,

trg jg iw  =  t, t r t jW - trw g jg ,1

=  tit,- — trw gjg^1 mod I '

=  tit,-— t j t r g ^ w  +  t r g f ’g r’wm od I'

=  tij trw  — trg ,g iw  mod I'

2 trg jg iw  =  2tj. mod I'

Now suppose that part c is true when one relator has length <  n. Let |x| =  tl By 

repeated application of the induction hypothesis, and the fundamental trace identity,

trgpcw =  trx trtjW  — trwgjx-1

=  trx tj — trwgjx-1 mod I"

=  trx tj — tj tr x- ,w +  t r x ^ g ^ w  mod I"

=  tr xgj trw  — tr g,xw mod I"

2 tr g,xw =  2tj mod I" 

tr  gjxw =  t,- mod I”

where j € { 1 ,2 ,..., n} and I" is generated by I', together with all elements of the 

form tr gj-yv —tj, for relators y, v with |y| <  n. Finally, we note that tr gjxw—2 =  0, 

by substituting “gj =  e” in the above calculation. 0
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The simplest example of Theorem 2.2 is the free group of rank two Pi =  (x, y | ) . 

Here, the Whittemore variety is unique: W(Pi) =  C3, and so dim W(Pi) =  3. (It is 

clear that in fact dimwPi =  3.) A Tietze transformation of type (1) gives us the 

isomorphic group presentation P2 = <  x,y, z [z >. Now we have

W(P2) =  V(tz - 2 ,  tx z - t* , ty2 - t y ,  - t r )

=  V(t2 -  2, -  tx, ty2 -  ty, 4 -  2 -  2)

=  V(tie 2, txz tx, ty2 ty)

and so dim W(P2) =  4.

If instead we apply a different Tietze transformation of type (1) to Pi, perhaps 

P3 = <  x ,y ,z |zy - 1x-1 >, then

W(P3) =  V (trzy- 1x-1 — 2, trxzy- 1x-1 — tx, tryzy - 1x-1 — ty, t r z ^ ^ x -1 — tz)

=  V( t 2txy txy2 2 , t 2ty ty2 tx, ty2txy ty txyz 4" txz ty ,

t 2txy tz%cyz txy t 2 )

A Grobner basis for the polynomials defining W(P3), with respect to degree-

lexicographic order with tx > ty > ty2 > txyz >  txy >  tz >  txz is:

(t 2ty ty2 tx,tytxy2 t 2ty2 +  ty tz, txy tz, t^ txyZ 2 ,

txtyyz +  tx tyz txyz 2 , t ztx ty tz,tx ■+■ txtyz t^ tx tyz}
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Inspection of the leading terms, which generate the initial ideal, shows that 

dimW (P3) = 3 .

This example, as simple as it is, exhibits two omissions in our definition of pre­

sentation simplicity. Firstly, we have not decided on a canonical way to choose the 

Whittemore variety of a presentation. Secondly, and more disturbingly, it seems that 

the dimension of W(P) is much too coarse a measure of simplicity: after all, P3 “looks” 

quite a bit different than Pi, yet they both have the same dimW(P).

D efinition 2.3 (The canonical Whittemore variety of a presentation) Let P =  < 

Y|R >  be a presentation. We will choose W(P) as follows: For each w €  (Yu {e})R, 

assign variable p(w) the value trw .

1. First, we apply the fundamental trace relation repeatedly to make p square- 

free (i.e., we transform p into an equivalent Fricke polynomial consisting of 

the traces of square-free words.) We always choose to eliminate the left-most 

syllable of length greater than one, and we always cyclically permute the word so 

that the syllable being permuted is on the right. (Note that this means that, in 

general, cyclic permutations of a relator may give different trace polynomials to 

the Whittemore variety. We choose this definition for its ease of computation, 

as opposed, say, to choosing the longest syllable, or choosing alphabetically.)

Exam ple 2.4 We would transform t 1223-i4 i—> t3- i4122 >—> t 3- i412t 2 — t 3-i41

2. We eliminate inverses in words in the same manner:
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Example 2.5 13-141 1-4 t^ -i 1—» t^ts — t4i3 (= tut3 —t^ )

3. Each word in the trace expression now is a square-free, inverse-free word. For 

each word of length N > 3, apply Vogt’s identity, with

A =  the first N — 3 letters of the word.

Repeat until all the words have length 3.

4- Finally, apply Fricke’s lemma in the unique way, so that each trace is a trace 

of an ordered word on 3 or less letters.

(Fractional dimension of an ideal) Let -< be a graded term order on C[X]. Let T be 

the reduced lattice basis of M., a monomial ideal in C[X]. The fractional dimension 

of M is the real number

L dist(l,p) mm——- — -—  
l€A per dist(l,p) +  1

Let X be a graded term order on CM, and I be an ideal in CM- then the fractional 

dimension of I with respect to graded term order X is the fractional dimension of in^ I.

In the appendix (page 94) we present a GAP package that searches the space 

of Tietze transforms of a finitely presented group, attempting to minimize the “frac­

tional” dimension of the Whittemore variety. We illustrate this technique with a GAP
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session.

gap> Read( "FPFricke.g" ); Read( "fibs.g" ); 

fpfricke, Version .899927

(“fibs.g” defines the generalized Fibonacci groups [73]

F(t, n) =  (xT, x2, . . .  ,Xn| {xiXi+1 -• • Xi+r_ix^]r |i € { 1 ,2 , . . . ,n}})

where the subscripts in the relators are taken mod n . )

gap> G := FibonacciGroupC 7,5 );

Group( f . l ,  f.2, f.3, f.4, f.5 ) 

gap> P := PresentationFpGroupC G );

«  presentation with 5 gens and 5 rels of to ta l length 40 »  

gap> T := Copy( P );

«  presentation with 5 gens and 5 rels of to ta l length 40 »  

gap> TzWhit( P ); 

gap> P;

«  presentation with 5 gens and 5 rels of to ta l length 24 »

We have reduced the total size of the relators from 40 characters to 24, by using 

TzWhit, which tries to reduce the “partial” dimension of the Whittemore variety’s 

defining polynomials coming directly from pairs of generators. Could we do better 

by considering triples of generators?
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gap> TzWhitTriples( T );

#1 new generator is _x6 

gap> T;

«  presentation with 5 gens and 6 rels of total length 32 »  

gap> U := CopyC P );

«  presentation with 5 gens and 5 rels of toted length 24 »  

gap> TzWhitTriples( U ); 

gap> U;

Apparently not! Let’s try simplifying F(7,5) with GAP’s own presentation simplifi­

cation function, TzGoGo.

V := CopyC P ); 

gap> TzGoGo( V );

#1 there are 2 generators and 2 relators of to tal length 54 

gap> G;

GroupC f . l ,  f.2, f.3, f.4, f.5 ) 

gap> W := PresentationFpGroupC G 

gap> TzGoGo( W );

#1 there are 2 generators and 2 relators of to ta l length 46 

Can we do better than this, by applying TzWhit? 

gap> TzWhit( V );
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#1 new generator is _x7 

gap> V;

«  presentation with 2 gens and 3 rels of total length 79 »  

gap> TzGoGo( V );

Apparently not.

gap> TzWhitTriples( V ); 

gap> V;

«  presentation with 2 gens and 2 rels of total length 79 »  

gap> TzGoGo( V ); 

gap> V;

«  presentation with 2 gens and 2 rels of total length 79 »

It gets worse:

gap> TzWhit( V );

#1 new generator is _x8 

gap> V;

«  presentation with 2 gens and 3 rels of total length 104 »  

gap> TzWhitTriples( V ); 

gap> V;

«  presentation with 2 gens and 2 rels of total length 104 »  

gap> TzGoGo( V );
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#1 there are 2 generators and 2 relators of to tal length 104 

gap> TzWhit( V );

#1 new generator is _x9 

gap> V;

«  presentation with 2 gens and 3 rels of total length 129 »  

gap> TzGoGo( V );

#1 there are 2 generators and 2 relators of to tal length 129 

gap> TzWhit( V );

#1 new generator is _xl0 

gap> V;

«  presentation with 2 gens and 3 rels of total length 154 »

The actual relators here are:

gap> G6 := FpGroupPresentationC V );

Group( f.4, _xl0 ) 

gap> G6.relators;

[ f .4~2*_xl0~-l*f.4~4*_xl0~-l*f.4‘~5*_xl0“-l* f.4~4*_xl(T-l*f.4~3*

_xl0*f .4*_xl0~-l*f .4~4*_xl0~-l*f .4'‘5*_xl0''-l*f .4~4*_xl\

0~-l*f. 4~6*_xl0~-l*f. 4~4*_xl0~-l*f. 4''5*_xl0~-l*f. 4'~4*_xlCT-l*f. 4~4, 

f . 4~-3*_xl0*f. 4‘~-6*_xl0*f. 4'~-4*_xl0*f. 4~-5*_xl0*f. 4~-4*_xl0*f. 4~-5*_xl0*f. 

~2*_xl0~-l*f.4~4*_xlCT-l*f.4~5*_xl0~-l*f.\

4~4*_xlCT-l*f.4~3*_xl0*f.4~-4*_xl0*f.4~-6*_xl0*f.4~-4*_xl0
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*f. 4~-5*_xl0*f. 4*'-4*_xlO*f. 4~-2 ]

It would seem from this example (and from numerous other examples) that this defi­

nition of group presentation simplicity gives, at best, a  minimal advantage over other 

standard presentation simplification techniques. On the other hand, the computa­

tional simplicity of our definition of presentation simplicity is quite appealing.

41

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Chapter 3

Some invariant theory of the symmetric

group

In this chapter, we present an algorithm that can be used as part of a normal-form 

algorithm for R(Fn). Our motivation, roughly, is as follows. We observe that Sn acts 

on the Gonzalez-Montesinos relations (1.13 through 1.17 on page 16) in the natural 

way, and that a complete set of orbit representatives has 4 polynomials, for each n  > 4. 

Following [115] we may describe the points in V(IU) =  X(FTl) by examining separately 

a Grobner basis for these polynomials, and a Grobner basis for the ideal of the orbit 

variety of <C(n3+5n)/6 modulo this representation of Sn. Although this approach works 

for small n, it quickly bogs down in the complexity of finding and manipulating the 

invariant ring of this |  (tl3 +  5n)-dimensional permutation representation of Sn. But, 

as we shall see, some careful use of “constructive” Polya theory lets us extend this 

method considerably. More precisely, we are able to give a practical normal-form 

algorithm for the invariant ring of these representations of Sn. We do not however 

claim that this would be a practical method to find the normal form of an an element 

of R(G), for a general finitely-presented group G.

An n  x n  complex matrix [ay] acts on C fo , X2, . . .  , x j  =  <C[X] by transforming
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generators as follows: x[aiil =  the action being extended to all of C[X]. The

fixed points in C[X] under the action of a complex matrix group G form a C-algebra, 

denoted by C[X]G, the “ring of invariants” of G. Rings of invariants of finite groups 

received much detailed study during this century. We mention particularly that C[X]G 

is finitely generated (the “Hilbert finiteness theorem,” see [39, section 1.4.1]) and that 

C[X]G is Cohen-Macaulay (the Hochster-Eagon theorem [66]). When encountering a 

finitely generated algebra, we naturally ask whether we can list or describe a set of 

its generators; whether there exists a set of generators with nice properties; and even 

whether we may write down such a set.

The question of the existence of a procedure for constructing a generating set for 

C[X]G was solved by Noether [97] who found a degree bound for a certain generating 

set of C[X]G. She then showed that this implies that there is a finite set of polynomials, 

whose image under the Reynolds operator generates all of C[X]G. (We recall the 

definition of the Reynolds operator below.) In this chapter, we will give a canonical 

basis (in the sense of Robbiano and Sweedler, whose work we briefly survey) for the 

ring of invariants of a particular representation of the symmetric group. We will also 

present a very explicit normal-form algorithm that uses this canonical basis.

A “canonical basis” (also called a “sagbi basis”) B of an algebra A C C[X], with 

respect to a term order is a generating set for A such that

<in^ B >=<in^ A >  .
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[110]. For example, consider C[X]Sn, the ring of symmetric functions, which are 

generated by

Cl =  X] +  X2 + ------- b Xn.

(72 =  XiX2 + X iX 3 - b ------- b X ^ X n

Cn =  X1X2...Xn

the “elementary symmetric functions.” (Here, we view Sn as the group of n  x n  

permutation matrices; i.e. C[X]Sn is the ring of invariants of the symmetric group 

with the obvious action.) The elementary symmetric functions form a canonical basis 

for C[X]Sn with respect to degree-lexicographic order (indeed, with respect to any 

term order [110, an observation attributed to Sturmfels].)

A finite canonical basis for an algebra allows us to write normal forms modulo A, 

much as a Grobner basis allows us to write normal forms modulo an ideal. (When 

we write “modulo an algebra A,” we mean of course modulo A as a vector space. 

Also, we will consistently write <B > for the subalgebra generated by B; (B) for the 

ideal generated by B.) Instead of the familiar division algorithm of Grobner basis 

theory, in this algebra case we must use the “subduction” (subalgebra reduction) 

algorithm. The subduction algorithm proceeds as follows: Suppose that the algebra 

B C C[X] is generated by the set {f i , f2, . . .  , fn}- To reduce f  € C[X] modulo (B), for

B = { f 1)f2, . . . , f n}: [116]
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A lgorithm  3.1 Subduction Algorithm. Given f  and B =  {fl5 f2, . . .  ,fu}.

while f  ^ C and there are non-negative integers {ii, . . .  , v ]  so that

r

in_jf =  c - c ^ O  do (3 .1)
j=i

output c f f 72 • • • fj;r 

replace f  by t  — c f f 2̂ - - * fj:T

od

output f  as the remainder

When {fi, f2, - .. , fn} is a canonical basis, then this algorithm will always return a 

remainder of zero for any f € B. Conversely, if a set {fi, f2, • • • , fn} subduces each 

f 6  B to zero then the set {fi,f2, .. - , fn} is a canonical basis [98]. The expressions 

cfV f22 - - - f̂ T found in this procedure, which we think of as monomials in Cf’fi”], 

are called superpositions, and are analogous to the more familiar S—polynomials of 

Grobner basis theory.

The permutation group Sn has a natural representations as a group of 2n x  2U 

matrices, and also as a group of (^) x (£) matrices. We present an explicit canonical 

basis for the invariant ring of these representations of the symmetric group Sn acting 

on the power set of { 1 ,2 ,..., n}. In other words, we consider the representation by
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permutation matrices arising from this action of Sn, and let this matrix group act on

X (m) : = ^ 12"  .m> ^12 (m— • • • >^ ( n —m +1)...tlJ

by permuting the indices of the elements of X^n j :

G’f c j l  jm )  =  X{<dl o jm !

for a  € Sn, 1 < j i < . . . <  jm < n .

First, let’s fix some notation. As is customary, we denote by this represen­

tation of Su acting pointwise on m-element subsets of {1 ... n}. Analogously, by s£a* 

we will denote the symmetric group Sn acting on subsets with m  or fewer elements. 

(So, for example,

cm  _  cm  _  cn  — ° n  tl >

S'x1) +  S ^  +  --- +  S'1m)= S ^

etc. )

We will henceforth write CPC]5""11 for CtX^)]5̂ 1, and C[X]s m̂'for 

C[X(n j U . . .  U X(j] U X(ri)]s’1 '. In [114], Stanley introduced an ingenious scheme for
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the construction of a set of generators for

C[X]S"""

see also [90]. We call a hypergraph with exactly m  vertices on each hyperedge an “m- 

hypergraph”. We take the convention that graphs (resp. hypergraphs) are without 

loops, but may have multiple edges (resp. hyperedges.) Encode each monomial with 

coefficient 1 ,

yet __  TT a ( i i , i 2 .......i-m)
XC) -  I I  xa-k

1 < il < —<im<Tl

with the m-hypergraph on vertices {1 ,2 , . . .  , n}, where there are exactly 

cx(ii,i2, . . .  , im) hyperedges on the m vertices 1 < ii < ••• < i™. < n . Let 

* = * (m) : C[X] —> C[X] be the so-called “Reynolds operator” of the matrix group
S-n.

SiT-1, which averages the action of a group on a polynomial:

Then *f € C5""1', and furthermore any f  in the ring of invariants may be written 

uniquely as a C-linear combination of Reynolds operators of monomials. By extend­

ing linearly the identification of hypergraphs with vertices from {1 , 2 , . . . ,  tl) with 

monomials in C[X] to the free vector space generated by these graphs, Merris and
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Watkins observed:

Proposition 3.2 The Reynolds operator, restricted to the free vector space M gener­

ated by a complete set of representatives of non-isomorphic hypergraphs with k hyper­

edges on vertex set {1,2, . . .  , n], is a vector space isomorphism from M to the space 

(C[X]s m̂l )k =  {f e  Cs m̂’ | degf =  k}.

Proof: see [90].

(By the way, Merris and Watkins were motivated by some computational problems 

in Polya theory. For example, by calculating the permutation character of G =  Sn1, 

and invoking Molien’s theorem, which expresses the Hilbert series of C[X]G in terms 

of the characteristic polynomials of the elements of G, they verified a generating 

function for a£, the number of nonisomorphic graphs on n  vertices with k edges:

Y ° °  n n_k _  J_ V  1
Z_k=0 u k z  — n! 2-o-eSi,21 det(I-ar)

=  i r ffn - z ar , n - z br 1---

where a, b , . . .  are the lengths of disjoint cycles of permutation cr. )

For the convenience of the reader, we briefly recall some classical invariant theory. 

A recent survey of algorithmic invariant theory can be found in [115]. An important 

fact about invariant rings is that their degree doesn’t depend much on the action of 

the group:

Theorem 3.3 Let G < GL{Cd) be a finite matrix group. Then any d + 1 elements
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of C[xi, . .  .x<i]G are C-algebraically dependent. There exist d independent elements 

of C[xt , . . . Xd]G, thus dimC[X]G =  d.

PROOF: This is essentially theorems I and II of chapter XVII of Burnside’s treatise 

[23]. Our proof basically follows his. Another proof may be found in [115, The­

orem 2.1]. By the Hilbert finiteness theorem, C fo , . .  . x j 6  is a finitely generated 

integral domain. Thus, by the Noether normalization theorem, dimC[xi, . .  .x<i]G, 

the maximum length of a chain of prime ideals, is the length of any maximal chain 

of prime ideals. Since G is finite, C [x i,...x d]G is Cohen-Macaulay. We exhibit a 

chain of length d, which is the longest possible chain in a Cohen-Macaulay subring 

of C[xt , . .  .xd]G.

Recall that if I, J C R are ideals, I +  J is the smallest ideal that contains both I 

and J. Define

Io =  (**i)

I7 =  (*xix2) +  I0

Id-1 =  (*x l * ' **d) +  Id -2  

Id =  CpC]G.

These ideals evidently are a filtration for C fo , . .  . x j 6. Recall that the set of 

associated primes Ass (I) of an ideal I C R is the set of prime ideals of R which 

annihilate some element of the module R/I. For each i, choose minimal Ji €  Ass Ii. 

For 1 < i  <  d, Ii contains *xix2 - - -xd £ Ii_i. Also, Id contains 1 £ Id_i. So we have
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the maximal chain of prime ideals

Jo S Ji S ' "  S  Jd—i S  Jd =  C[X]G

and thus dimC[x!, . . .  ,x d]G =  d. 0

(An interesting discussion of this result may be found in [114].)

Given a permutation group, let us say the permutation group Sn \  then clearly any 

symmetric polynomial lies in the invariant ring C[X]Ŝ21. The elementary symmetric 

polynomials

01 =  x 12 +  x13H------ i“X(n-1)n

=  Y  XV =  *XU

0 2  =  X l2 * 1 3  "I--------

= ^ * (*12*13) + j  * (x12X34)

generate the symmetric polynomials (and indeed, as we have noted, are a  canonical 

basis for them.) It is well-known that C[X]Ŝ2' is a free module over the ring <  Oi, . . .  > 

(the existence of such a “regular system of parameters” is a popular way to define 

Cohen-Macaulayness.) We call these homogeneous invariants the primary invariants 

of the group S n \ and seek a finite set of invariants, called the secondary invariants,
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which together with the primary invariants generate the whole invariant ring- (Such 

a set of secondary invariants exists, since invariant rings of finite groups are Cohen- 

Macaulay.) By corollary 2.7.10 of [115] the set of polynom ials

S =  {*m| m  is a descent monomial of S ^ }

are a set of secondary invariants of S ^ \  A “descent monomial” is a  monic mono­

mial which is associated to a permutation. Since has (£)! members, this set 

of secondary invariants is clearly less than optimal. To “pick out” a  minimal set of 

secondary invariants, one may use the Hilbert series of C[X]S’1" ', which tells us the 

number of algebraically independent invariants of a given degree. (Hilbert series of 

invariant rings may be found by a fundamental theorem of Molien, and are usually 

called Molien series in his honor.) The Molien series of G C[X]Ŝ2' is, by Molien’s 

theorem,

i i i (;)± y  _____ 1______ =  _  y  T T n - z l r ' ilM1
n! det(I —zM) n!

Mesi,2’ M€S{,2) 1=1

. (5)
=  y L W  _  n.)(UC*r))

n ' ceSn. i= l

51

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



(where U(M) is the number of cycles of length i  in M.)

■Iength(a)
i= l (a(i)!lQ(i))

j-jlength(a) __ z a(i) j (n -2 )

a  h n  denoting that vector a is a  partition of integer n.

We do not take this approach here. Instead, we present a canonical subalgebra

(very large) basis implicitly.

T heorem  3.4 Recall that we have associated labelled hypergraphs with monomials.

a) Let S be a set of equivalence-class representatives of labelled hypergraphs par­

titioned by isomorphism on vertices {1, 2 , . . .  ,n}; with k  m—hyperedges (resp., 1c 

hyperedges, each edge on k or fewer vertices.) Then *S is a canonical basis for

basis for the ring C[X]S‘2’, and a version of the subduction algorithm which uses this

algebra generated by the set of degree k  elements of the ring

C[X]< ')  (resp. ((C[X]S- ’ ) with respect to any term order. Furthermore, S con­

tains a regular system of parameters for s"m) (resp. under

the filtration induced by degree grading.

b) The image under * of a set of representatives of all labelled hypergraphs up 

to isomorphism on vertices {1 ,2 , . . .  , n} with (^) or fewer hyperedges, each on m  

vertices (resp. m  or fewer vertices) is a canonical basis for C[X]s m̂l (resp. C[X]s m̂l)

with respect to any term order.

PROOF: Fix any term order -<.

52

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



a) Let f  be in (C[X]S"- ’ )k \  {0}, for k  >  0. Then (in_,f)/LC^(f) (where LC^(f) 

denotes the leading coefficient of f  with respect to -<) is a hypergraph with k m- 

hyperedges, since degin^ f  =  k. Since f  is in CpC]5""1' ,

f  — LC(f) • *(in_< f/LC(f)) =  fi

is in CfX]5*1 ', and furthermore fi is again homogeneous of degree k, and has fewer 

terms than f  (since f  is not constant.) Continuing this process, we eventually reach 

a constant, which is zero since f  is homogeneous of positive degree. Thus, the set of 

monomials associated to the set of hypergraphs with n  vertices and k m-hyperedges 

generate <  (C[X]Ŝ  ' )ic >  as an algebra. Also, each step in our reduction is a step in 

the subduction algorithm, thus these hypergraphs are a canonical basis for

<(C[X]s-ml)k > .

If f€  (C[X]Ŝ  ‘ )k \  {0}, k > 0, then (inx f)/LC^(f)is a hypergraph with k hyper­

edges, each with m  or fewer vertices. The proof proceeds as above.

b) Since C[X]s-ml =  ® k(C[X]s-m: )k, we have by part (a) an (infinite) canonical 

basis for C[X]s m̂': the image under * of all hypergraphs (up to isomorphism) on 

{1 ...n } , with each hyperedge on m  vertices. We would like to express each f  6  

(CtX]5̂ '  )D , D > (^) as an algebraic combination of (*fx |ft € (C[X]s m̂) )x, I  <  (™)}. 

Now products of Reynolds operators of simple hypergraphs (hypergraphs without
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multiple hyperedges) must have multiple hyperedges, thus the set of simple hyper­

graphs, each of whose Reynolds operator is contained in some (CPCs’‘m,) i , l  <  Q ), 

contains (^) algebraically independent elements. Statement (b) is now true by theo­

rem 3.3. 0

Although we are most interested in using the theorem in the case when m  <  3, it is 

nonetheless unfortunate that these canonical bases grow so quickly (there are many 3- 

hypergraphs on 9 vertices.) For this reason, any computer algorithm which operates 

on an explicit canonical basis for C[XJSn'will be confined, for practical reasons, to 

small n. But the subduction algorithm itself only requires that we be able to exhibit 

elements of the canonical basis satisfying condition 3.1.

A lgorithm  3.5 Algorithm (Subduction for C[X]S’1 '.) Given: f  in C[X],

Output: a normal form for f  mod C[X]S’1 ‘, together with a sequence of superpo­

sitions

F := f.

done := false 

repeat

i f T i s  constant then

output Y as a term of the expression for f  

done := true 

elseif there are hypergraphs {r\} so that:
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a) iru- *r\ =  ^

b)each r\ has (^) edges or less, and

c) in^ F =  r i i  ri

then

output LC{i) • U i* h  os a term of the superposition

F : = f - L a f ) - r i i * r i

else

done := true

f i

until done

output F as a normal form for f .

We have considerable leeway in our choice of {r\} at each step. But part (d) of the 

theorem (together with the theory of canonical bases - see e.g. [98] or [92]) guarantee 

that the algorithm will terminate with a normal form for f  mod Cpd5*1' .

As an example, let’s look at

fi =  X̂ 2 +  *13*123 +  2 € CpCj] (3.2)

with lex term order, xi x  xz > -... >- xi23 X . . .  X X234. We have

LT(fi)/LC(fi) =  1 ,
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so we write f  i as

f, =*(x?2) +  (fi-*C>Ci2))

=  * (* u ) +  ~ X U  -  x 14 -  * 3 4  +  X 13X 123 +  2^ " - ‘ V" ~ ■ s
H

^  ' 1 2 3 * /  ' 1 2 3 '
Now LT(f2)/LC(fi) = 3  - T- - ̂  (where denotes the hyperedge

on vertices {1,2 ,3}) cannot be written as hypergraphs such that inx V = in^ *r, and

C  i )
thus f2 is the normal form for fi mod C [X ^,X ^nj] n .

How may we recognize when an appropriate choice {Pi} exists? In other words, 

how may we recognize that an appropriate superposition 3.1 is available? (We restrict 

ourselves to hypergraphs with the same number of vertices on each hyperedge, since 

all of the hyperedges in the orbit of a hyperedge lie on the same number of vertices.) 

One reasonable idea is to greedily choose higher-weight hyperedges to form a maximal 

graph Ti so that inx =  in^ *r^ (let’s call such a Pt an “initial graph” (or “initial 

hypergraph.”) If this can be done, we have reduced the problem to a smaller graph 

LT(f2)/(LC(f2) • TO- But for the monomial

f =  x?2x?3x14 
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with lex order -<, this greedy algorithm would first choose H =  xf2, and then fall for

f/x f2 =  xf3x14, which is worrisome since f  is already an initial graph. (Clearly, on

the other hand, if -< were degree ordering, this greedy algorithm would work for f) . 

Let us examine this situation more closely, using the language of greedoids [83].

A “greedoid” is a  sort of generalized matroid. Consider the following five conditions 

on the ordered pair (E, Q C PoweTSet(E)):

1. 0 e £

2. (Accessibility Axiom) X € G,X ^  0  implies that there is x € X such that 

X\{x}<ES

3. (Exchange Axiom) X, Y e  Q |X| =  |Y| +  1 implies that there is x € X \  Y such 

that Y U {x} e  Q.

4. If A C B € G, then A G E.

5. G is closed under union.

If the pair (E, Q C PowerSet(E)) satisfies conditions (1) - (3), it is called a (simple) 

greedoid. If the pair satisfies conditions (1) - (4), it is called a matroid. If the pair 

satisfies conditions (1) - (3) and (5), it is called an antimatroid. The elements of Q 

are called the feasible sets of the greedoid. A maximal feasible set is called a basis. 

If we furthermore allow elements of Q to be multisets, rather than sets, the greedoid 

is called non-simple.
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See [22] or [83] for a survey of greedoids and their applications to combinatorial 

optimization.

The multiplicity-free initial graphs (in other words, the square-free monomials) 

form a greedoid Q as (hyper-)edge sets of {1..n} under C. We declare 0  to be the 

initial graph of 1, so that 0  € Q. The inclusion poset of Q. when m  =  2, and -< is 

lex order, x12 >- xi3 >- - - - is shown in figure 3-1.

We have drawn the graphs in 3-1 so that if H is to the left of r2, then H -< r2. 

Note that

1) Q is not a matroid when n  > 2. Q is not closed under union (e.g.
/ "  / "  / “i l l
/ 4 \  \ / 4

3 u  3 = 3  g Q.) So Q is not an antimatroid, when t l  > 3.

2) Kn, the complete graph, is the unique basis (maximal feasible set) of Q.

Thus rank({?) =  rank(Kn) =  n!.

3) By construction, any objective function which chooses -^-greater graphs

would be compatible with this greedoid structure, thus the greedy algo­

rithm applied to Q will find a basis which maximizes this function - in 

other words, Kn.

If T € G, then the interval [0, F] is a greedoid where the greedy algorithm produces

T, which is the unique basis. Let V be a graph. We define a greedoid £/(r) as follows:

If T" is a multiplicity-free initial graph subgraph of T, which occurs t  times in T, then

58

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



Add a disjoint edge Add a connecting edge

Kn

Increasing term order

Figure 3-1 Inclusion poset for Q
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the multiset (subgraph)

(e, e, . t e |e an edge of T)
*r times

is a feasible set of Q{T), which we call the initial graph branching matroid of T. (If 

T contains no initial graph, we define £(T) =  0 .) Non-simple greedoids maximize 

compatible objective functions with the greedy algorithm in the same way that simple 

greedoids do - in this case to provide us with a -^-maximal basis (included initial 

graph) of T. Indeed, this greedy algorithm is just a mutation of Prim’s ‘visit an 

unvisited node first’ procedure to find a maximal-weight spanning tree in a graph.

The following theorem gives us a termination condition for the subduction algo­

rithm 3.5.

T heorem  3.6 Let To be the basis found by greedily searching for a maximal initial 

graph subgraph of P, in the greedoid Q{T). I f

r \r0

is non-empty and contains no initial graph, then condition 3.1 in the subduction 

algorithm for  C[X]Sn cannot be satisfied for F =  T.

PROOF: Suppose on the contrary that there exist initial graphs r2,... T; so that

r = r1r2...rl.
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Then, since -< is a term order, T is an initial graph, so T e £ (r),  and <?(r) is just 

the interval [0, H in £(Kn). But then T \  r0 =  0 , since Tis itself the unique basis in

[0 , n .  o

7
If we encode a graph by the ^ ^ - tu p le  consisting of the entries in the upper

2
/

triangular part of the graph’s adjacency matrix, (e.g. 3 has adjacency matrix

/  \  
0 1 1

1 0 0 

1 0 0

/1

so we write code( 3 ) =  (1,1,0) ), then the task of greedily searching Q[Y) with 

respect to lex-order -< is:

repeat

new := largest code (considered as a binary integer) obtained 

by changing the first zero which has no ones to the right of 

it to one

until new is maximal in T and is not isomorphic 

to any graph previously considered
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The number of operations that must be performed in this loop is dominated by the 

difficulty of checking each of the graphs constructed for isomorphism with previous 

graphs. Consider the monomial associated to graph

5 - 4

If m  contains a spanning initial graph subgraph, then this graph has three vertices 

(1, 2, and 4) of degree 2, one vertex (2) of degree 3, and one vertex (5) of degree 1. If 

greedily adding an edge would cause us to exceed one of these degree bounds, then we 

have found our basis of ^(T). R. Read [107], [78] has considered this problem in the 

context of the problem of listing all simple graphs on n  vertices up to isomorphism. 

He showed that, for lex order, it suffices in the above loop to ensure that the code of 

new is canonical - is, maximal under all permutations of the vertices. (He coined the 

term orderly algorithm for this sort of graph-cataloging procedure.)

To greedily search £ ( n ,  we start with 0 , and add the single edge 1-2. We add 

edge 1-3, which does not exceed our vertex degree bounds, and which is canonical. We 

may not add edges 1-4 or 1-5, since degree(l) now equals 2. We add edge 2-3, which 

is canonical. We add edge 2-4, which is canonical. We may not add 2-5. Adding edge 

4-5 completes our search.

Checking a graph for canonicality can take as many as n! comparisons. But for
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most graphs, when < is lex order, the situation is not that dire -the new graph is by 

definition canonical.

We summarize our discussion with an efficient normal form algorithm for C[X]S"'1.

A lgorithm  3.7 Algorithm: Subduction for C[X]Ŝ ' with respect to lexicographic or­

der. Given: f G C[X]

Output: A normal form for f  mod C[X]S" ''.

F ; = f

done := false 

repeat

if  F G €  then

done := true

else (the “orderly algorithm”)

new := (0, 0, •••, 0) 

newer := new 

success := false 

repeat

change the first zero in new, which is to the right of all ones, to

one

if this new edge is in F then 

success := true
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new := newer

f i

until success 

or

(no edge that would be represented by a position to the right of 

rightmost one is in T) 

if success then

m  ;= multiplicity of new in F 

F;= F -  LC{T) • (mew)™

else

done := true

f i

f i

until done

output F as a normal form for f
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Chapter 4 

Divisibility properties of trace polynomials

4.4.1 The shifted trace polynomials; strong and weak divisi­

bility

In this chapter, we give some divisibility properties of character relations and trace 

polynomials.

T heorem  4.1 (horowitz) Let Wi =  gjf, wz =  g}, gi € Fn. I f  gcd(k.l) =  1, then

gcd(twi 2, 2) =  t̂ gcdik.ii 2.

In other words, the sequence of •polynomials {tgi —2}i is a strong divisibility sequence. 

We begin our proof with a version of Theorem B of [94]

P roposition  4.2 For z  € N, let (fn) be the sequence of integers determined by

fn+2 =  a(fn+1 +  c) +  b(fn +  c] -  c (4.1)

fo =  0 

fi =  z.
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Suppose that a, b, c are pairwise relatively prime.

Then, for sufficiently large prime d, there is an integer k so that

k|n =*• d|fn.

Proof: Set 3  = {n\ d|fn}. Since fo =  0, 3  is not empty. If 3  ^  {0}, then let n  be the 

element of 3  with smallest absolute value. Then, following [94], there is an integer d' 

so that d >  d' implies

fn+k +  (—b)kfn-k =  0 mod d.

Thus, 2n, 3 rt,. . .  € 3 , and likewise —n, — 2 n ,. . .  6 3 . 0  

C orollary 4.3 (to proposition) fgCd(m,n.) =  ±Cgcd(fm,fn).

Proof: (of theorem) We apply the proposition with c =  2, z =  ti =  trg i. By 

the recurrence 1.7, and corollary 1.5, (trxu) — 2 =  fn(tx) for any word x. Also, 

degt (trxn) =  n, so degt (t 6cd(k.u) < gcd(k.l). For an infinite number of primes d,* 1 9i

we have by the above corollary

gcd(tw, 2|t1=Z) twz ^lti=2 =  i(t^gcdik.i) 2)|t]=z mod d.

Since each of the polynomials tw, —2, twz —2, and t lgcd{k.D —2 are monic, the theorem 

follows. 0
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Let {an} be a sequence of elements of a unique factorization domain, {dal is called 

a divisibility  sequence [119] if dalcim implies that n|m. an is called a s trong  

divisib ility  sequence if, in addition aSCd(m.n) =  ±gcd(am, an). Corollary 4.3 states 

that the shifted trace polynomials fn are a strong divisibility sequence. For each 

integer n  >  0, let ha be the polynomial

lcm {fi — 2 |i|n } ‘

The sequence of polynomials ha(x) was first considered, in a different context, by 

Horadam, Loh and Shannon [67], who noted that fn (x) is a divisibility sequence. For 

positive integer a, define a sequence of polynomials

Qn+2 =  *9n+l 9n

go =  a  

gi =  x

with associated Hn =  gn — a,

,  Hn
lcm {H a |i|n }*
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t r y ” - -  2

1 x  — 2
2 ( x  — 2 ) ( x  +  2 )

3 ( x  — 2 )  ( x  + 1  )z

4 ( x  — 2 ]  ( x  +  2 ) x z

5 ( x - 2 ) ( x *  +  x - 1 ) z

6 ( x  — 2 )  ( x  +  2 )  ( x  — 1 ) 2 [ x  + 1  )2

7 ( x  — 2 )  ( x 3 +  x 1  — 2 x  — 1 ) 2

8 ( x  — 2 )  ( x  +  2 )  { x 1  —  T f x 1

9 ( x - 2 ) ( x + l ) ^ ( x i - 3 x  +  l ) i

10 ( x  -  2 )  ( x  +  2 )  (x 2 -  x  -  1 ]2 ( x -  +  x  - 1 Y

11 ( x  — 2 )  ( x 5 +  x 4 — 4 x s  —  3 X 1  +  3 x  + 1  ) z

12 ( x  _  2 )  ( x  +  2 ) ( x  -  1 Y [ x  +  1 )z ( x z  -  3 )  V

1 3 ( x  -  2 )  ( x 6 +  x 5 -  5 x 4 -  4 x ^  +  6 x z  +  3 x  -  1 )  ■£

1 4 ( x  — 2 ) ( x  +  2 ) ( x 5 — x 1  — 2 x  +  1 Y ( x J  +  x jL —  2 x — 1 } 2

15 ( x  — 2 )  ( x  +  1 ) 2 ( x 2  +  x  —  l  Y ( x 4  —  X s —  4 x 1  +  4 x  + 1  )2

Table 4.1 The shifted trace polynomials

We aim to generalize the results of [67] to consider the notion of “weak divisibility.” 

Let k  € Z, and let {an} be a sequence in a unique factorization domain. We call {cqj 

a “k—weak divisibility sequence” if, for all I > 0 such that k|l, ak divides cq. Clearly, 

divisibility sequences are weak divisibility sequences for all k.

Since we have seen that a  =  2 implies that Hn is a divisibility sequence, we ask: 

for what a  G €  is Hn a k—weak divisibility sequence? In the polynomial ring C[x, a], 

let <  be degree-lexicographic order [31], with a  < x . The ideal I =  (x — a] is 

principal, and so {x— a} is a Grobner basis for I. Let Tn(x, a) £ C[x, a] be the normal 

form of Hn(x, a) mod I. If a term of rn included the variable x to a positive power, 

then the leading term of rn would also include x to a positive power, and we could 

reduce rn by x — a. But this would contradict the assumption that is the normal 

form of a polynomial. Thus we have
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try 11
1 X
2 x2 — 2
3 (x2 — 3)x
4 x4 — 4x2 +  2
5 (x4 — 5x2 +  5)x
6 (x2 — 2) (x4 — 4x2 + 1)
7 (xb -  7x4 +  14x2 -  7)x
8 xs — 8x6 +  20x4 — 16x2 +  2
9 (x2 -  3) (x6 -  6x4 +  9x2 -  3)x

10 (x2 -  2)(x8 -  8xb +  19x4 -  12x2 +  1)
11 (x16 -  l lx 8 + 44xb -  77x4 +  55x2 -  11 )x
12 (x4 - 4 x 2 +  2)(x8 -  8x6 +  20x4 -  16x2 +  1)
13 (x'  ̂-  13x10 +  65x8 -  156x6 +  182x4 -  91x2 +  13)x
14 (x2 -  2) (x12 -  12x'° +  53x8 -  104xb +  86x4 -  24x2 +  1)
15 (x2 -  3) (x4 -  5x2 +  5) (x8 -  7xb +  14x4 -  8x2 +  1 )x

Table 4.2 The trace polynomials factored over the integers

rn(x, a) € C[a]. The roots of the polynomials rn thus are the complex numbers a  

such that Hn is an n —weak divisibility sequence. The first few rn are listed in table 

4.3.

4.4.2 A  discriminant identity

We now fix some notation for the rest of the chapter.

N o ta tion  4.4 We denote by fn(x) the (n)** —degree ■polynomial

We denote by a ^ i the coefficient o/xTl-l+1 in fn. When ti is clear, we write cq instead
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0
—2a +  a2
—2a — a2 +  a3
—2a2 — a3 +  a4
2a2 — 3a3 — a4 +  a5
—2a +  3a2 +  3a3 — 4a4 — a5 +  a6
—2a — 3a2 +  6a3 +  4a4 — 5a5 — a6 +  a7
—4a2 — 6 a3 +  1 Oa4 +  5a5 — 6a6 — a7 +  a8
4a2 -  10a3 -  10a4 +  15a5 +  6a6 -  7a7 -  a8 +  a9
- 2 a  +  5a2 +  1 Oa3 -  20a4 -  15a5 +  21 a 6 +  7a7 -  8a8 -  a9 +  a 10

Table 4.3 The remainder polynomials rn (a)

Tl 0
12 a(—2 +  a)
T3 a ( a + l ) ( —2 +  a)
U a2(a + 1 ) ( -2  +  a)
T5 a2(—2 +  a)(a2 +  a  — 1)
Tg a (a  — 1)(—2 +  a )(a  +  l)(a2 +  a — 1)
r? a ( a — 1)(—2 +  a )(a  +  l)(a3 +  a2 — 2a — 1)
TS a2(—2 +  a) (a2 — 2) (a3 +  a2 — 2a — 1)
T9 a2(a + 1 ) (— 2 +  a) (a2 — 2) (a3 — 3a +  1)
TlO a (a  + 1 ) ( — 2 +  a)(a2 +  a — 1)(—a  — 1 +  a2) (a3 — 3a + 1)
r n a(—2 -f a)(a2 +  a  — 1) (—a — 1 +  a2)(a5 +  a4 — 4a3 — 3a2 +  3a + 1)
ri2 a2( a — 1)(—2 +  a ) ( a +  l)(a2 — 3) (a5 +  a4 — 4a3 — 3a2 +  3a  + 1)
t 13 a2( a — 1)(—2  +  a ) ( a +  l)(a2 — 3)(a6+  a5 —5a4 — 4a3 +  6a2 +  3 a — 1)
r 14 a(—2 +  a)(a3 +  a2 — 2a — 1) (a3 — a2 — 2a + 1) (a6 +  a5 — 5a4 — 4a3 +  6a2 +  3a — 1)

Table 4.4 The remainder polynomials rn(a), factored over the integers
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o f  Q-n,i-

It is easy to show by induction that f [ { n - i ) /2j (a-) divides rn (a) for all integers 

n  >  0. (See table 4-4-)

We have

&2m,i —
(_1)K("£»), i  =  2K + 1  

l  =  2K-

and an analogous formula for <X2m+i,i.

We give a surprising formula for the discriminant of the polynomials fn (a) :

T heorem  4.5 I f n  > 1, the discriminant of fn, A(fn.), is [2n +  I)71-1.

Proof: To avoid an otherwise oppressive notation, we will first assume that n  is 

divisible by 4, and write n  =  2m. We indicate at the conclusion of the proof the minor 

changes needed when n  is not divisible by 4. Our proof is in three parts. In part one, 

we show that (2 n +  1 )n_11 A(fn). In part two, we show that |A(fn )| <  (2n +  1 )TL_1. 

Finally, in part three, we show that A(fn ) has positive sign.
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Part one: Our convention is that the Sylvester matrix of the resultant of two 

polynomials f , g looks like

( \
Coefficients of f

Coefficients of f

Coefficients of g 

Coefficients of g

V

so, since f2mM is a polynomial of degree 2m, the Sylvester matrix S of A(fn ) is:

OC'i a 2 a3 On-1 O a 0ta+1 0

a.i O il <Xn-2 Ota-1 « a 0ta+1 0

<*1 O il a 3 • - - Oa+1

TUX 1 ( n — 1 )CX2 (n-2)<x3 2an_1 Oia Oota+1

ruxi 1 I ( n - 2 ) a 3

; ; (n — 1)ct2 ;

0 n c t i ( n - l ) a 2 Oia

TL
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Transpose the rows of S, so that each of the first 2m — 1 rows coming from the 

coefficients of are followed by the corresponding row from fn(x)

S' =

(
2 m ©  —(2m — 1 ) © , )

-(«-,) 

M 3

-(2m —2) © j )  (2m - 3 )  © 2

- © ! )  © 1 )

-(2m— I} © ,)  - ( 2 m - 2 ) © J )

© , )  - © ! )

2 m ©  - ( 2 m - 1 ) © ,)

- L ” )

\

(4.2)

Since we have assumed that n  =  0 mod 4, S' is obtained from S by an even 

number of row exchanges. So the determinant of this matrix is the determinant of S, 

which is a polynomial in m. An irreducible polynomial p(m) divides the polynomial 

(detS)(m) if and only if each root r of this polynomial p(m), when substituted for 

m  in the above matrix, gives a matrix of determinant zero. If S(r) is a matrix whose 

row rank is less than 2n — 1, then there is a non-trivial linear combination of the

rows which is the zero vector. Let us write down such a linear combination. There
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axe (n — 1) triples of consecutive rows which look like

(2 m )©  - ( 2 m - 1 ) © ,)  •••

©  -  <4-3> 

(2™+’)© ')  ©

We write each of the binomial coefficients as a polynomial as follows: for k > 0, 

(™) is identified with the polynomial ^ m -, and (™^i) is rewritten as For

k < 0, (™) is identified with the polynomial 0. (The reader should be aware that in 

general these polynomials yield the appropriate values for the binomial coefficients 

only when m  is a positive integer.) In particular, when we write an expression like 

|m=a we intend that a be substituted for m  in the polynomial •

We claim that twice the first row in 4.3 plus the second equals the third, when 

m  =  r  =  — This is verified by direct calculation: since , for positive integers a, b :

if and only if A a — Bb =  0, we have

74

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



for each i  if and only if

(4m — 4 i+  l)(m  +  i) | i  =  (2 x )(2 m -2 i+ l)  |.

which is clearly true. So

2(2m — k +  1 )aTc +  ctk =  (2m — k +  2)ctk_1

for even k; and similarly for odd k. Thus, det(S)(m) evaluated at m  =  — \  has 

determinant zero, since adding twice the first row and (—1) times the third row to 

the second row yields a row of zeroes. But likewise, twice the third row plus the 

fourth equals the fifth, etc. There are (n — 1) rows of zeros in this new matrix; so, 

m  =  — \  is a  root of multiplicity at least (n — 1):

for some K >  2m — 1. In the next part, we will show that K <  2m — 1. (In particular, 

this means that the determinant is nonzero.) Our method of proof will give us as a 

bonus that C|4k, so that 4k =  C.

Part Two: Let T) > r2 >  . . .  > rn be the roots of fu. By definition, A(fn) =  

E t a  (fi — Tj). Since the geometric mean of a set of positive numbers is less the arith-
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metic mean when the numbers are not all equal, we have that

i.e.

/ n i l n - r O I  <

<  l £ wrt z—

' ^ i n l

n  tl—1

« 2 
ai

By Graeffe’s method from the theory of symmetric functions, |ti| =  | 1,

, etc. In particular,

J j n l  <
<X\

Oi-1
/m +a\ / m+a \

  j  \  Vm-ai , t  \  \ra— a+1/
— Z Z _  /m +a—1\ +  /m+a>

V m—a /  \m -aJ

=  2 y ^ t s + 2 r  2a ,
2a m — a +  1

<  2 r = ^ + 2 r — ? ! ! - , .Ji 2a J0 m — a + 1  

=  (1 +  In m) m  — 1 +  (4 In ( m + 1) — 4) m  +  41n (m +  I)

<  V 5 V 3 r + T  (for u  >  0.)
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Plugging this last inequality into 4.4 gives us that |A(fn)| <  2 (2n+  1 )n_1. Since the 

discriminant of fn is clearly an integer, we have |A(fn)| <  (2n  +  1 )n_1.

Part Three: We define a new matrix, S", obtained by adding twice each odd 

row of S' to any row immediately below it, subtracting each odd row from any row

immediately above it, and multiplying each even row by i
(4m + l) . S" looks like

S" =

2m ©  - ( 2m - 1) © ,)

« " « ■ ■ ) ( ; )  ( - [ 4 » - l ) ( . - , ) - 2 m ( ; ) )
(4 m + l) (4 m + l)

0

Clearly det S =  det S' =  (4m +  1 )2m_1 det S". It is our task to show that det S" =  1. 

In fight of parts one and two above, we know that detS" =  —1,0, or 1. Thus, it 

suffices to show that detS" > 0.

Let M be a connected k x k minor of S", which does not have a zero on the main 

diagonal. (As the name implies, a connected minor of a matrix M  is a  minor which 

is obtained by deleting rows and columns only at the beginning and end of M.)

For a matrix M, the notation M|[ denotes the minor obtained by deleting the 

I—th row and the j—th column of matrix M. There is a recurrence, originally pop­

ularized by C. Dodgson, which relates the determinants of a square matrix with the 

determinants of its connected minors. Dodgson’s determinant identity, [6], [38], states
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that

det ((M O |]) (detM) =  (detM|j) (detMft) -  (detMli) (detM |?). (4.5)

The recurrence 4.5 is non-linear. Clearly, if we specify values for the determinants of 

connected one and two-dimensional minors of M, the recurrence 4.5 gives a unique 

value for detM if and only if there are no “interior” connected minors with zero 

determinant.

Let z =  ^ 2 . Let M. be any I x I connected minor of M, for I <  k. We use 4.5 to 

show that the k x k  minor M satisfies the following three properties:

P i  If k. >  2, then detM is an integer-valued polynomial (a polynomial which sends 

integers to integers.)

P 2  Suppose 1 =  2; i.e. M =

( \  
a(m) b(m)

is a 2 x 2 minor of M. Then
c(m) d(m)

/

|a(z)d(z)| >  |b(z)c(z)

P 3  |det M| (m) is increasing for all m  > z.

Property (P i )  is an immediate consequence of part one of the proof. We will prove 

properties (P2) and (P3) using the identity 4.5. We will first note that they are true 

for 1-dimensional and 2-dimensional connected minors of the matrix S".
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Figure 4-1 The “sign condensation” of S"
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The 2 x 2  connected minors of S' look like one of

 ̂ /m +i\ i /  m+i \
Vm—1/ Vm—i—1/

=F(2m+C +  1)("«T ') (2m +  C)(” + ) j

whose determinant is

(m +  i) (2m2 +  lower order terms )m!2 
(2i)!2(m — i)!2

(  (  m+i V . /m+i+T\ ^
Vm—i—1/ Vm—i—1/

+(2m  +  C +  1 )C I|)  (2rn +  C)(m" £ , )

whose determinant is

2(i +  1) (—8m2 +  lower order terms) (m +  i) !2 
(2i +  2)!2(m —i —l)!2(m —i) ’

(2m +  C +  1) r - l T 1) ±(2m  +  C) '

/'m+i—1\  i/m+iV
\  I m - i J  Vm—i/ j
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whose determinant is

:(mmiT1)(m + l)\  m  —1 J \TTL — xj

or

+  C) C !D  ±(2m  +  C -  1) ^

/m + i\ i t  m + i \
y  Vm— V  I m - i - l J  j

whose determinant is

± i m + i )(  m + t ,.m  — x) Vm —i — 1

Examining the 1- and 2-dimensional connected minors, we see that (P2) - (P3) are 

satisfied when 1 =  1,2.

Since the degree of M|]M|£ never equals the degree of except when the

minor M in the interior of S' has a zero on its diagonal, the right-hand side of 4.5 

is never identically zero. Thus, the recurrence 4.5 has unique solution, with initial 

values for the 1x1 and 2 x 2  connected submatrices of S. In particular, the properties 

(P2) - (P3) follow by induction.

Since there are no interior zeros, 4.5 gives the value of detM(m) for any m  > z. 

In particular, since z lies to the right of all the zeros and poles of det M(m), by (P3), 

the sign of detM(z) is determined by the signs of the entries of M(z). (For example,
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the case when k =  8 is shown in table 4-1.) Clearly, when M lies in the north-east 

comer of S", and k is odd, we have that the sign of M(z) is positive. But when 

M =  S", then M(z) =  A(fn) by construction. Thus A(fn) > 0. Combining parts one, 

two, and three, we now have that

A(fn) =  (2 n +  1)n_1

when n  =  0 mod 4.

The case n  =  2 mod 4 is the same as the case n  =  0 mod 4, except that the 

transformation of S to S' in 4.2 on page 73 changes the sign of the determinant of S. 

The determinants of k  x k connected minors of S' now alternate in sign, giving the 

desired positive determinant (2n  +1 )n_1 for S. The case n  =  1 mod 4 is the same as 

the case n  =  0 mod 4, except that the first two rows of the matrix S' now looks like

'(2m+ 1 ) 0  (2m)O’) - (2 m -1)0 !)

©  L-i) -(::!)

V /

where (2m +  1) =  n . The case n  =  3 mod 4 is similar to the case n  =  2 mod 4. 0  

Two invaluable resources for determinant identities are the surveys [99] and [7]. 

For the reader’s convenience, we illustrate a “condensation” using the recurrence 4.5 

from the second half of the proof, for the Sylvester matrix of polynomial f4 (x) in
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figure 4-2 on page 92. We note that

•  Condition (P3) is important, because if there are interior zeros at any step, the 

difference equation 4.5, together with the (2n — 1 )2+  (2n—2)2 initial values at 

level 1 =  1 and 1 =  2, may not have unique solution.

•  This is quite an unusual application of Dodgson’s recurrence. More typically, 

the connected n x n  minors of a matrix M(m) are imbedded in a family of 

matrices Mn(a, b) - and the recurrence 4.5 becomes an integral recurrence rela­

tion with variables a, b, M.n. Proving a determinant identity is now a matter of 

showing that the family of matrices Mn(a, b) satisfies the recurrence and that 

an adequate set of initial conditions are satisfied. By using 4.5 instead essen­

tially to bound the degree of (2 n +  1) in (detS)(m), we avoided the (usually 

very hard) problem of finding a useful parameterization of the minors of S.

•  Of course, one might try to find a more “mechanical” method of identifying the 

factors of the determinant of a matrix (part one of the proof.) Here is a  brief 

description of the process which led to the discovery of theorem 4.5. We may 

write the first two rows of the matrix S' as:

- 1 ®  2 L - , )  •••

D  - L - i )  •••■

without changing the determinant. Clearly, the first non-zero entry of each
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even row must cancel the entry immediately above it; so we may assume 

without loss of generality that the linear combination of rows for which 

we are searching is obtained by multiplying the matrix S(t) by the vector 

(1, x i, 1, x2, . . . ,  1, x2m-i > X)T- Since the result is the zero vector, the sequence 

[xJi satisfies, for each 1 < N < 2m

(x n  — I ) +  (x n - i — 2)<Xn _ i H 1- (x i — N ) cxn =  0

N—1 N—1 N—1

Xn  =  — N + 1 — 1 ) a N - i+ i  =  ^ x i.a N -i+ i +  — 1 +  l ) a N - i + i
i= i i= i i= i

i.e.

N N

Y  x i a N -i+ i =  Y . kak- (4-6)
1=1 k=l

In [79] the “generalized binomial series” Bt is introduced. It satisfies, and is 

well-defined by, the relation

Bt(z)R _  v -  / tk  +  R\ k
l - t  +  tBt (z)-i 1c ) Z '

When t  =  1, this is the binomial series; when t  =  2, we have the generating
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function for the Catalan numbers. More generally, we have

z \

Consider the function

Gi(z) =  X . 1 , z 'm  +  k ) 7* 
2 k

k>0

2B1/2(z)[m+T1 
Bl/2(z) +  1

(The second equality is the result of the identity Bi/2(z) =  BjJi-z 

terms of Gi (z) may be extracted as

Likewise the odd terms of the function

zk
k>0
2B]/2(z)|m+i 1 

Bl/2(z) +  1

are

, B1/2(z)f-+i ] - B 1/2(z)[i - ml
= -----------5— r m ----------•Bl/2(z) +  1
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Thus,

£ j a k+1|zk = 5 -  (™ +  l ¥ J ' lz*
4 -W -mt  v -  L ¥ J

= E(z)+0(z)

(b ^ z) - '  + B,/2( z ) -  +  Bv2( z ) - i  

-B ,/z (z )j-~ )  .

and

G(z) = y~ <xkzk
k>0

-(E (iz )+ iO (iz ))  z

; ( ( £±t E2J * ' J
._______\  2m+2 /    \  —2m

iz+ v4  — zz \ ^ / i z + v 4  —Z2

/  1---------t \  2m+l /   _ \  l-2m >
 ̂ I iz + \/4 — z2 \ -|-i ' iz + y/4 — z2

Now the left-hand side of 4.6 is the convolution of the sequences [xiJk and 

[ak_i]k; the right-hand side of 4.6 is the convolution of the sequence [l]k and 

the derivative sequence of [cqJit. So, writing 4.6 in terms of generating functions,

86

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



we get

H(z)(zG(z)) =  i - i - G 'M  
I — z

H(Z) = G'W '
G(z) z —z2

where H(z) is the generating function for [xjJk. 

For M — 1 <  I, we must have

— ^ ( x k  +  2m — M)ctM-k =  X(2m — M +  1 )ocm (4.7)

so that ~k must be constant. Writing the cases M =  0, M. =  1 in

terms of generating functions in variable z, and substituting z =  0, we see by 

inspecting special cases that this happens only when m  =  — S, an integral 

matrix, clearly has an integral determinant, so each of the equations 4.7 must 

be satisfied for some rational m  G C. We have discovered that (m + |)  is a linear 

factor (and, apparently, the only linear factor) of det S. The force of theorem 

4.5 is that S has no other linear factors.

• At the risk of diverging even further from the topic of this thesis, it is reasonable 

to ask: if we have a n n x u  matrix M, whose (i — j)—th entry is some function
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of i, j, and n, how could we hope to find a matrix N, with the same determinant 

as M, so that the recurrence 4.5 for det N has unique solution for a given set of 

initial values? I.e., if we have a determinant identity which we wish to prove, 

how could we guess a transformation of M which yields a matrix for which 

Dodgson’s determinant recurrence is useful?

One possibility, if you are a  graduate student with a lot of free time on your 

hands, is to try every determinant-preserving matrix transformation that you 

can think of until you find something that works. We very briefly sketch a more 

systematic plan of attack here.

Suppose that we have an integral matrix M., and that we have successfully used 

the recurrence

, , (detMlj) (detMlip -  ( d e t l Q  (detMlf)
6 (detMIJIi)

to evaluate det M. (so that there are no interior zeros.) Then each connected 

minor was integral, and if we kept track of the determinants of the connected 

minors, then we could write down the Smith normal form of M, and the Hermite 

normal for of M. (This is actually a practical algorithm for finding the Smith 

and Hermite normal forms of integral matrices. The advantages of this method 

are its easy scalability to parallel machines, and the fact that the integers in 

intermediate calculations don’t grow very fast as n  —> oo. The disadvantage 

of this method is that, if an interior zero is found, then one must start over,
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applying an elementary row or column operation to eliminate the zero. For a  

discussion of the technique, see [25] or [8].) On the other hand, a transformation 

of M to a matrix M ' which changes the sort of possible parameterizations 

M.(a, b) must not respect the Smith normal form of M  - otherwise, we could 

have gone from M to M ' with an SL2Z transformation.

If the determinant of an u  x n  matrix has prime factorization vVVz2 *' ‘P£k> 

then there are

P(M) =  Pn(e1)Pn(e2) - - P n(ck)

possible choices for the invariant factors of M (where Pn(j) is the number of 

j—tableaux shape with n  or fewer rows -  i.e. the number of partitions of j into 

n  or fewer parts.) Recall that a Smith Matrix is a matrix in Smith normal form: 

a  diagonal matrix s.t. ciiilafi+iyi+i) for each diagonal entry a(i+1)i(i+1), i  >  0. 

There are clearly P(M) Smith matrices with the same determinant as M. Each 

such matrix M which is GL2Q similar to M, but only one them is SL2Z similar 

to M. Writing down each of these matrices, and the GL2Q matrices which turn 

it into M, is purely mechanical. If Mu(m) is family of square matrices, each 

with parameter m  and dimension n , then we get a family of possible transforms 

of Mn (m) amenable to analysis with Dodgson’s recurrence 4.5 by choosing some 

rt/, m/, and finding the second-order recurrence relation which is satisfied by 

each Mn/ (m'), Mn'+i (m/), and Mn/+2(m/). Repeating the process with another
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m" gives another family of transforms of Mn(m) - and any possible transform 

of Mn(m) at these values of n  must work for both m/ and m ".

Here is a contrived but illustrative example. Consider the n  x n  matrix An 

defined by

/

0, i  #  j

a ii =  N 1, i  =  j < n

ni<p<q<n(<l-P). i  =  J = n .

The first few values of |An| are 1, 1, 2, 12 =  223, 288 =  2532, 34560 =  28335. 

An is already in Smith normal form. For i  < j <  tl, divide the term (j—i) from 

the tl—th  row, and multiply th e )—th row by (j—i). We have GLn—transformed 

An into an integral matrix with the same determinant, but with the following 

Smith normal form:

/

<  =

1

2 - 1

(3 —2) (3 — 1)

\

By judiciously adding rows and columns, it is easy to SLn—transform V ' into
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the matrix

1 1 1 

1 2 3

I2 22 32

V '

which is a  Vandermonde matrix whose determinant is n i<p<q<n(q — p). So 

we have discovered an unsurprising formula for the determinant of An. (We 

have also discovered an obscure fact about the Smith normal form of these 

Vandermonde matrices.)

•  Returning from this long digression to the matter at hand, one might ask what 

the Smith normal forms of the Sylvester matrices of the f^s look like. Actually 

tracing the divisors of (det S') (m) for connected minors S' of S' yields:

Theorem 4.6 Let S be the Smith normal form of the Sylvester matrix for A(fTL) =  

f2es(fn ,f4). Then S is a diagonal matrix, consisting of “l ’”s in the first t l  diagonal 

positions, and “(2tl — 1) '” 5  in the remaining tl — 1 positions.
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s =

/  1 -2 -3 1 1 0 0 \
4 - 6 - 6  1 0 0 0
0 0 1 - 2 - 3  1 1

1 - 2 - 3  1 1 0
4 - 6 - 6  1 0 0
0 4 - 6 - 6  1 0

0 
0 
0 

Vo 0 0 4 -6 -6 1 /

-(2) (2) (3) -(3) 1 0 0 \
(2)2 (2)3 (3) (2)3 (3) (7) 0 0

0 -(2) (2) (3) -(3) 1 0
0 (2)2 (2)3 (3) (2)3 (3) (~) 0
0 0 -(2) (2) (3) -(3) 1
0 0 (2)2 (2)3 (3) (2)3 (3) (7)J

(  (2)2(3)2 —(2)3 (3)2 -(3)2(5) 0 0 \
-(2) —(2)5 (19) (7) 0

0 (2)2(3)2 —(2)3 (3)2 —(3)2 (5) 0
0 -(2) —(2)5 (19) (7)

V 0 0 (2)2(3)2 —(2)3 (3)2 -(3)2(o) /

f  —(2) (3)3 — (3)2 (13) —(3)2 (5) 0 \
(2)2 (3)2 (2) (3)3 (5) (3)2 (13) 0

0 -(2)(3)3 — (3)2 (13) —(3)2 (5)
V 0 (2)2 (3)2 (2) (3)3 (5) (3)2 (13) /

(2)2 (3)4 
—(2) (3)3 

0

—(3)4 
(3)3 (13) 
(2)2 (3)4

(3) (13) (  (3)4(5)
V (2)2(3)4

—(3)4 V 
( 3)4 ( 7) J

( (3)6 )

Figure 4-2 Dodgson condensation for the Sylvester matrix o f t ^ x ) .
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## fpfricke ver. 0.91 
##
## Some routines for simplifying group presentations 
## To accompany Chapter 4.
##
##
## Jeffrey Hall, 1997-1998.
##
## Written for GAP, v. 3.4.4 (Shonert et.al.)
##
## All monomials are ordered by degree-lex order: triples before pairs
## before singletons. Other graded monomial orderings vould be easy 
## to implement.
##
##
## Some handy GAP functions for simplifying presentations, and reducing 
## words in free groups, are:
## RelatorRepresentatives is an (undocumented — beware!) function which
## cyclically reduces a lis t of words in abstract generators.
## RelatorRepresentatives( IdWord ) = [ ] (the empty list)
##
## MostFrequentGeneratorFpGroup returns the most frequent generator
## of a word
##
## TzMostFrequentPairs( <Tietze record>, <n> ) returns a lis t of lists
## for each ofthe n most frequently occuring relator subwords of the
## form gl“e*g2“f , e,f = -1 or 1, gl <> g2.
## The format returned is:
## [ frequency, a,b, x]
## where x=0 for e=l,f=l
## x=l for e=l, f=-l
## x=2 for e=-l, f=l
## x=3 for e=f=-l
##
##
## ReducedRrsWord freely reduces a word 
##
Print( "fpfricke, Version .91\n" );

NUMPAIRSCHKTzWHIT := 20;
NUMTRIPLESCHKTzWHIT := 20;

emptyVectors := [ [0], [0,0,0], [0,0,0,0,0,0,0] ];

RememberMonabc := □ ;
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RememberMonabc[3] := □; RememberMonabc [3] [1] := □ ;
RememberMonabc [3] [1] [2] := □; RememberMonabc [3] [1] [2] [3] := 7;

##
## setRememberMonabc sets up the n’th row of the RememberMonabc table for 
function Monabc

setRememberMonabc := functionC n )

local count, i,j,k;

if not IsBound( RememberMonabc [n] ) then 
count := n + BinomialC n, 2 );
RememberMonabc [n] := □ ;

for i in [l..n] do
RememberMonabc [n] [i] := □ ; 

for j in [(i+l)..n] do
RememberMonabc [n] [i] [j] := □; 
for k in C(j+1). .n] do 

count := count + 1;
RememberMonabc[n][i][j][k] := count; 

od; 
od; 

od; 
fi; 

end;

##
## MonomialVector returns a vector of zeroes, whose length is 
## n + C(n, 2) + C(n,3)

MonomialVector := functionC n )

local 1, i ,  c;

if IsBoundC emptyVectors [n] ) then 
return ShallowCopyC emptyVectors[n] ); 

else
c := (n + Binomial(n,2) +Binomial(n,3));
1 := □ ; 
l[c] := 0;
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for i in [1.. c] do 
l[i] := 0; 

od;
emptyVectors [n] := ShallowCopyC 1 ); 
return 1;

fi;
end;

## set up the remember tables

for i in [4..45] do 
MonomialVector( i ); 
setRememberMonabc( i  ); 

od;

##
## Sorted returns the sorted version of its single argument, without 
## changing the argument.

Sorted := functionC 1 )

local L;

L := ShallowCopyC 1 );
Sort( L ); 
return L; 

end;

##
## ourRelatorRepresentatives cyclically reduces a lis t of relators

ourRelatorRepresentatives := functionC 1 )

if 1 = [IdWord] then 
return [IdWord]; 

else
return RelatorRepresentativesC 1 ); 

fi; 
end;
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##
## positionlnSet returns the position of 1 or 1“-1 in L,
## where L is a sorted lis t without holes of length len.
##
## No checking is done to see whether 1<> □ and length(1) = 1.

positionlnSet := functionC 1,L, len )

local left, right, middle, tmp;

left := 1; right := len;

while left + 1 < right do
middle := QuoIntC right-left, 2 ) + left; 
tmp := L[middle]; 
if tmp < 1 then 

left := middle;

elif tmp > 1~-1 then # By convention, 1 < 1~-1 
right := middle;

else
left := middle; 
right := middle;

fi;
od;

if LEleft] < 1 then 
return right; 

else
return left; 

fi;

end;

##
## positionlnList returns the position of the first occurence of 
## 1 or 1~-1 in L
## L need not be sorted, and may have holes. 

positionlnList := functionC 1,L )
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return Minimum( PositionC L, 1 ),
PositionC L, 1“-1 ) );

end;

##
## LettersInWord returns a lis t of the letters in the word, in order 
## of first appearance.

LettersInWord := functionC w, varList )

local W, thisLetter, 1;

W := CopyC w ); 1 := □ ;

while (W <> IdWord) do

thisLetter := Subword( W, 1, 1); 
if not (thisLetter in varList) then 

thisLetter := thisLetter“-l; 
fi;
Add( 1, thisLetter );
W := EliminatedWordC W, thisLetter, IdWord ); 

od;

return 1; 
end;

##
## IsSortedWord returns true if w is sorted lexicographically

IsSortedWord := functionC w )

local count, tmp, tmpl, tmp2, len;

len := LengthWordC w ); 
tmpl := SubwordC w, 1, 1); 
tmp := true; 
count := 2;

while (count <= len) and tmp do
tmp2 := SubwordC w, count, count); 
tmp := tmp and (tmpl <= tmp2); 
tmpl := tmp2;
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count := count+1; 
od;

return tmp; 
end;

##
## LettersInWordList returns a lis t of the letters in the words of a 
## lis t, in order of first appearance.

LettersInWordList := function( 1, varlist )

local L, W, thisLetter, l i ,  len, i, j;

L := Copy(l); l i  := □; len := LengthC 1 );

for i  in [l..len] do

W := L[i] ;

while (W <> IdWord) do

thisLetter := SubwordC W, 1, 1); 
if not (thisLetter in varlist) then 

thisLetter := thisLetter"-1;
fi;
Add( l i ,  thisLetter );
W := EliminatedWordC W, thisLetter, IdWord ); 
for j in [i..len] do

L[j] := EliminatedWordC L[j], thisLetter, IdWord ); 
od;

od;
od;

return li; 
end;

##
## MonabC a,b, VARLIST, n) returns the position of the coordinate of 
tr_{ab}
## where a, b are variables in VARLIST, a<>B, where n = IVARLISTI 
## No type- or bound-checking is performed.
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Monab := functionC a, b, VARLIST, n ) 
local A,B;

A := positionlnSet( a, VARLIST, n ); 
B := positionlnSet( b, VARLIST, n );

return A*(n+1) -(A~2 + A)/2 + B - A;

end;

##
## MonabcC a,b,c, VARLIST, n) returns the position of the coordinate of 
## tr_{abc},
## a < b < c
## where a, b are variables in VARLIST, a<>B, where n = IVARLIST!
## No type- or bound-checking is performed.

Monabc := functionC a, b, c, VARLIST, n)

local A,B,C;

A := positionlnSetC a, VARLIST, n );
B := positionlnSetC b, VARLIST, n );
C := positionlnSetC c, VARLIST, n );

setRememberMonabc( n );
return RememberMonabc[n] [A] [B] [C] ;

end;

##
## PosFirstNonlnverse returns the position of the first generator 
## in w which is not raised to a negative power.
## w is assumed to be square-free 
##
## If w has only positive exponents, returns false

PosFirstNonlnverse := functionC w, varlist )

local count;

for count in [1..LengthWordC w )] do
if not CSubwordC w, count, count) in varlist) then
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return count; 
fi; 

od;
return false; 

end;

##
## leqDLEX returns true if ml <= m2 with degree-lex order 
##
## ml, m2 are monomials, represented as a lis t of integers 
## No type-checking is performed.

leqDLEX := functionC ml, m2 )

local si, s2;

si := Sum (ml) ; 
s2 := Sum (m2) ;

return ( (si < s2) 
or

( (si = s2) and ml <= m2 ) );
end;

##
## MaxMonPair returns the largest of ml, m2, with respect 
## to leqDLEX order

MaxMonPair := functionC ml, m2 )

if leqDLEX(ml, m2) then 
return m2; 

else
return ml; 

fi; 
end;

##
## MaxMonTrip returns the largest of ml, m2, m3

MaxMonTrip := functionC ml, m2, m3 )
return MaxMonPair( MaxMonPair( ml, m2), m3 );
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end;

##
## MaxMon returns the largest monomial in its argument, which 
## must be a lis t.
## If the argument is empty, returns "false"

MaxMon := functionC 1 )

local max, i;

max := false; 
for i  in 1 do

max := MaxMonPair( max, i ) ; 
od;

return max; 
end;

##
## Forward reference of function LTFrickeCharl

LTFrickeCharl := functionC w, # a word
varList, # the variables 
m );

end;

##
## LTFrickeCharSquareFree returns the lead monomial of a normal form of 
## the Fricke character Ctrace polynomial) of square-free word w,
## multiplied by the monomial m.
## w is assumed to be cyclically reduced.

LTFrickeCharSquareFree := functionC w, # a word
VARLIST, # the variables 
m )

local len, numvars, M, letters, count, ES, 
tmp, a, b, c, max, maxPos, W;

len := LengthWordC w );
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M := ShallowCopyC m ); 
numvars := Length. ( VARLIST );

if len = 1 then 
tmp := positionlnSet( SubwordC w, 1, 1), VARLIST, len ); 
M[tmp] := M[tmp] + 1; 
return M;

elif len = 0 then 
return M;

elif len = 2 then

# two cases: something like "ab" or something like "ab~-l"
# the leading term of trace(ab) is just t_{ab>
# the leading term of trace(ab~-l) is t_a * t_b

a := Subword(w,1,1); 
b := Subword(w,2,2);

if (a in VARLIST) and (b in VARLIST) then 

tmp := SortedC [ a,b ] );
tmp := MonabC tmp[l], tmp[2], VARLIST, numvars ); 
M[tmp] := M[tmp] + 1; 
return M; 

else
tmp := positionlnSet( a, VARLIST, numvars ); 
M[tmp] := M[tmp] + 1;
tmp := positionlnSet( b, VARLIST, numvars ); 
M[tmp] := MCtmp] + 1; 
return M;

fi;

elif len = 3 then

a := Subword(w,l,l); 
b := Subword(w,2,2); 
c := Subword(w,3,3);

# 4 cases: "abc", or "acb", or "abc~-l", or "acb“-l" 

ES := 0;
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if a in VARLIST then 
ES := ES + 1; 

else
ES := ES -1; 

fi;
if b in VARLIST then 

ES := ES + 1; 
else 

ES := ES -1; 
fi;
if c in VARLIST then 

ES := ES + 1; 
else 

ES := ES -1; 
fi;

if ES < 0 then 
return LTFrickeCharSquareFree( w~-l, VARLIST, m);

elif ES = 3 then

if IsSortedWord( w ) then # "abc" case

tmp := Monabc( a, b, c, VARLIST, numvars);

M[tmp] := M[tmp] + 1; 
return M;

else #"acb" case

tmp := positionlnSet( a, VARLIST, numvars );
M[tmp] :=■ M[tmp] + 1;
tmp := positionlnSet( b, VARLIST, numvars );
M[tmp] := M[tmp] + 1;
tmp := positionlnSet( c, VARLIST, numvars );
M[tmp] := M[tmp] + 1; 
return M; 

fi;

else # "abc“-l" — one letter has exponent -1, the others +1 
#
# so that LT( trace( abc“-l ) ) = tr(ab)tr(c)

if ExponentSumWord( v, a) <0 then 
tmp := a; a := c; c := tmp;
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elif ExponentSumWordC w, b) < 0 then 
tmp := b; b := c; c := tmp;

fi;

tmp := SortedC [a,b ] );
tmp := MonabC tmp[l], tmp [2], VARLIST, numvars ); 
M[tmp] := M[tmp] + 1;

tmp := positionlnSet( c, VARLIST, numvars ); 
M[tmp] := M[tmp] + 1; 
return M;

else # len >=4, so there is the possibility of repeated letters 

# get rid of repeated letters

for count in [l..len-l] do

tmp := SubwordCw, count, count);
tmp := MinimumC PositionWordC w, tmp, count+1 ),

PositionWordC w, tmp~-l, count+1 ));

if tmp <> false then

a := SubwordC w, 1, count);
b := ourRelatorRepresentatives( ReducedRrsWordC [SubwordC w,

count+1, 
tmp )]

)) [1] ;

if tmp = len then 
c := IdWord; 

else
c := SubwordC w, tmp+1, len); 

fi;
tmp := ourRelatorRepresentativesC ReducedRrsWordC [c*a] ))[1];

return LTFrickeCharlC tmp,
VARLIST, 
m )
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LTFrickeCharSquareFree( b,
VARLIST, 
m );

fi;

od;

# if v survives the for loop, then w is square-free,
# with no repeated letters

tmp := false;
count := 0;
max := SubwordC w, 1, 1);
maxPos := 1;

while (tmp = false) and count < len do 
count := count + 1; 
a := SubwordC w, count, count); 
if not (a in VARLIST) then 

tmp := count; 
fi;
if a < max then 

maxPos := count; 
max := a;

fi;
od;

if tmp = false then # all of the exponents of w are

if maxPos = len then 
W := max*Subword( w, 1, maxPos-1);

elif maxPos > 1 then 
W := max*Subword( w, maxPos +1, len)*Subword( w, 1, 

else 
W := w;

fi;

M := MonomialVector( numvars );

# Now, if f = max, and b,c,d are the last letters of 
everything

106

maxPos-1);

V, and a is

R e p ro d u c e d  with perm iss ion  o f t h e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



# between, then by Vogt’s identity, the leading term of t_w = t_W is
one of:

#
# t_{fac}*t_b*t_d
# t_-Cfa}*t_b*t_-Ccd}
# t_-[fad}*t_b*t_c
# since these are the terms of highest degree, when w=(fabcd) is a 

word with
# positive exponents and no repeated letters.

return ( 
m

+

MaxMonTripC LTFrickeCharSquareFree( Subword(W,1,len-3)*Subword(W,len-1,len-1),
VARLIST, M)

+

LTFrickeCharSquareFree( Subword(W,len-2,len-2),
VARLIST, M )

+

LTFrickeCharSquareFree( Subword(W,len,len),
VARLIST, M),

# i.e. ,  t_{fac}*t_b*t_d

LTFrickeCharSquareFree( Subword(W,1,len-3),
VARLIST, M )

+

LTFrickeCharSquareFree( Subword(W,len-2,len-2),
VARLIST, M )

+

LTFrickeCharSquareFree( Subword(W,len-1,len-1)*Subword(W,len,len),
VARLIST, M),

# i.e. t_-Cfa>*t_b*t_{cd>

LTFrickeCharSquareFree( Subword(W,l,len-3)*Subword(W,len,len),
VARLIST, M )

+

LTFrickeCharSquareFree( Subword(W,len-2,len-2),
VARLIST, M

+

LTFrickeCharSquareFree( Subword(W,len-1,len-1),
VARLIST, M ) )

# i.e. t_{fad}*t_b*t_c

)
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else # finally, we have the case where w is square-free, without 
repeated

# generators, but with at least one exponent -1 at position tmp 

a := Subword(w,tmp,tmp);

return LTFrickeCharSquareFree( EliminatedWordC w,
a, 
a~-l ),

VARLIST, 
m );

fi;

fi;

end; # LTFrickeCharSquareFree

##
## LTFrickeCharl returns the lead monomial of a normal form of 
## the Fricke character (trace polynomial) of word w, multiplied 
## by the monomial m
## w is assumed to be cyclically reduced.

LTFrickeCharl := functionC w, # a word
VARLIST, # the variables 
m )

local M, W, c, tmp, squareFreePart, len, numvars;

M := ShallowCopyC m ); 
squareFreePart := IdWord;
W := CopyC w );
len := LengthWord(W);
numvars := Length( VARLIST );

while (W <> IdWord) do

tmp := SubwordCW, 1, 1); 
if (len >1) 

and
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(tmp - Subword(W, 2, 2)) 
then

c := positionlnSet( tmp, VARLIST, numvars );
M[c] := M[c] + 1;

else
squareFreePart := squareFreePart*tmp;

fi;

W := tmp~-l * W; 
len := len -1; 

od;

return LTFrickeCharSquareFree( squareFreePart, VARLIST, M ); 

end; # LTFrickeCharl

##
## LTFrickeChar returns the lead monomial of a normal form of 
## the Fricke character (trace polynomial) of word w

LTFrickeChar := function( w, # a word
varList) # the variables

return LTFrickeCharl( ourRelatorRepresentatives( ReducedRrsWord([w]) ) [1],
Set (varList),
MonomialVector( Length( varList ) ) );

end;

##
## nudgeSet increases its argument S by 1, where S, a boolean lis t,
## is considered to be a binary integer written with least significant 
## digit first, with false=0, true=l. In case of overflow, nudgeSet 
## changes nothing, and returns "false"; otherwise "true" is returned.

nudgeSet := function( S )

local p, carry, lenS;

lenS := Length( S );

if SizeBlist( S ) = 0 then
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return false; 
else

carry := true; 
p := 1;
while carry and p < lenS do 

if S[p] then 
carry := true;
S[p] := false;
P := P + i; 

else
SCp] := true; 
carry := false; 
return true;

fi;
od;

fi;
end;

##
## DimMonomialldeal returns the degree of the Hilbert polynomial of 
## the ideal generated by the monomials in lis t L, The ideal <L> is 
## assumed to be over a field of characteristic zero.
## We do this by actually looking at each of the subsets of the 
## variables, in order to use GAP 3.4 kernel functions in preference 
## to library functions.
## As the number of variables grows, then the issue of avoiding library 
## functions in favor of internal GAP functions becomes moot, of course.

DimMonomialldeal := functionC L )

local 1, S, least, M, nummons, numvars, count, covers, p, truesies, 
noOverflow;

1 := Set( L ); # get rid or duplicates - might not always be useful
if 1 = □ then 

return false; 
fi;

nummons := Length( 1 ); 
numvars := Length( 1[1] ); 
least := numvars;

# for each monomial in 1, make a boolean lis t, with entry "true" in
# the place of each variable used in the monomial
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M := □ ;
for count in [1..nummons] do 

M[count] := List( 1[count],
i -> i > 0 ); 

IsBlist( M[count] ); 
od;

# Search through the subsets of [1..numvars] 
truesies := ListC [1..numvars], i -> true );
IsBlist( truesies );
S := ShallowCopyC truesies );
S[l] := false;
IsBlist( S ); 
least := numvars;

noOverflow := true; 
while noOverflow do 

covers := true; 
count := 1;

while covers and count <= nummons do
# Oddly, i t ’s quicker to use the kernel function SizeBlist, than
# to find the OR of the elements of S AND B. 
covers := covers

and
SizeBlist( ( IntersectionBlistC S, M[count] ) ) ) > 0; 

count := count + 1;
od;

if covers then # found a set of variables in each of the monomials

least := Minimum( least, SizeBlist( S ) ); 
noOverflow := nudgeSet( S );

else # ignore large sets
repeat

noOverflow := nudgeSet( S ); 
until (not noOverflow) and SizeBlist( S ) > least; 

fi; 
od;

return numvars - least; 

end; # DimMonomi alldeal
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##
## Calculates the part of the squared "fractional dimension"
## contributed by the coordinate axis i in monomial ideal M 
## Returns 2~15-1 if the fractional dimension contributed is 1

FracDimSqrForAxis := function(M, 1)

local least, m, tmp;

least := false;

for m in M do 
tmp := m[l] ; 
if  tmp < least then 

least := tmp;
fi;

od;

if least <> false then 
return least; 

else
return 0;

fi;

end;

##
## Calculates the "fractional dimension" of a monomial ideal

FracDimSqrPerAxis := functionC M )

local i , tmp;

if M = [] or (not IsListC M )) then 
return false;

fi;

tmp := □ ;
for i in [1..Length(M[l])] do

tmp[i] := FracDimSqrForAxis(M, i ) ; 
od;
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return tmp;

end;

##
## IsStructGP tests M to see if i t  is pairwise relatively prime

IsStructGB := function( M )

return false = PositionPropertyC Sum ( ListC M,
m -> ListC m,

i -> Signlnt(i)
)

)
),

i -> i > 1 
);

end;

##
## TzWh.it tries to simplify the presentation P, by searching the space 
## of Tietze transforms of P, to minimize the dimension of the monomial 
## ideal generated by the leading terms of the variety of the ideal of 
## SL_2 character relations which come from the relations of P, as 
## presented by the function LTFrickeChar.
##
## TzWhit uses, and is modelled upon, the low- and high- level 
## functions for Tietze transformations in GAP.

TzWhit := function ( arg ) # arg = [P,
# numtries, (default is 10)
# useMostFreqP (default is false) ];

local tietze, count, rels, relators, RealRelators, m, n, tmp, FD, pp, 
A, B, LeadingMonomials, p, pairs, pairsl, couples, x, g, elims, 
left, right, i , j , current, total,
P, numtries, useMostFreqP ;

if Length( arg ) = 3 then # this flag is undocumented, and indeed 
hardly ever works.
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useMostFreqP := arg[3]; 
else useMostFreqP := false; 
fi;
if Length( arg ) = 2 then numtries := arg[2]; 
else numtries := 10;
fi;
P := arg[l] ;

#TzFindCyclicJoins( P ); # do some preprocessing, and run consistency
checks

tietze := P.tietze; 
n := tietze[TZ.NUMGENS]; 
if n < 2 then 

return; # nothing to do to P 
fi;
rels := tietze[TZ_RELATORS]; 
m := tietze [TZ_NUMRELS];

RealRelators := ListC [l..m],
j -> TzWordC tietze, relsCj] ) ); # the presentation

relators

# relators is a lis t of the group relators, plus the relators times left-
# multiplied by each generator

relators := □ ;
for tmp in tietze[TZ_GENERATORS] do 

Append( relators, tmp*RealRelators ); 
od;

LeadingMonomials := ListC relators,
r -> LTFrickeCharC r,

CopyC tietze[TZ_GENERATORS] )
) );

FD := FracDimSqrPerAxisC LeadingMonomials );

# TzMostFrequentPairs returns a lis t of lists for each of the
# NUMPAIRSCHKTzWHIT most frequently occuring length 2 subwords Ca~eb~f)
# in the relators. The format returned is:
# [ frequency, a,b, x]
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# where x=0 for e=l,f=l
# x=l for e=l, f=-l
# x=2 for e=-l, f=l
# x=3 for e=f=-1

if useMostFreqP then

pairs := TzMostFrequentPairs ( P, NUMPAIRSCHKTzWHIT, useMostFreqP );

# Pick out those squares which have the same exponent
# Order them by the increase in fractional codimension which each
# might contribute if they are replaced by a new generator

couples := □;
IsSet( couples ); 
for p in pairs do

if p[4] = 0 or p[4] = 3 then 
pp := Sorted( p{[2,3]} );
A := pp[l] ;
B := ppC2];
AddSetC couples,

Concatenation( [FD[A*(n+l) -(A~2 + A)/2 + B - A ]],
PP 

) );
fi;

od;
else
# Choose the NUMPAIRSCHKTzWHIT smallest-frac-codim pairs, order them by 

the
# increase in frac. codim. each might contribute if they were replaced.
# This avoids string matching. We use a modified quicksort selection 

method
# (see e.g. Sedgewick, "Algorithms", Addison—Wesley, 1983)

pairs := □; 
pairsl := □ ; 
total := 0;
for A in [l..n-l] do #chuck out the zeros 

for B in [(A+l). .n] do
tmp := FD[A*(n+l) -(A~2 + A)/2 + B - A ];

if tmp <> 0 then 
if tmp = 1 then 

Add( pairsl,
[tmp, A, B] );
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else
Add( pairs,

[tmp, A, B] ); 
total := total + tmp;

fi;
fi;

od;
od;

couples := □; 
right := Length( pairs ); 
if  right < NUMPAIRSCHKTzWHIT then 

couples := Concatenation( pairs,
pairsl{[l. .Minimum( NUMPAIRSCHKTzWHIT,

Length( pairsl )
)

]> );
elif right = 0 then 

couples : = □ ; 
else

left := 1;
i := 0; j := right;
current := QuoInt( total*2*NUMPAIRSCHKTzWHIT, tmp“2 );

# e.g. a weighted average of pairs
# best partition strategy if the values of FD[pairs]
# were uniformly distributed 

while left < right do
repeat

repeat
i := i + 1; 

until pairs[i][1] <= current; 
repeat

j := j - 1;
until pairs[j][1] >= current; 
tmp := pairs[i]; 
pairs[i] := pairs[j]; 
pairs[j] := tmp; 

until j <= i;

pairs [j] :=pairs[i]; 
pairs[i] := pairs[right]; 
pairs[right] := tmp;

if i >= NUMPAIRSCHKTzWHIT then 
right := i -1;
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fi;
if i <= NUMPAIRSCHKTzWHIT then 

left := i + 1; 
fi;
current := pairs[right][1]; 
i := left - 1; 
j := right; 

od;

couples := pairs{[1..NUMPAIRSCHKTzWHIT]>; 
fi; 

fi;

elims := □ ;
for p in couples-[[l. .MinimumC numtries, LengthC couples ) )]} do

# Add a new generator 
AddGeneratorC P );
x := P.generators[ LengthC P.generators ) ];

# Add relation x~-l*a*b 
AddRelatorC P,

x~-l*TzWord( tietze, [p[2], p[3]] ) );

# choose the generator in {a,b} contributing the least fract. codim. 

elims := □ ;
if FD [p [2] ] < FD [p [3] ] then 

AddSet( elims, p[3] ); 
else

AddSet( elims, p[2] ); 
fi;

od;

# replace each ab or (ab)~-l by the generators introduced
P.searchSimultaneous := MaximumC 20, LengthC couples )+10 ); 
TzCheckRecordC P );
TzSearchC P );

# for each Ca,b) eliminate the generator with the largest FracDimSqr

for g in elims do
TzEliminateGen CP , g); 

od;
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end; # TzWhit

##
## TzWhitTriples is like TzWhit, but for triples rather than pairs.

TzWhitTriples := function( arg ) # arg = [P,
# numtries, (default is 10) ]

local tietze, count, rels, relators, m, n, tmp, FD, pp,
A, B, C, LeadingMonomials, p, triples, triplesl, triplets, x, g, 
elims, left, right, i, j ,  current, total,
P, numtries;

if LengthC arg ) = 2 then numtries := arg[2];
else numtries := 10;
fi;
P := arg[l];

TzFindCyclicJoinsC P ); # do some preprocessing, and run consistency
checks

tietze := P.tietze; 
n := tietze[TZ_NUMGENS] ; 
if n < 3 then 

return; # nothing to do to P 
fi;
rels := tietze[TZ_RELAT0RS]; 
m := tietze[TZ_NUMRELS];

relators := List( [l..m],
j -> TzWord( tietze, relsCj] ) );

LeadingMonomials := ListC relators,
r -> LTFrickeCharC r,

CopyC tietze[TZ_GENERAT0RS] )
) ) ;

FD := FracDimSqrPerAxis( LeadingMonomials );

118

R e p ro d u c e d  with perm iss ion  of th e  copyright ow ner.  F u r th e r  reproduction  prohibited without perm iss ion .



# Choose the NUMTRIPLESCHKTzWHIT smallest-frac-codim triples, order them 
by the

# increase in frac. codim. each might contribute if they were replaced.
# This avoids string matching. We use a modified quicksort selection 

method
# (see e.g. Sedgewick, "Algorithms", Addison—Wesley, 1983)

triples := □ ; 
triplesl := □ ; 
total := 0;
setRememberMonabc( n );

for A in [l..n-2] do #chuck out the zeros 
for B in [(A+l)..n] do 

for C in [(B+1). .n] do
tmp := FD[ RememberMonabc [n] [A] [B] [C] ] ;

if  tmp <> 0 then 
if tmp = 1 then 

Add( triplesl,
[tmp, A, B, C] );

else
Add( triples,

[tmp, A, B, C] ); 
total := total + tmp;

fi;
fi;

od;
od;

od;

triplets := □; 
right := LengthC triples ); 
if right < NUMTRIPLESCHKTzWHIT then 

triplets := Concatenation( triples,
triplesl{[l..Minimum( NUMTRIPLESCHKTzWHIT,

LengthC triplesl )
)

]> );
elif right = 0 then 

triplets := □ ; 
else

left : = 1;
i := 0; j := right;
current := QuoIntC total*2*NUMTRIPLESCHKTzWHIT, tmp“2 );
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# e.g. a weighted average of triples
# best partition strategy if the values of FD[triples]
# were uniformly distributed 

while left < right do
repeat

repeat
i := i + 1; 

until triples[i][1] <= current; 
repeat

3 •= 3 ~ U 
until triples[j][1] >= current; 
tmp := triples[i]; 
triples [i] := triples[j] ; 
triples[j] := tmp; 

until j <= i;

triples[j] := triples[i]; 
triples[i] := triples[right]; 
triples[right] := tmp;

if i >= NUMTRIPLESCHKTzWHIT then 
right := i -1; 

fi;
if i <= NUMTRIPLESCHKTzWHIT then 

left := i + 1; 
fi;
current := triples[right][1]; 
i := left - 1; 
j := right; 

od;

triplets := triples{[l..NUMTRIPLESCHKTzWHIT]};

elims := □ ;
for p in triplets{[l. .Minimum( numtries, LengthC triplets ) )]} do

# Add a new generator 
AddGeneratorC P );
x := P.generators[ LengthC P.generators ) ];

# Add relation x“-l*a*b*c 
AddRelatorC P,

x~-l*TzWordC tietze, [p[2], p[3], p[4]] ) );
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# choose the generator in {a,b,c} contributing the least fract. codim.

elims := □;
if FD [p [2] ] <= FD [p [3] ] then 

if FD[p[3]] <= FD[p[4]] then 
AddSet( elims, p[4] ); 

else
AddSet( elims, p[3] );

fi;
elif FD[p[2]] <= FD[p[4]] then 

AddSet( elims, p[4] ); 
else

AddSet( elims, p[2] );
fi;

od;

# replace each abc or (abc)~-l by the generators introduced
P.searchSimultaneous := Maximum ( 20, LengthC triplets )+10 ); 
TzCheckRecordC P );
TzSearchC P );

# for each (a,b,c) eliminate the generator with the largest FracDimSqr

for g in elims do
TzEliminateGenCP , g); 

od;

end; # TzWhitTriples
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