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ABSTRACT

SOURCES AND ACCELERATION OF ENERGETIC HE* IONS AT 

THE EARTH’S BOW SHOCK

By
Kemei Wang 

University o f New Hampshire, May. 1998

This thesis have presented the first detailed study o f the sources and the acceleration 

o f energetic H e ' ions in front o f the Earth’s bow shock, using data from 

AMPTE.TRM and AMPTE/CCE.

Based on observations o f energetic H e ' ions during an event when the bow shock was 

an almost perfect perpendicular shock, we compared the results o f a simulation to the 

observed event. The model provides a good quantitative description o f the phase 

space distribution of the gyrating ions. A large portion (approximately 63%) o f the 

incident pickup ions are reflected and gain energy in the interaction. It is also 

consistent with their spatial distribution in front o f the shock. It is shown that a 

significant fraction of the upstream ions undergo more than one reflection at the bow 

shock, and gain substantial energy in this interaction.

At the quasi-parallel shock, by calculating the omnidirectional distributions o f  H ', 

He:' ,  H e ' and O ' ions upstream of the shock, as well as a comparison o f the observed 

spectra upstream of the shock and in the magnetosphere with results from the 

calculations, we concluded that He” is locally accelerated. The subsequent modeling o f

xv
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the injection and diffusive acceleration at the shock presented evidence that pickup 

ions can be injected and accelerated more efficiently than solar wind plasma

These results have important implications concerning acceleration o f pickup ions and 

anomalous cosmic rays.

*

xvi
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1

CHAPTER 1

INTRODUCTION

Acceleration o f  energetic particles at collisionless shock waves is o f great importance in 

interplanetary space as well as on a large scale in our galaxy. The bow shock in front o f  

the Earth’s magnetosphere provides an ideal laboratory for studying the shock 

acceleration process in detail. First observations o f  energetic particles in the region 

upstream  o f the Earth’s bow shock were reported by Asbridge et al. [1968], Lin et al. 

[1974], W est and Buck [1976], and Fan et al. [1976]. By the early 1970’s, a significant 

fraction o f  the qualitative phenomena associated with the region containing the energetic 

ions from the Earth’s bow shock and the low frequency waves (called the foreshock 

region [Greenstadt et al., 1976]) was identified.

After the successful launch o f the International Sun Earth Explorer (ISEE) spacecraft 

missions in 1977 and 1978, ISEE 1, 2 and 3, a new era in the study o f upstream  

phenomena was opened. The ISEE I and 2 satellites with their highly eccentric orbits and 

the ISEE 3 satellite in a halo orbit around the libration po;nt greatly enhanced our 

knowledge o f upstream particles and waves. For example, in the foreshock region several
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different types o f suprathermal ion distributions were discovered: (I) Field-aligned beams 

[Asbridge et al., 1968] travel upstream along the interplanetary magnetic field. They have 

sharply peaked spectra and narrow pitch angle distributions, and generally do not extend 

in energy much above ~ 10 keV, which corresponds to a beam speed o f a few times the 

solar wind speed. Field-aligned beams are observed to originate predominantly from the 

the quasi-perpendicular bow shock, i.e., where frBn (the angle between the shock normal

and the upstream magnetic field) is larger than 45°. (2) ‘Gyrating ions’ or specularly 

reflected ions have a large component o f this motion perpendicular to the upstream 

magnetic field. They are observed both within the foot o f quasi-perpendicular shocks 

[Paschmann et al., 1987] and upstream o f the quasi-parallel shock (frBn is small) [Gosling 

et al., 1982]. (3) ‘diffuse ion’ with a pronounced high energy tail and nearly isotropic 

pitch angle distributions. Paschmann et al. [1979] have demonstrated that the diffuse 

component is well correlated with the presence o f  large amplitude low frequency magnetic 

fluctuations. Scholer et al. [1979] have shown that upstream particle events at energies >

30 keV are in general the high energy tail o f the diffuse ion component, although later 

Scholer et al. [1980a] also found reflected particles extending in energy well above 30 keV. 

Diffuse ion events occur when the observation point is connected to the quasi-parallel 

portion o f  the bow shock. Scholer et al. [1980a] have shown that the rate o f occurrence of 

upstream particle events increases with decreasing angle between the interplanetary 

magnetic field and the radial direction and have concluded that the bow shock connection 

time o f a field line controls the occurrence o f upstream particles. The first composition
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measurements o f diffuse upstream ions were reported by Ipavich et al. [1979]. They 

reported two events during which at equal energy per charge the proton to alpha particle 

ratio at 30 - 130 keV/Q was constant and similar to the ratio in the solar wind.

Soon after the discovery o f the upstream bow shock ions, it was recognized [e.g., Barnes, 

1970] that the motion o f these ions relative to the solar wind would be unstable and 

would generate low-frequency waves. Generally, the energetic particles in the upstream 

region are accompanied by hydromagnetic waves in the frequency regime 10'2 - 7x10 ''

Hz. First indications o f hydromagnetic waves upstream o f the shock were reported by  

Fairfield [1969] using Explore 34 data. Hoppe et al. [1981] demonstrated that there is a 

one-to-one correlation between the presence of diffuse upstream ions and the occurrence 

o f hydromagnetic wave in the foreshock region. The simultaneous presence o f diffuse ions 

and hydromagnetic waves in the upstream region led to the widely adopted picture o f an 

intense interplay between the waves and energetic ions. The waves are thought to 

constitute scattering centers for the ions which provide for a diffusive transport and 

Fermi acceleration at the bow shock [e.g., Axford et al., 1977]. Lee [1982] explicitly 

included the excitation o f hydromagnetic waves by the energetic particle population in his 

self-consistent model o f the wave-particle interaction. In a preliminary study, Mobius et 

al. [1987] demonstrated that the relation between wave and particle energy density 

derived by Lee [1982] holds fo ra  few selected events. Many of the observed features o f 

the diffuse ions, such as their general directional distributions, spectra and spatial
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distribution in front o f the bow shock, have been successfully interpreted within models 

based on diffusive acceleration [Ipavich et al., 1981; Scholer et al., 1981].

W ith the improved instrumentation on the AMPTE/IRM spacecraft, the origin o f 

energetic particles has been an interesting question, i.e., whether the ions are bow shock 

associated or o f magnetospheric origin. Interpretations in terms o f  bow shock acceleration 

were reviewed by Scholer [1985], and interpretations in terms o f magnetospheric origin 

were reviewed by Krimigis [1985]. Sarris et al. [1976] and Scholer et al. [1981] presented 

evidence that energetic magnetospheric ions can traverse the magnetosheath and escape 

into the upstream region. Detailed ion composition measurements help to differentiate 

between the two interpretations with respect to the origin o f  the particles. In a statistical 

study Ipavich et al. [1984] compared the He2+/H+ ratio in diffuse ion events with the 

same ratio observed simultaneously in the solar wind and in the ring current near the 

magnetopause during the same orbit. They found a high correlation with the ratio in the 

solar wind and a much weaker correlation with that in the ring current population. It is 

thus confirmed that He2+ energetic ions are the shock associated populations. Mobius et 

al. [1986] presented strong evidence that energetic 0 + ions are magnetospheric bursts, but 

also that 0 + behave substantially different from He2+. This supports the view that both 

sources contribute simultaneously with varying efficiency to the energetic upstream ions.

A third possible source of energetic ions at the bow shock are supplied by interstellar 

pickup ions. Using a time-of-flight mass spectrometer, interstellar pickup He" was first
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detected at 1 AU in 1985 [Mobius et al., 1985]. More recently other pickup ions, such as 

H+, He2+ , N +, 0 +, and N e+, were discovered [Gloeckler e t al., 1995; Geiss et al., 1993] 

with the Solar Wind Ion Composition Spectrometer [Gloeckler et al-i 1992] on Ulysses. 

Interstellar pickup ions have been a subject of interest for some years. The ions are 

expected to form the dominant internal pressure in the solar wind in the outer heliosphere, 

and thus can affect the solar wind flow [e.g., Axford, 1972; Hclzer, 1977] and the 

structure o f the termination shock, where the solar wind becomes subsonic. Pickup ions 

originate in the solar wind when slowly moving interstellar atoms ar£ ionized and picked 

up by solar wind electromagnetic field. Being charged, these nevdy bom  interstellar 

pickup ions are now subjected not only to a variety o f plasma processes, but are also 

accelerated by interplanetary shocks as they propagate outward. The most abundant 

pickup ion species at I AU is He+.

The importance o f a study o f pickup ions as a source for energetic upstream ions is two 

fold: Firstly, pickup ions represent a source with a velocity distribution much different 

from the solar wind, and thus a comparison o f the acceleration o f solar wind and pickup 

ions can provide further insight into the acceleration mechanism. Secondly, pickup ions 

are thought to be the source o f the anomalous cosmic rays(ACIt)- The ACR were 

discovered two decades ago [Garcia-Munoz et al., 1973; Hovestadt et al- 1973; 

M cDonald et al., 1974] and represents an enhancement o f He, N, O, We an<i  Ar relative to 

their nominal abundance in low-energy galactic cosmic rays. This component in effect 

constitutes a background that masks the low-energy properties o f certain elements of
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galactic cosmic rays. These relatively low energy, high-rigidity singly charged particles 

provide a valuable additional means for studying both modulation and the properties o f  

the region in the outer heliosphere where these single ionized ions are accelerated. 

Interstellar pickup ions are believed to be the source o f the ACR component [Fisk, et al., 

1974] and thus studying the acceleration o f He+ pickup ions at the bow shock can help us 

to learn about the acceleration process o f ACR. On the other hand, we cannot rule out the 

possibility that the energetic He+ ions could also be magnetospheric He1- ions which 

traverse the magnetosheath and escape into the upstream region as energetic 0 + ions.

Therefore, the main goals o f this work are to determine the source and to study the 

acceleration o f energetic He+ ions at the Earth’s bow shock. This is accomplished by 

using data from the AMPTE/IRM (Active Magnetospheric Particle Tracer Exploreres 

/Ion Release Module) spacecraft for individual event analysis and statistical studies, 

which are compared with numerical simulations. The work is divided into two parts. One 

part is restricted to an almost perfect perpendicular bow shock and focuses especially on 

the specular reflection process. In the second part we will turn to the quasi-parallel shock, 

determine the source of the energetic He+ ions, and then focus on diffusive acceleration.

To put the studies o f this work into context, it is useful to review briefly observations 

and models o f suprathermal ion distributions upstream o f the Earth’s bow shock. Types 

o f ion distributions and their possible sources, such as leakage from the magnetosphere 

into the upstream or bow shock associated particles, are described in chapter 2. In chapter
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3 the basic features o f  pickup ions, their observations and the modeling o f  their 

distribution function are reviewed. A description o f  the instruments on AM PTE/IRM  

and AMPTE/CCE can be found in chapter 4.

The first main topic o f  this work is devoted to a numerical simulation o f  the He* ion 

distribution, that is formed by specular reflection o f pickup He1-, at a perpendicular 

shock. The model as well as comparisons with the measurements are presented in chapter 

5.

The second objective o f this work is a thorough analysis o f diffuse He^ ions at the quasi­

parallel shock. Composition measurements and abundance ratios between several ions are 

used to determine the relative importance o f the two possible sources, the magnetosphere, 

and acceleration o f pickup ions at the shock. Diffusive theory using the standard 

convection-diffiision cosmic ray transport equation is reviewed in chapter 6. Two models 

are constructed that use the same diffusion-convection equation with two different 

boundary conditions for further quantitative analysis. The first model is based on the 

assumption that all particles are magnetospheric ions traversing the magnetosheath and 

escaping into the upstream region. The contradicts from the comparisons o f the satellite 

observations with the results o f model 1 confirm quantitatively that the energetic He1” 

ions are not magnetospheric ions. The second model treats pickup H e+ ions as the source 

o f energetic He+ ions. Calculations o f injection efficiency are the second emphasis of 

chapter 6. Finally, conclusions are drawn in chapter 7.
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CHAPTER 2

CLASSIFICATION AND DESCRIPTION OF 

SUPRATHERMAL ION DISTRIBUTIONS 

UPSTREAM FROM EARTH’S BOW SHOCK

The foreshock region contains a variety o f suprathermal ion distributions. The spatial 

Location o f these distributions and the location o f  the quasi-parallel and quasi­

perpendicular bow shock regions are shown schematically in Figure 2.1 [from 

Fuselier,1994] for the Parker spiral interplanetary magnetic field (IM F) orientation. From 

early observations it was clear that the regions upstream and downstream from the quasi­

parallel and quasi-perpendicular bow shock differed considerably. Here, the shock is 

considered quasi-perpendicular shock when frBn is greater than 45°, where frBn is the angle

between the average upstream magnetic field (averaged over an appropriate time interval 

to remove the fluctuating magnetic field) and the shock normal. The shock is considered 

quasi-parallel shock when frBn is less than 45°. In Figure 2.1, magnetic field lines are 

shown upstream from the shock, while in the magnetosheath downstream from the shock, 

streamlines are labeled with their upstream value o f frBn at the shock [see also Russell et
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al., 1983]. The region containing ions backstreaming from the Earth’s bow shock is called 

the foreshock region [Fusilier, 1994].

rsw.
Quasi-ParallelQuasi-Perpendicular

Diffuse
6 0 ° Specularly

Reflected
75'

MP

BS

Stream lines

Fig. 2.1. Schematic of the foreshock and magnetosheath. The magnetic field is shown upstream from the 

bow shock and streamlines labeled with their tJb„ are shown downstream from the shock. The ion foreshock 

is bounded by the Earth’s bow shock and the ion foreshock boundary. The foreshock boundary is not the 

magnetic field because ion beam speeds along the magnetic field (V*,) are comparable to the convection 

speed o f the solar wind (Vw). In the foreshock region, field-aligned beams (FAB), gyrophase-bunched, 

intermediate (I), diffuse, and specularly reflected distributions are observed.

In the quasi-perpendicular foreshock, field-aligned beams (FAB in Figure 2.1) with a 

sharply peaked energy spectrum seldom extending much above 10 keV are observed. The 

quasi-parallel foreshock contains a variety of distributions including intermediate with 

properties intermediate between those o f the field-aligned beams and the diffuse ions, (I in 

Figure 2.1), diffuse ions with relatively flat energy spectra extending well above 10 keV
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and falling off more steeply above 100 keV, and specularly reflected ion distributions 

(with energies o f approximately a few keV). As will seen in the next two sections, there 

are profound differences between the suprathermal ion distributions in these two regions.

Following the initial report o f  ions observed backstreaming away from the Earth’s bow 

shock with energies o f several kilovolts, considerable theoretical and experimental 

attention has been given to the problem o f  upstream ions. There are two basic types o f 

suprathermal ion distributions upstream and downstream from the Earth’s quasi­

perpendicular shock.

2.1 Review of Observations and Models at Quasi- 

Perpendicular Bow Shock

2.1.1) specularly reflected ions

One type o f suprathermal ion distribution that is observed immediately upstream and 

downstream o f the quasi-perpendicular bow shock is the specularly reflected ion 

distribution [Paschmann et al., 1982]. An example of a specularly reflected ion 

distribution near the quasi-perpendicular bow shock is shown in Figure 2.2 [from Fuselier 

et al., 1986a]. The contours in this figure show the phase space density o f  ions in the 

ecliptic plane with two contours per decade o f phase space density. The Vx direction
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(toward the Sun) is to the left and the Vy direction (duskward) down. The center o f  the 

contour plot is zero velocity in the spacecraft frame. The tightly space contours in the - 

Vx direction are the solar wind ion distribution . The magnetic field direction is identified 

by the arrow labeled B in each contour plot and this magnetic field line is connected to 

the Earth’s bow shock in the - B  direction.

SOOkm/s

JANUARY 1. 1978 
0325 :12

Fig. 2.2 An example o f a specularly reflected ion distribution 
observed near the the Earth’s quasi-perpendicular bow shock. In this 
plot, the center o f  the panel is zero velocity in the spacecraft frame. 
Positive Vx and Vy point sunward and duskward, respectively. B in 
the figure is the magnetic field direction and the direction to the 
shock is along -B . The tightly spaced contours in the -Vx direction 
are the solar wind. The more loosely space contours in the -Vy 
direction are the specularly reflected ions.

In specular reflection, the component o f the incident solar wind ion velocity normal to 

the shock is reversed but the component tangential to the shock and the total speed 

remains the same. The initial trajectory o f a specularly reflected ion depends crucially on 

0Bn> [Gosling et al., 1982], For 0Bn > 45°, specularly reflected ions have guiding center 

motions which are directed downstream. In this geometry, specularly reflected ions gyrate 

into the upstream region, gain energy by moving parallel to the solar wind electric field, 

and return to the shock with considerably more energy than when they left it. These 

higher energy ions cross the shock and gyrate into the downstream region, where they 

contribute importantly to downstream thermalization. The ion distributions are confined 

to within one gyro-radius upstream from the shock [Gosling and Robson, 1985]. Particles
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may suffer further encounters with the shock due to the combined action o f the 

interplanetary electric field and the Lorentz force. The resulting ion distribution can have 

a large component o f  its motion perpendicular to the upstream magnetic field. Paschmann 

et al. [1982] have presented observations o f gyrating ions within the foot region o f a

quasi-perpendicular bow shock, i.e. frBn > 45°.

2.1.2) Field-Alisned Beams

Field aligned beams were the first type o f suprathermal ion distribution observed in the 

upstream region [Asbridge et al., 1968], An example o f a field-aligned beam is shown in 

Figure 2.3 [from Fuselier and Thomsen, 1992]. The format is similar to that o f figure 2.2 

with the tightly spaced contours representing the solar wind distribution and the more 

open contours representing the suprathermal ion distribution. The contours in the upper 

part o f the plot along the magnetic field are field-aligned ion beams propagating away 

from the shock with a speed o f approximately two to three times the solar wind speed in 

the spacecraft frame. They generally do not extend in energy much above ~10 keV. Field- 

aligned beams in the upstream region have densities on the order o f 1% o f the solar wind 

proton density [Bonifazi and Moreno, 1981a, b].

Recent analysis o f  field-aligned beams has shown that they are indeed composed almost 

entirely o f protons. Integrating over 23 events, Ipavich et al. [1988] obtained a very low
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He2+ to FT average ratio (5x1 O'4) in the field-aligned beams, which is almost two orders o f

magnitude less than the nominal solar wind ratio. A similar result was obtained by 

Fuselier and Thomsen [1990] using 14 events observed with ISEE 1 and 2. They found 

that in field-aligned beams, He2+ is depleted by a factor o f 10 or more relative to H+.

ISEE-2 Protons 
9  November 1978 
.1246:36-1246:39

Fig.2.3 An example o f a field-aligned beams observed upstream from 
the Earth’s bow shock . The format is the same as in Figure 2.2.

Field-aligned beams were first thought to originate through reflection o f  the incident solar 

wind proton distribution at the quasi-perpendicular bow shock [Sonnerup, 1969]. 

Probably for this reason, they were first called “reflected ions” [Gosling et al., 1978], The 

first quantitative model for field-aligned ion beams upstream o f the bow shock was 

presented by Sonnerup [1969], who studied ion reflection for arbitrary angles between 

the magnetic field, solar wind and shock normal with all 3 vectors in the same plane. In 

this model no assumptions on the nature o f the reflection process are made, and only the 

guiding center motion o f the particle is considered. The model describes the resulting beam 

energy in simple geometrical terms, and therefore made it very suitable for an 

experimental test. Paschmann et al. [1980] extended Sonnerup’s two-dimensional 

calculations to three dimensions and showed that the predictions o f  the model are
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consistent with the observations o f energetic ion beams over a wide range o f  angles 

between the shock normal and the upstream magnetic field. It has been found that the best 

agreement between model and the observations is obtained for 5 = 0.9, where 5 is defined 

as V//r / V//j in H-T frame and V;/r and V /ri are the velocity components o f reflected ion and 

incident ion parallel to the magnetic field, respectively. The value is between 0 and 1 ,8  = 

1 stands for reflections that conserve the magnetic moment o f  the particles. However, 

based on a limited data set, there is evidence [from Schwartz and Burgess, 1984] that 

field-aligned proton beams may be produced by either an adiabatic reflection mechanism 

at the shock or by leakage o f a small portion o f the hot proton population from the 

magnetosheath into the upstream region. Further researches have been needed.

In summary, ‘gyrating ions’ or specularly reflected ions are observed within the 

upstream o f Earth’s bow shock ramp. A fairly large fraction (up to ~20%) o f the solar 

wind ions specularly reflected off the quasi-perpendicular shock. Field-aligned beams can 

propagate a significant distance from the shock and convect with the solar wind into the 

quasi-parallel foreshock as they are scattered, as illustrated in figure 2.1. Field-aligned 

beams consisting almost entirely o f protons are produced by reflection o f a portion (~ l% ) 

o f the solar wind ion distribution incident on the shock or by leakage o f a portion o f the 

hot magnetosheath plasma back into the upstream region [Schwartz and Burgess, 1984]. 

The evolution o f these beams the suprathermal ion distributions is discussed in the next 

section for the quasi-parallel bow shock.
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2.2 Review of Observations and Models at Quasi-Parallel 

Bow Shock

The scattering o f  field-aligned beams and the generation o f low frequency waves 

nominally begin in the quasi-perpendicular foreshock but evolution o f  field-aligned beams 

and the waves they generate are really seen in the quasi-parallel forshock region [Fuselier, 

1994], In this region there are three basic types o f suprathermal ion distributions.

2.2.1) Intermediate ion distributions

An example o f  an intermediate ion distribution is shown in Figure 2.4 [from Fuselier et 

al., 1986a], The format o f Figure 2.4 is similar to that o f Figure 2.2. Comparing the 

intermediate ion distribution and the field-aligned beams in Figure 2.3, it is evident that 

the difference between the two types o f distributions is simply that the intermediate ion 

distribution extends over a much larger angular range than the field-aligned beam. Initially, 

a field-aligned beam generates a small amplitude magnetosonic wave which eventually 

grow to sufficient intensity to pitch angle scatter the ions into the less anisotropic 

intermediate ion distribution. The evolution o f field-aligned beams to produce 

intermediate ion distribution was first confirmed by spacecraft observations [Thomsen et 

al., 1985; Fuselier et al., 1986c] and the simulations [Lee and Skadron, 1985, Hoshina and 

Terasawa, 1985]. The intermediate ion distribution is always associated with transverse 

large amplitude, less compressional hydromagnetic waves.
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B E E -2

NOVEMBER 10. 1977 
1 0 5 9 5 4

Fig. 2 .4  An exam ple o f  an in term ediate ion d is tr ib u tio n . This 
d istribution  evolved from a field-aligned beam  s im ila r to the one 
show n in Fig.2.2.

2.2.2) Specularly reflected ions

Specularly reflected ions are another distribution observed at quasi-parallel bow shock. 

The guiding center motion o f ions specularly reflected off the Earth’s bow shock is 

determined by the incident solar wind velocity and the shock geometry. For a steady 

quasi-parallel geometry, d Bn < 45°, the guiding center motion of specularly reflected ions

is directed upstream and these ions will not return to the shock. Specularly reflected ion 

distributions that fit this description have been observed at large distance (i.e., more than 

several ion gyro-radii) from the shock [Gosling et al., 1982], An example o f  such a 

distribution is shown in Figure 2.5 [from Fuselier et al., 1986a], The format o f  Figure 2.5 

is similar to that o f Figure 2.2. Unlike the specularly reflected ion distributions near the 

quasi-perpendicular shock, these distributions are observed at larger distance than one ion
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gyro-radius upstream of the quasi-parallel bow shock. They have typical densities on the 

order o f a few percent o f the solar wind density and are gyrotropic.

ISEE-2

DECEMBER 10. 1977 
0529:10

Fig. 2.5 An exam ple o f  a gyrotropic distribution produced through 
specular reflection at the quasi-parallel bow shock in the upstream 
region. The format is sim ilar to that o f Fig. 2.2. The supratherm al 
d is tribu tion  is nearly gyro trop ic  but appears as tw o separate 
distribu tions because the measurments give a 2-dim ensional cu 
through the distribution.

2.2.3) Diffuse ion distributions

Diffuse ion distributions such as the example in Figure 2.6 [from Gosling et al., 1989b] 

appear to represent fully scattered intermediate distributions. The format o f Figure 2.6 is 

similar to that o f Figure 2.2. In energy space diffuse upstream ion distributions extend 

from solar wind energy to 100 or even 200 keV/Q with a peak at about 10-20 keV/Q, i.e., 

diffuse ions have a pronounced high energy tail. Beyond 30 keV/Q the energy spectra are 

characterized by an exponential in energy per charge [Scholer et al., 1979; 1981]. The 

diffuse upstream ions have typically a nearly isotropic distribution in the frame o f  the 

spacecraft. In additional, diffuse ion distributions are always observed in association with 

large-amplitude hydromagnetic waves [Paschmann et al., 1979],
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9JDU1979 085154-03323$

Fig. 2.6 An example of a diffuse ion distribution observed when the 
magnetic field cone angle was nearly zero. The format is similar to 
that o f  Fig. 2.2.

The character o f  broad angular distributions indicates that the diffuse ion distributions 

have undergone considerable pitch angle and energy scattering in the turbulent regions 

upstream and downstream from the quasi-parallel bow shock. The main theoretical 

acceleration model for diffuse ions is the first-order Fermi or diffusive acceleration model. 

In this model it is assumed that particles are scattered approximately elastically at 

scattering centers. The elastic scattering is due to small-angle pitch angle scattering by 

hydromagnetic waves that convect approximately with the local flow speed. The particles 

which are scattered back toward the bow shock in the upstream medium can gain 

considerable energy in the shock frame. The particles are possibly reflected back from the 

shock front or are scattered back by downstream waves.

From the early observations, it was believed that diffuse ion distributions represented the 

final evolution o f  field-aligned beams initially produced at the quasi-perpendicular shock

■auo
SDN
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[e.g., Gosling et al., 1978; Paschmann et al., 1979; Bame et al., 1980]. Several features o f  

these distributions seemed to support this belief. Field-aligned beams, intermediate, and 

diffuse ion distributions all have typical densities o f ~ 1% o f  the solar wind proton 

density, are never observed simultaneously, and typically exhibit smooth transitions from 

one type to another. Diffuse ion distributions like the one in Figure 2.7 which is a cut 

through the distribution along the Sun-Earth direction (the x axis) extend to much higher

- a

-a-

o

-a
-StCO -i® 0 -400 0 no urn atoo

SPEED (KH/S)

Fig. 2.7 The plot shows a cut through the diffuse distribution 
in the plasma flow direction. The diffuse distribution represents 
a nearly fully evolved ion distribution (i.e., one that has 
undergone severe pitch angle and energy diffusion).

energies (~ 200 keV/Q) than the intermediate distributions and field-aligned beams. Also, 

most o f the energy o f the distribution is thermal energy and typical energies o f these 

distributions are several keV/Q. The higher energies o f these distributions, compared to 

the ~ 5 keV/Q mainly kinetic energy o f the field-aligned beams and intermediate 

distributions, suggest energy as well as angular diffusion o f the initial field-aligned beam. 

Finally, the fluctuating magnetic field amplitudes increase from nearly solar wind level in 

association with field-aligned beams to their highest levels in association with diffuse ion
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distributions [e.g., Gary et al., 1981]. The large amplitude fluctuations in the quasi­

parallel foreshock (8B/B ~ I) are responsible for the rapid acceleration o f  solar wind ions

to high energies to form the energetic ion tail o f the diffuse ion distributions [e.g., Lee, 

1982].

While it might be true that the intermediate ion distributions evolve from field-aligned 

beams, it is clear that the beams cannot be the only source o f  diffuse ion distributions in 

the quasi-parallel foreshock. As pointed out in the previous section, field-aligned beams 

are composed almost entirely o f protons with very little solar wind He2+ present. In 

contrast, diffuse ion distributions like the one in Figure 2.6 contain a significant fraction o f 

solar wind He2+, especially for higher Mach numbers [Ipavich et al., 1984]. When 

compared on an equal velocity basis, the composition o f diffuse ion distributions is 

sim ilar to that o f the solar wind. This is one o f the most important pieces o f evidence that 

the diffuse ion distributions in the energy range from a few keV/Q to ~ 200 keV/Q are 

p redom inantly  from the solar wind and that field-aligned beams, which contain very little 

solar wind He2’’, may not be an important source o f diffuse ion distributions.

Specularly reflected ion distributions like the one in Figure 2.5 are a free energy source 

for further wave growth in the upstream region. Their density and ability to propagate 

upstream  into the quasi-parallel foreshock make them prime candidates for a source o f 

diffuse ions in that region. Composition measurements appear to support this contention.
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Unlike field-aligned beams upstream from the quasi-perpendicular bow shock, which 

contain little or no solar wind He2+ , specularly reflected ion distributions near the quasi­

parallel bow shock appear to contain He2+ at approximately solar wind concentrations 

[Fuselier et al., 1990]. However, recent numerical simulations [Scholer and Terasawa, 

1990; Scholer and Burgess, 1992] suggest that the specularly reflected ions lead to shock 

re-formation [e.g., Onsager et al., 1991; Scholer and Burgess, 1992]. Reflected ions travel 

upstream until they encounter a wave crest. Deflection o f the reflected ions, steepening o f 

the wave crest, and deceleration o f the incoming solar wind then lead to the emergence o f a 

new shock front. Simulations o f the quasi-parallel bow shock structure revealed that the 

shock is in a state o f constant reformation. Observations support this picture and show 

that the local d Bn o f the shock varies considerably as large amplitude magnetic field 

fluctuations in the quasi-parallel foreshock convect into the shock structure [Greenstadt 

and Mellott, 1985]. Therefore, it is believed that specularly reflected ions and solar wind 

ions constitute subsequently the new hot downstream distribution [Thomas et al., 1990] 

although specularly reflected ions themselves do not provide the bulk o f the downstream 

ion thermalization at the stable quasi-parallel shock.

Another proposed source for the diffuse ions is the thermal leakage o f the downstream 

particle population associated with the quasi-parallel shock. Such a population consists 

o f hot magnetosheath ions moving fast enough to escape upstream [Ellison, 1981]. The 

leakage model is able to predict quantitatively the measured alpha particle to proton flux 

ratio in upstream events from the shock parameters. On the basis o f self-consistent
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hybrid simulations Lyu and Kan [1990] have recently also concluded that backstreaming 

ions at the quasi-parallel shock are predominantly leakage ions.

In summary, there are a wide variety o f  suprathermal ion distributions in the quasi- 

parallel foreshock region. Intermediate distributions are produced by the evolution o f 

field-aligned beams that originate in the quasi-perpendicular foreshock. Diffuse ion 

distributions have several possible sources including the thermal leakage ion population 

from the magnetosheath and the evolution o f specularly reflected ion distributions. 

Detailed ion composition measurements help to differentiate between these sources for 

diffuse ion distributions. In the next section, we review investigations to determine the 

origins o f  the diffuse ion population.

2.3 Different Source Distributions For Diffuse Ions

There has been an ongoing debate as to the relative contribution o f two sources - 

magnetospheric bursts and bow shock-associated particles - to the upstream particle 

population. Sarris et al. [1976] and Scholer et al. [1981] have presented evidence that 

energetic magnetospheric ions can traverse the magnetosheath and escape into the 

upstream region. Also the detection o f energetic sulfur ions upstream of the Jovian bow 

shock implies that particles from inside the Jovian magnetosphere can escape into the 

interplanetary medium [Zwickl et al., 1981]. However, observations at Venus, which does
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not have a magnetosphere, show also the occurrence o f energetic ions upstream o f  the 

bow shock [e.g., Moore et al., 1989; Frank et al., 1991]. This is strong evidence for the 

ions being accelerated at a bow shock and that a magnetosphere is not the only source 

providing upstream ions. A good indicator for magnetospheric bursts at the Earth’s bow 

shock are energetic CT ions observed during upstream particle events. These ions are o f 

ionospheric origin and can be clearly differentiated from those o f  solar wind origin 

[Mobius et al., 1986],

An important indicator for the solar wind is the relative abundance o f  diffuse alpha 

particles upstream o f the shock. The first composition measurements in upstream 

energetic particle events were reported by Ipavich et al. [1979]. They discussed two 

events during which the alpha particle to proton ratio He27FT at 30-130 keV/Q was 

constant and similar to that in the solar wind. A more comprehensive study was 

performed by Ipavich et al. [1981]. In 33 upstream events, they found that the He27FT 

ratios in these events vary between 1% and 15% and are similar to the average ratio and 

variation in the solar wind. Further statistical studies by Ipavich et al.[l984] showed a 

high correlation(0.83) o f  the alpha to proton ratio in diffuse ions with the same ratio 

observed simultaneously in the solar wind. A large body o f evidence [e.g., Ipavich, 

Gosling, Scholer 1984, Mobius 1986, and references therein], strongly indicates that the 

primary particle source for long lived diffuse ion events is the solar wind. The simulations 

performed by Trattner and Scholer [1991] have shown that quasi-parallel collisionless 

shocks can produce suprathermal upstream protons as well as alpha particles and the
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density ratio o f diffuse alpha particles to diffuse protons is about equal to the same ratio 

in the solar wind. These results are in agreement with the observations by Ipavich et al. 

[1984]. Hybrid simulations [Scholer, 1990; Kucharek and Scholer, 1991; Giacalone et al., 

1992; 1993] have shown that the majority o f diffuse ions are not due to leakage o f 

thermalized downstream ions nor due to specularly reflected ions, but they are accelerated 

from the incident solar wind to high energy while riding for a long period o f  time (~15 ion 

gyroperiods) close to the subshock.

A detailed statistical analysis o f diffuse ion events and their related waves upstream o f 

the Earth’s bow shock was performed by Trattner et al. [1994]. The most striking result 

is the excellent correlation o f the measured hydromagnetic wave energy density with the 

one predicted by the model o f  Lee [1982] based on the measured energy density, solar 

wind and AlfVen velocity. The evidence that the waves and particles are strongly coupled 

would also hold for energetic particles which may have escaped from the magnetosphere. 

Both ion components will generate low-frequency upstream waves in a similar way. The 

ions will be scattered by the waves and will consequently gain energy by multiple 

reflection between converging scattering centers at the shock. Therefore, Fermi 

acceleration will be applicable for both ions o f solar wind and magnetospheric origin.

A number of issues require further study. As far as the acceleration mechanism at the 

shock itself is concerned, several questions arise. For example, what is the injection 

efficiency o f the incident distribution extracted into the quasi-parallel bow shock? How
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does it depend on species and on original distribution? Interstellar pickup ions, with a 

velocity distribution clearly distinguished from the solar wind, offer an additional way to 

study particle acceleration at the shock. We consider He+ as a candidate to study the 

acceleration mechanism at the quasi-perpendicular and quasi-parallel Earth’s bow shock.

As pointed out by Gloeckler and Hamilton [1987], protons are supplied by both the 

solar wind and the ionosphere and, while dynamically important, their mixed origin makes 

it difficult to use them in determining the various acceleration and transport mechanisms 

in the magnetosphere. Is it possible the same situation happens for He" in the region 

upstream o f the shock? Since it is noted that there is a significant charge-exchange 

between multiply-charged ions with the neutral hydrogen in the geo-crona, much o f He2+ 

converts to H e \  which causes the relative abundance o f He+ in the plasma sheet as 

compared to He2+ (He7He2" = 1.7, Gloeckler et al., 1987). The number density ratio o f 

He+ to H" in the magnetosphere is only lower than that o f CT whose origin is mainly the 

ionosphere. On the other hand, pickup He+ ions are an important source in the region 

upstream o f the shock, and play an important role in explaining the source o f anomalous 

cosmic rays at the termination shock. (It is known that the interstellar pickup He" to 

solar wind He2+ is about 0.02). Therefore, it is important to sort out the origin o f 

energetic He''’ ions in order to understand the acceleration mechanism. As one o f  the 

important source for energetic ions observed in upstream region from the Earth’s bow 

shock, pickup ions will be discussed in detail in the next chapter. In chapter 6 we will use 

similar techniques such as composition measurements and the relative abundance o f
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diffuse particles upstream o f the shock to distinguish between the magnetospheric He'1' 

and shock associated He"1" populations in front o f the quasi-parallel shock.
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CHAPTER 3

INTERSTELLAR PICKUP IONS

The solar system is moving with respect to the local interstellar medium (LISM) with a 

relative velocity o f  about 20 km/s, so that from the view o f an observer in the heliosphere 

the interstellar gas is blowing as an interstellar wind through the system. Thus neutral 

interstellar material penetrates deeply into the heliosphere. Neutral particles in 

interplanetary space do not interact with the magnetic field embedded in the solar wind. 

However, when approaching the Sun the interstellar gas is subject to the forces o f solar 

gravitation and radiation pressure. The latter force is substantial for hydrogen, while it is 

unimportant for all other species. The incoming interstellar neutrals are ionized by solar 

EUV radiation (dominant for H e ' and N e '), by charge exchange with the solar wind 

(dominant for H ' and He2') ,  and by electron collisions. The newly created ions are then 

immediately picked up by the combined forces o f  the -Vsw x B electric field and the 

interplanetary magnetic field B, and finally swept out o f the heliosphere. They form a 

new particle population in the solar wind — the interstellar pickup ions.

While most o f the components o f the interstellar gas including the bulk o f hydrogen, are 

already ionized far beyond the orbit o f the Earth, noble gases such as helium and neon
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(because their high ionization potential) penetrate to less than I AU from the Sun [Siscoe 

and Mukheijee, 1972]. Therefore, a significant fraction o f  the helium is ionized inside the 

Earth’s orbit. The first positive identification o f interstellar He+ pickup ions and their 

actual velocity distribution in the solar wind was reported by Mobius et al.[ 1985b].

Furthermore, the detection o f  interstellar H+ [Gloeckler et al., 1993], FT, 0 + and He+ 

pickup ions has been reported [Geiss et al., 1994], as well as that o f C" which stems 

mostly from local sources [Geiss et al., 1996]. In this thesis we will concentrate on He" 

ions. Therefore, a brief overview on the He* distributions in the solar wind is appropriate 

here.

3.1 Review of observations

A typical measured velocity distribution o f He* ions is shown in Figure 3.1 [Mobius, 

1986]. The gray shading represents the differential energy flux while the concentric rings 

represent the energy steps o f the SULEICA instrument, i.e., the energy of the ions 

indicated by the radius, the eight sectors represent the sectoring scheme in the flow 

direction on the ions. The Sun is to the left. The actual solar wind energy is indicated by 

an arrow. In the solar wind direction the He* ions are observed up to a certain cut-off 

energy, which is equal to the fourfold solar wind bulk energy o f helium as determined 

from the 3D-plasma instrument on the satellite. The ion flux is also seen in the tw o 

adjacent sectors up to a significantly lower energy.
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AMPTE/IRM 09:40-10:20UT 15 NOV 1985

DIFF HELIUM ♦ ENERGY FLUX (7.07-226.1 keV]
14-102 __________ 5.2-10*

Fig. 3.1. Measured pickup ion energy distribution of He" ions in the plane perpendicular to the spacecraft 

spin axis in a gray shading representation. Each concentric ring represents one energy step o f the 

instrument, the radial lines mark the azimuthal sectoring . The solar wind energy is indicated by an arrow.

The differential energy flux spectrum in the direction o f the solar wind is shown in Figure 

3.2. The spectrum is basically flat up to the cut-off energy, where the flux drops by more 

than two orders o f magnitude.

The flux o f  He" ions which reflects the neutral density o f helium shows a period o f 

significant variation from September to December 1984. In Figure 3.3 [Mobius et all 

1995a] the differential energy flux of He+ at 20 keV is plotted against time. A maximum is 

reached in early December. During December the Earth is on the downwind side o f  the 

interstellar neutral wind with respect to the Sun. Here the helium is focused by the 

gravitational forces o f the Sun and therefore the local density is significantly enhanced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

Figure 3.4 [Mobius et al., 1995a] shows a schematic representation o f  the neutral helium 

distribution in the inner heliosphere with an indication o f how the data are obtained from 

an Earth orbiting spacecraft. Due to the gravitation o f the Sun, a significant density 

enhancement, the so-called focusing cone, is found on the downwind side o f the Sun. The 

density increase and the width o f the cone depend sensitively on the inflow velocity and 

the temperature o f the neutral gas.

AMPTE/IRM 85 317 06:00:00 - 09:00:00 |

O'

H e.5o*

.3o*

.20‘

o1
.21 o 1

Energy  in keV/Q
k0 1 o‘1 o

Fig. 3.2 Differential energy flux spectra of He* ions taken in the sun-sector 
for the quasi-parallel bow shock

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



En
er

gy
 

Fl
ux

 
D

en
si

ty
 

[1
03 

s'
1 

cm
'1 

sr
*1

]

Ionization Rate = 5.5 * 10 '8 s*1
25 

20 

15 

10 

5 

0

Fig. 3.3 Differential energy flux of 20-keV He' ions obtained in the Sun-sector for different time periods 

between September and December 1984.

I | I I I | I 1 I l "I1 I I I ■! r  I | I

Data
Model
N-10%
N+10%

■ I ’ ■ » 1 * ■ 1 1 » ■ 1 1 I I I i— I 1----1 I L

250 270 290 310 330 350
DOY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



32

View Cones 
'fo r UV Scattering

Gravitational Focus,

Accumulation o f Fick-up lens

Intersteljar G as Trajectories

interstellar Wind

Interstellar Helium

Fig. 3.4. Schematic representation o f the trajectories and the spatial distribution o f interstellar helium in 

interplanetary space. The cones indicate the line-of-sight integrals obtained from UV backscattering 

measurements in the Earth’s orbit. The dashed radial line indicates a cut through the spatial distribution 

observed in pickup ions from the Earth’s orbit.

3.2 Review of the models

Vasyliunas and Siscoe [1976] presented a model o f the pickup ion distribution based on 

instantaneous isotropization o f the ions due to pitch-angle scattering and subsequent 

adiabatic deceleration in the expanding solar wind. The resulting distribution with a sharp 

cut-off at the solar wind energy, was found compatible with the helium distribution 

observed by Mobius et al. [1985b]. Generalizing the model by Vasyliunas and Siscoe 

[1976], Isenberg [1987] included the effect o f  energy diffusion. We will restrict ourselves 

to the Vasyliunas and Siscoe model because it describes the source distribution with 

sufficient accuracy for the work in this thesis. In this section, we review the derivation o f 

the distribution function o f pickup ions and the basic results o f the model calculation.
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3.2.1) Initial pick-up

In contrast to genuine solar wind ions, freshly created ions in interplanetary space are 

initially at rest. Immediately after ionization they are subject to the combined forces o f 

the interplanetary Vsw x B electric field and the magnetic field B. In the inertial system the

ions initially perform a cycloidal motion perpendicular to the local magnetic field as 

schematically shown in Figure 3.5[Mobius et al. 1986], Their velocity varies between 

basically zero (the relative velocity o f the neutral gas, = 20 km/s for the interstellar gas, is 

neglected here compared with the solar wind velocity) and a maximum value:

V imax = 2 Vsw sin a  (3.1)

a  is the angle between the solar wind flow direction and the local magnetic field.

fsw

Fig. 3.5 Schematic o f  the cycloidal trajectory o f  pickup ions for perpendicular geomatry.
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The maximum energy o f pickup ions then is

„ . m  , . ,
E imox = 4 ~ Kn-sm a (3.2)

In the solar wind frame, the distribution function is a ring in velocity space with the 

pitch-angle a ,  as demonstrated in Figure 3.6. The ions gyrate with a velocity

Vi  = Vsws in a  (3.3)

and move along the field with

Vy = Vsw cos a . (3.4)

The signatures o f such undisturbed ring distributions have been observed after the 

artificial injections o f  lithium clouds into the solar wind [e.g., Mobius et al., 1986].

PIC K -U P ION!

>w'sw

SCANNING
APERTURE

Fig..3.6 Distribution o f pickup ions in velocity space; Magnetic field perpendicular to the solar wind 

velocity (left). Magnetic field direction oblique (right).

3.2.2) Formation o f pickup ion distribution
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Resonant interaction with the ambient AlfVen waves leads to an isotropization o f the 

original ion distribution. Scattering o f the ions in pitch-angle d  is much more efficient than

diffusion in energy E, since according to quasi-linear theory the corresponding scattering 

efficiencies scale as (VA /Vsw ) 2 for pickup ions at the solar wind velocity, where VA is 

the local AlfVen velocity.

The pickup ions are scattered in pitch-angle on a typical timescale t  = X /  Vsw, where X is 

the average distance over which the ions are transported with the solar wind before being 

effectively pitch angle scattered. In this sense we use X as the mean free path o f  scatter-

free transport; its typical value has been found o f the order o f  0.1 AU [Mobius et al., 

1988]. The scattering transforms the initial ring distribution into a spherical shell in 

velocity space. While the shell is convected in the anti-sunward direction, the pickup ion 

distribution is subject to adiabatic cooling in the expanding solar wind [Vasyliunas and 

Siscoe, 1976], As shown by Mobius et al. [1988], the adiabatic cooling is significant on a 

time scale much longer than that for pitch-angle scattering, but acts much faster than 

diffusion in energy space. Thus it is reasonable to assume a distribution which results 

from a combination o f pitch-angle scattering into an isotropic spherical shell and 

subsequent adiabatic cooling. In this view the distribution consists o f  nested shells in 

velocity space whose phase space density f(V) is determined by the ion production rate 

Sr (r) o f these ions as a function o f the heliocentric distance or along the Sun-spacecraft
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line. Treating the pickup ion distribution as an ideal gas (adiabatic index y  = 5/3), the 

radius V o f the spherical shell in velocity space has a relationship

V / V sw = ( r / r i) - 2/3 (3.5)

where r represents the distance from the Sun, starting at the location o f  ionization r;. This

relation is equivalent to an unique mapping of the distance r; from the Sun into velocity

space. In a steady state the outward flux density o f interstellar ions at a distance r from

the Sun is found by integrating the ionization rate inside an infinitesimal solid angle

segment o f a sphere o f  radius r and dividing by its surface area. I f  n, is the number density

o f ions o f a given species, the outward flux density is

n y „  = V „JvV- 4 m V ’W '-d V ' (3.6)

That is

1
r  \ rS{r')A7tr'2dr' = Vw V ')V ’2dV f (3.7)

A m

Differentiating with respect to V then gives

" V)= i ( 3 8 )  v w {£ n )V  r  d v

For adiabatic deceleration, this result in a velocity distribution is

3

=  ( 3 ' 9 )nv nv

where r is the distance o f the spacecraft from the Sun (here I AU), r, is taken as a function 

o f V and, therefore, leads to a simple relationship for the distribution function.
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The source distribution S(r) = N(r)Pion(r) depends on the local neutral gas density N(r)

and ionization rate pion(r)- As mentioned before, interstellar neutrals are ionized by solar

UV radiation, charge exchange with solar wind protons, and electron collisions. The solar 

UV flux (dominant for the ionization o f interstellar helium [Holzer, 1977]) varies as l/r2 

with distance from the Sun and depends substantially on the solar activity [see, e.g.,

Hinteregger, 1976]. Hence, /?,„„(/•) which lead to
r r '

Let r = rob ( I AU), the distribution function can be described by a production rate p ion at

the point o f observation, while the r-dependence o f the neutral density has to be 

maintained explicitly:

The distribution o f interstellar neutral particles N(r;) in the vicinity o f the Sun is basically 

determined by the solar gravitation, radiation pressure and removal by ionization. 

According to e.g., Fahr [1968], Blum and Fahr [1969], Holzer [1972], and Axford [1972] 

for a cold interstellar gas the spatial distribution N(rj 0) o f  the neutrals is given by

P , J n )  = a h ' r;
(3.10)

where rob is the distance o f observation point to the Sun. Therefore,

(3.11)

(3.12)
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which is only applicable when the spacecraft is not too close to the cone. N0 is the 

density at infinity, 0 the angle between the direction o f the Sun’s m otion (with velocity

V0 = 20 km/s) with respect to the interstellar medium and the line connecting the observer 

with the Sun, GM/r jon 2 is the gravitation acceleration o f the Sun (~2.2 AU/s2) and a  is the 

relative contribution o f the radiation pressure (which is negligible for helium, i.e., a  = 0). 

A = r2 pion /V0 is a characteristic penetration depth o f the interstellar gas, which depends 

on the ionization rate p jon at the reference distance r and the velocity o f  the interstellar 

wind V0. According to Mobius et al. [1988] for the interstellar pickup He ion, A is about 

0.5 AU determined from comparison o f these expressions with the measured energy 

spectra, 0 is about 120° which is roughly estimated according to the position of

spacecraft on October 9 ,1984.Thus, all quantities are determined except N0 and pion (rob).

Knowing the velocity distribution o f He+ ions, the source strength S «= N0 Pi0n o f the 

pickup ions can be obtained from the measured differential energy flux at a fixed energy. 

For a direct comparison with the measurements, the ion distribution m ust be transformed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

into the spacecraft frame o f reference and then integrated over the instrument field o f view 

Afi and energy range AE to determine the differential energy flux EdJ/dQdE:

= W c o s iM d  (3.15)

f  (w \fr,tp) is the distribution function in the spacecraft frame, with the viewing direction

(cp,ft) with respect to the solar wind flow and w ’ = V’/V ^  where V’ is the transformed

velocity which is a function o f the measured particle energy E. It is assumed here that the 

distribution is sufficiently isotropized in the solar wind frame, and therefore no pitch- 

angle dependence has been included. The limits o f the integration are taken according to a 

specific energy step AE and solid angle segment viewed by the SULEICA instrument

during one spin sector. This procedure is performed numerically. A full description o f 

this procedure is given in Mobius et al.[ 1988].

3.2.3) Modification in the Modeling o f the ion distribution

The current interpretation of pickup ion distributions and their translation into 

interstellar gas parameters contains several assumptions that have simplified the analysis. 

They seemed valid for the early pickup ion results. However, according to more recent 

observations and their analysis, modifications to the model presented above are required. 

Its simplifying assumptions can be maintained as long as the mean free path length for 

pitch-angle scattering is short compared with any other relevant scale length in the
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evolution o f the observed pickup ion distributions, i.e., for adiabatic deceleration and 

spatial variation o f the source. The assumption o f very efficient pitch-angle scattering 

implies that the pickup ion distribution is nearly isotropic in the solar wind frame 

[e.g.,Vasyliunas and Siscoe, 1976] so that an accurate determination o f the total pickup 

ion flux and thus the local neutral gas density is possible, even from a fraction o f the 

distribution. Recently, studies o f anisotropies in the velocity distribution o f pickup FT in 

unperturbed high-speed solar wind [Gloeckler et al., 1995] have indicated that the mean 

free path for pitch-angle scattering o f pickup ions can be much larger (on the order I AU, 

or comparable with the size o f the inner heliosphere). The significant reduction o f the 

pickup ion flux in the anti-sunward hemisphere o f  the distribution that has been observed 

during radial IMF conditions in comparison with pickup during perpendicular IM F 

[Mobius et al., 1995b] can be explained in the same way.

Except in cases when the IMF is oriented perpendicular to the solar wind direction, the 

revised view o f the pickup ion distribution predicts a substantial reduction o f the flux in 

the anti-sunward heliosphere. In the solar wind frame all pickup ions are injected with a 

velocity -Vsw. For radial magnetic field conditions all ions will have to be transported to 

the anti-sunward hemisphere o f the velocity distribution solely by pitch-angle scattering. 

Because o f instrumental constraints, the pickup ion flux and thus the source neutral 

density has been derived mostly from the anti-sunward portion of the distribution. This 

restriction applies to the SULEICA sensor with its lower energy threshold at 5 or 10 

keV/charge. Therefore, to derive an accurate neutral gas density from the anti-sunward
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hemisphere o f  the pickup distribution observed by SULEICA, modifications seem 

necessary for a radial shock.
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CHAPTER 4

THE AMPTE-MfSSION AND ITS INSTRUMENTS

The data for the following analysis were obtained with the Active Magnetospheric 

Particle Tracer Explorers (AMPTE). This mission was designed to study the access o f 

solar wind ions to the magnetosphere, the convective - diffusive transport and 

energization o f  magnetospheric particles, and the interactions o f plasmas in space. The 

mission consisted o f  three spacecraft: the Ion Release M odule (IRM ) provided by the 

Federal Republic o f Germany, the United Kingdom Subsatellite (UKS) and the Charge 

Composition Explorer (CCE) developed and built by the United States. The IRM 

provided multiple ion release in the solar wind, the magnetosheath, and the magnetotail, 

with in situ diagnostics o f  each.

The IRM was equipped with instruments well suited not only to study the interaction o f 

the artificial ion cloud with the ambient medium, but also to investigate the 

magnetospheric boundary regions and the natural plasma composition. The spacecraft 

worked successfully for two years before it became inoperational on 14 August 1986. 

The UKS served as a subsatellite o f the IRM spacecraft. Its purpose was to help
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distinguish between spatial structure and temporal changes in the plasma phenomena 

initiated by ion releases from IRM and in the natural magnetospheric environment. The 

spacecraft operated for = half year before its power supply failed on January 15, 1985.

The measured quantities were similar on both IRM and UKS including magnetic fields, 

positive ions, electrons, and plasma waves. In additional, IRM has ion composition 

capabilities.

24

IRM I

CCS.

Bow
Shock

Launch

CCE IRM
8JB Rf 18.7 Re 
13.61ms 44.3 hr* 
<3* 28.8*

Fig. 4.1. Orbit o f the IRM and C CE spacecraft at launch 
(August 1984) and at tw o subsequent periods.

The CCE was instrumented to detect those lithium and barium tracer ions that were 

released from the IRM and transported into the inner magnetosphere. A magnetometer 

and plasma wave spectrometer complemented the particle measurements. The CCE was
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operated for five years before it encountered command module/power supply problems at 

the beginning o f 1989, and failed on 12 July 1989.

4.1 Orbit

All three spacecraft were launched by a Delta 3924 launch vehicle from the Kennedy 

Space Center in August 1984, into a 29° inclined elliptical orbit with an apogee 9.0 Rc 

geocentric. The IRM and UKS stayed together and on the second orbit were boosted to 

an apogee o f an 18.7 R̂ . by the IRM kick motor. The CCE also contained a kick motor, 

which was fired at apogee to reduce the CCE orbit inclination to near 0°.

The orbits o f the CCE and IRM spacecraft are shown in Figure 4.1 [Gloeckler and 

Hamilton, 1987] at launch and for two later time periods. CCE is in a near equatorial orbit 

with an apogee o f about 9.0 Rc and a 15.6 h period. This orbit is ideal for sampling the 

ring current. During interplanetary disturbed times, it takes the spacecraft into the 

daytime magnetosheath and occasionally beyond the bow shock into interplanetary 

space. CCE’s spin axis points roughly at the Sun and its spin period is about 6 s.

IRM has 29° inclination, 18.7 Re apogee orbit with a 44 h period. This orbit allows good 

sampling o f  the magnetosheath, bow shock and interplanetary space, as well as the ring 

current region and near-Earth plasma sheet. Its spin axis was initially in the ecliptic plane,
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but later it was adjusted with magnetic torqueing to be at right angles to the ecliptic. The 

spin period is = 4.3 sec. In addition to the diagnostic instrumentation which consisted o f  a

3D plasma analyzer for electrons and protons, a suprathermal energetic ionic charge 

analyzer SULEICA, a magnetometer and plasma wave detector, the IRM satellite carried 

16 canisters with a mixture o f  Li and CuO or Ba and CuO for the active ion release 

experiments. For all the release experiments in the solar wind and the magnetosphere the 

SULEICA instrument was the only sensor on the spacecraft to evaluate the in situ 

energetic particle population before and during the ion releases.

The investigations in this thesis are tied to observations upstream o f the Earth’s bow 

shock that relied mainly on the instrumentation aboard IRM. For comparison with the 

composition in the magnetosphere, data from the CHEM instrumentation on CCE are 

also used. The instrumentation used for our study will now be discussed in more detail.

4.2 Instrumentation on board AMPTE/IRM

To study the origin o f particles in and around the magnetosphere, their heating 

acceleration and transport mechanisms, it is essential to have measurements o f the ionic 

mass, charge and energy distribution and electromagnetic field environment in various 

regions o f  the magnetosphere. Therefore, the instrumentation for the in situ measurements 

on board AMPTE/IRM consisted of
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1. a fluxgate magnetometer

2. a 3D plasma instrument

3. a time-of-flight spectrometer

4. a plasma wave instrument

For this investigation the fluxgate magnetometer provided the magnetic field data, the 

3D plasma experiment the solar wind density and velocity, and the time-of-flight 

spectrometer the distribution and composition o f  the upstream particles. We will 

restrict ourselves to the description o f instruments 1 through 3.

4.2.1) The Fluxgate Magnetometer

The three-axis fluxgate magnetometer was developed by the Technische Universitat

Braunschweig in collaboration with the Max-PIanck-Institut fur extraterrestrische Physik 

(MPE) and the NASA Goddard Space Flight Center. Important features o f the instrument 

were its wide dynamic range from 0.1 nT to 60000 nT and its temporal resolution o f  1/32

sec. For detailed information see Liihr et al. [1985],
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4.2.2) The 3D plasma Instrument

The 3D plasma instrument was developed by MPE and the University o f  California, 

Berkeley. The instrument consisted o f three sensors, two o f which measured the 

complete 3D velocity distribution function o f ions and electrons for every spacecraft 

revolution (4.35 sec). A Langmuir probe was added for low energy measurements.

The basic principle o f the first two sensors, hemispherical top-hat electrostatic 

analyzers, is illustrated in Figure 4.2 [Paschamnn et al., 1985]. Each analyzer had three 

concentric spherical section elements: an inner hemisphere with radius R| to which the 

deflection voltage was applied, an outer hemisphere (with radius Ri + A) with a circular

hole at its zenith, and a small top cap section (with radius R, + 2A). The gap between the

top-hat and the outer hemisphere defined the entrance aperture. Sample trajectories for 

the three different polar angle directions are shown in Fig.4.2.

The measured distribution was accumulated into 30 energy bins and 128 angles evenly 

distributed over the 4rt solid angle sphere. The instrument covered the energy range from

15 eV to 30 keV for electrons and 20 eV/charge - 40 keV/charge for ions. The basic 

moments (density, velocity, temperature tensor and heat flux vector) o f  the distribution 

functions o f  ions and electrons were computed in real time by dedicated microcomputers
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and were available with a 1 spin time resolution. For a detailed description o f the 

instrument see Paschmann et al. [1985].

TOP
VIEW

CROSS • 
SECTION 

VIEW

XEM 'S

Fig. 4.2. The basic priciple o f  the 3D plasm a experim ent (Paschm ann et al., 1985).

4.2.3) The Time-of-Flight Spectrometer SULEICA

The SULEICA instrument was designed at MPE and the University o f M aryland 

(UoMd) and was able to distinguish all major ions from H to Fe in the energy range from 

5 keV/charge to 270 keV/charge [Mobius et al., 1985], The entrance aperture had an 

opening angle o f  40° x  10°. The distributions were sampled in the spin plane o f the

satellite in 16 sectors for H+ and He2+ and 8 sectors for all other ions. A complete 

summary o f  the capabilities o f the instrument is presented in Table 4.1 [from Trattner, 

1992]. To determine the ionic charge and mass o f incoming ions, the SULEICA sensor
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combined the techniques o f electrostatic deflection, time-of-flight (TOF) and residual 

energy measurement. A schematic view o f the sensor is presented in Fig. 4.3 [from 

Mobius et al., 1985].

ELE CTR O STA Tt \  
ANALYZEr

CARBON i r r n  r R A T m i ksittc  SOUO STATE 
FOU A K E tg tA T B M G R m S  DETECTORS

ri7 *

L-'aKTnits 
TRAJECTORIES

MCP

ST A R T

Fig. 4.3. Schematic view o f the SULEICA measuring techniques (Mobius et al., 1985).

The electrostatic deflection system consisted of two concentric 75° by 40° spherical 

segments with a center radius o f 20 cm and a plate distance o f 0.5 cm. The resulting 

geometrical factor o f the analyzer was 4.3-10-2 cm : sr and the energy resolution AE/E -

0.097 [Mobius et al., 1985]. The surface o f the analyzer plates was coated with CuS 

black to suppress the penetration o f UV radiation into the sensor. The energy range o f 5 - 

270 keV/Q was divided into 24 logarithmically spaced ( X fl) steps which were 

incremented after each complete spin period. The sequence o f energy stepping was 

adapted to the needs o f regions encountered by the spacecraft. For high time resolution, 

the instrument was in a mode with six energy steps incremented by a factor o f 2 after 

completion o f a full spacecraft spin. One full energy cycle lasted for six spacecraft spins 

(-25  s). This analyzing technique selected the incoming particles according to their energy

E per charge Q.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

A fter passing the electrostatic analyzer, the ions entered the time-of-flight system as a 

parallel beam with the shape o f a cylindrical section where the velocity was measured 

between two secondary electron-detector assemblies (SEDA’s). The start SEDA 

consisted o f  a thin (3.7 p.g/cm2) grid-supported carbon foil and two microchannel-plate 

(M CP) assemblies, while the stop SEDA was provided by the gold surface o f 4 solid- 

state detectors and another two MCP assemblies. The distance between the carbon foil 

and the solid state detector was d = 13 cm. An ion which entered the time-of-flight 

section penetrated the carbon foil and finally hit the solid-state detector. The start and the 

stop signals for the measurement o f  the time o f flight t  were provided by secondary

electrons which were emitted from the carbon foil and the detector surface. The electrons 

were accelerated by thin wire grids with 97 percent transmission and then deflected by 

radial electric fields such that they hit the MCPs with an energy o f ~ 1600 eV. In order to 

prevent detection o f secondary electrons emitted from the walls, the front side o f  the 

MCPs was set to a negative-bias voltage o f -  300 V with respect to the walls.

Finally, the ions were stopped in one o f four silicon surface barrier detectors of 

trapezoidal shape where E*, a known fraction 1/a* o f the residual energy, was determined.

a  reflects the nuclear defect and the energy loss in the dead layers o f the detector and thus

depends on particle species and incident energy. The thickness o f the detectors was 0.5 

mm with a sensitive area o f 700 mm2.
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These measurements were then combined to determine the mass, charge and energy o f  the 

ions in the following way: the energy per charge (E/Q) as selected by the electrostatic 

analyzer and the measured velocity (d/x) were used to determine the mass per charge M/Q 

o f the ion according to:

Q '  Q

r
(4.2)

where P accounts for the energy loss in the carbon foil. The energy measured by the solid 

state detector E*, and the measured velocity (d/x) were used to determine the mass M 

according to:

M  = 2- E a  / f - 1
yT j

(4.3)

The calculated M/Q from equation (4.2) and M from equation (4.3) yield the charge Q. 

The signal o f  the solid-state detector is too low to determine the total energy o f ions with 

energies < 30 keV/Q and low charge state (e.g. H e \ O T  In this case their charge state can 

only be inferred.

After combining all geometrical effects, grid transmission, MCP and foil efficiencies, the 

total detection efficiency o f the time-of-flight section varied between r\ = 0.28 for oxygen 

ions with E > 400 keV and T| = 3 x 10'2 for protons o f 10 keV (see table 4.1).
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The conversion factor g from count rate to differential flux for the SULEICA instrument 

is then:

g = (a • AH E ■ Tjy' /[cm1 ■ sr ■ k e V / Q]~l (4.4)
E

where a AQ = 4 .3-10‘2 cm2 sr.

The energy loss in the c-foil and in the dead layers o f the solid state detectors as well as 

all the efficiencies were calibrated during ion measurements with a radioactive a-particle 

source and at an ion accelerator o f the Max-Planck Institut fur Aeronomie.

The measurement techniques of the Charge-Energy-Mass Spectrometer (CHEM) on 

CCE are based on a combination o f electrostatic deflection and post acceleration o f up to - 

30 kV followed by a time-of-flight and energy measurement which is very simillar to 

SULEICA. Here the details are omitted, (see Gloeckler et al.date for a full description, 

1985).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

SULEICA Instrument Characteristics
Energy range in (24) 20 energy steps (5) 10 to  270 keV /Q
Energy resolution (analyzer) A E /E 0.097
Energy resolution (detector) A E 30 keV
Mass per charge resolution 40-keV/charge A (M /Q )/(M /Q ) 0.13

270 keV/charge A (M /Q )/(M /Q ) 0.12
Charge resolution 40 keV AQ 1 (unit charge)
Geometrical factor a-A fl 0.043 cm2 sterad
Efficiency of TOF unit 40 keV

O 
’o

 
* 

P
o 

o
 

o

270 keV p: 0.11
0 +: 0.27

Temporal resolution 17 steps (5-80 keV) 73.78 sec
18 steps (10-230 keV) 78.12 sec
6 steps 26.04 sec

Angular resolution P, 16 azimuthal sectors

Instantaneous view angle
other ions 8 azimuthal sectors

in elevation/azimuth ± 2 0 °/ ±  5°

Table 4.1 Summary of SULEICA instrument characteristics (after Mobius et al., 1985).
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CHAPTER 5

ENERGIZATION OF PICKUP HE+ BY REFLECTION AT THE 

EARTH’S QUASI-PERPENDICULAR BOW SHOCK

Ion reflection is a general characteristic o f  high Mach number collisionless shocks [e.g., 

Biskamp,1973] and provides an important channel o f dissipation in the region ahead of 

the shock. As discussed in chapter 2, there are two types o f reflected ion distributions in 

front o f  the quasi-perpendicular shock: field-aligned beams and specularly reflected ions. 

The former is essentially a beam that streams away from the shock along the 

interplanetary magnetic field lines. The latter is seen as a distribution o f  gyrating ions 

transverse to the magnetic field which extends over the foot region o f the magnetic field 

profile near the shock. Paschmann et al. [1982] have presented observations o f  gyrating

ions within the foot region o f a quasi-perpendicular bow shock, i.e. 0Bn > 45°. They

performed simple orbit calculations to demonstrate that the guiding center m otion and 

gyrational speed of these ions are consistent with simple geometrical considerations for 

specular reflection. In the case o f  gyrating ions, the detailed gyration o f the particle is 

important, and the concept o f  the first adiabatic invariant has no meaning. In this process 

the (unmagnetized) ions are simply bounced o ff the shock potential, reversing their 

velocity component along the shock normal, while maintaining the velocity com ponent
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parallel to the shock surface. Particles may suffer further encounters with the shock due 

to the combined action of the interplanetary electric field and the Lorentz force

These previous studies have been limited to the interaction o f solar wind ions with the 

bow shock and no multiple shock encounters were addressed. Pickup ions represent a 

source o f ions, with a characteristically broad velocity distribution and a sharp upper 

limit o f twice the solar wind speed, clearly distinct from the solar wind. Studying their 

acceleration at the Earth's bow shock and at interplanetary shocks will allow us to test 

acceleration models and to compare ion acceleration efficiencies for different source 

populations at shocks. Furthermore, a better understanding o f the interaction o f  pickup 

ions with Earth's bow shock can also be applied to the presumed acceleration o f the 

anomalous cosmic ray component (ACR) at the solar wind termination shock, since the 

interstellar pickup ions are believed to be the source o f ACR.

In this section we will present the first observations o f gyrating He^ ions at a 

perpendicular bow shock(0Bn = 90° ). We will also offer a quantitative model o f the 

reflection process at the bow shock and compare its results with the observations.
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5.1 Basic Observations

For this investigation, a time period on October 9, 1984 has been chosen, when the 

AMPTE/IRM spacecraft was near the subsolar point o f  the bow shock, and the IMF was 

approximately perpendicular to the shock normal. An overview o f the event is presented 

in Figure 5.1. Shown from top to bottom are: the magnetic field strength B (in nT), the 

direction o f the magnetic field in azimuth Ob and in elevation 0B in GSE coordinates, the 

polar angle 0B o f the magnetic field in spacecraft coordinates, the solar wind speed Vsw (in 

km/s), the solar wind density Np(in cm'3), and the differential flux o f He+ at 40 and 80 

keV/Q. During most o f  the time the magnetic field was almost in the ecliptic plane 

oriented perpendicular to the Earth-Sun line. This provides an almost perfect 

perpendicular shock condition. Because of the orientation o f  the spacecraft during the 

early mission, with the spin axis still close to the ecliptic plane, the magnetic field 

direction was nearly parallel to the spin axis o f the satellite. On its inbound pass, the 

spacecraft crossed the bow shock at 11:28 UT, as indicated by the rapid change in solar 

wind velocity and magnetic field strength. The spacecraft returned to the upstream region 

~  3 minutes later and finally crossed the bow shock into the magnetosheath at 11:44 UT. 

A t 10:42 UT, still at a substantial distance upstream o f the shock, the first energetic He+ 

ions were observed with energies o f 40 keV in sector 6 at 90° with respect to the solar 

wind (see the sector scheme inserted in Fig. 5.3). After 11:08 UT more energetic ions
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were seen with energies up to 80 keV. It should be noted that the maximum energy (Ecut) 

in the solar wind direction o f the pickup ion distribution for Vsw = 750 km/s is 46 keV.

A M P T E / I R M

B(nT) 20

0

0
-200

0 b (* )
0

-50
2O0

« b (*>
0

-50
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0
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0
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12:34 12:49

Fig. 5.1. Variations o f  interplanetary magnetic field strength B, direction in azimuth <5>b , and elevation 6 b 

in GSE and SCC coordinates, respectively, the solar wind speed Vw, the solar wind density N p, and the 

differential flux o f He' at 40 and 80 Kev/Q.

Figure 5.2 shows a 2-D cut o f the directional distribution o f He+ energy-angle spectra in 

the plane perpendicular to the spacecraft spin axis during three consecutive 20 minute 

time intervals. The rings represent the energy steps at 10, 20, 40, and 80 keV/Q
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10:30- 10:50 11:10- 11:27

10:50 - 11:10  > flow direction

DIFF HELIUM + ENERGY FLUX(10.00 K E V -160.0 KEV)
100____________________ 1202 SEC AVERAGES_________________ 4800

Fig. 5.2. Directional colored spectrograms o f He* in the plane perpendicular to the S C spin axis for the 
time period 10:00-10:30 UT (a), 10:50-11:10 UT (b) and 11:10-11:27 UT (c). Note that the magnetic field 
direction is almost parallel to the S/C spin axis.
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outwardly from the center. The orientation of the distribution can be obtained from the 

sector scheme inserted in the the Fig. 5.3. The flow direction o f  the ions is shown and the 

cut-off energy for the event is 46 kev. As pointed out above, the magnetic field was 

oriented almost parallel to the spin axis so that the observation conditions were ideal for 

ion fluxes perpendicular to the magnetic field. The figure presents a sequence o f events 

changing from (a) an almost pure pickup ion distribution at (10:30-10:50 UT) via (b) 

(10:50-11:10 UT) to (c) (11:10-11:27 UT), when the spacecraft was very close to the 

bow shock and He+ ions appeared from different directions at progressively higher 

energies.

A typical pickup He+ distribution can be recognized by ion fluxes only in the solar wind 

sector(4) and two adjacent sectors(3 and 5) [Mobius, 1986]. Already during the first time 

interval additional energetic ions are found in sector 6, i.e., flowing parallel to the shock 

plane. As the spacecraft moves toward the shock (in Figure 5.2(b) and 5.2(c)) more 

energetic ions with energies up to 80 keV are observed in sector 5, and the energy in 

sector 6 is increased to 40 keV. Finally the ion flux increases substantially and also ions 

coming from the shock are observed (in sector 7) as the spacecraft approaches the bow 

shock. A substantial fraction o f the ion distribution upstream o f the bow shock clearly 

reaches much higher energies than the maximum for pickup ions. These ions fill a much 

wider range in angles, including ions coming direct from the shock direction.
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5.2 Model

A schematic view o f the situation under consideration with pickup ions incident on a 

perpendicular shock in the plane normal to the magnetic field is depicted in Fig. 5.3. 

Incident ions may be reflected in the shock potential. After leaving the shock into the 

upstream direction the ions undergo a partial gyration about B and then reencounter the

sw

•w

Fig. 5.3. Schematic representation o f  ion trajectories after reflection at the shock.
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shock, or penetrate briefly into the downstream region, undergo a partial gyration about 

B  downstream o f the shock and then emerge upstream again. On the part o f  the 

trajectory upstream o f  the shock, the convective electric field E  =  — x  B accelerates 

the ions parallel to the shock surface. As a consequence, the ions return to the shock with 

a higher speed and a reduced angle with respect to the shock surface. Therefore, they also 

appear in sectors 7 and 6. C loser to the shock more and more particles with higher speeds 

will appear in sectors 6 and 5. W hen they finally return to the shock, the ions have gained 

substantial energy in the electric field and may now be able to pass the potential barrier.

5.2.1) The shock potential

The shock potential is a consequence o f the different gyroradii o f electrons and protons. 

Typically the electric potential jum p at the bow shock is somewhat less than the proton 

ram energy of the solar wind:

qAO = 1/2 Mp Vsw2 y (5.1)

Where the y < 1. In our model we will start with the crude assumption (y = 1) and then 

test the possible influence o f a variation in y.
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5.2.2) The orbit o f  the reflected ions in the upstream region

The shock thickness AL is o f the order o f c/(0 ; - 1 5 5  km for the actual upstream magnetic 

field o f  6 nT, where (0 , is the ion plasma frequency. Thus the transit time for a solar wind 

parcel through the shock, At = A L/V ^ [Russell and Greenstadt, 1979], is -  0.4 s for the 

given solar wind speed o f 750 km/s, which is short compared with the actual ion 

gyroperiod Tg -  10.9 s. As a result, the shock potential can be considered as stationary, 

and it is reasonable to assume infinitesimal shock thickness. For simplicity it is also 

assumed that there are no fluctuations o f  B, although typical solar wind fluctuations are 

present in the upstream region. We also restrict our model to motion in the plane 

perpendicular to the magnetic field for the time being. We will discuss the effects of a

velocity component parallel to B, which is not altered in the interaction with the shock,

at a later stage in this thesis.

Working with a purely perpendicular shock allows us to evaluate the problem in two 

dimensions, i.e. the ion distribution is independent o f Z, and Vz is conserved. In addition, 

we assume a planar shock o f infinite extension. In a coordinate system with its origin at 

the incident point at the shock, its x  axis parallel to the shock normal n , z parallel to B , 

and y chosen to complete a right-handed system, the equation o f motion is

m -  = qE + - V x B  = - ( V - V w ) x B  (5.2)
dt c c
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in the shock rest frame and the orbit o f the reflected ion in the upstream region is 

described by

where C0 i = qB/(mc) is the gyro frequency, V0 the original speed o f  the ion, 0 O the acute 

angle between V0 and n,  and t the time since reflection. An ion reencounters the shock at 

a time t*>0 when X(t*) = 0. At this time the particle has a velocity V^(r’). If l/2m Vx2(t*) 

is greater than qAO, the particle will overcome the potential barrier, and its motion 

continues in the downstream region. O f course, it may recross the shock after a partial 

gyration in the downstream region. Alternatively, energies less than qA<I> result in

reflection at the shock and one or more additional encounters. During multiple encounters 

with the shock an ion can gain a substantial amount o f  energy. This "surfing" o f ions along 

a quasi-perpendicular bow shock has been described by Lee et al.[l996] as an im portant 

process to produce energetic ions.

X(t) = V0[sin(G)|t - 0O) + sin0o]/(O| + Vsw[sin(co!t) - colt]/©! (5.3)

Y(t) = V0[cOS(CO|t - 0O) - COS0J/O), + Vsw[cos(G)]t) - 1]/G)1. (5.4)
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5.2.3) Three different classes o f particles in the pickup ion 

distribution

As a consequence o f these various types o f shock encounters, we can divide the incoming 

ion distribution, by calculating the trajectory o f ions in the model, into three classes o f  

particles which may be discussed separately as follows. Figure 5.4 shows a schematic 

view o f the two-dimensional cut with Vz = 0 through the pickup velocity distribution 

perpendicular to B. It is separated into three different areas with characteristic orbits for 

the three different types o f  interaction with the shock.

A -- Electrostatically reflected ions

Ions, whose energy contribution from the x component o f the velocity is lower than the 

shock potential (indicated by region A), will be reflected at the shock, then gain energy 

from the electric field and finally gyrate downstream. For a considerable fraction o f these 

ions, the energy along the shock normal is not sufficient after the first reflection to 

penetrate the potential barrier. They will be reflected several times and gain higher 

energies. In our simulation we count them separately as types A (l), A(2), and A(3), etc., 

where the digits represent the number o f reflections at the shock.

B -- Magnetically reflected ions
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A part o f  pickup ions that have enough energy to penetrate the shock barrier will be 

magnetically reflected. They "dive" downstream first, however, after less than one 

gyroperiod, they can emerge again upstream with the assistance o f the downstream 

magnetic field. These ions (found in region B) o f  the distribution also gain energy in the 

convection electric field, and finally gyrate downstream with higher energies after a 

maximum o f two shock encounters.

C -- Transmitted ions

The remainder o f the total pickup ion distribution (shown in region C) will pass into the 

downstream region with their energy reduced by the shock potential and simply gyrate 

further downstream.

In our simulation we follow the trajectory o f every particle from the source into the final 

energetic ion distribution starting with the first reflection at the shock. In order to 

normalize the ion energy flux in the simulated distribution for a quantitative comparison 

with the observations, we have to establish the distribution function o f the pickup ions. 

As discussed in section 3.2, we will use the analytic expression by Vasyliunas and Siscoe 

[1976], which includes the injection of newborn ions into the solar wind, rapid pitch-angle 

scattering, and adiabatic cooling due to the radial expansion o f  the solar wind. This leads 

to an isotropic velocity distribution in the solar wind frame. We use equation (3.12) for 

this distribution function. In order to establish the absolute value o f  R0*f3i (rob)*N0, the
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incident pickup ion distribution in our simulation is normalized to the average pickup flux 

as observed by Mobius et al. [1995a] for the time period o f  the investigation. For 

comparison with the measurements, the differential flux of the energetic ions obtained in 

this simulation is averaged over the field-of-view of the instrument in each o f its 

individual azimuthal sectors. However, a higher energy resolution is maintained.

5.2.4) Norm alization o f  reflected ions

According to Liouville’s theorem, the distribution function is constant along a particle 

trajectory, and the volume occupied by the particles in phase spase also remains 

unchanged. That is, the shape of the volume in phase space can be distorted or squeezed 

along the particle trajectory, but an increase in one phase space dimension must be 

precisely compensated by a decrease in the other dimensions. It is equivalent to say the 

phase space density should not increase or decrease during the acceleration process, 

although the velocity o f the particles changes along their trajectories. Therefore, our 

simulation is simple because the pickup ion phase space density is known as the 

spherical distribution expressed by Vasyliunas and Siscoe [1976] and it will not change 

during the later acceleration process.

Fig. 5.5 shows how we choose the simulation grid for the pickup ion distribution in the 

plane with V z = 0. In order to make use o f the intrinsic symmetry o f  the initial pickup ion 

distribution and to translation this into the frame o f the measurements, let us use (V0, fr0)
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and (V0\  do’) to represent the original ion velocity cylindrical coordinates for a grid 

element in the inertial reference frame and the solar wind frame, respectively. The two set 

o f  coordinates are clearly related by

x

Fig. 5.5 The plot shows a cut through the pickup ion distribution in the plane

( V i  = 0). (V o , 0o) and ( V ’0, 8 ‘o) are the coordinates o f an ion’s velocity in 

the spacecraft frame and in the solar wind frame, respectively.
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The ions in every element starting at the shock surface (x = 0) follow a fixed trajectory. 

Then we catalogue all such trajectories for all Vx’,Vy’ in the circle. For a definite Vz, we 

have a set o f  circles whose radius extends from 0 to — K2 , while Vz can be extended 

from 0 to ±VSW. In this way, all o f the grid elements cover the whole sphere o f pickup ion 

distribution.

As Fig. 5.6 shows, recording the velocity information for each crossing o f a trajectory on 

the line x for all trajectories, regardless o f  y, it gives us a discrete set o f V ’s, with 

associated f ( V )  for each element in the initial distribution. Averaged the distribution 

f ( V )  in every computation grid in the frame of the observer after the reflection, we 

calculate the average particle number in every volume element o f velocity space as

AN, = f{V,)V,dV,dd,dV. (5.6)

where V; is the average observed velocity in the velocity space, dri, is the polar angle 

taken by the grid.
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In order to allow a quantitative comparison o f  the model ion spectrometer results with 

the measured quantities, the differential flux density is first calculated over the individual 

sector as

A / U , £ „ Q ) . t  2 £ ,  AN.

A£,AH I  finerenergystep ~ m 1 V ' - d ^ A Q .

AH = 45°. Then we integrate them over individual instrument channels with AE/E = 0.1 in 

the spacecraft frame. For all our simulations, we assume an infinite planar shock and a

homogeneneous distribution in y and z.

Y

(». y)
(  X  .  V )

I

Bow Shock

Fig. 5.6 A satellite at (x, y) records the information of the velocity (V„,Vy) for specularly 

reflected ion when the particle was reflected at (xo = 0. y0) in the shock surface with a 

velocity (Vs0, Vyo).
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5.2.5) Implication o f the 2-D model

The velocity distribution o f pickup ions forms a full sphere centered at the solar wind 

velocity. Therefore, a 3-dimensional problem has to be solved. However in the event 

under study, B was not only perpendicular to the shock normal, but also parallel to the 

spin axis o f  the spacecraft. With the aperture o f the SULEICA instrument viewing exactly 

perpendicular to the spin axis, this would in principle lead to a simpler model considering 

only the ion motion perpendicular to the magnetic field, because the velocity parallel to B 

is not altered by the acceleration. For an instrument that only accepts particles exactly 

perpendicular to B ,  we just need to integrate over the Vx - Vy plane o f the distribution 

with Vz = 0. For an instrument that covers the full angle space, we cut the sphere o f the 

velocity distribution function into several thin pieces in the Vx - Vy plane and treat every 

piece in two dimensions. This would be equivalent to a projection o f the entire sphere 

into the x-y plane.

The entrance aperture o f the electrostatic analyzer on the AMPTE/IRM covers a finite 

opening angle o f 40° in elevation symmetric to the plane perpendicular to the spacecraft 

spin axis. Thus the sensor detects particles with |ft| = tan ''(vz/-Jv c2 + Vv2 ) < 20°. Because

the velocity component perpendicular to B is increased in the acceleration process while 

Vz remains constant, the sensor will be able to detect particles that start at a larger angle ft
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in the original distribution. However, some o f the particles in the reflected distribution 

will still miss the sensor, because their final Vx and Vy components are too small. These 

particles tend to come from the polar pieces in the original spherical pickup ion 

distribution. In order to compare the results o f  this model quantitatively w ith the 

measurements, we have to subtract particles, whose angle after reflection at the shock is 

larger than 20°, from the simulated flux.

5.3 Simulation Results

As we have seen in Fig. 5.4 the original pickup ion distribution is clearly divided into 

separate regions according to what happen to the ions at the shock. As a first result o f  our 

simulations we find that -15%  o f ions in the distribution are electrostatically reflected at 

the shock (type A), -48%  are magnetically reflected ions (type B), and -37%  are 

transmitted directly into the downstream region (type C). After establishing our model 

for the ion reflection at the bow shock we will now present energy spectra from a 

simulation with input parameters characteristic o f  the time period of our observations.

Figure 5.7 shows separately the original pickup ion energy spectra (the left) and spectra 

o f specularly reflected He* (the right) - mixed ions o f type A and B - in all sectors. The 

He pickup ions are concentrated in the solar wind direction (sector 4) with their spectrum

extending up to the cut-off energy (in this case, Ecut = 46 keV for a solar wind speed o f
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750 km/sec). Reduced ion fluxes are seen in the two adjacent sectors (sectors 3 and 5). 

After interacting with the bow shock, energetic ions are found in all sectors except 2, 3 

and 4. The typical energy o f the ions is increasing from sector 1, through 0, 7 and 6, to 

sector 5. This is in accordance with ions that emerge from the shock and are turned around 

by the IMF while being accelerated in the convection electric field. These findings are in 

basic agreement qualitatively with the observations presented in Fig. 5.2. The observed 

distribution is a combination o f the pickup and the reflected ions.

5.3.1) Contributions o f ions from the different classes o f  ions to the 

spectra

In order to gain further insight into the energy gain o f “specularly reflected” ions at 

collisionless shocks, we have separated the contributions o f ions from the different 

classes o f  particle orbits to the spectra in sectors 5, 6 and 7. As can be seen from Fig. 5.4 

the m ultiply reflected ions are concentrated very close to the shock. Here, ions from all 

different classes contribute to the distributions. Consequently we have chosen a relatively 

close distance (0.04 Rc) for our detailed study. The results are shown in Fig. 5.8. The 

dashed lines represent the spherical distributions that the sensor with full angular 

coverage will see. The solid lines represent the net particle distributions that the sensor 

with limited acceptance angle actually received.
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For the perpendicular magnetic field direction prevalent during this event, most o f the 

ions that emerge from the shock appear first in sector 7. Ions o f type B generally start 

with a higher energy and produce a higher flux than type A ions. In sector 6 ions o f  both 

types have gained additional energy in the convection electric field. Here also type A ions 

are seen after their second and third reflection, where their contribution to the total flux 

seems to become dominant at high energies. Note that the highest level o f  fluxes are 

reached only after three reflections. Ions with more than three reflections are not found at 

this location. After more reflections the ions remain closer and closer to the shock and are 

less likely to play a role. Sector 5 contains those ions o f types A (l)  and B which have 

taken the largest turn upstream o f the shock and thus reached the highest energy. Clearly 

the contribution from type B ions is most important in this sector. M ultiply reflected 

ions are not observed in sectors 5 and 7, because their motion is almost parallel to the 

shock front.

Comparing the part o f the ion distribution that is not observed due to the limitation in 

acceptance angle, with the total ion distribution, the largest effect appears in sector 7 and 

for the ions o f type B. This is reasonable because the ions with larger angle ft comes from

those ions which emerge from the shock out o f the downstream region with smaller 

velocities Vx and Vy , but larger Vz. They are observed closer to the shock and fall into 

sector 7. They dominate the magnetically reflected ions. In all simulations we use the 

complete 3-dimensions model.
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5.3.2 Contribution o f multiply reflected ions

In order to explore the important role played by multiple reflections, we investigate the 

possible contribution o f multiply reflected ions to the simulated spectra as a function of 

distance from the shock in Figure 5.9. Fig.5.9 (a),(b) and (c) are the spectra in the sectors 

5, 6 and 7, respectively. Therefore, we compute separately the contributions o f  type A 

and B ions to the spectra and compare them with the data at 11:10 - 11:27 UT in the 

upper and lower panels, respectively, with the satellite was closest to the shock. From 

left to right the distance from the shock has been increased in the simulations from 0.024 

to 0.08 Re. Beyond 0.072 Rc there are only singly reflected ions. If  only type A particles 

including multiple reflections are used in the simulation (upper panel), the simulated 

spectrum tends to be in better agreement with the observations at 11:10 - 11:27 UT as 

closer proximity to the shock is assumed. The contribution o f ions from the type B into 

the spectra drives the flux to high for the higher energies in sectors 5 and 6 and therefore 

leads to levels o f the simulated flux that are much higher than the data (lower panel). The 

simulated fluxes o f type B ions seems only to be consistent with the observed fluxes in 

sector 7. However, these data points in sector 7 have the largest error bar, because only a 

few ions are counted here. Hence, the constraints derived from sectors 5 and 6 should be 

taken more seriously. As we will see in the next section, the same constraints for type B 

ions apply also in the comparison with the two earlier time periods. Apparently the type
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B particles do not appear with the predicted flux. Because these ions first dive 

downstream, they are probably most strongly affected by any magnetic fluctuations in 

the downstream region. If we want to take into account possible effects o f  magnetic field 

fluctuations downstream of the shock, we will may have to reduce the contribution from 

these ions.

Fig. 5.10 shows the comparison o f simulated for choices o f 10% and 100% o f  type B 

ions with the data at 11:10- 11:27 UT in sectors 5, 6 and 7. It is clear that if  we make the 

assumption o f 10% o f type B ions, the results closer to the bow shock seem to be a 

better match. Therefore, we assume in the following that only 10% o f  type B ions 

contribute to the simulated spectra. In accordance with what we discussed above this 

would also suggested that so called “surfing” o f multiply reflected ions [Lee and 

Shappiro,1995] indeed play a visible role in the ion acceleration at the quase- 

perpendicular shock.

5.3.3 ) Variations with distance from the shock

In figures 5.11 and 5.12 we extend the comparison o f our simulations with the time 

periods 10:50-11:10 and 10:30-10:50 UT when the spacecraft was still at a somewhat 

larger distance from the shock. The series o f simulations in Fig. 5.11 suggests that a 

distance between 0.16 and 0.24 Rc provides the best match between the prediction and 

the data, again under the assumption that 10% or less o f type B ions are contributing to
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the spectra. Since the point at 10 keV is not a strong constraint due to its 2 counts during 

this time period, 0.32 R<. would also be possible. Therefore, the adopted distance range 

for the time period 10:50-11:10 UT are 0.16 - 0.32 (0.8 - 1.6 rp>L). For the same

consideration, the distance o f the observation point from the bow shock adopted for time 

period 10:30-10:50 UT, when no ions arrive in sector 7, is about 0.48 - 0.56 R<. (2.4 - 2.8. 

rp L.). This distance leads to the best agreement between observations and the simulation 

results. The full comparisons in sectors 5, 6 and 7 for the three time periods will be 

shown in the next section.

It is apparent that the distance from the shock is an important parameter in determining 

the ion spectrum. For the observation time period 11:00 - 11:27 UT best results are 

achieved with an average distance between 0.04 and 0.056 R<. from the shock. It would be 

a good test o f the model, if  we could determine this distance in an independent way. This 

is difficult in view o f the shock motion during the time o f multiple bow shock crossings 

with respect to the observing spacecraft. A simplified check o f the actual distance to the 

shock seems to give conflicting results. To see this point clearly, we discuss two 

examples.

At 11:28 UT, the satellite passed the shock for the first time. For simplicity, we first 

assume that the shock remained stationary at the position during the entire observation 

period (10:30 to 11:28 UT). According to the results o f  the model, at distances greater 

than 0.88 Rc, there are no speculaly reflected ions. Therefore, the average distance
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between spacecraft and bow shock at 10:30 - 10:50 UT, when we began to observe the 

energetic ions and the calculated flux is high enough to be detected (see Fig. 5.2), is about 

0.56 Rc_ Let us assume a linear relationship between time and the distance o f  the 

spacecraft (which moves uniformly towards the shock) from the bow shock (which is 

assumed to be static). Then a straightforward calculation returns an average distance o f 

-0.10 Rg for 11:10 - 11:27 UT. As indicated in Fig. 5.7, we will not be able to see any  

“surfing” ions at this distance which would result in a less favorable agreement between 

the model and the data. Even our example with marginal agreement is still closer to the 

shock. Therefore, we have to question our simplified assumptions.

As shown in Fig. 5.1, at 11:28 UT, the bow shock moved toward the Sun with respect to 

the spacecraft, which was continuously moving towards the Earth, so that the spacecraft 

entered the downstream region. At 11:31 UT, the returning shock passed the spacecraft 

moving towards the Earth so that the spacecraft found itself back upstream. Finally, at 

11:44 UT the spacecraft encountered the shock once again and entered the downstream 

region. It appears that the shock is moving in an oscillatory motion. To test this idea, we 

simulated the bow shock movement as a simple oscillator which is oscillating about a firm 

location. However, a simple oscillatory movement failed to meet all the constraints o f  the 

observations. It is obvious that the motion o f the bow shock is more complicated than an 

oscillator.
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As already discussed above, we cannot use a Linear variation o f the average distance to 

represent the actual position of the bow shock over the observation time. Therefore, we 

have to rely on the best agreement between the ion data and predictions o f  the model to 

obtain the average shock distance for each time period. According to Fig. 5.9, 5.11 and 

5.12, we adopt a distance o f the observation point from the bow shock is in the range 

0.04 - 0.056 Rc at 11:10- 111:27 UT, 0.16 - 0.32 at 10:50 - 11:10 UT, 0.48 - 0.56 R* 

at 10:30 - 10:50 UT respectively. These correspond to 0.12 - 0.2 rL.P , 0.8 - 1.6 rL P and 

2.4 - 2.8 rL,P for these three consecutive time periods.

5.3.4)Influence o f the incident pickup ion distribution

Another determining factor for the flux o f reflected ions is the original pickup ion flux 

density as the source distribution that is used for the absolute flux normalization o f our 

simulations. Because only one energy step would coincide with the pickup ion spectrum 

for the instrument mode in use during our observation period, these data were not suitable 

to determine the pickup ion flux directly. Therefore, we used the typical pickup H e+ flux 

for the October time period based on a study by Mobius et al.[1995a]. These data still 

have some observational uncertainties. As pointed out in a subsequent paper [M obius et 

al., 1996] the local neutral density and thus the total pickup ion flux may have been 

underestimated in the original study by a factor o f 1.3-1.4, because the observations used 

by Mobius et al.[ 1995a] were made for IMF directions varying between 45° and 90° with 

respect to the solar wind flow. Pickup ion distributions tend to be anisotropic with
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respect to the Earth-Sun direction for radial magnetic field as reported by Gloeckler et 

al.[ 1995]. This would result in reduced fluxes as observed by instrumentation such as the 

SULEICA sensor, which collects pickup ions only above the solar wind speed. W ithout 

better information we adopt a maximum correction factor o f 1.4 over Mobius et 

al.[ 1995a] as the upper limit o f  the pickup ion flux.

In Figures 5.13, 5.14 and 5.15 the simulations for the time period 11:10-11:27 UT, 10:50 

- 11:10 UT and 10:30 - 10:50 UT are shown for the corrected and uncorrected values o f 

the pickup ion flux for sectors 5, 6 and 7, respectively. An additional cross check is 

possible in sector 5 where most o f the spectrum is represented by incident pickup ions. 

The two curves reflect the maximum uncertainty in the normalization o f the pickup ion 

flux. W ithin the errors o f this measurement both curves represent the observations 

reasonably well except the points at 20 and 80 keV in sector 5. The fluxes at 20 keV in 

sector 5 fluctuate from time period to time period, while the spectrum below 21 keV in 

this sector should just represent the incident pickup ion distribution, which should be 

stable. However, in this data point there are only 2 counts for time period 10:30 - 10:50, 

4 for 10:50 - 11:10, and 6 for 11:10 - 11:27, i.e., the statistics are poor. Therefore, this 

apparent discrepancy may be just caused by statistical fluctuations. Taking the average 

over all periods from 10:30 to 11:27 UT leads to a result that is in agreement with the 

typical pickup ion distribution for this time. In summary, in view o f the simplifying 

assum ptions o f a planar exactly perpendicular shock, the agreement is relatively good, 

except for the points at 10 and 20 keV in sector 7 at 11:10- 11:27 UT as well as the point
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at 40 and 80 keV in sector 5 during the time period 10:50 - 11:10 UT and 11:10- 11:27 

UT.

5.3.5 )Influence o f  the shock potential

So far we have assumed that the shock potential is exactly determined by the solar wind 

energy. To investigate the validity o f this assumption we vary the shock potential by 

setting qA<t> = 1/2 map Vsw y. We have performed simulations with y = 0.5, y = 0.7 and y

= I as shown in Fig. 5.16 and Fig. 5.17. The results indicate that the influence o f y  on 

the magnetically reflected ion flux (type B) in sectors 5 and 7 is weak. Only multiple or 

electrostatically reflections ( type A ) are sensitive to y. In Fig. 5.16, the spectra o f 

multiple reflected ions shift moderately to the lower energy as the y decreased from 1.0 to 

0.7. The spectra from type B in sector 6 are also sensitive to y, but the influence o f y to 

the sum of all the contributions o f  types A and B is still weak. Because the lower shock 

potential only causes an enlargement o f  the area o f type B and a reduction o f the area o f 

type A in the pickup ion distributions. This leads to a visible but still weak effect in 

sector 6. In Fig. 5.17 the spectra o f multiply reflected particles shift dramatically to the 

lower energy and there is even no ions with 3 reflections while the spectra o f type B ions 

are increased dramatically in sector 6. It seems difficult to explain the observation with 

lower shock potential. This results seems consistent with the assumption that the shock 

potential is close to the full ram energy o f the solar wind. However, no quantitative.
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conclusions on the actual value o f the shock potential can be drawn from the comparison 

with our data, because the different curves still fall within the uncertainties o f  the data

5.4) Summary and Discussion

We have studied specularly reflected He^ pickup ions in front o f an almost perpendicular 

bow shock with AMPTE SULEICA for a time period in October 1984. We have 

compared the observations with a model distribution derived from trajectory calculations 

at a perpendicular shock. In the simulation we can distinguish three different classes o f 

particles in the incident pickup ion distribution:

• almost 15% o f the incoming ions are electrostatically reflected at the shock (type A);

• =48% of the pickup ions are magnetically reflected (type B);

• the remaining 37% are transmitted through the shock.

The 3 classes o f ions are organized in 3 coherent regions o f the incident pickup ion 

distribution.

The observed directional and energy distribution o f the reflected ions is consistent with 

the simulated distribution. We could identify the contributions from the two different 

classes o f ions (electrostatically and magnetically reflected) in the observations. The data 

at 80 keV in sector 5 and 40 keV in sector 6 are consistently lower than the predictions o f 

our model for the two time periods at 11:10 - 11:27 and 10:50 - 11:10 UT with good
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statistics if  type B ions are counted at 100%. This behavior could be explained by taking 

into account the magnetic field fluctuations ju st downstream o f the shock. Therefore, we 

account for this effect by a contribution o f  10% from type B to the simulated spectra. 

Even then, the data beyond the pickup ion cut-off energy ( > 40 keV) in sector 5 are still 

lower than the simulation, while the data at 20 keV in sector 7 during 11:10- 11:27 UT is 

higher than the result o f the model. Taking into account the magnetic field fluctuation by 

adding only 10% of type B ions does not produce full agreement simultaneously for both 

sectors. These discrepancies may imply the following possibilities: First, type B ions 

spend a longer part o f their trajectory in the upstream region of the shock than type A 

particles. As a consequence, a fraction o f these particles may be lost along the trajectory 

before they reach sector 5 by scattering in magnetic field fluctuations This scattering is 

more important for sectors 5 and 6 than for sector 7, where the ions appear in earlier part 

o f their trajectory. Therefore, if  we would take, say 50% of type B ions into the spectra 

for sector 7, 10% or less for sector 6 and 5% for sector 5, the agreement between the data 

and the prediction o f model turns out to be better. But due to the poor counting statistics 

in sector 7 a definite conclusion cannot be drawn. Secondly, it is possible that ions with 

higher energy are strongly scattered by the turbulent fields upstream and downstream o f 

the shock. Finally, this discrepancy may be attributed to neglecting other effects in the 

simulations, such as a non-ideal shock geometry.

Overall the agreement o f our model with the observations seems remarkably good in view
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o f the potential observational errors and simplifying assumptions made in the model. 

The observed energetic ion fluxes closest to shock can only be explained with a significant 

contribution from ions that undergo at least 2 reflections and possibly even 3 reflections. 

This seems to indicate that “surfing” o f ions along a quasi-perpendicular bow shock as 

pointed out by Lee et al. [1996] plays an important role in the production o f energetic 

ions at the shock. During multiple encounters with the shock the ions can gain a 

substantial amount o f energy. However, no ions with a second or third reflection are

found further than 0.07 Re upstream o f the bow shock for the observed solar wind

conditions.

Because we do not have independent knowledge o f the relative position o f the satellite to 

the bow shock due to the motion o f the shock, we studied the influence o f variable bow 

shock distance on the ion spectra and then used the best agreement between the model 

prediction and the data to infer the distance. Finally, we studied the dependence o f the 

energetic ion fluxes on the magnitude o f the shock potential. Within 30% even 50% o f the

solar wind ram energy (eO  =  mp/2 Vsw”) only a very weak influence is seen.
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CHAPTER 6

DIFFUSIVE HE+ ION INJECTION AND 

ACCELERATION AT THE QUASI-PARALELL 

EARTH’S BOW SHOCK

As mentioned in chapter 2, energization o f solar wind ions at the Earth’s bow shock and 

leakage of energetic ions from the magnetosphere are two possible sources that have been 

proposed for energetic ions seen in the magnetosheath and upstream o f the quasi-parallel 

bow shock. Enhanced plasma and magnetic turbulence and their associated energetic ions 

are coupled phenomena and are similar in the upstream and downstream regions. This 

suggests that they are from the same bow shock related origin [Asbridge et al., 1978], A 

plausible mechanism for energization o f solar wind ions is first-order Fermi acceleration at 

the quasi-parallel bow shock [e.g., Lee, 1982]. However, for similar magnetic field 

orientations that are favorable for the Fermi process, ions from the Earth’s magnetosphere 

will also be able to travel along the magnetic field into the magnetosheath and into the 

region upstream o f the quasi-parallel bow shock [Luhmann et al., 1984]. Therefore, it has 

been suggested that energetic ions are likely to leak from the magnetosphere [e.g., Sarris et 

al., 1976] and could form the energetic ion population upstream o f  the shock.
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In order to distinguish between the two possible sources and to determine their relative 

importance, composition measurements offer an important tool. Because there is a large 

population o f  FT and He2” in the solar wind and comparatively little in the 

magnetosphere, the ratio o f  He2VH” is an ideal tracer for the bow shock acceleration

process. On the other hand, because o f a substantial contribution o f energetic 0 T in the 

Earth’s magnetosphere and a comparatively low flux o f ions with or near M/Q = 16 in the 

solar wind, oxygen is an ideal tracer for leakage o f energetic ions from the magnetosphere. 

These two tracers will provide the reference base on which we will try to identify the 

source o f energetic He* in the upstream ion population. If energetic He* stems from 

leakage o f He” out o f  the magnetosphere, we should expect to find a similar behavior 

between energetic He” and O*. Otherwise, we should expect to find a similar behavior 

between energetic He* and He2”, i.e., if energetic H e” is indeed shock-accelerated ions. 

Therefore, composition measurements o f the diffuse ion population upstream of the 

quasi-parallel shock offer the potential to determine conclusively the origin o f the 

energetic He” ions. Thus we can hope to differentiate between leakage o f He” ions from 

the magnetosphere and local acceleration of He” ions at the shock. In this section we will 

first present observations o f  the differential fluxes, energy spectra and directional 

distribution o f  the key ions species in front o f the shock and compare them with 

simultaneous observations in the magnetosphere. After a qualitative interpretation o f 

these observations we will compare them with an analytical model that contains both 

magnetospheric leakage and acceleration of ions at the shock.
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6.1 Basic observations

The following analysis o f diffuse ion events is based on data from the suprathermal 

energy ionic charge analyzer (SULEICA) on board the AMPTE/IRM  spacecraft. A 

typical upstream ion event, as selected for our analysis, is shown in Figure 6.1. Plotted 

are the magnetic field strength B, its direction in GSE coordinates in azimuth <t>B
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Fig. 6.1. Typical example o f an upstream event at 0700 - 0900 on October 14, 1984. Plotted are 

variations o f  interplanetary magnetic field strength B, direction in azimuth O B, and elevation OB in 

GSE coordinates, and the differential flux o f  H \ H e '' , He' and O' at 80 KeV/Q.
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(fluctuated between ±10°), elevation 0B (changed between ±40°) and the differential flux

o f 80 keV/Q H+, He2+ , He* and 0 + ions as a function o f  time. Shown is the two-hour 

period from 7:00 to 9:00 UT on October 14, 1984, when AM PTE/IRM  was a few Earth 

radii upstream o f the shock at approximately 11:00 local time. The magnetic field is radial 

from 6:00 tc 8:46 UT. The fluxes o f  FT and He2+ stayed almost constant and reached a 

plateau from 7:00 UT to 8:46 UT with the radial field upstream. The intensity decreases 

when magnetic field fluctuations decrease at 8:46 UT. Before 7: 00 UT, the satellite 

observed a few energetic He* ions during a one-hour period (6:00 - 7:00 UT). The satellite 

encountered high energy He* starting from 7:00 UT, and the differential flux o f He* is 

almost continuous and also constant but with poor counting statistics during this period 

while the flux o f the energetic O* is continuously present.

6.1.1) Angular distribution and energy spectra

20 minutes averages o f  the directional distribution o f H*, He2*, He* and O* at 80 keV 

and 160 keVfdifferential flux vs. flow direction) are presented in Figure 6.2. The arrow 

indicates the projection o f the magnetic field into the plane perpendicular to the 

spacecraft spin. The energetic H* and He2* ions exhibit a distribution mainly 

perpendicular to the magnetic field with a net anisotropy directed towards the Earth. The 

fluxes in the distribution are substantially depressed along the magnetic field for H* and 

He2*. The He* ions basically mimic the behavior o f the H+ and He2*, but with poor
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counting statistics. At 160 keV the energetic O ' ions are clearly streaming along the field 

and away from the Earth. At 80 keV the main flux o f O ' is still directed away from the 

Earth, but it also exhibits a strong anisotropy perpendicular to B.

O ct. 14. I9M  6:00 - 9:00 LT

I f  (SO keV i H c : • ‘SO k c \ i  H c ‘ i « 0 k e \ i  O '  -811 k e \  i

. « " H  <• I :

H* 160 k c \  - H«r • .1641 k e \  r He* 160 k r \  t O ' 160 k « \  i

Fig. 6.2. Typical example o f  an upstream event at 0900 - 0920 on October 14, 1984. Plotted 

are averages o f  the angular distribution for H \ H e'*. He’ and O’ at 80 keV/Q and 160 keV/Q 

(differential flux vs. flow direction).

The anisotropies o f the H ', He:+ and He* ions are typical for strong scattering in the 

magnetic field fluctuations. The net anisotropy in the spacecraft system into the 

earthward direction is an expression o f  the energy gain due to the Com pton-Getting effect
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via diffusive reflection in the solar wind [e.g., Scholer et al., 1979]. This can be taken as 

evidence that the particles (FT, He2+ and H e ' ) are strongly scattered in the upstream  

medium and convected backward towards the shock with the solar wind velocity. First 

order Fermi acceleration at the shock is then an unavoidable consequence o f the diffusion- 

convection equation [Gleeson and Axford, 1967]. The depression in the distribution along 

the magnetic field is possibly due to the fact that the scattering mean free path is o f the 

order o f  the distance for free escape of the ions from the foreshock region [M obius et al., 

1986]. Ions with pitch angles near 90° experience a much longer trajectory through the 

scattering region.

Contrary to H ', He2'  and H e', the O ' ions are streaming away from the earth along the 

magnetic field, precisely what one would expect for particles freely escaping from the 

magnetosphere. Thus the fact that O ' ions are streaming away from the Earth, while the 

other upstream ions are strongly scattered with obvious anisotropy shows existence o f  

two ion populations. While H ', He2'  and H e ' ions in the range o f  a few times 10 keV/Q 

have a resonant frequency near the maximum in the power o f the upstream waves [Hoppe 

and Russell, 1983], O ' are in resonance at substantially lower frequency. The fact that O ' 

ions stream away from the Earth while other ions (H ', He2'  , H e ') are strongly scattered 

also indicates that the spatial diffusion coefficient parallel to the magnetic field for O ' is 

larger than that o f the other species.
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These characteristics are consistent with local acceleration o f FT, He2'  and He* and 

escape o f O*, but a definite conclusion cannot be drawn yet. In principle, all species could 

come from the magnetosphere, H*, He2* and He* get scattered and experience further 

acceleration, while O* would be unaffected. However, scattering would also hinder the 

escape and could cause a depletion in the distributions o f H*, He2* and He* along the 

magnetic field. In other words, these characteristics do not allow to differentiate 

definitively between the two possible origins o f the upstream energetic He* ions, i.e., the 

pickup or the magnetosphere. We need to look for more evidence.

6.1.2) Energy spectra

Figure 6.3 displays typical differential flux energy spectra o f  the different ion species 

averaged over 20 minutes during an upstream event on October 20, 1984. The dashed line 

represents a exponential fit curve so that we can compare the slope of the spectra 

between species. The upper panel shows spectra upstream o f the shock and the lower 

panel contains spectra in the magnetosphere that were taken during the same time period 

with the AMPTE/CHEM instrument. In the upstream region the spectra o f H* and He2* 

exhibit a similar shape, He* and O* appear to be harder than those of H* and He2*. In the 

magnetosphere the spectra o f H* and O* are softer than those o f He* and He2*. Also, the 

spectrum o f O* in the upper panel has very similar shape with that of in the lower panel. 

Furthermore, the differential flux o f O* is considerably the lowest in the region upstream 

o f  the shock, but higher than that o f He24- and He* in the magnetosphere, i.e., the
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abundance o f 0 "  appears to be depleted upstream o f the shock when compared with level 

in the magnetosphere.

Next we study the shape o f differential flux energy spectra. The energy spectrum o f  

CT in the region upstream o f the shock is significantly harder than that o f  the other 

species and is similar in shape to the CT spectrum, which as observed with the CCE 

spacecraft in the magnetosphere. This lends additional support to the idea that the 

origin o f the energetic O* is the magnetosphere, as suggested by the angular 

distributions. In order to see clearly the shape o f spectrum for diffuse He* ions, data 

whose energy is greater than the cut-off energy are only shown here. The spectrum o f  

He* beyond the cut-off energy (in this event, Ecut.otT = 40.5 keV) is obviously harder 

than that o f He2* and H" in the upstream region, while in the magnetosphere the 

spectrum o f He* is similar to that of H* and CT. At first glance, this seems to speak 

for a magnetospheric origin for He* contrary to the evidence o f the directional 

distribution. However, the fact that pickup ions are the possible source for the 

acceleration o f He" compared with the solar wind for H" and He2* could lead to a 

harder spectrum for He*. Therefore, we have to seek further evidence.

The fact that the O" flux falls o ff from the magnetosphere to the upstream region more 

than that o f any other species may give us a clue. If the He* upstream ions were o f  the 

same origin as O* one would expect to see a similar feature o f spectrum in the upstream
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event. Therefore, we will compare, in the next section, the ratios o f  the flux density in the 

upstream region and in the magnetosphere for HT , He2" , He" and O" for a larger set o f 

upstream events. We study the abundance ratios for energies higher than 40 Kev/Q, 

because the counts o f O" at the lower energies are affected by background. For He" only 

ions whose energy is above the cut off energy o f pickup ions are considered as belonging 

to the diffuse ion distribution.

6.1.3) Statistical analysis o f the upstream ion distributions

We selected all time periods when the AMPTE/IRM was just upstream o f  the nose o f 

the Earth’s bow shock and during a time when the interplanetary magnetic field was 

radial. We define “radial” by requiring that the angle between the magnetic field and the 

normal direction o f the bow shock is less than 20 degree for all events. For the purpose o f 

our study this requirement is equivalent to that o f a quasi-parallel bow shock. The 

selection criterion for the events was a steady flux for He* at energies greater than 40 keV 

ions for at least 10 minutes. For our survey, all events which exceed a duration of 20 

minutes and exhibit a clear plateau in the energetic He* are subdivided into 20-min 

intervals. For the statistical analysis all measured quantities are averaged over 10 - 20-min 

time intervals. During the period September through December 1984, 38 upstream events 

were selected. In order to compare the ion distributions between the upstream and 

magnetospheric regions, we require events for which we have the spectra in the upstream 

selected. In order to compare the ion distributions between the upstream and
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magnetospheric regions, we require events for which we have the spectra in the upstream 

require measured by AMPTE/IRM and the simultaneous correlated spectra in the 

magnetosphere recorded by the CHEM instrument ON CCE. Only 10 o f  the 38 events 

satisfy this criterion when AMPTE/CCE was in the dayside magnetosphere with a 

distance o f 7-9 R. from the Earth. Figure 6.4(a) shows a schematic representation o f the 

relative position o f the IRM spacecraft and bow shock as well as the magnetic field 

direction for a typical event. Figure 6.4(b) shows the distribution o f  the magnetic field 

directions taken for all events chosen. The details o f all events are listed in Table 6.1.

1 oo

0

0

0

0

I RM

M a g n e t o p a u s e

-1 5-01 0Q 5 0 0 5 0 1 001 5 0

Fig. 6.4. Schematic representation of an event chosen to have the spectra in the 

upstream and the magnetosphere, simultaneous (a); (b) potted are the “radial” 

distribution o f magnetic field directions for all events.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

Table 6.1 Summary o f events chosen a t quasi-parallel Earth’s bow shock by AMPTE.

Date Time Vsw
km/s ^Bn

d eg
R (IR M ) /  Local Time L (CCE) /  

Local time

1 0 /07 -1 11:26-
11:36

550 7 15.97-15.87 12:27-12:28 8.84-8.87
11.51

1 0 /0 7 -2 11:40-
11:52

550 4 15.83-15.7 12.29-12:30 8.88-8.91
11.51

1 0 /0 7 -3 12:00-
12:12

600 0 15.61-15.51 12:31-12:32 8.93-8.94
11.51

1 0 /09 -1 08:36-
08:56

700 4 15.43-15.21 12:26-12:28 8.12-8.32
10.90

1 0 /0 9 -2 08:56-
09:10

700 4 15.21-15.05 12:28-12:29 8.33-8.43
10.90

1 0 /0 9 -3 09:18-
09:38

700 4 14.96-14.73 12:30-12:32 8.50-8.62
10.90

10 /12-1 06:08-
06:34

650 20 17.37-17.55 10:50-10:52

10 /1 2 -2 06:44-
07:06

650 4 17.60-17.73 10:53-10:54 “

10 /1 2 -3 07:06-
07:26

650 4 17.73-17.85 10:54-10:56 “

10 /1 2 -4 09:40-
10:00

700 20 18.44-18.51 11:05-11:07

10 /14-1 06:00-
06:14

600 18 18.45-18.50 10:59-11:00 -

10 /1 4 -2 06:24-
06:40

600 8 18.53-18.57 11:00-11:01 “

10 /1 4 -3 06:40-
07:00

600 2 18.57-18.63 11:01-11:02 •

10 /1 4 -4 07:00-
07:20

600 2 18.63-18.68 11:02-11:04 -

10 /1 4 -5 07:20-
07:40

550 2 18.68-18.72 11:04-11:05 -

1 0 /1 2 -6 07:40-
08:00

550 12 18.72-18.76 11:05-11:06 “

10 /1 4 -7 08:00-
08:20

550 12 18,76-18.79 11:06-11:08

10 /1 4 -8 08:20-
08:45

550 20 18.79-18.82 11:08-11:09 “

10 /20-1 06:34- 700 8 17.33-17.16 11:25-11:27 -
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06:58
1 0 /2 0 - 2 07:38-

08:00
700 2 16.86-16.86 11:31-11:32 “

1 0 /2 0 - 3 08:00-
08:20

700 8 16.08-16.52 11:32-11:34 -

1 0 /2 0 - 4 08:20-
08:40

700 18 16.52-16.33 11:34-11:36 -

1 0 /2 0 - 5 09:04-
09:24

650 18 16.12-15.92 11:38-11:40 -

1 0 /2 0 - 6 11:06-
11:15

700 18 14.82-14.70 11:50-11:51 8.36-8.44
10.30

1 0 /2 0 -7 11:20-
11:40

700 18 14.64-14.40 11:51-11:54 8.47-8.61
10.30

1 0 /2 0 -8 12:08-
12:24

650 20 14.07-13.83 11:57-11:59 8.79-8.87
10.30

1 0 /2 0 - 9 12:24-
12:46

650 20 13.83-13.50 11:59-12:01 8.87-8.96
10.30

1 2 /1 0 -1 09:40-
10:00

550 20 16.64-16.80 08:24-08:25

1 2 /1 0 - 2 10:00-
10:20

550 14 16.80-16.91 08:25-08:27 -

0 9 / 1 2 - 1 13:00-
13:20

575 1 14.78-15.01 12:14-12:15

0 9 / 1 2 - 2 13:20-
13:40

575 1 15.01-15.24 12:15-12:17 -

0 9 / 1 2 - 3 13:40-
14:00

575 1 17.08-17.08 12:17-12:19 -

0 9 / 1 2 - 4 18:30-
18:50

600 10 17.67-17.79 12:42-12:44 -

0 9 / 1 2 - 5 18:50-
19:10

600 12 17.79-17.90 12:44-12:45

0 9 / 1 2 - 6 19:10-
19:30

600 10 17.90-18.00 12:45-12:46

0 9 / 2 0 00:10-
00:30

525 0 16.11-16.28 11:58-12:00 -

1 0 /10 -1 07:56-
08:20

675 2 16.49-16.70 10:48-10:50

1 0 /1 0 -2 08:20-
08:41

675 20 16.70-16.86 10:50-10:51 “

Figure 6.5 shows scatter plots o f  the abundance ratios for He27 fT  at 80 keV/Q and 

!60keV/Q as observed in the magnetosphere and in the upstream region. The horizontal
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axis represents the abundance ratios in the magnetosphere, while the vertical axis 

represents the ratios in the upstream region. The line with a slope o f one (indicating no 

ratio change) divides the plots into two regimes: the upper regime reflects the cases where 

the abundance ratio in the upstream region is higher than that in the magnetosphere, while 

the opposite is true in the lower regime. Figure 6.5 tells us that the ratios o f He27H~ at 

80 keV are somewhat enhanced in the diffuse ions compared with those in the 

magnetosphere, but shows a scatter o f points at 160 keV, which is similar to the result 

obtained by Ipavich et al. [1984],

1 0

He2 7 H + (80 keV) He2 7H* (160 keV

0

20
2 ,0

1 O' 1 0 1 0
Abundance ratio in magnetosphere

Fig. 6.5. Scatter plots of the abundance ratios for He2’ /H’ at 80 keV/Q and 160 keV/Q. 

respectively, as observed in the magnetosphere and in the upstream region.
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Figure 6.6 shows the comparison for 0 7 F T  and 0 7 H e 2+ in a similar representation. 

Most o f the ratios fall into the lower regime indicating that 0 7 P T  and 0 7 H e 2* are 

depleted in the diffuse ions compared with the ion distributions in the magnetosphere. In 

other words, FT and He2" are both enhanced over O" in the region upstream o f the shock.

0 7 H '  (80 keV) O V H ' (160 keV)

t1 0
O V H e2 ’ <80 keV) 0 ‘ /H e: * (160 k%V)1 O'

1 0 '

21 0

]t 0

41 0
1 0  * 1 0 1 1 o 2 t o ’ 1 0 3 1 o ’

Abundance ratio in magnetosphere

Fig. 6.6. The same as Fig. 6.5 for O /H ’ and O H e"'.

Now, we study the abundance ratios o f  He*/H* and 07 H e*  according to the same 

scheme. The upper panel o f Figure 6.7 shows the abundance ratios o f  He* /H". The fact 

that most o f the ratios fall into the lower regime, comparing with the Fig. 6.5, seems to

indicate that the behavior o f diffuse He* is different from that o f H* and He2+ ions. The
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lower panel o f Figure 6.7 shows the abundance ratios o f O /He . Most o f  these ratios fall 

into the lower regime as well. The similarity o f the lower panels o f Fig. 6.7 and Fig. 6.6 

indicates that H" and He2" as well as He" are all enhanced over O" in the upstream region, 

i.e., w ith respect to magnetospheric O" ions, energetic He" ions have the same trend as 

the H" and He2" ions. If energetic He" ions were magnetospheric ions as O", the result o f 

Fig. 6.7 would tell us that He" leak more easily into the upstream region than O". This 

seems to contradict the general idea o f a rigidity dependent transport favoring high- 

regedity ion. In this picture O" should leak move easily into upstream region than the

H e V H *  ( 8 0  k e V ) H e ’ / H *  ( 1 6 0  k e V )

1 0
O V H e '  ( 8 0  k e V i O V H c '  ( 1 6 0  k e V )

31 O'

1 0

21 0

31 0

41 0
1 0 4 t o 1 1 0  2 1 0 1 i o 3 1 0 '

Abundance ratio  in magnetosphere

Fig. 6.7. The same as Fig. 6.5 for Hc’/lT  and O ’/He" .
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other species due to its larger gyroradius.To test this idea, we need a  more quantitative 

analysis.

We will apply a simplified model based on the diffusion-convection equation to this 

problem. Our purpose is to check two possible sources for energetic He*: 1) leakage o f  

energetic He* ions in the magnetosphere and 2) acceleration o f  pickup ions at the bow 

shock. We cannot rule out the possibility o f a mix o f these two sources for energetic He*, 

but we can at least hope to determine the relative importance between them. Therefore, 

we solve the same diffusion-convection equation with two different boundary conditions 

to look for an answer in two steps. The first step is to start from the assumption that all 

particles are magnetospheric ions traversing the magnetosheath and escaping into the 

upstream region. In addition to the diffusive transport, scattering o f  the ions by waves on 

either side o f the shock leads also to energization by repeated shock crossings. We solve 

the diffusion-convection equation with a source in the magnetosphere and compare the 

results o f the model with the observations. In this way we can quantitatively test the 

origin o f  He* with the observation shown in Figure 6.7. Then, based on the conclusions in 

the first step, we will set up the diffusion-convection equation with injection at the bow 

shock thus treating the He* pickup ions as the source o f  the energetic He* ions, to see 

what percentage o f the pickup ions encountering the shock can be fed into the shock 

acceleration process. Our hope is that application of this simple theoretical work will 

enable us to shed light on the origin o f the energetic He*.
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6.2 Model

Diffusive theory takes into account the normal presence o f  magneto-hydrodynamic wave 

turbulence in a collisionless plasma. By scattering on these waves on either side o f the 

shock, particles can be energized by repeatedly crossing the shock. Diffuse ions stream 

relative to the solar wind in the upstream direction and are therefore subject to the 

hydromagnetic streaming instability. This results in a growth o f hydromagnetic waves 

which scatter the ions in pitch angle [K.J. Trattner, 1992], The initial beam distribution is 

driven towards isotropy which reduces the wave growth rate. Particles which are 

scattered back towards the shock gain additional energy in the shock frame. They may 

again be reflected at the shock front or the magnetosheath so that the process can be 

repeated. Diffusive theory takes into account the acceleration o f  particles reflected at the 

shock and scattered back upstream by waves in the magnetosheath. Our models only 

consider the latter effect and can be applied to both magnetospheric leakage and 

acceleration, but with different boundary conditions. The statistical nature o f the 

scattering allows some particles to reach very high energies by repeatedly crossing the 

shock before they are convected downstream.

6.2.1) Physical Basis o f Diffusive Acceleration
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In order to see how scattering in a fluid on either side o f a parallel shock leads to 

acceleration, consider a particle o f energy E in the downstream scattering frame close to 

the shock. In this frame, the shock front is moving at speed V2 into the upstream 

direction. If  the particle speed u and pitch angle ft are such that u cosfr > V2, the particle 

will catch up with the shock and cross it. After scattering, which conserves energy in the 

upstream scattering wave frame, it exits back downstream at angle to the shock normal

(see Fig. 6.8). The total energy in the downstream frame after this cycle[Forman and 

Webb, 1985] is

1 + uA V cosd /c1
E '=  E ( 6 . 1)

1 + u 'AV cosd ' /c2

where AV = V! - V2 is the change in velocity at the shock for the restframes o f the 

scattering centers. Since the particle does return, 0<ft<7t/2 and 7t/2<fr‘<7t, E’ is always 

greater than E. If the particle escapes again upstream by scattering in the downstream 

plasma, this cycle can be repeated and further energy gain can be realized. This is the 

essence o f first-order Fermi acceleration: a monotonic energy gain, with varying 

increments. The acceleration occurs because the particle can scatter in two scattering 

regions which converge with a speed AV at the shock. The basic physics o f “diffusive” 

acceleration at shocks rests on repeated shock crossings made possible by scatttering in 

the upstream and downstream regions where the energy is conserved on each side o f the 

shock in the plasma frame. The energy gain is drawn from the velocity difference AV, and 

derived from a Lorentz transformation between frames.
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Bow Shock

Fig. 6.8. Geometry showing the particle crossing a moving shock and 

scattering by the waves in either side o f  the bow shock.

6.2.2) Diffusive-Convective Transport Equation for Energetic Particles

Energetic particles, being a minor component in an already collisionless plasma can also 

be treated as collisionless. They move through the plasma on trajectories defined by the 

electric and magnetic fields. The fields, however, are usually composed o f a mean field 

(averaged on some scale) plus a turbulent component on smaller scales due to 

hydromagnetic waves or other plasma waves in the plasma. The turbulent fields cause the
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particle trajectories to deviate stochastically, i.e., to scatter randomly from the zeroth- 

order trajectories they would have in the mean fields alone. The waves do this by exerting 

on each particle random forces with zero average but nonzero correlation with the particle 

motion along the trajectory. Because o f the helical turning o f the particle velocity in the 

mean fields, the correlation o f the random forces is proportional to the power spectrum o f 

field fluctuations on the same scale as the helical zeroth-order orbit; that is, the power at 

wave number k such that k||J.|rg = I, where p. is the cosine o f the pitch angle and rg the 

gyroradius in the m ean field.

A starting point is the collisionless Boltzmann equation that describes, in principle, the 

evolution o f the exact particle distribution function f  (r . p . t ) in the exact electromagnetic 

field:

§ L + V . § L  + Qe{V X B / c + E ) - ^ :  = 0 (6.2)
dt dx dp

[Forman and Webb, 1985], In the quasi-linear theory o f  weakly turbulent plasmas the 

electromagnetic fields are expressed as the sum o f  an averaged component and a 

perturbation. B and E  consist o f an average part plus a smaller fluctuating wave part 

whose average values are zero. The exact f  can also be written as an average part f  (r ,p , t)  

(also averaged over gyrophase) plus a smaller fluctuating part flu (r ,p ,t) .  When these 

linearized quantities are substituted into the Boltzmann equation, a plasma kinetic 

equation that describes diffusion in velocity space could be obtained:
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where B and E  are now average fields, and D is a diffusion tensor in momentum space 

that depends on the power spectrum of the field turbulence, as discussed by Kennel and 

Engelmann [1966], Hall and Sturrock [1967], Wu [1968], and Luhmann [1976], This 

collisionlike term o f the right hand side of eqn. (6.3) describes the effects o f wave-particle 

interactions on f.

The diffusive or first-order Fermi acceleration mechanism has been described in 

considerable detail later by Krymsky [1977], Axford et al. [1977], Bell [1978], and 

Blandford and Ostriker [1978], Its derivation is quite straightforward for a one­

dimensional case. We picture the shock as an infinite, planar discontinuity in a flowing 

plasma. The plasma flows in from x = -«  and out to x  = «= with a discontinuous transition

in flow speed from a supersonic upstream speed V). to a subsonic downstream speed V: , 

at x = 0. Let us assume that the distribution function f  ( x , p )  is omnidirectional 

distribution to first order in V/u, where V is the plasma flow velocity and u and p are the 

individual particle speed and momentum magnetude measured in the local plasma frame. 

Then for particles with u » V  the Boltzmann can be written in the form o f a diffusion- 

convection equation [see Gleeson and Axford, 1967]

c f  -, o f  d o f  p  dV of  _ _
a  + v a r ^ K^ - l ^  = R 5 ( x , S i p - ^  ( 6 ' 4 )
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K = K.,cos2fiBn + K.sin2fiBn is the diffusion coefficient in the direction normal to the shock, 

d Bn is the angle between the shock normal and the mean magnetic field, and K,.- and K . are 

the diffusion coefficients parallel and perpendicular to the magnetic field, respectively. 

Equation (6.4) holds for all 0 Bn and as long as scattering is strong enough to insure near 

isotropy and validate the assumptions o f  the diffusion-convection equation. The relation 

between k  and quasi-Iinear theory will be discussed in the following section. In order, the 

terms on the left-hand side o f equation (6.4) represent time changes, convection, 

diffusion, and adiabatic deceleration. R is a source term, i.e., the rate with which particles 

are injected at the shock. We assume that particles are injected at some momentum pn, i.e., 

R5(x)5(p-pn). The solution f(p>pn) *  0 since V • V < 0 at the shock.

6.2.3) Boundary Conditions for Diffusive Energetic Particle Transport

For simplicity, we assume in the model that the average magnetic field is parallel to the 

shock normal n and to the flow velocity; since all quantities depend only on x, 

perpendicular diffusion play no role. The nature o f the solution is determined by the 

boundary conditions. We will consider two cases: a) leakage o f ions from the 

magnetosphere as the only source injected into the system. Then the boundary condition 

at the magnetopause specifies the source in the magnetosphere, and no injection at the 

shock is considered, b) Local ion sources such as solar wind and interstellar pickup ions 

are injected at the shock and no leakage o f  ions from the magnetosphere participates in the
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diffusion process. Then the boundary conditions exclude the source in the magnetosphere, 

and the injection rate at the shock is main factor in determining the solution o f  the 

equation. O f course, these two cases may also exist simultaneously. However, since the 

equation is linear in f, the ion distribution is given as a linear superposition o f the tw o 

basic cases.

The boundary conditions at the shock are obtained by integrating the transport equation 

across the shock. The usual diffusive interface boundary condition applies as follows 

(Figure 6.9 shows the simple structure for the model): The particle number density in 

phase space is continuous, i.e., the ion distribution function in the region upstream is 

equal to that o f in the region downstream o f the shock: f|(-e) = f:(+e). The normal

component o f the particle flux is continuous, if  there is no surface source. It may change 

by an amount equal to the particle injection rate o f a surface source, i.e., the difference 

between the downstream and upstream normal flux density equals the particle injection 

rate R. This condition reads

(6.5)

The subscripts 1 and 2 refer to the region upstream and downstream o f the shock, 

respectively [Scholer, 1985].

Axford et al.[1977] and Blandford and Ostriker[1978] have shown that for a wide range o f
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Fig. 6.9. Schematic representation o f  the configuration assumed in o f  the diffusive model.

background populations the accelerated particle distribution has a power law spectrum in 

momentum for an infinite planar shock. Such a power law spectrum is clearly not 

observed for the upstream particles [Ipavich et al., 1979]. The spectrum steepens toward 

higher energies and falls off rapidly above 200 keV. In order to explain such a steepening 

o f the spectrum, Terasawa [1979] assumed that the accelerated particles have not reached 

the steady state and that the diffusion coefficient depends strongly on energy, k «  E 

above 50 keV. Such a strong dependence on energy is inconsistent with observations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



123

Measurements indicate an approximately linear dependence o f K on E. ISEE 3 

measurements [Scholer et al., 1980b] have shown that at 200 RE upstream of Earth’s bow 

shock, particles move essentially scatter free, indicating that particle scattering in the 

upstream wave field is limited to some region close to the shock. It is also observed that 

the upstream magnetic turbulence needed to scatter accelerated ions back to the shock 

decays with increasing distance from the shock. Michell et al. [1983] found within a 

distance o f -  10 R̂ . from the bow shock distribution which, when transformed into the 

solar wind frame, are enhanced near 90° pitch angle and have equal fluxes Sunward and 

Earthward. At some point upstream, the level o f turbulence may be low enough that ions 

will stream freely away from the shock. We will simulate the lack o f sufficient scattering 

farther upstream by placing a free escape boundary(FEB) at a certain distance in front o f 

the shock. The FEB is assumed to be at the same physical distance L for all ions, and ions 

that cross the FEB can freely stream away [Ellison et.al., 1987], We approximate this 

behavior by a boundary condition that reads f|(-L) = 0. This corresponds to a FEB which 

is equivalent to a perfectly absorbing wall.

Finally, a boundary condition has to be set for the magnetopause fifM ), where M is the 

width o f the magnetosheath. For leakage from the magnetosphere, the distribution 

function at the magnetopause fi(M) will be determined by the distribution in the 

magnetosphere g(p). The boundary condition reads f^f+M) = g(p). L = 10 Rc, M = 4  Rc 

are used for all energies in the model.
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6.2.4) Diffusion Coefficient

The value and the variation o f the diffusion coefficient with particle species and energy is 

important for the determination o f the solution. Diffusion coefficients have been 

described in the framework o f a quasi-linear description that relates magnetic field 

fluctuations and particle scattering. Following of Drury [1983], Volk [1984], Forman and 

Webb [1985], and Blandford and Eichler [1987], particles are assumed to undergo many 

small angle perturbations in pitch angle by interacting with magnetic fluctuations, such as 

Alfven waves and magnetoacoustic waves. If a particle traveling faster than the Alfven 

velocity has a gyroradius, rg = pc/(QeB) (B is the mean background magnetic field), 

comparable to the wavelength o f the Alfven wave or magnetic disturbance, it can interact 

resonantly, and its pitch angle can be changed most effectively. After a number o f 

interactions with random phases, the particle may be turned around. A mean free path can 

be defined. For small wave amplitudes (i.e., 5B/B « l ) ,  the diffusion coefficient can be 

determined using a quasi-linear approximation. If the Alfven waves can be characterized 

by a background turbulence spectrum with a power law P= Pn f  "n [Ellison, 1990], the 

spatial diffusion coefficient parallel to the magnetic field can be written as Ko u3~n (A/Q)2~n

[Scholer et al., 1976], This is equivalent to (E/Q) ^ ' n /̂2 (A/Q) u is the particle

speed, E the particle energy, Q the charge number, and A the atomic number. Now, the
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proportionality constant K0 according to K,7 = ic() (A/Q)(l n,/2 (E/Q)|3'n,/2 remains to be 

determined.

The evaluation o f Ko can be obtained from an analysis based on the data. According to the 

statistical analysis for diffuse energetic ions by Trattner and A droler.[l994], the intensity 

o f diffuse ions falls o ff approximately exponentially with distance upstream from the 

bow shock parallel to the magnetic field with e-folding distance which varies from 3 .2±0.1 

RE at 10 keV to 9.3±0.1 Re at 67.3 keV. The best correlation o f  the linear regression 

analysis was found for the diffuse ions at an energy o f 11.9 keV. The e-folding distance 

for both species, protons and alpha particles, are almost the same at the same 

energy/charge and clearly increase with energy. This supports the fact that the diffusion 

coefficient o f the ions in the upstream region is a function o f  particle energy per charge 

and that the more energetic particles can escape more easily into the upstream direction. 

This increase o f  the e-folding distance with energy generally leads to a harder spectrum 

further away from the bow shock compared to spectra immediately at the shock in 

agreement with previous observations by Scholer et al.[ 1981 ]. So we describe the spatial 

dependence o f  the omnidirectional distribution function f  along the magnetic field by f  ~ 

f0exp (-LV/k,)) and choose the e-folding distance 1 = 3.2 RE for a proton with Es = 10 keV 

as our baseline, i.e.,

K6= Kp = l u ( E s= 10 keV) = 2 .8 5 x l0 17cm2/s
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in the region upstream o f  the shock. To determine the spatial diffusion coefficient for all 

species at different energies we use

k  (E/Q,A/Q) = Kp (A/Q){ ^  (E/Es)(3 n)/2 (6.6)

For simplicity K is assumed to be independent o f the distance from the bow shock. 

Without knowledge o f the diffusion coefficient in the magnetosheath we assume K2 = 0.1 

Ki, because the field compression, the ratio o f downstream to upstream magnetic field 

perturbation, is about 3, and is o f the same order as the density compression ratio [Hada, 

1985], So the differential wave intensity in the downstream region is about 9 times that 

in the upstream region. Since the diffusion coefficient is inversely proportional to the 

wave intensity, our assumption is reasonable.

This leads us to the question which value to adopt for the spectral index o f the wave 

spectrum n. To get a handle on the power spectrum o f the fluctuations, the actual 

hydromagnetic wave intensities were determined from the full resolution magnetic field 

data (time resolution At = 1/32 s) during the upstream events under investigation. The

wave power spectrum was derived by applying a fast Fourier transformation to the 

magnetic field data. Figure 6.10 shows a typical wave spectrum upstream o f the shock, 

separated into compressive (X) and transverse components(Y, Z).

The power o f the transverse components generally exceeds the power o f  the compressive
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Fig. 6.10. Wave power (nT'/Hz) versus frequency (hertz) separated into transversal and 

compressive parts. The spectrum was calculated for the October 7 event averaged from 

1126 - 1136.

component, i.e., the fluctuations basically represent transverse Alfven waves. The peak 

o f the power spectrum is at about 0.77 Hz. The spectrum falls according to f 11 between

0.77 HZ and 1.0 HZ so that n = 11 gives the inverse proportional dependence o f K on

A/Q, which is inconsistent with our observations. The spectrum rises according to f  ~9 6 

between 0.57 Hz and 0.77 Hz. At frequencies below 0.57 Hz the spectrum falls roughly 

with f  ° 5. The peak reflects the resonant range o f the waves that interact with protons at 

20 - 30 keV, i.e., the maximum flux in the H" spectrum. For the ions under study heavier 

than protons, the resonant frequency should be much lower than 0.77 Hz. For example,
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the resonant frequency o f He2" is 0.4 Hz, 0.2 Hz for He" and 0.08 Hz for O" at the same

E/Q. Therefore we choose n = 0.5. Accordingly, the spatial diffusion coefficient for all 

species is described as

This implies that the diffusion coefficient increases with A/Q for a given energy per 

charge. We make the assumption that this form remains valid on both sides o f the shock.

In the following we will discuss the influence o f different ion sources, as well as the 

transport and acceleration o f these ions separately in models which treat one source at a 

time.

6.3) Comparison of the Models with the Observations

6.3.1) MODEL I: D iffusive transport and acceleration with source in the

magnetosphere

Let us start our discussion by assuming that the only ion source is leakage o f energetic 

ions (H~, He2*, He*, O") from the magnetosphere, and that there is no local injection at 

the shock. Under this assumption, the boundary condition for the diffusive-transport 

equation can be written as follows: The ion distribution function at the magnetopause is 

equivalent to the source function g(p) in the magnetosphere so f2(M,p) = g(p). The 

continuity of f(x,p) at the bow shock (x = 0 ) reads f|(-£,p) = f2(+£,p), and the continuity 

o f the normal component o f the ion flux at x= 0  without injection at the shock is

Finally, the ion distribution function in the upstream region vanishes at the FEB so that 

fi(-L,p) = 0. The diffusive-transport equation is everywhere given:

k  (E/Q,A/Q) = K p  (A/Q ) 1/4 (E/Es )5/4 (6.7)

(6 .8)
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We expect to answer the following question: How does the diffusive transport change the 

ion composition between the source and the upstream  region? For simplicity, we further 

assume that the intensity o f  ion distribution function across the magnetopause is the same 

for all species.

Solution

We start by solving the transport equation separately on either side o f  the shock:

V‘ % ~ T k - 2 L = 0  ( 6 l 0 )ox ox ox

where i = (I , 2 ) refers to upstream and downstream. K, is the coefficient for diffusion

parallel to the shock normal. Using the four boundary conditions, the general solution for 

the ion distribution function are (in the following we use E instead o f p as our key 

variable, i.e., g(p) => G(E/Q), f(x,p) => F(x,E/Q)):

0 , ( x . E I Q j G I . E I Q ) - n E I Q ) \

<6 . 1 ,»

FAx.EIQ) = G ( E I Q ) - P'( 'C’EI S) Y( E, ®)
a , ( E I Q ))

where
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a , (£ /(? )  = 1 -  exp 

a 2(EIQ)  = exp

V \ L

kk x(EI  Q) j  

r V M  N
KA E /Q)

/
Px(x ,E/Q)  = exp Vi*

yKx( E / Q)
(

- e x p
V\L

v kt,(£/<2 )

I32( x , E / Q ) = exp
KA*

k , ( E / Q )
— exp

V,
kt2( £ / £ )  J

and

Y(E/Q)  = A(E/Q)

A ( £ / Q ) = [  exp(c-J )c4
</G(z) ; 2G(z)  

dz za. (z)

Where c is the integration constant. We start with the simplifying assumption that all 

abundance ratios are I, i.e.. the distribution function G(E/Q) is the same at the same 

energy for all species before the ions leak from the magnetopause. Figure 6 .11 shows the 

variation o f the distribution functions o f H~. He2*, He* and O* with distance from the 

magnetopause at 80 keV/Q. The horizontal axis represents the distance from the bow 

shock (x = 0) with the upstream region x < 0, and the magnetosheath M > x > 0. It is 

clear that the distribution function of O* decreases much slow er with distance from the 

magnetopause than those o f the other species. The sequence follows the mass/charge of 

the species. This implies that the abundance o f energetic O* should always be larger in the
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upstream region in comparison with its level in the magnetosphere if all species stem 

solely leakage from the magnetosphere. It indicates that the O* /He*, and 0*/H e2* 

abundance ratios should always be higher in the upstream region than in the 

magnetosheath or magnetosphere. These results are obviously in contradiction with the 

observations shown in Fig. 6 .6 .

Fig. 6.11. Variation o f the distribution functions resulting from model 1 with 

distance from the magnetopause at 80 keV/Q for H", H e ''. He' and O'.
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In order to substantiate our results we have carried out a detailed comparison o f our 

model with the data for all four species. The steps o f this comparison can be followed in 

Fig. 6.12. The solid triangle in the left panel o f Fig. 6.12 indicates the final result o f  the 

model in the upstream region, after all free parameters were adjusted to best fit the data 

(solid circle). First we obtain a smooth spectrum for the apparent source function in the 

magnetosphere by assuming an exponential law and fitting the observed spectrum in the 

magnetosphere. We use this function as source function for our calculation to obtain the 

distribution f, (x,p) in the upstream region. Then we compare the result with the data in 

the upstream region for the energy range 10 to 160 keV. For convenience 80 keV was

D istribution Function in U pstream  

for He* (41020-6)

E 1

" « F l (d a t a ) :3 ' F • a  Fl(adjuAted) 1

r-
C ’ r 1

* • •
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"r • -
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Fig. 6.12. Schematic representation o f the steps to compare the measured data with the 

predictions o f model I. In the right panel the dot points represent the 

measurements while the triangle points indicate the adjusted calculations o f the 

model.
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chosen as the matching point for all species. In order to fit the data the absolute flux 

found in the model has to be reduced by a substantial factor.

A reasonable candidate for this reduction is a leakage efficiency £ out o f the

magnetosphere. We therefore use G(E) * £ with 0< £ < I as the source function o f the

energetic ions at the magnetopause. The reduced source function is shown in the right 

panel o f Fig. 6.12. A possible explanation for such a reduction would be that there is a 

strong coupling between the fluctuating magnetic field which has some net motion in the 

direction o f the convecting magnetosheath plasma and the particles in the magnetosphere 

so that only a few magnetospheric particles will be able to leak out o f the magnetopause 

[Luhmann et al., 1984],

It is interesting to compare the values o f £ for different species under the assumption o f 

pure magnetosphere leakage. These results are shown in the top panel o f  figure 6.13. The 

first impression is that, generally, £ is the lowest for O '. There is one event lacking the

data o f O ' at 80 keV in the original measurements by IRM. This impression is 

reemphasized in the bottom panel o f Fig. 6.13 which contains the ratios o f the leakage 

efficiencies. The E(O') / £(H '), £ (0 ')  / £(He2*) and E(O') / £(H e') ratios are all lower than 

I with only two exceptions. If we were to interpret our results in terms o f rigidity 

dependent transport out o f the magnetosphere, it seems as if ions with higher rigidity are 

at a disadvantage to cross the magnetopause into the magnetosheath compared to other
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species. The impression is that lower rigidity leads to more efficient leakage. However, 

this contradicts the general result that transport is enhanced for high rigidity particles.

» iH*t i .H i" .  tiC T )

e«0*Vr. (Hr“)

I

Fig. 6.13 (upper) Comparisons of leakage efficiency e for H’. He'" , He' and O ’; (lower) 

Comparisons o f  the ratios o f  leakage efficiency for H \ He'' and He’ to O’, respectively.

It is still safe to assume that CT comes from the magnetosphere, since it is by far the 

strongest known source o f CT. In general terms, CT, with higher rigidity, has a larger 

gyroradius, which makes it easier to leak out o f the magnetosphere than for other species 

Therefore, the results as presented above should not be expected. However, as mentioned 

in chapter 2, H~ and He2+ have already been identified as bow shock accelerated. From 

our analysis He" behaves similar to H" and He2+, but different from O". Therefore, these 

results indicate that bow shock acceleration for He" is a plausible explanation. In addition,
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He"- pickup ions in the solar wind are an important source at the shock. Thus we have to 

turn our attention to this alternative source.

Based upon the conclusion from model I, we now treat the He pickup ions as the source 

o f energetic HeT ions. We will use the following model to confirm the shock origin and to 

see what percentage of the pickup ions that encounter the shock can participate in the 

shock acceleration process.

6.3.2) MODEL 2: Diffusive transport and acceleration with a source 

at the bow shock

As mentioned before, since the downstream fluid is moving away from the shock 

subsonically, some hot ions are able to scatter back into the upstream region and are 

accelerated still further. In this way, a few particles will be “injected” into the diffusive 

shock acceleration process. By crossing the shock many times, they will be accelerated to 

high energy. The majority o f the ions, however, enter the downstream region w ithout 

gaining significant additional energy and are swept downstream to x=M. The result is a 

continuous particle distribution from thermal to the highest energies. It is important to 

note that this injection-acceleration process is a direct result of the assumption that all 

ions scatter elastically in the local plasma frame.
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With local injection at the shock, from the solar wind for HT and He2' ,  and from pickup 

ions for H e', the stationary 1-D diffusive-transport equation is:

~ T c f : ~ 7 ^ f r  * ' '5 ( c ) 5 ( , ’ “ a ’) < 6 I 2 )dx dx ox 3 dx dp 

with the boundary conditions as follows, We assume again the FEB as a perfectly 

absorting wall, so that the ion distribution function satisfies f ((-L.p) = 0. No ions escape 

from the magnetosphere into the upstream region, i.e., f2(M,p) = 0. The ion distribution 

function is continuous at the shock, f|(-e,p) = f2(+e,p). The normal component o f  the 

particle flux changes by an amount equal to the particle injection rate at the shock surface,

i.e., the difference between the downstream and upstream flux density normal to the 

shock equals the particle injection rate R. This condition is

(Kr' " K' ) ^ r + t t (v \ -  v, )-§- = R & p -  Po)dx 3 dp
(6.13)

[=0

The differences between model I and model 2 are that there is no source in the 

magnetosphere (g(p) = 0) in model 2, while there is an injection R at the shock.

The method o f solution is similar to model I . In order to get insight into Rs, we note that 

the integration

f Anp'dpdx—  «= —
J dt cm 's

is an energy flux density, which can be set up for the unit o f density times the solar wind 

velocity, while
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\47tp2dpdxR^S(x)S(p -  pn) = 47Z p0 : /? ( , (6.14)

so that R* represents the number o f ions o f species s injected per unit area per unit time 

per unit momentum area at the shock front with momentum p0. Ions are, o f course, 

“injected” with a range o f energies; since the diffuse ion spectra at higher energies are not 

dependent on p0 except for overall normalization according to the study o f Lee [1982], 

the assumption o f  a monoenergetic injection can be made with impunity. We define the 

injection energy to point where we start to count the accelerated distribution. The 

analysis by Ellison et al. [1990] shows that the quasi-parallel bow shock can directly 

accelerate thermal ions. Since we are only interested in the overall acceleration efficiency, 

we can safely assume this be the incident solar wind energy, which is - I  keV/Q for H~ 

and ~2 keV/Q for He2* [Ellison et al., 1987], For He*, although the pickup ions can in 

principle be injected into acceleration over the entire energy range from 0  to the cut-off 

energy, we define an “average” injection energy as at the solar wind energy. Let R* be 

equivalent to CnV|/4 7tp02, where ^ represents the injection efficiency with respect to the 

flux density o f  incident particles, n the density o f the ions, p0 the threshold momentum 

for injection, and V, the solar wind velocity in the upstream region.

So lu tion

The general solutions are
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£ ( * ,£ )  =
_ f lU ,£ )F (£ )  

a , ( £ )

£ ( * , £ )  =  -
Pz(x,E)Y(E)

a ^ E )
(6.15)

K(E) = - g ^ V e x p ( - J  (
xp* v ^ \ a x{E) a 2(E) 2E

4 I dE  
) —

E0 is the threshold energy responding to the threshold momentum p0.

Now an estimate o f the injection efficiency ^ can be obtained as follows. At the 

threshold energy E0, the distribution function in the upstream region is

^ ;(£0) =  g f t u ■£», -
a , (£ 0) K ^ E J m f ' 1 '

Since the differential flux density j(E0) = 2E0Fi(E0)/m2 is known from the data, £ is 

determined as

 __________________ (  Ai ) V"( A) )  - i  . . .  rr ,n  i  z '  n

*= Kir ,— r r  v 2m £o • ( 6 . i6)
A (*<£<)) n

Finally we need to determine j(E0), the flux o f the thermal plasma at E0. The upstream 

proton spectra, generally, consist o f two parts: a narrow distribution peaking at about 1.0  

keV and a second higher energy component between -10  and 200 keV. The lower-energy 

component is the unshocked solar wind while the high-energy component is identified as 

“diffuse ions” [Ellison et al., 1990]. Therefore, the incident thermal flux at 1 keV should 

be derived from the high-energy component. We obtain a smooth spectrum for the 

measurement by applying an exponential law, then calculate the flux at 1 keV according to 

the exponential equation. The same procedures are also used for He2* and He* pickup 

ions.

The number density n o f He2* is roughly estimated as 4% o f that o f H~; the pickup ion 

number densities for He* were calculated by integrating the differential number spectrum
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over the energy range from zero to the cutoff energy (=1/2 m (2VSW)2) in the data as 

follows, since

with

r c (2 E (IE r l~> F
n = \ f v 2dvdQ. = [  dQ. = 4 n  f f ' t ^ d E  (6.17)

J  J  V m m J V  m

^  = / ^  <6.18,
AF.AQ. m~

This leads to

An i m f  A / \
,v

AE UEVAEAQ

An

(6.19)

j  1620)

'  p ick u p

Figure 6.14 shows the efficiencies for the different species. The injection efficiency of He^ 

is significantly higher than that of H+ and He:+. Roughly, the average injection efficiency is

about 1.3% for H \  0.5% for He2* and 12% for He+. This result, that the injection 

efficiency o f He* is higher than that of He2* is not unexpected, since the pickup ions start 

already with higher energies, although the differential flux densities o f diffusive He2* are 

higher than these o f  He* (see Fig. 6.3). In order to get more insight into the result, we 

define an overabundance factor and an energy gain factor for further comparison of the 

relative energization o f He2* and He*. To be consistent, we choose the cut-off energy of 

He* as the threshold energy for our comparison, neglecting the ion distribution at the 

energy below the cut-off energy for H* and He2* .
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Fig. 6.14. Comparisons o f  injection efficiency between H \ He"’ and He’.

We define an abundance factor a  for energetic ions

j  j{E )d E

ct.
|  j f/ (EWE

( 6 .2 1 )

where E0 is taken as Ecutotr. It is the abundance o f energetic ions. The average results are 

acncrccnc (He2* ) = 9.0*10 -2

OCcncrgcuc (He* ) = 4.0*10 ’3

The average otpickup (He*) which is calculated as follows:
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N  Vn r  tii

with the result

\  jpuLun
(6 .22 )

Ocncrgctic (He2* ) = 7.0*10 '5

Then we define an “overabundance” as the ratio o f the abundance o f energetic ions to the 

abundance o f the ions in the solar wind. Since the ratio He2*/H* in the solar wind is about 

0.04, therefore we get

overabundance (He2* ) = cXcnergcliC (He2* )/0.04 = 2.25 

overabundance (He* ) = a cncrgcuc (He* )/ apicku (He* ) = 57,

which means

overabundance (He* ) = 25 x overabundance (He2* ).

Secondly, from the viewpoint o f energy gain, we define an energy gain factor x

J Ej(E)dE  
£___________

J £ / u ,u r , r
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where, E0 = EcwotT for all species, to describe the capability o f energy gain o f each ion

m̂x*
species, j E j wune(E)dE  is estimated for FT as NSWVSWE0 (E0 =1  keV/Q), for He2* ,

0

0.04NSWVSWE0(E0=2 keV/Q). Figure 6.15 compares the energy gain factors for those ions.

It is clear that the energy gain factor for He* is higher roughly by a factor 16 compared 

with that o f He2*. This is consistent with the result o f an enhanced overabundance factor 

o f  He*. They are obviously reasonably consistent with the expectation that the injection 

efficiency o f He* is higher than that o f He2' .

1 o’

0
0

1
0

• •

3 1 .0 22 1 *0 1

Energy Gain Factor (He2 *) Energy Gain Factor (He+)

Fig 6.15. Comparisons o f  energy gain factors between H \ He'* and He*.
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6.4 Conclusions

In this chapter, the question about the origin o f  energetic He* ions observed at the quasi­

parallel Earth’s bow shock has been addressed. A statistical analysis o f 38 upstream 

events with 10 o f the 38 events also having simultaneous observations in the 

magnetosphere provides qualitative evidence that the pickup ion distribution is a more 

important source for the diffuse He* ions than the leakage from the magnetosphere. Based 

on the diffusion-convection equation, two models have been constructed with different 

boundary conditions. In the first model, we have compared the ratios o f the leakage 

efficiencies from the magnetosphere for the different species and found that leakage 

efficiency for O* is the lowest in comparison with the other species. This is inconsistent 

with our general idea o f a rigidity dependent transport. Combined with the known fact 

that H* and He2* are bow shock accelerated, while O* comes from the magnetosphere, the 

results o f model 1 confirm quantitatively that bow shock acceleration o f He* ions is a 

more pausible explanation for their origin than the leakage of magnetospheric He* ions.

Model 2 treats the pickup He* ions as the source o f energetic He* ions. The statistical 

result that the injection efficiency o f He* is higher by a factor o f 24 compared with that o f 

He2* is reasonable because the pickup ions start already with higher energy than that o f 

He2* in the solar wind. The calculations o f  overabundance and energy gain factor confirm 

the efficiency of He^ acceleration.
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CHAPTER 7

CONCLUSIONS

In this thesis we have presented the first detailed study o f the sources and the 

acceleration o f energetic H e' ions in front o f the Earth’s bow shock, using data from 

AM PTE/IRM  and AMPTE/CCE. Using numerical simulations o f specular reflection at 

the quasi-perpendicular shock and diffusive shock acceleration at the quasi-parallel shock, 

we have shown that o f H e' pickup ions are the dominant source in both cases.

Based on observations o f energetic H e' ions during an event when the bow shock was an 

almost perfect perpendicular shock, we could identify specular reflection at the shock 

potential and magnetic reflection as contributing to the energization process. A high 

percentage (A+B %) o f the original pickup ions get “specularly reflected” by these 

processes. Numerical simulations based on particle trajectory calculations are in basic 

agreement with the observed spectra and directional distributions and support the idea 

that multiple reflections with acceleration along the shock, the so called “surfing” o f ions 

as pointed ou: by Lee et al.[ 1996], is indeed important.
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At the quasi-parallel shock we first investigated whether the dominant source o f energetic 

upstream H e ' ions is leakage o f ions from the magnetosphere or acceleration o f pickup 

ions at the bow shock. By calculating the omnidirectional distributions o f H ', He2' ,  He* 

and O ' ions upstream o f the shock, as well as a comparison o f the observed spectra 

upstream o f the shock and in the magnetosphere with results from the calculations, we 

concluded that H e ' is locally accelerated. The subsequent modeling o f  the injection and 

diffusive acceleration at the shock presented evidence that pickup ions can be injected and 

accelerated more efficiently than solar wind plasma

In conclusion, we have found that in both cases, at the quasi-perpendicular bow shock as 

well as at the quasi-parallel shock, the energetic H e ' ions observed at the Earth’s bow 

shock predominantly are accelerated out o f the incident pickup ion distribution and that 

the injection processes are more efficient than for acceleration out o f the solar wind. The 

abundance o f H e ', however, showed a high variation from event to event. From the 

limited data set no clear dependence of this variation could be derived.

To study the variation o f the related processes with the shock parameters, measurements 

with a more comprehensive data set are needed. Understanding such variation would then 

allow extrapolation o f the results to other astrophysically relevant shocks. But this thesis 

presents the important finding that pickup ions are indeed accelerated very efficiently.
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