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Abstract

Population Structure and Phylogenetic History of the  

Lake Malawi Cichlid Species Flock

by

Jeffrey Alan Markert 
University of New Hampshire, May, 1998

The cichlid species “flocks” which are endemic to the East African Rift Valley are 
characterized by frequent lineage splitting events which have led to the rapid evolution of 
high levels of taxonomic diversity. Changes in water level cause these habitat patches to be 
chronically unstable, hypothetically speeding the process of genetic differentiation through 
the combined effects of genetic drift and selection. Allele frequencies a t four simple 
sequence repeat loci indicate low levels of gene flow in two rock dwelling fish species, 
Melanochromis auratus and Labeotropheus fuellebomi, collected from the Nankumba 
Peninsula in southern Lake Malawi. Small interruptions in habitat cause low, but 
statistically significant genetic differentiation among populations. The highest levels of 
interpopulation heterogeneity were observed between populations separated by deep 
troughs of open water. Differences in habitat usage cause the absolute magnitude of 
interpopulation heterogeneity to be higher among M. auratus populations than among L. 
fuelleborni populations. A correlation exists between allelic diversity a t a locus and the 
relative age of a habitat, suggesting tha t mild bottlenecks are associated with colonization. 
Simulation studies indicate that the level of differentiation observed among these 
populations is unlikely to be merely an artifact of modest sample sizes and highly 
polymorphic loci.

Philopatry alone is not sufficient to drive speciation. Populations must become 
reproductively isolated as well. A series of mate choice experiments indicated that mate 
recognition is nearly perfect among the congeners M. auratus and M. heterochromis. When 
Ft hybrid females were included in these experiments, they preferentially mated with 
hybrid males.

ix
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An estimate of the relationships among Lake Tanganyika and Lake Malawi 
species was obtained by surveying the genome for SINE (retrotransoposon) insertions by 
using a modified AFLP protocol which incorporates a SINE specific primer. The resulting 
phylogeny estimate was consistent with other molecular and morphological data sets for 
the older lineages in Lake Tanganyika, and indicated that the Lake Malawi species flock 
has a common ancestor with the Tanganyikan tribe Tropheini. Resolution among the 
Lake Malawi species was poor due to the incomplete lineage sorting which is characteristic 
of this extremely rapidly evolving lineage.

x
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Introduction

The Great Lakes of East Africa are one of the few places that dramatically 

illustrate the dynamic nature of species, and th a t allow us to glimpse the mechanisms 

responsible for the generation of taxonomic diversity. These lakes contain well known 

“flocks” of fish species, most notably in the family Cichlidae, although other fishes in these 

lakes have undergone less dramatic radiations (Banister and Clarke 1980). Lakes 

Malawi, Tanganyika, and Victoria each contain hundreds of fish in the family Cichlidae, 

the majority of which are endemic to only one of these lakes (Greenwood 1991). More 

striking than the sheer number of species is the fact that many of these taxa have arisen 

quite recently. Lake Victoria was completely desiccated some 12,000 yr ago (Johnson et al. 
1996). Lakes Malawi and Victoria have held water for millions of years but periodic 

variation in rainfall routinely causes fluctuations of hundreds of meters, leading to cycles of 

habitat destruction and creation (Fryer 1959; Ribbink et al. 1983; McKaye and Gray 1984). 

A well documented recent decrease in levels in Lake Malawi between the years 1500 and 

1850 led to a decrease of 120 m (Owen et al. 1990). This decrease rendered much of the 

southern end of the lake dry land. Many of the sites which have now been reflooded 

contain extreme local endemics - fish taxa which are known only from a single site (Stauffer 

et al. 1997). Presumably at least some of these locally endemic species evolved in situ 

during the last century and a half. If this is true, then speciation has occurred subsequent 

to the first scientific explorations of the lake (Gunther 1864)!

What forces are responsible for the rapid generation of this taxonomic diversity? A 

number of different models have been proposed to explain the species diversity of the 

African Great Lakes, and several of these are summarized in Table 1. These processes 

may roughly be divided into those tha t focus primarily on the role of environmental forces 
and those that focus of factors intrinsic to the cichlid lineage itself.

A number of authors have focused on the role of environmental factors unique to 
the E. African great lakes. Worthington (1937; 1954) suggested that speciation was aided 
by short tropical generation times, the creation of new niches as a result of water level 

fluctuations within the lakes, and a reduced number of large predators in some of the 

lakes. Water level fluctuations were also thought to be important by Trewavas (1947),

1
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who suggested th a t fluctuations led to changes in breeding habitats which could eventually 

lead to phenotypic divergence. In a  textbook summary, de Beaufort (1951) suggested that 

the sheer size of the great lakes generated a  large number of available niches which 

facilitated evolutionary divergence. Brooks (1950) proposed a  role for habitat 

fragmentation as part of an  allopatric speciation process, an idea later formalized and 

expanded by Fryer (1959b) who combined several lines of speculation and natural history 

data to construct a  microallopatric model for the rock-dwelling “mbuna” of Lake Malawi. 

Fryer suggested a rassen&reis-like arrangement of semi-isolated populations along the rocky 

shoreline. Under this model, the proximate causes of reduced gene flow among populations 

could be predation on fishes who stray from the shelter of the rocky habitat, stochastic 

elimination of intermediate populations in the rassenkreis, or changes in  water level which 

subdivide continuous habitats.

Table 1

A history of proposed speciation  mechanisms in the East African Lakes

Date - Authors Mechanism
1921 - Regan Trophic adaptations.
1935 - Worthington Short tropical generation time, empty niches resulting from lake level 

fluctuations and absence of predators in certain lakes.
1947 - Kosswig Selective mating and monoqamy.
1947 -Trewavas Adaptation to chanqes in habitat resulting from lake level fluctuations.
1950 - Brooks Allopatry resulting from discontinuous habitat distribution
1951 - de Beaufort Adaptation to available niches resulting from the sheer size and depth of 

lakes.
1955 - Jackson Space available in lakes enables speciation
1959 - Fryer A rassenkreis-like arrangement of semi-isolated populations, isolation 

possibly enhanced by predation on unsheltered fishes and/or elimination 
of intermediate populations, influence of lake level fluctuations on 
distribution of food

1974 - Liem An adaptable pharyngeal apparatus enables the exploitation of many 
niches

1984 - Dominey Sexual selection and extreme philopatry lead to development of different 
SMRS's at isolated sites.

In the 1920’s Regan proposed that much of the cichlid radiation could be explained 

by adaptation to distinct trophic niches, an idea later expanded by Liem (1974) who 

suggested tha t the evolutionary flexibility of the cichlid jaw apparatus permits cichlids to 

expand into new trophic ruches. A role for reproductive behavior in the speciation process 

was initially proposed by Kosswig (Kosswig 1947) who suggested that the monogamy he
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believed to be common, among cichlids was responsible for lineage splitting through the 

mechanism of selective mating. In 1984, Dominey suggested tha t runaway sexual 

selection combined with extreme philopatry might be responsible for lineage splitting in E. 

African cichlids paralleling then recent work on speciation in Drosophila. Under Dominey’s 

model, runaway sexual selection leads to the evolution of a distinct Specific Mate 

Recognition System (SMRS) within an isolated population. Each population may become 

fixed for its own SMRS because low migration rates between populations prevent the 

spread newly evolved SMRS’s to other populations or the dilution of an SMRS within a 

population. Indirect support was derived from the bright color patterns exhibited by the 

males of several E. African cichlids, and the model was eventually expanded to include the 

sand dwelling species of Lake Malawi, whose males construct elaborate breeding 

platforms (McKaye 1990).

The “synthetic” model proposed by Dominey incorporates several of the elements 

from earlier hypotheses, with the a  strong emphasis on reproductive behavior and habitat 

fidelity. Under the Dominey’s model, runaway sexual selection leads to the development of 

distinct SMRS’s within each population. Low inter-population migration rates lead to the 

development of reproductive isolation because unique SMRS’s which evolve within 

populations do not spread to other populations, nor are they diluted by immigrants to that 

population.

This model is compatible with a number of the hypothesized speciation drivers 

listed in Table 1, particularly those in which environmental factors restrict migration 

between populations. The most thoroughly studied example of biogeographic restrictions 

to migration in E. African cichlids may be the rock-dwelling cichlids of Lake Malawi, a 

group of fish often referred to by their Chitonga name mbuna, which are found in littoral 

rocky habitats throughout the lake (Fryer 1959a or b). The majority of their habitat is 

located near the shoreline, which is primarily an alternating series of rocky and sandy 
substrate (McKaye and Gray 1984)

Dominey’s model makes two specific testable predictions:

♦  Gene flow between populations is limited
♦  Mate recognition systems are established, such that allopatric forms 

will select appropriate mates when brought into sympatry.

This dissertation consists of a series of related projects designed primarily to test 
the predictions derived from the Dominey model. Additional chapters were added to 
address issues which arose as a result of these efforts, or to establish a phylogenetic

3
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context for these projects. Each chapter described below is intended to stand as an 

independent unit, yet all aim to enhance our understanding of the processes which have 

led to the evolution Lake Malawi cichlid flock.
Chapter 1:

Biogeography and Population Genetics of the Lake Malawi Cichlid Melanochromis auratus: 

Habitat Transience, Philopatry, and Speciation

This chapter presents an analysis of population structure in the widely distributed 

mbuna Melanochromis auratus. Population samples were systematically collected from an 

archipelago of habitat patches in the southern end of the lake. Four locus simple sequence 

repeat (SSR or microsatellite) genotypes were determined for each individual to estimate 

migration rates between habitat patches.

Chanter 2:

Biogeography and Population Structure in the evolution o f the East African Cichlids: 
Evidence from DNA Fingerprinting

Recently, SSR loci have been used to analyze population structure in a number of 

East African cichlid species. In this chapter the studies are summarized and the broader 

evolutionary implications of these data sets are discussed.

Chapter 3:

Sample sizes needed to estimate population structure using highly polymorphic loci
Sample sizes in Chapter 2 averaged 37 individuals per population. The highly 

polymorphic character of these loci (-25-30 alleles observed at each locus) raised concerns 

about the possibility of spuriously high estimates of sample divergence. In this chapter, 

simulation techniques were used to explore the relationship between divergence estimates, 

sample size, allele distributions, number of loci surveyed.

Chapter 4:

Mate choice in two Malawian congeners

In order to test the strength of mbuna mate recognition, a series of free mate choice 
experiments was designed. These involved allowing males from two Melanochromis 

congeners to establish territories in either aquaria or pools containing standardized 

structural elements (flower pots, ceramic tiles). After territories were established, females 

of both species were introduced into the mesocosm. Fry and juveniles were collected and 
SSR loci were used to determine parentage.

4
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Chapter 5:

An AFLP Based Method o f Rapidly Detecting the Insertion o f SINE Elements for use as Clade 
Markers

Relationships among taxa within Lake Malawi have been difficult to determine 

due to the recent and rapid evolution of these species. In this chapter, SINE element 

integration was detected a t orthologous sites using a modified version of the AFLP 

protocol to estimate the phylogenetic relationships among taxa from both Lake Malawi 

and the hypothesized ancestral taxa from Lake Tanganyika.

5
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Chapter 1

Biogeography and Population Genetics o f the Lake M alawi Cichlid  
Melanochromis auratusi Habitat Transience, Philopatry and  Speciation

Abstract

Migration rates among populations of the Lake Malawi cichlid Melanochromis 

auratus were estimated by surveying allele frequencies a t four simple sequence repeat 

(SSR) loci among 10 populations from a 42 km stretch of habitat in the southern end of the 

lake. The data suggest migration rates among populations are in general quite low, with 
an among population Fst  estimate of 0.14 (p<0.0020). A biogeographic survey suggests

tha t the highest levels of genetic differentiation exist between populations separated by 

stretches of deep water, and th a t migration is common between populations separated by 

shallower water. Water levels in Lake Malawi have risen dramatically in the past few 

centuries creating many new M. auratus habitats. Reduced allelic diversity was observed 

at more recently created habitat patches, suggesting that genetic drift resulting from 

bottlenecks is associated with the colonization of new habitat patches. The extreme 

philopatry of M. auratus, coupled with the patchy distribution and transient nature of its 

preferred habitat, provides opportunities for both selection and genetic drift to produce 

genetic differentiation among populations. Both processes may be important to the 
evolution of taxonomic diversity in the East African cichlid species flocks.

6
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Introduction

The flocks of endemic fish species in the East African Great Lakes are well known 

examples of "explosive" cladogenesis (Greenwood 1964). The cichlid fishes of Lake Malawi 

are a dramatic example, w ith an estimated 500 endemic species, virtually all of which are 

in the teleost family Cichlidae (Ribbink et al. 1983). This extraordinary taxonomic diversity 

has fascinated and challenged evolutionary biologists since the earliest explorations of the 

rift valley lakes by European naturalists and explorers (Gunther 1864).

In the century following the first formal description of the first rift valley taxa (see 

Boulenger (1915) for early citations), many explanations for the rapid evolution of 

taxonomic diversity have been suggested. Explanations invoking selective mating and 

brood care (Kosswig 1947), adaptation to changes in habitat arising from changes in lake 

level (Trewavas 1947), adaptation to a postulated diversity of habitats resulting from the 

sheer size of the lakes (Jackson 1955), restricted migration due to predation (Fryer 1965) 

and microadaptation to fragmented habitats (Fryer 1959b) have been proposed. The most 

recent synthetic model was proposed by Dominey (1984) who suggested tha t a combination 

of extremely low gene flow among populations coupled with sexual selection could lead to 

the fixation of distinct mate recognition systems (sensu Patterson (1985)) within local 

populations.

Most of these models stress the importance of selection to the evolution of lineage 

divergence. However, selective forces must overcome the effects of gene flow between 

diverging gene pools or local adaptations will not develop. An assessment of both the 

spatial scale of genetic differentiation and the identification of features of the physical 

environment which constrain population differentiation are important if we are to evaluate 
models offered to explain the speciation of the Lake Malawi cichlid species flock.

Many Malawi cichlids have a high level of habitat fidelity which, in combination 
with the patchy distribution of habitat types, could contribute to the evolution of lineage 

divergence. McKaye and Gray (1984) described three types of substrate in the nearshore 
habitats of Lake Malawi. In the southern end of the lake 73% of the shoreline habitat is 

gently sloping stretches of either bare sand or weed beds (Vallisneria sp.). The remaining 

27% of the habitat consists of steeply sloping jumbles of boulders, rocks, and cobbles. The 
bottom of these rocky slopes intersects the flat sandy bottom which forms the bulk of the 

lake floor (Figure lc). The shoreline is a mosaic of habitat types with rocky stretches 
existing as habitat islands separated by long stretches of sandy or weedy substrate.

i
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Rocky habitats also exist along the shores of several small islands, and as completely 

submerged offshore rocky outcrops.

The configuration of shallow water habitats along the shores of Lake Malawi is not 

a  permanent feature of the physical environment. The extent and distribution of sandy 

and rocky habitats is influenced by the rapid and dramatic changes in w ater level which 

are typical in Lake Malawi (Owen et al 1990; McKaye and Gray 1984; Scholz & Rosendahl 

1988; Fryer, 1959a). Fluctuations in water level occur on both geological and historical 

time scales. Owen et al. (1990) document three climatically controlled late Pleistocene 

decreases in water level, the most recent of which occurred between the years 1500 and 

1850. During this period, w ater levels were at least 121 m below their present level, and 

the two southern basins were mostly dry land.

The distribution and continuity of habitats along the lake shore is influenced by 

the amount of water in the lake basin. Decreased rainfall can lead to the loss of rocky 

habitat patches when water levels fall below the rock-sand interface. Increases in water 

level can open newly flooded habitat patches for colonization and can alter the nature of 

existing habitat patches by increasing their depth. Variation in water levels can unite 

previously isolated habitat patches or subdivide continuous stretches of habitats 

depending on local topography (see McKaye and Gray (1984)).

The rocky areas are the primary habitat for a well-studied guild of small, brightly 

colored fish known collectively as mbuna (Fryer 1959a). The upper surfaces of these rocks 

in the shallows are covered with a thick biofilm, known as the Aufwuchs, which forms the 

bulk of mbuna diets (Reinthal 1990). The crevices between the rocks provide shelter from 

predators and serve as the focus of male breeding territories in many of these species 

(Fryer 1959a or b; Danley IN PREP). The lithophilic nature of most mbuna, combined with 

the patchy distribution of rocky habitats within Lake Malawi, form a system in which the 

development of interpopulation heterogeneity - a probable precondition for lineage splitting 
- may be explored.

Genetic data suggest tha t migration rates among mbuna populations might be 

very low. (McKaye et al. 1984) found evidence of genetic differentiation a t some allozyme 
loci among four populations of the widely distributed Pseudotropheus zebra. Bowers et al. 
(1994) found differences in haplotype frequencies between populations in the southern end 

of the lake for two different species in the mbuna genus Melanochromis. The recent 
availability of simple sequence repeat (SSR) loci (Tautz 1993) with their high mutation 

rates and consequently high allelic diversity provides a tool with the resolution needed to 

detect fine-scale population differentiation among recently established local populations 
(van Oppen et al 1997).

8
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The newly flooded rocky habitats in the southern end of the lake provide an 

opportunity to examine gene flow, colonization, and migration of mbuna species. By 

combining fine-scale population sampling and a  detailed survey of habitat distribution 

with an analysis of allele frequencies at SSR loci we evaluate the influence of biogeographic 

forces on population structure in the Malawi cichlid species flock. These data are used to 

make inferences concerning the role of biogeographic forces in the speciation process and 

the magnitude of the selective processes required for the evolution of phenotypic diversity.

9
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Methods

Study Species

Melanochromis auratus (Boulenger 1897) is an easily recognized species that is 

widely distributed in the southern end of Lake Malawi, making it a  good subject for 

investigations of population structure. It is a small (4-9 cm), sexually dimorphic fish. 

Females (Figure 1.1) have a bright yellow ground color with black or dark brown horizontal 

stripes. Males are slightly larger than females and have a dark brown or blue/black 

ground color with yellow-gold stripes (Bowers 1993). M. auratus show little systematic 

variation in color pattern from locality to locality although slight intrapopulation variation 

in color intensity is common. They are most common at depths between 1.5 and 10 m, 

although their full range extends from the surface to a depth of 40 m (Ribbink et al. 1983). 

They are almost never observed over sandy substrate, although Bowers (1993) suggests 

tha t they spend time foraging at the rock-sand interface.

Study Area

Melanochromis auratus were sampled from areas in the proximity of the 
Nankumba Peninsula which divides the southern end of Lake Malawi into two shallow 

basins (Figure 1.2 a & b). Because water levels were 121 m below their present level 

between 1500 and 1850, (Owen et al. 1990) most of the rocky areas in the southern end of 

the lake were dry land, providing an upper limit to the age of the habitat in this area.

The steeply sloping rocky habitats adjacent to the shores of the Nankumba 

Peninsula all intersect the flatter, sandy lake bottom (Figure 1.2 c). The depth of this 

present day rock-sand interface should determine the order in which sites became 

available for colonization as the southern basins refilled. Deeper habitats became 

available first while the shallower habitats became available more recently (See Ribbink et 
al. (1983); McKaye & Gray (1984); and Figure 1.2 for details of this process).

The study area ranges from Mumbo Island (to the north and west of the peninsula) 

to Mphande Island (to the south and east) (Figure 1.2b). Fish were sampled from waters 

adjacent to both these islands, several habitats adjacent to the eastern shore of the 

peninsula itself, and two submerged offshore rocky "reefs". Divers assessed the depth of 

the rock sand interface at each site. The length of each habitat and the distances between 
habitats were estimated with the aid of a GPS unit and nautical maps (Malawi 
Government 1977; Tripp et al. 1957).
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Sample Collection

A total of 372 individual M. auratus were sampled a t 10 sites in southern Lake 

Malawi. Sample sizes a t each locality are shown in Table 1.1. Fish were captured by 

SCUBA divers using monofilament gill nets. Divers usually worked within 50 m of each 

other to avoid possible complications from the Wahlund effect, w ith the exception of the 

site designated Shallow Reef. At this site, fish were collected some 800 m apart, at either 

end of a  complex sprawling aggregation of rocky habitats in a sand/gravel matrix some 2- 

300 m off shore. This was necessary due to the relatively low densities of M. auratus at 

these sites which did not permit the sampling of an adequate number of fish a t any single 

spot.

Tissue for th is  study consisted of fin clips (ca. 0.5 -1  cm2) obtained from one of the 

unpaired fins (for fish collected in Lake Malawi National Park) or from pectoral fins. Fish 

collected in Lake Malawi National Park were clipped and released per collecting permit no. 

# 684658. Fish from other sites were preserved as voucher specimens. The fin tissue was 

preserved in 70-100% EtOH (undenatured), and the samples were then stored at ca. -153 

C pending transport to the United States.

Locus Isolation & Characterization

Two of the loci used in this work (UNH-001 and UNH-002) were used previously by 

(Kellogg et al. 1995) for paternity analysis. These and two additional loci, UNH-050 and 

UNH-231, were isolated using methods described in (Lee and Kocher 1996). All four loci 

are perfect dinucleotide repeats. Locus 231 was cloned from Oreochromis niloticus, the 

remaining loci were developed from an M. auratus library. Primer sequences, GenBank 

accession numbers, and fragment size ranges are provided in Table 1.2.

DNA Preparation & Amplification

DNA samples were extracted and amplified using the methods outlined in Kellogg 
et al., 1995. Optimal PCR conditions were determined empirically, and a summary of 

primer sequences, annealing temperatures and locus characteristics is shown in Table 2. 

Samples were electrophoresed on a 6% denaturing acrylamide gel a t 30 W on an ABI 373- 
A DNA sequencer for 8.25 hours.
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Scoring and Binning o f Alleles

GeneScan Analysis software (Applied Biosystems, Foster City, California) provides 

highly repeatable estimates of fragment size. Because of differences in base-pair 

composition between ABI's GeneScan - 500 size standard and the PCR products, these 

estimates were almost never integers. In order to determine fragment homology, fragment 

size estimates a t each locus were, sorted by size, and "binned" into allele size estimates 

which typically differed by two base pairs. To facilitate this process, allele size estimates 

were sorted by size and ranked. These rank scores were then plotted against allele size to 

provide a visual representation of the bins. In instances where the limits of a bin were 

ambiguous, individuals at both extremes of that bin and from neighboring bins were re-run 

on a single gel to insure the integrity of the allele size estimates.

Detection o f Null Alleles

The possibility of "null" alleles - alleles which cannot be visualized due to 

mutations in the PCR primer site - complicates the analysis of SSR data. The frequency of 

these alleles can be quite high (see Lehman et al. (1996) and Allen et al. (1995) for recent 

examples). In their survey of populations of several Pseudotropheus species from Lake 

Malawi, van Oppen et al (1997) report that a true breeding null allele is present at locus 

UNH-002 in some of the mbuna species they studied.

To estimate the frequency of null alleles in our data set, individuals in which PCR 

products could be generated for only three of the four loci were assumed to be homozygotes 

for a null allele. These frequencies were used to estimate the frequency of the null allele in 

each population using the maximum-likelihood algorithm in GenePop 3.1 (Goudet 1995).

Estimators o f Between Population Heterogeneity.

Estimates of population heterozygosity, allele frequencies and F-statistics were 

estimated with the aid of Goudot's (1995) program FSTAT. This package estimates F- 

statistics using method of (Weir and Cockerham 1984), and calculates confidence intervals 

for these estimates using a resampling algorithm which permits both jackknifing among 
loci and bootstrapping among populations.

Two sets of Fst calculations were performed. The first estimated the overall Fst, 
among all populations. The second set estimated pairwise Fst values for all pairs of

adjacent populations. Confidence intervals were estimated by performing 5000 
resamplings for the overall Fst estimate and 2000 resamplings for each of the pairwise 

comparisons.
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Barton and Slatkin’s (1985) rare allele based estimate of Nm was calculated using 

GenePop 3.1 (Raymond and Rousset 1995). This divergence estimator should be less 

sensitive to bias arising from the non-equilibrium state of these recently established 

populations.
Pairwise Nei's Distance [DN-] was calculated for all pairs of populations using the 

program Microsat [vers. 1.4d] (Minch et al. 1995; 1996). Nei’s Distance was determined to 

be a more appropriate measure of divergence between these populations than Delta p. 

(Goldstein et al. 1995) which assumes a single step mutation model for SSR loci. Although 

evidence is accumulating which indicates that stepwise mutation is probably responsible 

for generating the global array of alleles present a t these loci, it seems likely that the 

allele frequency distributions observed in the sampled populations are the result of recent 

historical sampling processes rather than post-divergence mutation, given the extremely 
recent origin of the habitats in the area surveyed (Owen et al. 1990).
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Results

Distribution o f Habitats

Habitat depth estimates and brief habitat descriptions are reported in Table 1.1. 

The distribution of habitat is shown in Figure 1.1 b. In general, the deepest habitats 

surveyed are at sites in the north and west of the sampled area, whereas the shallower 

sites are in the south and east. A description of the intervening substrate between 

collection sites is shown in Table 1.4.

Allelic Diversity & Heterozygosity

A total of 30, 24, 21, and 29 alleles were observed at loci UNH-001, UNH-002, 

UNH-050 and UNH-231 respectively. The total number of dinucleotide repeats varied 

between 14 and 103 at locus UNH-001 and locus UNH-050 respectively. The average 
pooled heterozygosity is 0.671. These results are summarized in Table 1.2.

A strong positive correlation was observed between the maximum depth of rocky 

substrate at a site and the observed heterozygosity at that site (r2 = 0.803, p=0.003), 
Figure 1.4.

The estimated frequency of null alleles within each population ranged from 0.0 to 

0.31 (Table 1.3). These estimates are likely to overstate the frequency of null alleles 

because PCR reactions can fail for a  variety of reasons other than primer incompatibility. 

True null alleles should be associated with an excess of homozygosity and might distort 

estimates of population differentiation. To test for an excess of homozygosity, Fu values 

were calculated. Populations with F„ values which are significantly different from zero are 

indicated in Table 1.3. Populations with high null allele frequency estimates did not 

necessarily have F„ values which were significantly different from zero. The impact of 

putative null alleles on the estimates of genetic divergence was assessed by jackknifing 
over loci. The different loci yielded similar estimates of genetic diversity, and the pairwise 

estimates of Fst values were typically narrow, suggesting that these nonamplifying alleles 

do not bias our conclusions. Mean estimates of genetic divergence and standard deviations 
based on jackknifing loci are shown in Table 1.4.

Population differentiation

Individuals sampled from the two sites 0.8 km apart in the extensive habitat 

designated shallow reef appeared to be from identical gene pools. Nei’s distance between 
the two samples is 0.053 with a standard error of 0.046. Because of the genetic similarity
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of these two populations and the continuous nature of the habitat these two subsamples 

were pooled to simplify subsequent analyses.

A high level of population structure is observed between populations. The overall 
Fst estimate is 0.14 (95% Cl = 0.121 to 0.179). Pairwise population statistics and

distance estimates between adjacent collection sites are summarized in Table 1.4. 
Pairwise Fst values between adjacent populations range from 0 to 0.15. Pairwise

estimates of Nm between adjacent sites range from 1.71 to 5.19. The estimated pairwise 

Nm between the two terminal sites is 0.32. Nei’s D estimates between adjacent sites 

range from 0.024 to 0.700 with a  calculated value of 2.629 between the two terminal sites.

In general, the four loci generated congruent estimates of population differentiation. 

Table 1.5 shows FCT estimates for all four loci between adjacent sites. Inter-locus F^ 

estimates differ most between Nkhudzi Point and two adjacent sites, Mazinzi Reef and 

Shallow Reef. In both cases, estimates derived from locus UNH-001 and UNH-002 

were much lower than those derived from UNH-050 and UNH-231. Null allele frequency 

estimates are high a t this population for UNH-001, UNH-002, and UNH-050 (Table 1.3), 

and there is no obvious relationship between null allele frequency estimates and the 

magnitude of the F ^  values calculated.

Table 1.6 shows four locus FCT estimates for all population pairs. As would be 

expected, the highest pairwise F^ estimates were obtained between population samples 

obtained fromt the two terminal sites, Mumbo Island and Mphande Island.
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Discussion

For speciation to occur, gene flow between incipient species must be low enough to 

permit them to follow independent evolutionary trajectories. Taxonomic divergence may 

arise either from the deterministic processes of selection, through the stochastic forces of 

genetic drift, or by some combination of these two forces. There are two patterns which 

have emerged from the analysis of locus frequency data in Melanochromis auratus. The 

first of these is an extremely high level of genetic differentiation among populations, and 

the second is a  trend towards reduced heterozygosity at more recently available habitat 

patches. The extreme philopatry observed in M. auratus coupled w ith the patchy 

distribution of ephemeral habitats provides many opportunities for both selection and drift 

to contribute to the evolution of taxonomic diversity.

Melanochromis auratus in southern Lake Malawi show a surprisingly high level of 
population structure. An overall Fst value of 0.14 (p<0.0002) was observed among all 

sites along a 42 km transect. The estimated Nm between the two terminal sites is 0.32 

migrants / generation. Barton and Slatkin’s (1986) Nm is believed to be a more reliable 

index of population structure than  Fst in this instance because the extremely recent

availability of most of the habitat sites surveyed makes it unlikely th a t these populations 
have had sufficient time to reach a  state of equilibrium. High pairwise Fst and low Nm

values were observed between several adjacent populations, suggesting that philopatry is 

a general feature of M. auratus' biology, rather than an artifact of a single major barrier to 
gene flow within the area surveyed.

The level of population differentiation is strongly influenced by the nature of the 

intervening substrate. The highest level of differentiation was observed between 
populations separated by long stretches of deep water. Conversely collection sites 

separated by long stretches of rocky or sandy shoreline show considerably lower levels of 
differentiation. The lowest Nm estimates occur between Mumbo Island and Ilala Gap

which are separated by approximately 10 km of deep open water. The rock-sand interface 

occurs at 45 m a t Mumbo Island and 36 m at Ilala Gap, and the intervening trough is 
about 100 m deep (Tripp et al., 1957), Similarly low Nm estimates were calculated

between the Mazinzi Reef, a submerged offshore rocky outcrop, and two nearby shoreline 
sites; Harbour Island and Nkhudzi Point. (Marsh and Ribbink 1981) and (Hill and 
Ribbink 1978) have demonstrated experimentally that other mbuna taxa are unable to 
control their buoyancy in waters greater than 40 m deep and that the maximum daily rate 
of depth acclimation for fish in the mbuna genus Petrotilapia is less than 4 m (Hill and 

Ribbink 1978; Marsh and Ribbink 1981) suggesting that substrate hugging mbuna are
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physiologically incapable of crossing long stretches of deep water. Our data  supports the 

hypothesis articulated by Ribbink (1986; 1983) that deep water can serve as a barrier to 

migration.

The highest levels of gene flow were inferred for samples collected from either end of 

continuous stretches of rocky habitat or from rocky patches separated by shallow sandy 

shoreline. Ilala Gap and Tsano Rock he at opposite ends of a  nearly continuous stretch of 

rocky coastline which is interrupted only by an approximately 350 m stretch of sandy 

substrate a t Mvunguti Village. These two sites are 8.2 km apart and show considerably 

less differentiation than the sites separated by similar stretches of deep water. The 
estimated Fst value of 0.029 between these two sites was significantly different from zero

(at a Bonferroni corrected p<0.0038) but this is low relative to the other significant FJt 
values. The Nm estimate of 4.10 suggests tha t migration occurs between these sites.

Shallow sandy shoreline also appears to facilitate dispersal. Mphande Island is 

located in a shallow bay about 5.6 km south-east of Nkhudzi Point. The shoreline 

between the two sites is apparently free of classical mbuna habitat and yet the estimated 
Nm value of 4.52 suggests very little differentiation between these two populations. A

similar pattern is observed between Mazinzi Reef and Shallow Reef which have the highest 
pairwise estimate of migration rate observed in this study (Nm = 5.19). This last

observation contrasts with the low migration rates observed between Mazinzi Reef and 

other neighboring populations. Although this difference in migration rates might be partly 

explained by the fact that Shallow Reef is much closer to Mazinzi Reef than  either Harbour 

Island or Nkhudzi Point (2.8 km vs 7.6 or 5 km respectively), it seems likely that other 

geographic features influence the facilitate the dispersal of fish from Mazinzi Reef to 

Shallow Reef. Unlike the other more compact habitats we surveyed, Shallow Reef is a 

sprawling complex of small rocky habitats in a sand/gravel matrix, extending about 400 m 

out into the lake. It is possible th a t undetected habitat patches similar to the habitat at 

Shallow Reef form a series of stepping stones between Mazinzi Reef and Shallow reef. A 

similar series of submerged stepping stones might exist between Mphande Island and 

Nkhudzi Point. Allele frequencies a t Shallow Reef are most similar to those a t Mazinzi 

Reef, and are distinct from Harbour Island suggesting that gene flow has not occurred 
along the shoreline between Harbour Island and Shallow Reef. These sites are separated 

by a series of shallow sandy bays punctuated with a number of rocky habitats which might 

be expected to serve as stepping stones. Given the apparent ease with which M. auratus 

disperse across shallow stretches of sand, this observation underscores the recent founding 
of these habitats.
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These results are consistent with mtDNA haplotype data (Bowers 1993), who 

found 5 haplotypes within M. auratus in southern Lake Malawi. Bowers’ samples were 

collected from a more widely distributed set of habitat islands separated from each other 

by deep troughs. Three of the sites she sampled were on the Nankumba Peninsula. All 

the Nankumba populations were fixed for the haplotype AURl. More distant sites 

possessed unique haplotypes, and a  single site, Chidunga Rocks, an island about 10 km 

n.w. of Mumbo Island, possessed three haplotypes, among them AURl. The presence of 

endemic haplotypes a t three of Bowers’ collection sites suggests that migration among 

these sites may be almost nonexistent, although her sample sizes for some of these sites 

were small enough th a t some haplotype diversity could have been missed.

The observed pattern  of population differentiation permits inferences about the 

process of recolonization during the most recent refilling of the lake. This pattern may 

have implications important to the evolution of the species flock as well. For example, the 

high level of genetic divergence between the two apparent genetic units Mazinzi Reef- 

Shallow Reef and Nkhudzi Point-Mphande Island suggests that these two population 

pairs are more diverged than  we might expect if Nkhudzi Point were colonized by migrants 

from Mazinzi Reef as w ater levels rose. Indeed, one would expect Nkhudzi Point to be 

about as similar to Mazinzi Reef as Shallow Reef is. One likely explanation for this 

discrepancy is tha t these populations belonged to separate genetic units before one or both 

their current habitats were founded. Several isolated sites in the lake could have served 

as refugia when lake levels were lower. If these refugia were as isolated as Mazinzi Reef 

or Mumbo Island are today, then populations at these sites might become evolutionarily 
detached from other populations in the lake.

At least two potential refugia exist in the area which could serve as M. auratus 

habitat during moderate recessions in lake level. The waters adjacent to Boadzulu Island, 

some 13 km south of Mphande Island, contain rocky habitat down to a t least 40 m 

(Ribbink et al., 1983). Jerusalem  Reef, 7 km east of Mazinzi Reef, is an isolated rocky 

outcrop the top of which is ca. 40 m below the lake surface at its shallowest point 

(personal observation). M. auratus is not known to exist at either of these sites currently, 

however the habitat in these areas appears similar to that at sites where M. auratus are 
abundant, except for the greater depth of habitat at Jerusalem Reef. Several other deep 

reefs in the South-East arm  of Lake Malawi are known to fishermen or are shown on 

navigational maps (Tripp et al., 1957). Jerusalem Reef and other sim ilar structures in 

could represent former habitats which became less and less suitable for M. auratus as 

water levels increased. The observed pattern of genetic divergence suggests that while
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Mazinzi Reef could have been colonized by migrants from Harbour Island, Nkhudzi Point 

was most likely colonized from now submerged habitats to the east or south.

In general shallower sites show reduced heterozygosity relative to sites with deeper 

habitat (Figure 1.3). This reduction in heterozygosity suggests a  series of bottlenecks with 

each colonization event. The four southernmost sites illustrate th is process particularly 

well. Mazinzi Reef is a  completely submerged and isolated rocky habitat located about 2.9 

km offshore in Madzidzi Bay. The Shallow Reef complex lies in shallow water just offshore 

some 2.7 km east of Mazinzi Reef. Mazinzi Reef is the deeper of the two sites with a 

maximum habitat depth of 13 m which compares to a  maximum depth of about 3 m at 

Shallow Reef. Ribbink (1983) cites evidence that water levels were 7 m lower than they 

are now early in the twentieth century. This suggests that habitat a t Shallow Reef 

became available very recently. As alluded to earlier, these sites are quite similar 
genetically. Pairwise and Fst  values calculated between these populations are not

significantly different from zero, however the four locus heterozygosity a t Mazinzi Reef is 

0.57 whereas a t Shallow Reef it is 0.499. Similarly, Nkhudzi Point with a habitat depth 

of 11 m has a heterozygosity of 0.569 whereas MPH with a habitat of 5 m has a 
heterozygosity of 0.500. Like Mazinzi Reef and Shallow Reef, pairwise estimates of Fst 

and Dn. are indistinguishable from zero.

The importance of habitat fragmentation and transience in  the evolution of the 

Lake Malawi cichlid species was first emphasized by Trewavas (1947) and later 

elaborated by Fryer (1959b). For the mbuna, Fryer suggested th a t populations on isolated 

rocky outcrops are free to pursue independent evolutionary trajectories. The course of these 

trajectories may be set either by drift or by adaptation to local physical, social, or ecological 

conditions. These local conditions are modified continuously as a result of the frequent 

changes in water level. Ribbink (1983) has suggested that these fluctuations in water 

level may play a generative role in speciation as "fluctuations in w ater level would 

increase or decrease the size of rocky zones, expose or drown areas, and fragment or unite 
similar habitats.", thereby potentially accelerating the process of genetic differentiation 
among populations.

The frequent fluctuations in water level within the lake basin constantly rearrange 

the configuration of available habitat (sensu Ribbink et al, (1983); McKaye & Gray (1984). 

Because of this chronic habitat instability, many opportunities have existed for adaptation 

to distinct local environments and for changes in allele frequencies due solely to genetic 

drift. Limited migration between isolated habitats could permit adaptation to local 

conditions. Each newly available habitat patch possesses its own unique collection of 
fauna and it’s own set of physical conditions. Each founding event might produce a new
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combination of genotypes, causing each, population to have a different potential response to 
selective forces.
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Conclusion

This study documents population differentiation on an extremely fine scale in the 

Lake Malawi cichlid Melanochromis auratus. Data are emerging which suggest that this 

may be a  general feature of mbuna biology. Amegard et aZ.(IN PREP) and van Oppen et 

al. (1997) have demonstrated high levels of population structure in five additional species 

using SSR loci. When combined with data from allozyme and mtDNA sequences (McKaye 

et al. 1984; Bowers et al. 1994) a pattern of extreme philopatry emerges.

The low level of migration in mbuna species combined with the isolated nature of 

many of the rocky habitat patches within Lake Malawi provides many opportunities for 

evolutionary divergence. Van Oppen et al. (1997) have suggested tha t mbuna species are 

divided into thousands of genetically isolated units. This division provides numerous 

opportunities for allopatric speciation. The Melanochromis auratus data presented here 

are consistent with this suggestion.

Speciation is also likely to be influenced by the dynamic nature of Lake Malawi 

itself. In mbuna the speciation process is likely enhanced by the chronic instability of the 

rocky habitats along the shores of the lake. While rapid and frequent changes in lake level 

alter components of the physical environment, genetic and social differences between 

populations also develop. Colonization of a newly flooded habitat patch would be expected 

to be accompanied by stochastic changes in both allele frequencies (due to founder effects) 

and community structure. This may differentiate populations with respect to both the 

potential response to selection (as a result of allele frequency differences), and the selective 

environment itself (as a result of differences in community structure or the physical 
environment).

The other African Rift Valley Lakes have also experienced dramatic climatically 
driven changes in water level during the Pleistocene (cf. Johnson et al. and Scholz & 

Rosendahl 1988). If habitat fidelity is a general feature of the biology of the East African 

cichlids then philopatry and habitat instability may help explain the rapid evolution of 
biodiversity observed in the African cichlid species flocks.
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Figures and Tables

Figure 1.1: A fem ale Melanochromis auratus as illu strated  in  Boulenger (1915).
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Figure 1.2: Habitat distribution along the shores o f  the Nankumba Peninsula.

a - The peninsula divides the southern end of Lake Malawi into two shallow basins. The 
shaded area represents parts of the lake which are > 200 m deep, b - The distribution of 
rocky habitats along the shores of the peninsula and the location of sites from, which fish 
were sampled, c - A schematic showing the typical arrangement of rocky habitat along the 
shoreline. Rocks and boulders (gray) slope away from the shore, eventually intersecting the 
flatter sandy lake bottom (checks) When water levels are high (solid line) mbuna can use 
the rocks as habitat. Periodic recessions in lake level can destroy this habitat (dashed 
line). Increases in water level can completely submerge some rocky areas, making the site 
inhospitable to shallow water fishes.
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Figure 1.3: The relationship between habitat depth and average population 
heterozygosity.

Heterozygosity is highly correlated with the depth of the rock-sand interface (r2 = 0.803. 
p=0.003), suggesting that deeper sites are older and more stable than shallower sites, and 
tha t colonization is achieved through a series of mild bottlenecks. The deepest site, 
Mumbo Island (inside square), has lower than expected heterozygosity, possibly a result of 
the long-term isolation of this site. The two points enclosed by circles represent Mazinzi 
Reef and Shallow Reef. Allele frequency and biogeographic data suggest that Shallow Reef 
was founded by migrants from Mazinzi Reef. This hypothesized colonization appears to 
have been accompanied by a decrease in heterozygosity.
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T u h lo  1.1

Sample sizes and brief habitat descriptions for each of the collection localities sampled

C ollec tion  S ite
N um ber of 

fish  Sam pled
Depth of 
H a b ita t D e s c r ip t io n

Harbour Island 74 3 0 An emergent landmark immediately adjacenl lo the shoro near Monkey Bay. The habitat adjacent to the Island is primarily large 
rocks and boulders and is continuous will) similar habital on the peninsula. The 30 m wide channel between the Island and the 
peninsula contains a mixture of lightly vegolated sand, gravel, and rock.

Ilala Gap 5 5 3 6 The northorn ond ol Iho longest strotch ol continuous rocky habitat in the southern end of the lake. The substrate is sediment 
tree to a depth ot 28 m, and consists primarily ot vory large rounded boulders which form many caves and crevices. Fish were 
sampled al the northorn tip of Ilia Nankumba Peninsula, about 0.4 km N.W. ol the narrow channel which separates Domwe 
Island (torn the Nankumba Poninsula.

Mazinzi Reel 3 8 1 3 An Isolated and submerged rocky outcrop about 3 km from shore. The total habitat area Is an estimated 20,000 m* in area and 
is composed of all sizo-classos ol rocky substrate. The highest point ol this structure is 3 m below Iho lake surface.

Mphande Island 2 7 4 An Isolated shallow habital along lakoward side of Mphande Island consisting of sedimenled cobbles, small (<1m diameter) 
boulders and some large (>3 in) boulders at Iho rock / sand inlortaco.

Mumbo Island 3 7 4 6 An Isolated habital about 6.5 km west ol the Nankumba Poninsula. Habitat al this site Is primarily largo rocks although some 
sand and gravel patches aro present.

Mvunguti - NW 4 2 7 The southern ond ol a continuous stretch ol rocky habitat which extends northward toward Ilala Gap. Fish were cotlocted just 
N.W. ol Mvunguti Boy. A hotorogenoous habitat composod ol all size-classes ol rocky substrate; sand and gravel are absent. A 
light sediment layer covers the rocks at this site.

Mvunguti ■ SE 1 2 3 6 A heterogeneous habital just S. E. of Mvunguti Bay composed of all size-classes ot rocky substrate; sand and gravel are absent. 
Below 21m a moderate sediment layer covers Iho rocks; at shallower depths, the rocks aro covered by a  lighter sill layer.

Nkhudzi Poinl 3 5 t 1 A heterogeneous hahilat composod ol all sizos of rocks and sand. Patches of open sand are present, and boulders and cobbles aro 
often fairly widely spacod in a sand/gravul mulrix. Rocks aro covorod with a moderate layer of sill below 2.5 m.

Shallow Reef 3 6 3 Tho substrate al this sprawling silo is a sand/gravel matrix with many small patches of rocky habllat. Our collodion efforts 
wore concentrated at two rocky ledgos about 0.8 km apart and 2-300m from shoro. Tho gravel field extends lakeward lor 0.4 
km.

Tsano Rock 54 3 2 Tsano Rock is a huge (>40 m diamolor)boulder locatod about 20 m from shore. The substrate In tho vicinity is primarily 
rocky, lightly sedimontod in sheltered aroas, with small patches ot sand and gravel in the shallow areas.
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T ab le  1.2

Summary data for the four simple sequence repent loci surveyed

L ocus Prim er s e q u e n c e s GenBnnk A ccession A n n ealin g
T e m p e r a tu r e

R epeal Range Total D ol 
a l l e le s

A v e rag e
H e te ro z y g o s i ty

UNH-001 GATTAACICIGTCCCTGTCT 
CTGAAGTGTTAAAAATATTGTT

U 17044 56“ C 1 4 - 6 9 3 0 0 ,6 5 0

UNH-002 TTATCCCAACTTGCAACTCTATTT
TGCATnCCTGATCTAACGAGAAG

U 17045 54° C 1 9 - 4 8 2 4 0 .5 4 9

UNH-050 GTCATCCCACTGACTAAGAT
AGAACAAACACAGGAAACTAT

A F 036714 56" C 6 7 - 1 0 3 21 0 .7 0 7

UNH-231 GCCTATTAGTCAAAGOGT 
ATTTCTGCAAAAGTTTTCC

G123B2 56° C 5 1 - 8 7 27 0 .7 7 7

to
-4



Table 1.3
Maximum-Likelihood estimates of null allele frequencies for each 
locus within each population. These estimates were derived by counting 
the number of individuals with single locus amplification failures within 
populations. Because PCR amplifications can fail for a variety of reasons, 
these estimates represent maximum estimates of null alleles. True null 
alleles would be expected to cause heterozygosity to be below Hardy- 
Weinberg expectations. Null allele frequency estimates for loci within 
populations with values which are significantly greater than  zero are 
indicated with an asterisk. Several of the highest estimated null allele 
frequencies occur in populations which do not show decreased heterozygosity.

Collection Locality Locus |
UNH-001 UNH-002 UNH- 0 5 0 UNH- 231

Mumbo Island 0 . 0 9 0 . 1 6 * 0 . 0 7 0 . 0 0
Ilala Gap 0 . 1 3 0 . 1 4 * 0 . 0 4 0 . 0 9
Tsano Rock 0 . 0 2 0 . 1 0 0 . 1 2 0 . 0 8 *
Harbour Island 0 . 1 0 0 . 1 8 0 . 0 8 0 . 1 0
Mazinzi Reef 0 . 1 3 * 0 . 1 4 0.1 1 0 . 1 4
Shallow Reef 0 . 2 5 * 0 . 1 0 * 0 . 0 6 ’ 0 . 0 0
Nkhudzi Point 0 . 2 3 0 . 1 3 * 0 . 21 0 . 0 5
Mphande Island 0 . 1 8 * 0 . 1 6 * 0 . 1 7 0 . 3 1
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T able M

P a i r w is e  p o p u la t io n  c o m p a r is o n s .  Al) com parisons a re  from  ad jacen t collection localities excep t for I lulu ( la p /T e u n o  Rock a n d  M um lro la lan d  /  M p h an d e  Is lan d  a n d  thu  tw o 
te rm in a l a ile s  M uioIhj Is lan d  / M phuttdu Islund. T hu drsluncu  httlw cutt co llection  localities w as e s tim a te d  hy ca lcu la tin g  thu  d isp o rsu l d is ta n c e  a long  thu  sh o ro lino  w h ere  
ap p ro p ria te . N et's 1) va lu es  an d  s ta n d a rd  e rro rs  wuru ca lcu la ted  w ith  M icrosu t vuruiou 1.4 d  (M inch et « (., 1005). M oan puirw iao  p o p u la tio n  F»» v a lu es  a n d  s ta n d a r d  d ev ia tio n s  
w ure e s tim a te d  w ith  tho  a id  o f  FSTA T ((in iidul, 1995) a n d  w ere e s tim a te d  hy jnck k u ifin g  o ver loci. B igiuficancu v a lu es  w ero o s tim a te d  hy tM xH strspping (2000 rep lica te s )  a n d  
re p re se n t tho  p ro b ab ility  th a t  F*« is no t 2  0  (H unfem m i currcc iud  u  -  0  003H). N »  v s tiiu u le s  wuru ca lcu la ted  u sing  llu r to n  a n d  S la lk iu 's  (J08G) p riv a to  a lle le s  m ethod  w hich  
sh ou ld  ho loss sen s itiv e  to tho  oxtrum ely  recont divurguucos o f  th e se  {Hipulutiuns. Thu N « uslituu lub  w uru valcu lu lcd  u s in g  (luuupop  S .t (R aym ond  & Kmuniel, 1U05). N *  a m id  n o t 
Iw e s tim a te d  betw een  Hhallow  llee f an d  N khudzi P o in t duo to  a lack o f  p r iv a te  n llu lus hetw eon lliusu tw o situu.

to
CD

C o lle c tio n  S lto s D is ta n c e  b e tw e e n  
c o lle c t io n  p a in t s  (km )

I n te r v e n in g  s u b s l r a to N e l 's  D (S ta n d a rd  
E r r o r )

F s t  ( S ta n d a rd  
D e v i a t i o n )

p  F s t  £ 0 N m

Mumbo Island • Ilala Gap 10 4 Doop water, sandy Inko bollom 0  7 0 0  (0  12) 0 ( 0 4  (0 019) 0 .0 0 1 1.71
Ilala G ap * Mvunguti MW 6  6 Rocky coastline 0  155 (0 10) 0  017 (0 018) n s . 2  5 6
Ilala Gap * Tsano Rock 8 .1 nock and  a  -  350 m  sandy bay  at 

M vunnuu Viilane
0  22 6  (0 .04) 0  0 2 9  (0 .003) 0  0 0 0 5 4 .1 0

Mvunguli NW • Mvunguti SE 0  6 -350  m  sandy bay a t Mvungoli Villago 0  42 2  (0  16) 0  04 7  (0 026) n s 1 .1 2
Mvunuti SE • Tsano Rock 0  9 Rocky coastlino 0  0 7 2  (0 08) 0  0 1 3  (0  014) n  s 5  8 3
Tsano Rock ♦ Harbour Island 3 7 Rock and  a  sandy channel (> 24 m 

deep) al Monkey Day
0  364 (0 11) 0  05 8  (0 013) 0 .0 0 0 5 4 .4 6

Harbour Island • Mazinzi Root 7 .6 Open walor, sandy tako bottom 0  3 3 5  (0 25) 0  0 9 5  (0 032) 0 .0 0 0 5
0 .0 0 0 5 "

1 .8 4
2 .5 0Harbour Island • Shallow Raol 7 7 Alternating sandy and  rocky shorolino 0 30 7  (0 21) 0  113 (0 031)

Shallow Raol • Mazinzi Rool 2  8 Shallow to doop sandy lako bollom 0 031 (0 04) 0 0 1 6  (0 .0 1 4 ) n s 5 .1 9
Shallow Reel - Nkhudzi Point 6  8 S andy shorolino 0  241 (0 .19) 0 .1 4 0  (0 .0 6 1 ) Q.Q0Q5 n a
Mazinzi Rool • Nknudzt Point 5 Opon walor. sandy lako bottom 0 .4 0 5  (0 .32) 0  158 (0 081) 0  0 0 0 5 1 .01  

4 5 2  
0 .3 2

Nkhudzi Point • Mplumdo Island 5 6 Sandy shorolino 0 02 4  (0  03 ) 0  150 ( 0 0 1 1 ) n s
Murntro island ♦ M phande Island 4 2  4 Opon walor, sandy shorolino, rocky 

shorellnu
2 .6 2 9  (0  93) 0 .3 0 8  (0  073) 0 .0 0 0 5
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T ab le  1.5

Pairwise F„ values for each locus. Average estimates which are statistically distinguishable from zero are indicated with an asterisk,

C ollec tion  S ites U N H -0 0 1 U N H -0 0 2 U N H -0 5 0 U N H -2 3 1 A verage  F „  (S ta n d a rd  D eviation)
Mumbo Island - Ilala Gap o.oaa 0 .121 0 .1 4 6 0 .0 6 0 0.104 (0.019)*
Ilala Gap • Mvunguti NW 0 .0 5 4 0 .0 3 4 -0 .0 3 2 0 .011 0.017 (0.018)
Ilala Gap - Tsano Rock 0 .0 3 7 0 .0 2 0 0 .0 2 0 0 .0 3 2 0 .029 (0.003)*
Mvunguli NW - Mvunguti SE 0 .0 0 5 0 .0 7 5 • 0 .0 2 5 0 .0 4 2 0.047 (0.026)
Mvunuti SE - Tsano Rock 0 .0 5 5 • 0 .0 0 5 •0 .0 0 1 • 0 .0 0 4 0.013 (0.014)
Tsano Rock - Harbour Island 0 .0 9 5 0 .0 5 7 0 .0 3 4 0 .0 4 7 0 .058 (0.013)*
Harbour Island - Mazinzi Reel 0 .0 6 8 0.1 IB 0 .1 5 7 0 .0 0 8 0.095 (0.032)*
Harbour Island - Shallow Reol 0 .0 8 9 0 .1 7 2 0 .1 4 8 0 .0 2 0 0 ,113  (0.031)*
Shallow Reef - Mazinzi Reel -0 .0 0 2 0 .0 1 4 0 .0 4 7 • 0 .0 0 5 0.016 (0.014)
Shallow Reef • Nkhudzi Point 0 .0 0 3 o.o i a 0 .2 4 8 0.1B 0.140  (0,061)*
Mazinzi Reel • Nknudzi Point 0 .0 0 3 0 .0 2 7 0 .3 3 5 0 .1 5 2 0 .158  (0.081)*
Nkhudzi Point - Mphande Island 0 .0 1 3 •0 .0 0 7 -0 .0 0 9 0 .0 3 3 0.015 (0.011)
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T ahlu  1.0

A matrix of four locus average F„T

Shallow Reef 0 .1 1 2 0
Ilala Gap 0 .1 1 1 2 0 .2 2 9 2

M phande Island 0 .1 6 7 9 0 .1 4 9 7 0 .2 4 6 4
M azinzi R eef 0 .0 9 3 2 0 .0 1 5 6 0. 1844

M umbo Island 0 .1631 0 .3 0 4 9 0 .1 0 3 8
M vunguti SE 0 .0 9 1 6 0 .2 5 1 0 0 .0 5 7 3

N khudzi Point 0 .1 4 1 4 0 .1 2 2 5 0 .2 1 7 1
T sano  Rock 0 .0 5 8 4 0 .1 7 8 8 0 .0 2 9 1

M vunguti NW 0 .0 6 6 8 0 .2 1 6 4 0 .0 1 7 1
H a rb o u r S h a llo w I la la

Is la n d R eef Gap

values for all populations

0 .171  1
0 .3 0 8 0 0 .2641
0 .2 7 8 8 0 .2 1 2 1 0 .1 5 8 2
0 .0 1 2 8 0 .1 5 1 3 0 .2 8 5 9 0 .2 4 5 3
0 .2 1 2 9 0 .1 4 3 7 0 .0 9 4 9 0 .0 1 3 3
0 .2 8 7 0 0 .1 4 5 7 0 .0 9 5 3 0 .0471

M phande M a z in z i M um bo M v u n g u ti
Is la n d R eef Is la n d SE

CO

0 . 1855
0 .2 3 7 0  0 .0 0 0 7  

N k h u d z i T sa n o  
P o in t  R ock



Chapter 2

Biogeography and Population Structure in  the evolution of the East African  
Cichlids: Evidence from  DNA Fingerprinting

Summary

In the 130 years following the first European scientific exploriations of the E. 

African Rift Valley lakes, a number of models have been proposed to explain the rapid 

evolution of taxonomic diversity which characterizes the cichlid species “flecks’’ endemic to 

these lakes. The most comprehensive of these models were assembled by Fryer (1959) 

and Dominey(1984) who emphasized the roles of biogeography and sexual selection 

respectively. Anecdotal and experimental evidence has long been available which suggests 

a role for sexual selection. Recently, DNA fingerprinting techniques and systematic 

population sampling have produced data sets which quantify the role biogeography has 
played in the most extensive of the vertebrate adaptive radiations.
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Introduction

The adaptive radiation of the E. African cichlid fishes is one of the most dramatic 

in vertebrate evolution. Estimates of endemic species within each of the great lakes range 

from the hundreds to over 1,000 (Poll 1986; Greenwood 1991). Geological evidence 

suggests tha t in Lakes Victoria and Malawi, this taxonomic diversity arose very recently. 

Lake Victoria was completely desiccated 12,000 years ago (Johnson et al. 1996), and sites 

in Lake Malawi harbor local endemic species in places which were dry land as recently as 

150 years ago (Owen et al. 1990). If these species arose in sirn, then speciation has 

occurred during within the last century and a half, in some cases perhaps after the first 

scientific explorations of the lakes in the mid-nineteenth century (Gunther 1864). Even if it 

is ultimately demonstrated tha t the local endemic species in southern Lake Malawi 

evolved elsewhere and migrated to their current habitats, the evolution species in these 

lakes is undeniably rapid.

The role of sexual selection

The “synthetic” model proposed by Dominey incorporates several of the elements 

from earlier hypotheses, and places a strong emphasis on reproductive behavior and 

habitat fidelity. Under the Dominey’s model, runaway sexual selection leads to the 

development of distinct SMRS’s within each population. Low between population 

migration rates leads to the development of reproductive isolation because unique SMRS’s 

which evolve within populations do not spread to other populations, nor are they diluted by 

immigrants to tha t population.

Until recently, the presence of sexual selection in E. African cichlids has been more 

thoroughly explored than the role of philopatry. Hert (1989), for example, has shown that 

the number of “egg dummies”, small yellow spots on the anal fins of some fish, determines 

reproductive success in males. Direct evidence supporting the importance of color 

morphology in the SMRS has been provided by Seehausen et al. (1998) who demonstrate 

the importance of male coloration to female mate choice by manipulating ambient light, 

and a “natural” experiment in sister taxa from Lake Victoria which demonstrates that 

isolation by sexual selection may be breaking down as the water becomes increasingly 

turbid as a result of environmental degradation (Seehausen et al. 1997). Genetic support
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for variance in male reproductive success has been provided by Kellogg et al (1995) and 

Parker and Komfield (1996) who have demonstrated tha t female mbuna routinely use 

more than one male to fertilize their broods, suggesting an element of female choice. Sexual 

selection is also well supported in the sand dwelling fishes of Lake Malawi who have 

permanent leks and who build elaborate breeding platforms (McKaye 1990).

Population Structure and Biogeographv - Evidence from SSR Loci

DNA fingerprinting techniques are now producing data which can be used to 

estimate the extent of population structuring in these fish. Highly polymorphic simple 

sequence repeat (microsatellite) loci have been used to quantify levels of migration among 

populations of 6 mbuna species. In the first of these papers, van Oppen et al (1997) used 

6 SSR loci to estimate levels of gene flow in 4 species from sites near Nkhata bay, along 

the central-western shore of Lake Malawi (Figure 2.1). They found extremely low levels of 

migration among these fish as evidenced by low estimates among populations 

separated by less than  7 km. This striking result suggests population structure on 

smaller scales than had been expected. The low levels of migration observed among 

populations provides an opportunity for modest selection pressures alter phenotypes. 

Among the four species surveyed by van Oppen et al (1997), an overall estimate of 7 

migrants for every 10,000 territorial males may be obtained. The evolutionary implication 

of this result is that moderate levels of selection (natural or sexual) could easily overcome 

the homogenizing effects of migration, leading to phenotypic divergence and/or reproductive 
isolation.

Recently, we have analyzed four locus SSR genotypes from two additional Lake 

Malawi species which illuminate the role that biogeographic forces play in the maintenance 

of population structure in both Melanochromis auratus and Labeotropheus fuellebomi. 
(Chapter 1 and Amegard et al. IN PREP). We sampled populations of these mbuna 

species from an “archipelago” of rocky habitats in the vicinity of the Nankumba Peninsula 
which subdivides the southern end of the lake into two shallow basins (Figure 2.1). 

Populations of both species were systematically sampled from a number of sites along the 

eastern shore of the peninsula, the shores of several islands in the area, and a completely 
submerged rocky “reef7 about 3 km from the shore.

The southern end of Lake Malawi is a special environment in which to study 

population structure because the habitat in this area has become available for colonization 
by mbuna very recently. The shoreline alternates between rocky and sandy stretches of
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varying lengths. A xeric period which ended 150 years ago led to a  decrease in water levels 

of 150 m. At its peak, the  southern basins were dry land (Owen et al. 1990) (Figure 2.1). 

The rocky habitats along the shoreline which form the core of present day habitats 

typically slope a t steep angle and eventually intersect the flat sandy lake bottom. The 

depth of this rock-sand interface determines the age and ultimately the temporal stability 

of the habitat.

The two species surveyed are both confined to the shallower portions of these rocky 

habitats, however they utilize the rocky substrate in different ways. Melanochromis 

auratus is a small (6-8 cm) fusiform fish that is present a t depths between 0 and 40 

meters (Boulenger 1897; Ribbink et al. 1983). In contrast, L. fuellebomi is a somewhat 

larger and rather stout fish which is rarely observed a t depths >2m, and which is most 

abundant over wave washed rocks in the extreme shallows (Figure 2.2) (Ribbink et al. 

1983). L. fuellebomi, w ith its subterminal mouth and robust bodyplan seems well adapted 

to scraping algae off the horizontal wave washed surfaces where it is most common. M. 
auratus on the other hand is perhaps more of a generalist, plucking algae off a variety of 

surfaces and venturing to greater depths. M. auratus is rarely encountered in the extreme 

shallows dominated by L. fuellebomi (Figure 2.2). Because the two fish species studied are 

in the same geographic area, we can use these data to infer the relative importance of 

various environmental forces on population structuring in cichlids and begin to understand 

the range of responses possible in these closely related but phenotypically distinct species.

As the lake basin refilled, sites with a deeper rock-sand interface became available 

for colonization sooner than  sites with a shallower intersection. The depth of the rock-sand 

interface varies from site to site, ranging from less than a m eter to over 45 meters. Sites 

with a deep rock sand interface became available for colonization sooner than sites with a 
shallow interface. L. fuellebomi, with its shallow habitat preference appears to be capable 

of colonizing rocky habitats as soon as they become available. Amegard et al found L. 

fuellebomi at some sites with a rock/sand interface « l m .  In contrast, M. auratus were 

rarely observed a t sites with a rock / sand interface < 2 m. The level of population 

structuring in these species is probably related to the occupation of distinct niches in the 
rocky littoral region. F ^  values were typically much lower for L. fuellebomi, than for M. 

auratus populations from identical pairs of sites (Figure 2.3). These data suggest that L. 
fuellebomi is an early colonizer and is capable of becoming established as soon as a rocky 
outcrop becomes submerged. This capacity enables L. fuellebomi to use a number of tiny 

habitat patches as stepping stones between larger patches of habitat, which may facilitate 
gene flow among more distant sites. In contrast, M. auratus does not thrive in the extreme
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shallows and cannot utilize these intermediate patches, leading to a higher level of genetic 

heterogeneity among populations.

Deep Water as a Migration Barrier

The lowest level of migration occurs between sites separated by deep troughs. In 
M. auratus the lowest pairwise migration rates (expressed as Barton and Slatk in’s Nm 

(Barton and Slatkin 1985)) occur between Mumbo Island and Bala Gap, two sites which 

are 10.4 km apart and separated by a trough a t least 46m deep. Similar migration 

estimates were obtained between Mazinzi Reef and Harbour Island and between Mazinzi 

Reef and Nkhudzi Point. Mazinzi Reef is an  isolated habitat 2.8 km from shore. At its 

highest point, the reef is 3 m below the surface of the lake and the rock-sand interface 

occurs a t 13 m. The trough separating Harbour Island and the reef is at least 30 m deep.

Although the trough dividing Mazinzi Reef from Nkhudzi Point is shallower, 

migration rates from the reef are still very low. Marsh and Ribbink (1981) have shown 

tha t that these essentially benthic mbuna have a limited capacity to adjust to depth 

related changes in pressure. Pressure chamber experiments indicate that mbuna species 

can compensate for pressure changes equivalent to a depth change of about 4 m /  day. 

Beyond tha t point, their swim bladders lose the capacity to regulate buoyancy. Mbuna 

attempting to cross the trough separating Mumbo Island and Ilala gap would require 

weeks to achieve the vertical component of the migration, wherease fish leaving Mazinzi 

Reef for Nkhudzi Point might require only a  few days.

Other Ecological Forces Reducing Gene Flow

Deep troughs are not the only force limiting migration. Smaller, but statistically 

significant, genetic heterogeneity is also present between sites separated by shallow water 

or a stretches of sandy shoreline. In these case, predation may be operating to limit gene 

flow. Mbuna rely on the rocky substrate for shelter from predators. Trendall (1988) has 

shown that newly released fiy are extremely vulnerable to predation and rely on the 

acquisition of a rocky shelter survive. We have observed a similar pattern in an 

unpublished pool experiment in which 9 sets of 3 11 x 11 cm bathroom tiles were 
arranged to form an 11 x 1 x 0.5 cm tunnel. Several dozen adult fish from the 
Pseudotropheus and Melanochromis genera were introduced into the pool. After several 

months, a dip net was used to recover juveniles present under these shelters. Each shelter 

harbored a single juvenile. No unsheltered juveniles were observed, suggesting tha t 

juveniles who could not obtain and defend a  shelter were preyed upon by the adults in the
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pool. Fryer (1959) has suggested a similar situation may exist within the lake itself. A 

number of large pelagic predators are known to cruise the rock sand interface, preying on 

mbuna who stray far from shelter and incidentally reducing the ability of these fish to 

migrate between habitat patches, in a  manner similar to the adult mbuna in our pool 

experiment who opportunistically fed on juveniles.

Evolution of Phenotypic Diversity

Low migration rates among populations is a necessary but not sufficient 

component of speciation. Reduced gene flow must be accompanied by phenotypic change 

for permanent reproductive isolation to evolve. Given the difference in average gene flow in 

these two species, we might expect M. auratus to show more site to site phenotypic 

variation than L. fuellebomi. Surprisingly, the opposite pattern was observed. L. 

fuellebomi show interpopulation differences in both gular and fin coloration in our study 

area, and a  range of color variation elsewhere (Ribbink, Marsh et al. 1983). A phylogenetic 

analysis of the L. fuellebomi populations surveyed suggests an explanation; the 

morphological differences may have evolved in the past when water levels were lower and 

the shallow stepping stone habitats which connect these habitats did not exist, and that 

the present situation is a result of secondary contact. A number of possible deep refuges 

exist in the area, including Boadzulu Island which approximately 12 km south of our study 

area and a number of offshore rocky “reefs”. Although these reef structures are currently 

covered by several meters of water and do not currently support Labeotropheus 

populations, they would have been islands with rocky shores during xeric periods.

Water Level Flucturations and Evolution

In both the L. fuellebomi and M. auratus data sets a negative correlation between 

heterozygosity and habitat depth was observed. The reduced heterozygosity a t shallower 

sites suggests the serial dilution of genetic diversity as newly available habitats are 

colonized by migrants from nearby deeper sites with a loss of alleles due to sampling. As 
the southern basins refill, the cycle is repeated compounding the loss of allelic diversity. 

Although SSR markers are believed to be selectively neutral, the differences in allele 

frequencies at these loci underscore the potential for the uneven distribution of alleles 

responsible for maintaining the SMRS’s and other phenotypic variation, ultimately 
determining whether reproductive isolation or continuity exists among populations.

Water level fluctuations which lead to the creation of new habitats, the destruction 
of existing habitats, unification of isolated habitat patches or the division of continuous
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stretches of habitat (and interruptions in Fryer’s (1959) rassenkreis) could accelerate the 

process of speciation by driving stochastic changes in allele frequency (Ribbink et al. 1983; 

McKaye and Gray 1984). The chronic instability of these habitats may keep mbuna 

species in the “turnover” state described in Vrba’s Tumover-Pulse hypothesis which 

suggests chat phenotypic change is most likely to occur during periods of rapid 

environmental change (Vrba 1985).

Water level fluctuations may also lead to the creation of a variety of selective 

environments. Each time a new habitat patch becomes available, it is colonized by a 

different assemblage of species. Although many fish are common to many sites, almost 

every habitat patch has its own constellation of taxa and a unique assemblage of 

competitors. Further, changes in water level may drive the evolution of species on a 

habitat patch. For example, shallow water species living on the shores of a small island 

must adapt, migrate or perish as water levels increase.

As additional information becomes available, it is becoming clear tha t the E. 

African cichlid radiation is the result of a combination of environmental forces unique to the 

Rift Valley lakes and a number of forces intrinsic to the cichlid lineage itself. As data 

continue to accumulate, it will eventually be possible to determine which forces have been 
responsible for causing specific lineage splitting events.

Species Concepts and Malawi Cichlids

The Biological Species Concept (BSC) (Mayr 1963) defines species as assemblages 

of actually or potentially interbreeding populations of individuals, and speciation scenarios 

derived from it often involve the evolution of phenotypic divergence as a result of different 

selective pressures operating on allopatric populations. If barriers to migration fall, 

barriers to hybridization are expected to arise if hybrid offspring show lower fitness than 

the parent populations. The BSC is philosophically problematic in cases where allopatry 

exists and little interpopulation migration occurs. Such populations may potentially 
interbreed if migration barriers fall, even if no gene flow exists between them at the 

present time. The dynamic nature of the habitats within Lake Malawi suggests that the 
BSC cannot be too strictly applied within this system.

Ribbink (1986) has pointed out the utility of Patterson’s (1985) “Recognition 

Concept” in this context. The evidence accumulated to date supporting the Dominey model 

are quite compatible with the recognition concept in which species are defined as 

genetically continuous units in which genetic cohesion is maintained by a common mate 
recognition system consisting of a variety of phenotypic characters which are responsible for
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synchronizing and facilitating reproduction among the members of a  species. The patchy 

distribution of habitats within Lake Malawi combined with modest levels of migration 

among them suggests tha t the recognition concept, which defines a species as a  group of 

populations with a common SMES, avoids the ambiguities of the BSC in  which species are 

defined as actually or potentially interbreeding populations (Mayr, 1963). Under the BSC, 

we might be tempted to classify every population at an isolated habita t patch as a 

separate species, particularly if  it  can be demonstrated th a t gene flow to and from that 

patch are low. However, the unstable nature of many habitat patches in  the lake suggests 

species defined in this way would he extremely ephemeral given the transien t nature of 

many habitat patches. By relying on the Recognition Concept, with its emphasis on a 

common mate recognition system, this difficulty is avoided.
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Figures and Tables

Figure 2.1: Lake M alawi past and present
a - During the most recent xeric period which ended 150 years ago, water levels within 
Lake Malawi were 120 m below their present level. Such a decrease in water level would 
reduce the lake to the gray area shown above, rendering the southern end of the lake dry 
land, b - Mbuna live in rocky habitats along the shore and on a few submerged rocky reefs 
These rocky habitats slope steeply, eventually intersecting the flatter, sandy lake bottom 
(checkered area). When w ater levels fall (dotted line), the habitat becomes unusable or 
disappears completely. The depth of the rock-sand interface determines both the age and 
stability of rocky-habitat patches, especially in the southern end of the lake.

Nkhata
Bay

Nankumba
Peninsula
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Figure 2.2: N iche partitioning in  tw o mbuna
Although Melanochromis auratus (left) and Labeotropheus fuellebomi live in close proximity 
to each other in rocky habitats along the lake shore, population density data suggests that 
they are using different areas of the habitat. M. auratus inhabit a  wide range of depths 
whereas L. fuellebomi are confined mainly to the shallows where their subterminal mouth 
and robust bodies helps them scrape algae of flat, wave-washed rocks in the shallows.

Density (individuals /  50 m2) 
0  10

Depth
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Figure 2.3: Barriers to m igration.
The highest Fsr values were observed between population separated by deep troughs, 
although rocky habitats separated by shallower stretches of sandy shoreline also contain 
populations which are genetically distinct. In all cases, M. auratus populations are more 
differentiated than L. fuellebomi populations. Mazinzi Reef has few if any L. fuellebomi.
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Chapter 3

Sample sizes needed to estim ate population structure using h igh ly  polym orphic
loci

Abstract

The large number of alleles found at some simple sequence repeat loci raises 
questions about the size of samples needed to analyze population structure. Here we 
present some simulations which quantify the accuracy and precision of two estim ators (DN 
and Fst) for different sampling schemes. Previous studies have shown that large numbers 
of individuals must be sampled at a large number of loci to accurately estimate the 
historical relationships among populations. In contrast, when the goal is to quantify 
population structure, we find that the number of samples needed to reliably estim ate Fst 

and Ds. is much smaller. Samples of 30 individuals scored for 5 microsatellite loci may be 

sufficient to estimate the magnitude of population differentiation in many species.
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Introduction

Simple sequence repeat (SSR, microsatellite) loci are now widely used in studies of 
genetic divergence (Lehmann, et al. 1997; Allen et al. 1995; Paetkau and Strobeck 1994), 
pedigree analysis (Jones and Avise 1997; Kellogg et al. 1997), and, systematics (Komfield 
and Parker 1997; Roy et al. 1994). It has been suggested that the high mutation rate at 
these loci makes them an ideal tool for estimating historical relationships among closely 
related taxa (Tautz 1989), and that they might be particularly useful in  cases where 
allozyme or mtDNA markers are not polymorphic enough to resolve relationships (Komfield 
and Parker 1997). The popularity of these markers has led to a number of simulation 
studies which address sampling issues for these highly polymorphic loci, with particular 
emphasis on requirements for phylogeny estimation. Relatively little attention has been 
paid to the separate issue of sampling requirements for the detection of population 
structure (Ruzzante IN PRESS).

This distinction is important. Phylogeny reconstruction requires reliable rankings 
of pairwise estimates of genetic distances between taxa. Any variability in the estimates 
which alters the rank of pairwise distances will alter the topology of the phylogeny. In the 
heyday of allozyme markers, Nei (1978) and Gorman and Renzi (1979) both suggested 
that surveying a large number of loci in a modest number of individuals produced 
estimates of genetic differentiation reliable enough to use for phylogeny estimation, 
although the practical utility of this approach was later seriously questioned by Archie et 
al. (1989). Recently, a number of authors have focused on similar issues for highly 
polymorphic SSR loci. Zhivotsky and Feldman (1995) and Takezaki and Nei (1996) have 
suggested that genotypes a t hundreds of loci may be necessary for reliable phylogeny 
reconstruction. Further, Ruzzante (IN PRESS) has indicated that sample sizes of 50 to 
100 individuals are required for reliable distance estimates and Komfield and Parker 
(1997) have indicated th a t sample sizes on the order of 100 individuals may be required to 
accurately estimate genetic distances when 25 to 30 alleles are present a t a locus.
Together, these studies suggest that sampling requirements for highly polymorphic SSR 
loci are so restrictive that their utility as a phylogenetic tool may be limited to those rare 
instances where large numbers of individuals are available and large numbers of loci may 
be surveyed.

In studies of population structure, less stringent requirements apply. When the 
goal is merely to detect population structure, (deviations from the null hypothesis of no 
differentiation), accurate ranking of divergence estimates is not required. When the 
relative strength of different migration barriers is to be tested, the precision in distance 
estimates needs to be high enough to differentiate between barriers. If the hypothesized 
difference in the strength of these barriers is large, then moderate variability in distance 
estimates may be tolerable. Further, relatively small sample sizes may suffice to reject a 
null hypothesis of no differentiation.
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In this report we quantify how variability in estimates of genetic differentiation is 
influenced by the number of individuals sampled, number of lod surveyed, and allelic 
distribution a t these loci. We selected two widely used estimators of genetic differentiation, 
Dj, (Nei 1987) and Weir and Cockerham’s (1984) ANOVA based estimator of Fst.
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Methods

Two allele distributions were created. The first contained 30 alleles in equal 
frequency (the effective number of alleles [n,J = 30). The second distribution contained 29 
alleles in frequencies ranging from 0.006 to 0.137, with the four most comm on alleles 
representing 40% of the to ta l . This distribution was based on the sample distribution 
observed by Amegard et al. (IN PREP) for a population sample of 85 individuals from a 
single locality in southern Lake Malawi. The effective number of alleles for this 
distribution is 15.53, slightly more than half the value of in the first distribution.

Genotypes were simulated a t thirty loci for population samples ranging from 15 to 
100 individuals One hundred samples were drawn for each sample size from each allele 
distribution, permitting 50 independent pairwise estimates of the interpopulation 
parameters DN and Fst f°r  each sampling condition. Estimates were calculated using the 
first locus in each individual, the first three loci, the first five loci, and so on up to 30 loci. 
This method was used to simplify calculations and, as Gorman and Renzi (1979) have 
suggested, represents a scientifically realistic situation in which additional loci are added 
to existing population samples. Sampling and calculations were carried out with the aid of 
Microsoft Excel 5.0 (Microsoft Corporation, Redmond, WA), GenePop version 3.1 (Raymond 
and Rousset 1995) and FSTAT version 1.2 (Goudet 1995).

In order to determine how the results of these simulations are influenced by the 
number of replications performed, an additional 500 pairwise F3T estimates were 
calculated from sample pairs drawn from the L. fuellebomi distribution. The results are 
shown in Figure 3.3.

Because each sample in a pair was drawn from an identical distribution, Fgr and 
Dn values of zero are expected. The average value of these pairwise estimates indicates 
the level of accuracy obtained for each sampling condition, and the deviation from this 
average represents their precision.
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Results and Discussion.

Median values for Fgr and DN are close to zero, regardless of sample size, allelic 
distribution, or number of loci sampled, with about half the estim ates < 0 (Figure 3.1-A 
and -C). This is possible because, although these parameters by definition must be 
positive, the bias corrected estimators for them can be negative (cf Nei, 1987, pp. 224). On 
average, both estimators are accurate even under the most extreme conditions tested (15 
individuals, 1 locus, n. = 30), however, the range (precision) of the 50 pairwise estimates 
is strongly influenced by the size of the sample.

As would be expected, estimates calculated from smaller samples (of either 
individuals or loci) are more variable than those calculated from larger samples. Figure 
3.1-A shows notch plots of 50 pairwise comparisons of Fst estimates for different sample 
sizes. The trend is for the range of the pairwise estimates to decrease as sample size 
increases. Figure 3.1-B shows the relative improvement in precision as sample sizes are 
increased, in terms of the most extreme positive outlier (open squares), and in terms of the 
value of the 95th percentile (closed circles). Over the range of sample sizes tested, a 
doubling in number of individuals sampled decreases the value of the 95th percentile by 
about one half. Dj, and F ^  respond almost identically to enhanced sampling and the 
distributions of the two estimators for a given sample size are concordant in their response 
to improved sampling. This is not surprising given the high correlation between these 
estimators.

Increasing the number of loci sampled also steadily decreases the variability in the 
estimates, but with steeply diminishing returns. Figures 3.1 - C and -D illustrate the 
effect of increasing the number of loci surveyed for a sample size of 25 individuals drawn 
from the L. fuellebomi distribution. The most dramatic increase in the precision results 
from the addition of the first few loci (Figure 3.1-C). The maximum variability is observed 
when a single locus is sampled. For five loci, the value of the 95th percentile is about half 
the value observed for a  single locus. Twenty five additional loci must be surveyed to 
achieve another halving of the 95th percentile value.

Allele distributions also affect the reliability of these estimators (Figure 3.2). 
Estimates of DN for samples drawn from the n, = 30 distribution are more variable than 
those drawn from the n t = 15.53 distribution. This is the expected result because smaller 
sample sizes are required to accurately estimate allele frequencies when the number of 
alleles present is small. In contrast, the variation in Fgr is higher for samples drawn from 
the L. fuellebomi distribution than for samples drawn from the distribution with 30 alleles 
present in equal frequency. The relationship is not obvious, but where the number of 
alleles in a sample is smaller than twice the number of individuals sampled, the variance 
in Fg,. is proportional to the inverse of the square of the number of alleles (Weir and 
Cockerham 1984). For small sample sizes, as the number of alleles decreases, the 
variability of F ^  estimates increases. The impact of this effect decreases as sample sizes 
are increased (Figure 3.2).

There are two possible negative outcomes of inadequate sampling in population 
studies; population structure might be statistically indicated when no such structure 
actually exists (Type I error under a null of no differentiation), or existing structure might
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not be detectable (Type II error). In the simulations presented here, the distribution of 
observed pairwise distances for a given sampling condition suggests the minimum level of 
detectable divergence when either permutation (FSTAT) or exact tests (GenePop) are used 
to determine whether two populations are statistically different. For example, for samples 
of 30 individuals a t 5 loci, the most extreme pairwise F ^  value observed is 0.0072, and 
95% of the values are below 0.0028. Values lower than  the 95th percentile for samples 
drawn from the same distribution should in theory be statistically undetectable when 
permutation tests are used to determine statistical significance. The 95th percentile values 
obtained in these simulations suggest the minimum detectable levels of interpopulation 
genetic structure when the underlying allele distributions are similar to the one used here. 
For a  sample size of 15 individuals, 5 loci, and ne=15.53, 95% of the values are below 0.11 
or 0.007 for Dx and Fsx respectively. When the sample size is doubled to 30, 95% of the 
values are below 0.04 or 0.0049, a level of precision adequate to detect population 
structure in many species.

Two widely used analysis packages provide empirical support for this view, and 
both are conservative in rejecting a null hypothesis of no interpopulation differentiation. 
When the samples used to generate the most extreme observed F^ value were reanalyzed 
using the permutation tests in the FSTAT package, using 1000 permutations of genotypes 
over populations to determine whether the F ^  value is significantly different from zero, the 
calculated F^ value was found to be statistically significant (p = 0.011). The exact tests of 
GenePop, which determines the significance of interpopulation allele frequency differences, 
also found these two sample to be statistically significant at a probability level of 0.029. 
However, when the sample pair which generated the next most extreme value (F=T =
0.0034, Dn = 0.045) was analyzed in the same way, no statistical significance was 
indicated. We can infer from this, that samples of 30 individuals at 5 loci with a 
distribution similar to that used here might be inadequate to detect differentiation below 
an Fgr value of 0.003, and that Type I error, manifested as spuriously high differentiation 
index values, is at an expected and tolerable level whether permutation or exact tests are 
used.

The values shown above apply only in cases where the allele distribution closely 
resembles the one used in these simulations, however this distribution is not unlike tha t 
found for dinucleotide repeats in other fish species (cf Ruzzante, IN PRESS or van Oppen, 
1997). In cases where pilot studies have indicated th a t allele distributions are very 
different, spreadsheet based simulation studies can be a valuable tool in the design of 
sampling strategies.
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Figures

Figure 3.1: Notch plots (Systat, Inc., Evanston IL) showing the relationship  
betw een sample size and the distribution o f 50 independent pairwise estim ates 
o f F s t -

The number of loci surveyed is 5 for all sample sizes and the samples were drawn, with 
replacement from an allele distribution equivalent to that found at locus UNH-001 in 
Labeotropheus fuellebomi at a single collection site. Notch plots show the median (central 
horizontal line), and central 50% of observations (area within boxes) The “whiskers” 
represent +/- 3 times the range between the hinges. Values outside this range are 
indicated with asterisks. The 95% confidence area for the median is indicated by the notch 
within the box. B  - Number of individuals sampled vs. either the most extreme value 
observed in 50 pairwise estimates (open squares) or the 95th percentile value for the same 
set of estimates (closed circle). C - A notch plot showing the relationship between number 
of loci sampled and the distribution of 50 pairwise estimates for samples of 25 individuals 
drawn from the L. fuellebomi distribution. D - Number of loci surveyed vs extreme and 
95th percentile values.
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Figure 3.2: The variability o f Nei’s D and F s t  estimates is influenced by the  
underlying distribution o f alleles.

Box plots for Dk and F s t  are shown here for sample sizes of 15, 30 or 50 individuals 
drawn from either the uneven L. fuellebomi distribution (shaded boxes) or a distribution in 
which 30 alleles are present in equal frequency (white boxes). Nei’s Distance shows more 
variability for samples drawn from the distribution with the higher rie. F s t  is more 
variable for sample pairs drawn from the L. fuellebomi distribution, although the difference 
becomes less pronounced as the sample size is increased.
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Figure 3.3
Replicate number vs 95th percentile value and the value of the most extreme outlier. In 
order to determine the effect of the total number of replicates on the Fst estimates 
obtained in these simulation studies, an  additional 500 pairs of 5 locus, 30 individual 
population samples were simulated. These additional samples were added to the original 
50 pairs of samples in increments of 50 sample pairs; the data shown for 100 replicates 
includes the original 50 pairwise comparisons and an additional 50 comparisons. The 
value at the 95th percentile became stable after 350 individuals had been sampled a t a 
value of approximately 0.0049. When the samples pairs which generated values of 0.0049 
were analyzed using the permutation tests in FSTAT, they were found to be statistically 
insignificant at a p-value of approximately 0.06. This suggests that FSTAT is slightly less 
likely to reject a null hypothesis of no differentiation than might be expected tinder these 
conditions. The value of the most extreme outlier observed was 0.0109. This sample pah- 
happened to occur in the second set of 50 sample pairs simulated.
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Chapter 4

Mate choice in  tw o M alawian Congeners

Introduction

The Dominey hypothesis (1984) holds th a t cichlid diversity is driven by the 

synergistic interaction between reduced migration and a rapidly evolving mating system. 

The model predicts that reproductively isolated populations develop unique mate 

recognition systems as a result of runaway sexual selection. If the sexually selected trait 

(and/or the preference for it) is initially a result of random mutation, then each population 

could wind up following its own distinct evolutionary trajectory.

Dominey identifies s. set of population genetic conditions which are required for 

speciation to occur. These conditions include the evolution of distinct gene pools, genetic 

differentiation of lineages, and ultimately the establishment of reproductive isolation. 

Biogeographic and migratory forces which serve to establish the first two conditions were 

discussed in Chapters 1 and 2, but these factors alone are not sufficient for speciation to 

occur. Genetically differentiated populations become distinct species only when 

reproductive isolation is established. Mutations which alter the Specific Mate Recognition 

System (SMRS) (Patterson 1985) can lead to the evolution of reproductive isolation 
between groups and ultimately speciation.

Dominey (following West-Eberhard (1983) and Thornhill and Alcock (1983) 
reasoned that the components of the SMRS which are most evolutionary pliable (and 

therefore more likely to cause rapid speciation) are those associated with sexual selection. 
The plasticity of sexually selected traits is a  consequence of the variance in reproductive 
success. Under Dominey’s model, runaway sexual selection leads to the rapid 

establishment of reproductive isolation, and the model assumes that the runaway process 
is started by random mutations and possibly by rare-male effects.
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Circumstantial evidence for the importance of sexual selection abounds in the 

cichlids. The best documented in Lake Malawi involves sand dwelling species who build 

elaborate breeding platforms. Field experiments and observations have demonstrated 

that the size, shape and position of this extended phenotype determines male reproductive 

success (McKaye 1990). Many species show variation in color morphology throughout their 

range (cf. Ribbink et al. 1983). Seehausen et al. (1998) have recently documented a 

number of red/blue species pairs - sibling taxa which are presumed to have developed 

divergent mate recognition systems based on color. This observation was tested 

experimentally by changing the ambient light conditions so that red and blue fish were 

indistinguishable; under these conditions, species-specific mate recognition broke down.

Documentation of the scale of differentiation in mate recognition systems is critical 

to understanding the high rate of lineage splitting which characterizes this system.

Ideally, mate choice experiments would be conducted on the populations surveyed in 

Chapter 2. Because live specimens from these populations were not readily available, I 

decided to test the relative strength of mate recognition for two congeners, Melanochromis 

auratus, and M. cf heterochromis (Bowers and Stauffer 1997) Because these species are 

sympatric, almost perfect mate recognition would be expected (hybridization is believed to 

be rare in the wild). The frequency of incorrect matings in a laboratory experiment can be 

used to estimate the baseline error rate resulting from an artificial environment.
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Methods

M. cf heterochromis (Bowers and Stauffer 1997) and M. auratus are comparably 

sized rock-dwelling fishes from Lake Malawi. M. auratus males have a  distinct horizontal 

gold stripe on a deep blue to black ground color. M . heterochromis are lighter blue to brown 

and occasionally have a pale blue horizontal stripe. In the laboratory, M. heterochromis 

appear to be less aggressive and outgoing, often retreating to the back of their aquaria 

when humans are present. Recently handled M. auratus exhibit a  similar behavior, but 

they are less shy of humans after only a few days.

Two different types of mate choice experiments were performed. In the first type, 

the ability of females to detect conspecifics in smaller aquaria (50 gallons) was tested. In 

the second set of experiments, large (440 gallon), round pools were used. In the pool 

experiments, both species were present and M. auratus x M. heterochromis hybrids were 

included in the experiments. The strategy for both experiments was to place two or three 

males into a “mesocosm” which was outfitted with a shelter for each male which could 

serve as the focus of a breeding territory. These shelters were either 4” clay flowerpots or 

cubes constructed of 12” ceramic floor tiles and which were open on three sides. Shelters 

were arranged symmetrically in the aquarium so that the territories appeared to be 

equivalent with respect to light, food distribution, level of disturbance etc. Laboratory 

raised fish were used these experiments. In all cases, these were first generation fish 

derived from wild stocks.

In the first set of experiments, one male from each species was placed in a 55 

gallon aquarium. The fish were then allowed one week to establish territories. After 1 

week, three females of each species were introduced into the aquarium. After 

approximately one month, adults and progeny were removed from the pool and two locus 

SSR genotypes were generated for all individuals in order to determine maternity and 
paternity using the methods described in Chapter 2.

The general methods of the second experiment were similar to the first except that 

three males were introduced into a 440 gallon pool. In addition to M. auratus and M. 
heterochromis males which were hybrids between two species were also included. After one 

week, 9 female fish were added to the tank; 3 M. auratus, 3 M. heterochromis, and 3 

hybrids. This experiment ran for several months. Fry and juveniles were periodically 
netted from the pool.
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Results

A total of 117 juveniles were scored from 7 independent experiments. The species 

of both parents could be determined in 112 of these. Both species almost always mated 

with conspecifics. In the 50 gallon aquaria, only one of the two species present mated 

successfully. In 440 gallon pools, only two of the three types present mated successfully. 

Surprisingly, hybrids also mated primarily with hybrids. The results are summarized in 

Table 4.1.

Within the 50 gallon aquaria, all fry present appeared to be from a single brood. 

The pool experiments were run for several months, and females had sufficient time to 

produce multiple broods. The fry surveyed in mesocosm # 7 appeared to have been the 

offspring of single pairs, even though they may represent multiple broods. This is also the 

case for the hybrid offspring in mesocosm 6. Because two of M. auratus females in this 

pool shared alleles, it is not possible to reach a similar conclusion for this species.

Discussion

The fact tha t two locally sympatric congeners demonstrate nearly perfect mate 

recognition is not surprising. It is not clear whether the mismatings observed here 

represent a  laboratory artifact or whether low levels of hybridization occur in nature.

In the 4 of the 5 two way aquarium experiments, only M. heterochromis were 

observed to breed, in the fifth aquarium only M. auratus individuals bred. Individuals 

within an aquarium were carefiilly matched for size and age, but it is possible that M. 

heterochromis mature at a smaller size than M. auratus. In contrast, the pool only 3 M. 
heterochromis progeny were produced. The majority of the offspring were pure M. auratus or 
hybrid x hybrid offspring. In addition, it appears that only a single female of each species 
was breeding in each mesocosm.

These results suggest that some aspect of the laboratory environment may be 

preventing certain individuals from mating at all. The densities of fishes in vessels used in 

this study are much higher than they are in nature, so it is possible that dominant 

individuals are preventing subordinates from breeding, perhaps by dominant males 

preventing subordinate males from displaying to females, regardless of their species. If 
this is the case, then the apparently “timid” M. heterochromis males may in fact establish 
dominance over M. auratus males.

The tendency of hybrids to mate with each other has also been observed in other 

cichlids (Crapon de Caprona 1986), and the explanation for this phenomenon is unclear.

In sticklebacks, (Hatfield and Schluter 1996) hybrid males have an intermediate level of 
reproductive success, tha t is their reproductive success is equal to their
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Table 4.1
R esults o f M ate-Choice E x p erim en ts  C onducted in  7 M esocosm s. For experiments 
performed in 50-gallon aquaria, only the total number of progeny produced of each type is 
shown. Complete parental genotypes and numbers of fry produced by each parent are 
shown for experiments performed in  440 gallon pools, (a) - indicates fry for which 
maternity not be unambiguously assigned.

Mesocosm # Available males

50 gallon 
aquaria

Fem ales M. auratus M. heterot
1 M. auratus 1 2 0

M. heterochromis 0 0
2 M. auratus 0 0

M. heterochromis 0 4
3 M. auratus 0 0

M. heterochromis 0 1 6
4 M. auratus 0 0

M. heterochromis 0 7
5 M. auratus 0 0

M. heterochromis 0 8

440 Gallon 
Pools

Male Genotypes @ Loci UNH-001 &23I

Mesocosm #6

Females
Hybrid
Hybrid
Hybrid
M. het. 
M. het. 
M. het.

Mesocosm #7 
Females 
Hybrid 
Hybrid 

Hybrid 
M. het.
M. het.
M. het.

M. aur.
M. aur.
M. aur.

Hybrid
1212/0202

M. het. 
0720/1725

M. aur. 
1313/0219

Female
Genotypes @ locus 
UNH-001/231
0126/0919
1217/0924
1621/0420
0421/2526
1315/2230
1619/2534
1417/0215
1429/0122

1429/0122

0000/0317
0101/1016
0618/1220
1315/2140
1321/2020
1819/2121

M. aur.
M. aur.

M. aur.

0117/0222
0117/0219

1226/0219

18
16

16*

Male Genotypes @ Loci UNH-001 &23'l
1717/1824 0104/0211 1315/2020

10
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frequency in the population. In these experiments, hybrid females preferentially mated 

with hybrid males over either of the parental types. There are several explanations for 

these results which cannot be differentiated at the present time. Many of these 

explanations represent confounding factors which must be carefully considered in the 

design of future mate-choice experiments.

1) Hybrids have a  novel SMRS composed of aspects of each parental SMRS.

Female hybrids are choosing a  unique assemblage of phenotypic traits which is only 

complete in hybrid males. This pattern suggests tha t the traits involved in the SMRS are 

dominant traits, and th a t they may be different loci in M. heterochromis and M. auratus.

2) Juvenile hybrids develop their SMRS through imprinting. The fish used in were 

raised with siblings in a  small aquarium. If a  search image for mates is developed during 

this time (possibly visual, chemical or acoustic), then hybrids would be expected to develop 
a SMRS specific for other hybrids purely as a result of culture conditions. If this postulated 

imprinting occurs after juveniles are released from their mothers mouths, then rearing fry 

together might reduce this effect. Such an experiment would require careful genotyping of 

the parents of the broods because these species are difficult to distinguish when these fish 

are immature.

3) Reproductive asynchrony among taxa is also a possibility. The fish used in this 

experiment were mostly newly mature individuals. If some of the females used in this 

experiment were not fully mature then they might not breed, causing the majority of the 

progeny produced to be derived from a single taxon. This could explain both the nearly 

perfect mate choice observed in these experiments and the tendency of hybrids to mate 

primarily with other hybrids.

The appearance of a  reproductively dominant female also complicates the 

interpretation of these results. One possible explanation within the 440 gallon pools is 

that many several females mated but only the first brood to be released survived. Shelter 

within the pool was limited to the areas near the tile breeding territories, and it has been 

noted that in the wild shelter is limiting and larger juveniles readily exclude smaller 

individuals from available shelter (Trendall 1988). Alternatively, a dominance hierarchy 
may exist among females within a species.

Future experiments should be designed which can control for some of the factors 
which may be generating artifacts in these experiments, specifically, mesocosms must be 

either larger, less densely stocked, or more structurally complex to reduce male-male 

contact, dominance effects, and predation on juveniles. Additional care must be taken to 
ensure that all specimens within an aquarium are reproductively mature and that female
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brood production is synchronized, and experiments must be undertaken to address the role 
of imprinting in the development of the SMRS.
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Chapter 5

An AFLP Based Method o f R apidly D etectin g  th e Insertion o f SINE E lem ents for
u se as C lade M arkers

Abstract

Phylogeny estimation among the cichlid fishes of the East African Rift Valley is 

challenging due to the extremely recent and rapid divergence of many of these taxa. In  

order to survey a large number of cladistically informative nuclear markers characters, 

AFLP methods were combined with a primer specific for a transposable element in the  

cichlid AFC - SINE family. Because SINE elements do not move after they are integrated 

into the genome, the position of this insertion can serve as a cladistic character with two 

states determined by the presence or absence of a SINE element. By using this method, 

we were able to obtain a phylogeny estimate for Lake Tanganyika cichlids which is similar 

to estimates obtained by conventional morphological and molecular methods. A close 

relationship between the Tanganyikan tribe Tropheini and the Malawian cichlids was 

observed however method was not capable of resolving relationships among the extremely 
recently diverged Lake Malawi species flock.
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Introduction

The fish family Cichlidae is often cited as one of the most dramatic adaptive 

radiations in the history of vertebrate evolution (Fryer et al. 1972). This family contains 

over 1500 freshwater fish species in tropical Africa, America, and parts of Asia . The 

majority of this taxonomic diversity can be found in the lakes of the African Rift Valley 

(Ribbink 1991). It has been estimated tha t the three largest lakes, Malawi, Tanganyika, 

and Victoria may contain more than 1,200 species, the majority of which are endemic to a 

single lake (Ribbink 1983; Meyer 1993; Seehausen et al. 1997). Historical data on water 

level fluctuations within these basins provide evidence for the most striking aspect of the 

E. Afirican Cichlid radiation, its extreme recency.

Fluctuations in rainfall have caused water levels in all of these lakes to vary 

dramatically. Lake Victoria, the shallowest of these lakes, was completely desiccated 
12,400 yr b.p. (Johnson et al. 1996). Lakes Malawi and Tanganyika are much deeper, but 

xeric periods sill cause dramatic decreases in water level (Schoiz and Rosendahl 1988). 

Lake Malawi experienced a 200 m drop in water level between 500 and 150 y r b.p (Owen, 

et al. 1990). If these species evolved in situ, then speciation in these lakes occurs on 

historical, rather than geological time scales.

Within Lake Malawi, the frequency of lineage splitting events makes phylogeny 

estimation using traditional genetic markers difficult because alleles do not have time to 

become fixed within a species before the next lineage splitting event occurs, leading to the 

“retention of ancestral polymorphisms” in descendant species (Moran & Komfield 1993; 

Parker and Komfield 1997). The scarcity of phylogenetically informative characters within 

Lake Malawi, complicates other inter- and intralacustrine phylogenetic analyses and has 
led to the use of a  variety of traditional and more novel molecular tools. One hypothesis 

which is generally well supported by the available data is that Lake Tanganyika is a 

reservoir of lineage diversity (Nishida 1991), and that taxa within this lake are ancestral 

to those in both Lake Victoria and Lake Malawi. Nishida used allozyme frequency data to 

construct a phylogeny which suggested the presence of an “H” (Haplochromine) lineage 

within the lake which is ancestral to the species flocks in the other great lakes. Data from 

sequenced RAPD bands (Siiltmann et al. 1995), and mtDNA sequences (reviewed in Meyer 
1993) generally support the hypothesis tha t a Lake Tanganyika lineage is ancestral to the 

flocks in the other two lakes, but they differ as to which of the lineages within Lake 
Tanganyika is the actual ancestor.

Recently, (Takahashi et al. 1998) have demonstrated that the insertions of Short 
Interspersed Nuclear Elements (SINEs), a type of retrotransposon, into genomes may be a
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useful tool for estimating phylogenies in East African cichlids. They argue (following 

Murata et al. 1996)) th a t the presence of a SINE element within a specific orthologous 

locus can be a powerful tool for phylogeny reconstruction because these transposable 

elements are not excised from the genome, and they are inserted apparently a t random. 

Thus the presence of a SINE element at an orthologous site in two different taxa can be 

interpreted to be a  true synapomorphy (Cook and Tristem 1997). The character in this 

case is a specific site in the genome with two possible stated defined by either the presence 

or absence of a SINE element a t that site. Insertion of a SINE element a t a specific site in 

a  genome is a  rare event, therefore, in cases where two taxa share a SINE insertion, it can 

safely be assumed that the this insertion is identical by descent as it is extremely 

improbably for insertion to occur independently in exactly the same place. Using this 

reasoning, Takahashi et al (1998) were able to determine the monophyly of several of Poll’s 

(1986) tribes. Due to a lack of insertions within Lake Malawi taxa they were unable to 

determine which lineage within Lake Tanganyika is ancestral to the Lake Malawi flock.

The methodology involved in cloning SINE elements, (Murata et al. 1996) 

determining the sequence of f lan k in g  regions, and using PCR to detect the presence of 

SINEs at a specific locus is fairly tedious, and might prevent the widespread adaptation of 

the use of SINEs as clade markers. However, by replacing cloning with portions of the 

A FLP (Vos et al. 1995) protocol, it is possible to obtain information on the location of 

several SINE integrations simultaneously.
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Methods

Specimens

DNA extractions were prepared using standard techniques. DNA samples were 

obtained from 68 individual fish in 32 taxa from Lake Malawi and Lake Tanganyika 

(Table 5.1). Single representatives were available for each Lake Tanganyika species and 

multiple individuals were available for many of the Lake Malawi fish.

SIFLP

The AFLP technique is a DNA fingerprinting method typically used to generate a 

set of “anonymous” DNA fragments which may be used as map markers or for use in 

paternity studies (Vos et al. 1995). The procedure involves digesting genomic DNA with 

two restriction enzymes to produce a population of DNA fragments cut with one or both of 

the restriction enzymes. DNA adapters containing PCR primer sites are ligated onto these 

fragments. A preselective round of PCR is performed using primers which recognize the 

adapter pairs. A second “selective” round of PCR is performed using primers similar to the 

preselective primers, except th a t an additional one or more nucleotides are attached to the 

3’ end of the primers. This permits a fraction of the fragments produced in the preselective 

amplification to be amplified. One of the primers is also labeled with a fluorescent dye 

which can be detected by an ABI DNA sequencing machine. By altering the number and 

composition of nucleotides at the 3’ end of the primers, (either preselective or selective) the 

number of bands visualizable fragments may be adjusted. Bands may then be accurately 
and reproducibly sized on an ABI DNA sequencer.

For this study, the basic AFLP protocol was modified by replacing the labeled 
AFLP primer with a primer designed to recognize an AFC family SINE element isolated 

from Tanganyikan cichlids (Figure 5.1) (Takahashi et al 1998). The SINE specific primer 

was the 17-mer 5 ' -GCAACCTTCCGATTACA. The instructions provided with Applied 

Biosystems AFLP kit (Part # 402083) were followed with some minor modifications 
(Figure 5.2).

Digestion/Ligation Reactions

Digestion/Ligation reactions were performed as follows: The reaction mixture 
contained 1 unit of the 4 base cutter Mse I, 5 units of the 6 base cutter Eco RI, 1 unit of T4 
DNA Ligase, 0.045 mg/ml BSA, lpl 0.5 M  NaCl, and 1 pi T4 ligase buffer with dNTP’s, 
and 1 pi of each of the adapter pairs, and 5.5 pi of the DNA extraction was added to this
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mixture. After 2 h  incubation a t 37° for exactly 2 h  in a PEC 9600 thermocycler the 

digestion/ligation reaction was stopped by adding 190 fil of 1/10 TE.

Preselective PCR Reaction

Four microliters of the diluted restriction/ligation product was used in a 

preselective amplification which contained 0.5 pi of each of the preselective primers, 2pl 

lOx Thermo buffer (Promega, Inc., Madison WI), 1.5 pi 10 pm dNTP mixture, 10 pM 

MgC12, and 0.2 pi Taq polymerase in a  total volume of 20 pi. PCR conditions were as 

described in the AFLP plant mapping protocol provided by PE-Applied Biosystems (Foster 

City, CA). Each preselective primer recognizes the adapter and an additional 3’ nucleotide, 

producing -  1 PCR product for every 16 restriction fragments.

Selective PCR Reactions

Selective PCR was carried out as described above, except th a t one of the 

preselective primers was replaced with a  6-FAM labeled primer, SINE-1, which recognizes 

a portion of the sequence published by Takahashi et al (1998). For each sample, two 

different PCR reactions were carried out, one with the labeled SINE-1 primer and the 

Preselective-Forward primer, and one with the labeled SENE-1 prim er and the Preselective- 

Reverse primer. These two reactions create labeled fragments containing either a portion 

of the SINE element and an Eco RI site, or a portion of the SINE element and an Mse I 

site, respecitvely.

PCR products were electrophoresed on an ABI 373-A DNA sequencer. Applied 

Biosystem’s GS-500 Tam ra size standard was loaded along with each sample and 

electrophoresed for 9h. These conditions permit the detection of fragments ranging 

approximately from 75 to 450 b.p. in length. To enhance reproducibility, extra care was 

taken to standardize gel polymerization time, buffer and sample volumes, and other 
variables which could influence fragment migration.

Data Analysis

These data were analyzed using the Dollo parsimony option of Paup (version 3.1.1; 

Swofford 1993). In this procedure, AFLP fragments were interpreted to be cladistically 

informative characters with two states; presence or absence of a  sequence complementary 

to the SINE-1 primer. We assume positional homology for SINE elements which appear in 

AFLP fragments of similar size. Although positional homology is not as strongly supported 

for SIFLP fragments as it would be if flanking regions for individual SINE elements were 
cloned (as in Takahashi et al 1998), the modest number of SIFLP fragments present in a 

taxon leads us to assume that falsely convergent characters will occur only rarely.
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SIFLP fragments are produced only when a SINE element inserts into the genome 

within 450 b.p. of an appropriate restriction site with the appropriate orientation. SIFLP 

fragments may be lost due to mutations in the restriction site or the primer recognition site 

within the SINE element itself. Accordingly, Dollo parsimony, which assumes a single 

origin and multiple losses of cladistically informative characters was determined to be the 

most appropriate model for the analysis of these data.

Fragments produced from either the SINE and Eco RI primer or the SINE and Mse 

I primer were analyzed separately and to address distinct phylogenetic questions. 

Fragments produced from SINE and Eco RI primers were expected to be approximately 16 

times rarer than those produced from the SINE and Mse I combination because the forward 

primer recognizes restriction fragments produced by the 6-base cutter Eco RI whereas the 

SINE AFLP reverse amplification products were produced from the 4 base cutter Mse I.

The rare bands were used to estimate a phylogeny containing all the taxa using 

Bathybates sp. as an outgroup (following Meyer 1993). The resulting phylogeny was then 

used to determine an appropriate outgroup to use to further resolve the relationships 

within Lake Malawi using the SINE / Mse I data set which was expected to contain more 

phylogenetically informative characters. Because of the large number of taxa analyzed, 

consensus trees are presented here. Bootstrap analysis is not practical with so many taxa. 

In OTLFs where many individuals were available, the presence of a fragment in any of the 

individuals within a taxon w as interpreted as presence within that species (or population 

for Mel. auratus). Finally, a set of Lake Malawi haplotypes were analyzed using a 

synthetic outgroup which contained no SINE insertions to address the possibility of 

incomplete lineage sorting by determining whether haplotypes sort into phylogenetically 
credible groups.

Results

A total of 141 variable characters were observed among all taxa for the SINE Eco 

R I  primer, 74 of these are phylogenetically informative among the taxa surveyed. The 

SINE / Mse I  primer pair produced 237 different amplification fragments in the same set of 

taxa. The total number of bands observed within an individual was not far from the 
expected range. Takahashi et al (1998) estimate that between 1,000 and 10,000 copies of 

SINE elements are present in cichlid genomes. Eco RI sites are expected to occur every 

5000 base pairs. Detectable SIFLP fragments in this study must be within 75 to 450 b.p. 

of a restriction site, therefore it is expected that about 7.5% of the SINE elements are the 

appropriate distance an Eco RI site and oriented in an amplifiable direction. Because the
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preselective primers used each contain an additional 3’ nucleotide beyond the adapter, only 

1 in 16 fragments are expected to be amplified so -6  to 60 fragments are expected per 

individual for the SINE /  Eco RI reactions and -100 to 1000 fragments for the SINE / Mse I 

reactions. The SINE / Eco RI combination produced an average of 11.25 detectable 

fragments / individual in fish from both lakes. The SINE I Mse I primer combination 

produced 25.35 fragments /  individual for individuals from Lake Tanganyika and only 4.78 

fragments / individual for individuals from Lake Malawi.

An analysis of all the taxa using SINE /  Eco RI fragments resulted in the phylogeny 

estimate shown in Figure 5.3. This phylogeny is in general agreement with Poll’s (1986) 

tribes with a few exceptions. The branch containing species from the tribe Limnochromini 

also contains a single representative of the tribe Tropheini (Cyphotilapia frontosa) and also 

contains both species in the tribe Perissodini. The remaining tribes in which more than  a 

single individual was analyzed (Ectodini, Lamprologini, and the remaining Tropheini) form 

monophyletic assemblages which are distinct from the two tribes represented by single 

individuals (Eretmodini and Bathybatini). The Lake Malawi fish Protomelus insignis falls 

within the tribe Lamprologini. The remaining Lake Malawi taxa are in a monophyletic 

assemblage which also contains the remaining Tropheini species. The node leading to 

Lake Malawi /  Tropheini group is defined by 4 SIFLP fragments.

In order to estimate the phylogeny w ithin Lake Malawi, fragments resulting from 

the SINE / Mse I  primers were analyzed using two Lamprologine taxa (N . brichardi and J. 

marlieri) as an outgroup. Because of the relatively small number of additional characters 

produced by either primer combination for Lake Malawi taxa, data from both primer sets 

were combined and analyzed. Fifteen equally parsimonious trees resulted and these 
phylogeny estimates have little bootstrap support.

When Lake Malawi haplotypes were analyzed as individual OTTTs, no detectable 
phylogenetic signal resulted. The analysis was stopped after running for 12 hours on a 

PowerMacintosh with a 180 mhz processor. A consensus of the 15,000 equally 

parsimonious trees generated produced an essentially random intermingling of haplotypes.

Discussion

By combining AFLP methods with a SINE-specific primer, it is possible to rapidly 
survey a number of loci for the presence of a SINE element. This method successfully 

recovers phylogenetic information consistent with other data sets for older lineages within 
Lake Tanganyika, but is confounded by lineage sorting which has frustrated other
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attempts at estimating phytogenies within Lake Malawi (Moran and Komfield 1993; 

Parker and Komfield 1997).

The Tropheini and all but a single Lake Malawi taxon form a well supported 

monophyletic assemblage defined by 4 characters (Figure 5.3). This is compatible with 

other data sets including Nishida’s allozyme (1978), and mtDNA data (Kocher et al. 1993; 

Meyer 1993). The exception to this is Protomelus insignis which falls in the Lamprologini 

clade. Its position in this clade is only weakly supported however, as it is linked to the 

Lamprologine Telmatochromis temporalis by a single synapomorphy. This could be a 

spurious affinity resulting from an incomplete estimate of the SINE elements in this taxon, 

or it could suggest tha t the Lake Malawi flock is polyphyletic. This pattern could also be a 

result incomplete lineage sorting within the ancestral Tanganyikan flock. Alternatively, 

the fragments uniting these two taxa might be non-homologous.

The Limnochromini and Perissodini tribe representatives form a  monophyletic 

assemblage along with Cyphotilapia frontosa. Mitochondrial DNA sequence data (Kocher 

et al. 1995) also indicate that C. frontosa is not a member of the Tropheini and is allied 

with the Limnochromini, whereas Siiltmann et al (1995), who did not include other 

Tropheini in their analysis, found C. frontosa to be basal to the lineage containing the 

Malawi and Victoria flocks.

Phylogeny within lake Malawi was not well resolved with the SENEl / Eco RI 

combination. In an attempt to further resolve relationships within the lake, SINE / Mse I  

fragments were analyzed. Because the reverse primer recognizes adapters attached to an 
Mse I site (a four base cutter) as opposed to an Eco RI site (a six base cutter), 

approximately 16 times more fragments were expected. The total number of fragments 

observed for this primer combination was larger for individuals from Lake Tanganyika, but 

fell short of the expected 16 fold increase (mean = 25.35 bands/individual within Lake 

Tanganyika). Surprisingly, the Lake Malawi taxa showed a decrease in observed bands, 

with an average of only 4.78 detectable fragments /  individual. The shortfall in Lake 

Tanganyika might be due partly to a large number of fragments smaller than the lower 

detection limit of 75 b.p., however the drop in observed fragments for Lake Malawi taxa is 
puzzling. Explanations involving a reduced number of SINE elements within Lake Malawi 

are implausible given the identical number of fragments detected when the SINE /  Eco R I  

primer combination was used. Methodological biases are also unlikely as individuals from 

both lakes were often run on the same gels.

The small number of detectable fragments produced a  weak phylogenetic signal 

within Lake Malawi. The dendrogram shown in generated using all data for the Lake 
Malawi taxa shows some evidence of taxonomic signal, however little bootstrap support is
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shown for the nodes in this phylogeny and there are some contradictions within the 

estimate. For example, the species from the genus Metriaclima are not sister taxa, the 

sand-dwelling predator D. compressiceps is a sister taxon the rock dwelling Melanochromis 

species and the two representatives of the Tanganyikan tribe Tropheini are embedded 

within the Malawi clade. The position of the two Tanganyikan taxa underscores the 

difficulties associated with phylogeny estimation within Lake Malawi. Although the 

Tropheini would be expected to form a paraphyletic group with the  Malawian taxa, that 

pattern is not observed in these data. If phylogenetic information could be recovered with 
SEFLP data within the Lake Malawi flock, we would expect th a t it  would a t a  m in im um 

be able to distinguish between lineages from the two different lake basins.

Can SIFLP methods ever overcome incomplete lineage sorting? Possibly, but the 

practical utility of this approach may be severely limited. Incomplete lineage sorting occurs 

when lineage splitting occurs before genomic markers become fixed in a taxon, thus 

ancestral polymorphisms are inherited by descendant taxa. In rapidly speciating lineages 

like the Lake Malawi cichlids, this tendency has made it impossible to produce reliable 

phylogeny estimates (cf Parker and Komfield 1997). However, incomplete lineage sorting 

does not apply to the entire genome, after all, taxa are recognized by a  suite of genetically 

controlled morphological characters, even within Lake Malawi. Some genes must become 

fixed for taxonomic diversification to occur. If a SINE element insertion occurs near one of 

these genes, then it could be swept to fixation as part of the speciation process. This is 

only useful however if SINE element insertions occur frequently and if their density in the 

genome is high enough for them to stand a good chance of being associated with genes 

which define speciation. Thus if enough SINE insertions are visualized by varying primer 
and restriction enzyme combinations then phylogenetic signal within Lake Malawi might 

yet be recovered. Further, cladistically informative SINE insertions might be useful as 

map markers for the genes which define lineages. SIFLP may also be used to rapidly 

screen a number of candidate SINE insertions for the development PCR primers which 

recognize the flanking region of the SINE insertion, permitting the rapid development of 

taxon specific assays or for phylogenetic analysis beyond a set of taxa initially screened 
with SIFLP.

SINE insertions provide a credible phylogenetic signal for the older lineages of Lake 
Tanganyika and provide a rapid method of assaying set of cladistically informative nuclear 

markers scattered broadly throughout the genome. These and sim ilar markers may be a 
useful alternative to sequence based approaches to phylogeny estimation in closely related 
taxa.
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Figures and Tables

Figure 5.1

A SINE elem ent d escribed  by Takahashi et al (1998) iso la ted  from  th e  
Tanganyikan c ich lid  Julidochromis transcriptus
The region complementary to the primer SINE-1 is underlined, and the prim er sequence is 
shown in capital letters at the bottom of the figure.

ctgagggttgactggaaatgggaaacagggtaactaggaaacatggtgaaaataatcaagacaaacgcaa
agaaggaagtaaaattgacacaaggtatgaaaaaaaactgtagctagaacccgtgtaataaaagagagcc
tttCTacCTattCTtgCTCtcaaaaCTttqgqagttcgcttCTtaatcggaacCTttCTCcaCTtticgagcciccaaT.r.r.
ggacagtctctgtcgttgtgtccttgggcaagacacttcacccgttgcctactggtggtggtcagagggc
ccggtggcgccagtgtccggcagcctcgcctctgtcagtgcaccccagggeggctgtggctacaatgtag
ccgccatcaccagtgtgtgaatgtgtgtgtgtgaatgggtgaatgactggatgtagtgtaaagcgctttg
gggtccttagggactagaaaagcgctatacaaatacaggccacttaccatttgcctcagtattataaaac
atgaaaaaaaaaaaattcaaatacagaaaaacctaaacacaaatccaaaactcacatttgttaactaaag
attcaagttttagacacagcacataatcctgagac

5 ' -GCAACCTTCCGATTACA
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Figure 5.2
SIFLP. This process is a variation of the AFLP methods described by Vos et al. (1995). A) 
Genomic DNA is digested with two restriction enzymes. B) Adapters containing PCR 
primer sites are ligated onto the restriction fragments. C) A “nonselective” PCR reaction is 
performed using primers which recognize the ligated adapters. D) The product from step C 
is used in a “selective” PCR reaction using a labeled primer which recognizes a SINE 
element and an unlabeled primer that recognizes one of the ligated adapters. E) 
Amplification products which contain a  section of a SINE element are visualized on an  ABI 
DNA sequencer using ABFs GeneScan software. Lanes 1-4 are Lethrinops gossi, Lanes 5-8 
are Protomelus spilopterus, lanes 9-11 are Metriaclima zebra cf Mazinzi Blue. Lethrinops 
and Protomelus are pelagic genera. Metriaclima are found in shallow, rocky habitats. The 
white bands in this image are SINE containing PCR products, the dark gray bands are 
size standards which are loaded in every lane.

m

m
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Figure 5.3
A majority rule consensus of 6 equally parsimonious cladograms constructed using SIFLP 
fragments generated fay using the SINE /  Eco RI primer combination. Bathybates sp. was 
used as an outgroup. The text to the right of the bars indicates Tribe affiliation for the fish 
from Lake Tanganyika.
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Table 5. 1

Taxa and sample sizes

Lake Tribe/Guild Species Number sampled
Tanganyika Bathybatini Bathybates sp. 1

Ectodini Callochromis macrops 1
Cardiopharvnx schoutedeni (sp?) 1
Opthalmotilapia ventralis 1
Xenotilapia flavipinnus 1
X.sima 1

Eretmodini Tanganicodus irsacae 1
Lamoroloaini Chalinochromis popeleni 1

Julidochromis marlieri 1
Lamprologus callipterus 1
Lamprologus callipterus 1
N. brichardi 1
Neolamprologus tetracanthus 1
Telmatochromis temporalis 1

Limnochromini Gnathochromis pfefferi 1
Limnochromis auritus 1

Perissodini Perissodus microlepis a 1
Perissodus microlepis b 1

TroDheini Cyphotiiapia frontosa 1
Petrochromis orthognathus 1
Tropheus moorii 1

Malawi Sand dwellers Copadichromis thinos 4
Dimidiochromis compressiceps 6
Lethrinops gossi 6
Protomelus insignis
Protomelus spilopterus 4

Rock dwellers Melanochromis auratus (Chipoka) 3
M. auratus (Shallow Reef) 4
M. cf heterochromis 5
Metriaclima zebra 4
Met. benetos 3
Pseudotropheus tropheops 5
Ps. livingstoni 2
Petrotiiapia genalutea 3
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A ppendix

The data presented on the following pages represent coded four locus genotypes for 
all Melanochromis auratus individuals analyzed in this study. Each line represents an 
individual, and genotypes are indicated by four digit numbers - the first two digits 
represent the state of the smaller SSR allele a t that locus, the second two digits represent 
the larger SSR allele a t tha t locus. Missing data is represented by “0000”. These two 
digit allele codes may be translated to approximate fragment lengths by referring to the 
chart below. They may be translated into estimated repeat numbers by referring to 
Chapter 1.

UNH-001
Bin Range

156.87-156.99
16228-163.64
168.52-169.67 
171.66-172.10
173.10-173.91 
175.40-176.39 
177.46-178.03 
179.93-179.75 
180.84-18271
183.10-183.88 
185.09-185.78 
186.45-187.72
188.73-189.70 
190.05-19027 
19094-19158 
19290-193.50
194.63-195.48
196.11-197.41
198.60-199.90
200.53-201.66 
20241-20292
204.64-204.87 
206.50-207.11 
208.81-208.90 
210.79-210.79 
21254-213.17 
214.58-215.07 
218.76-219.8
223.74-223.75
243.60-243.60

Code

P ll
•difjseq 
TTStSgi1

■ W.

UNH-002
Bin Range

1174.78-174.78 
? 181.72-18252 
4 185.68-186.40 
1187.77-18899 
" 189.61-190.36 

191.55-19230 
19288-194.08 
195.66-196.13 
197.33-198.14 
19921-20021 
200.44-20212 
203.31-203.97 
204.49-206.68
207.41-207.90 
20925-210.13 
211.72-214.02
214.41-215.83 
216.94-219.90 
223.37-223.91
225.36-225.75 
22729-227.69
229.36-229.76 
235.65-235.70

Code
UNH-050
Bin Range

292.15-292.65
316.19-316.66

01
04 _
06 321.15-321.15
07 ‘^£'3 32450-325.17 
06 32855-329.57
09 ^^330.47-331.77
10 jS v y  333.30-333.94
11 334.42-336.33
12 33720-337.87
13 33928-340.53 
14‘g g g j  3412034266 
15 g S g a  344.07-344.86
16 345.76347.10
17 347.99348.97

350.00351.4318
19 ' 35200353.42
20 '-,2^355.00355.78
21 '^ > ^ 3  357.44-357.92
23 ,7U: -•! 36351-36426
24 ZrfyM
25
26
29 7v=> ':

UNH-231
Code Bin Range Code

01 191.82-19422 01
13 195.8-196.73 02
16 J 199.66-199.79 03
18 r  -:-;j 201.78-201.79 04
20 . t : j 205.65-205.91 06
21 -- 207.64-208.10 07
22 21157-21201 08
23 ’-i'. ? 213.16-213.96 09
24 ;■ 21722-218.14 11
25 219.19-220.12 12
26 -'^122152-22206 13
27 223.16-224.18 14
28 -2-.,3 225.17-22625 15
29 V- '1227.06-22822 16
30 '^229 .06 -230 .04 17
31 231.09-23216 18
32 i  233.08-233.62 19
33 > ' i 234.06-235.99 20
36 ! 237.10-238.00 21

’ 239.18-240.18 22
'  :  . ‘241.35-241.98 23

,  , 243.06-243.68 24
■ 1] 244.00-245.48 

. V " i 246.99-247.88
25
26

1249.42-24954 28
25124-251.89 29
25298-25327

• . . >..i
30
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Four locus genotypes for individuals from 10 populations in southern Lake Malawi.

H arbour Island Harbour Island (continued)

Locus UNH- Locus UNH-001 002 050 231 001 002 050 231
1317 1218 0000 0000 1717 0000 2828 1212
1417 1616 0000 0000 2121 1616 2828 1421
1321 0716 2328 1214 1721 0000 2128 1114
1717 1819 0000 0000 1730 1618 0121 1320
2131 1619 2328 1430 1421 0000 2328 1417
1721 0719 0000 0000 1721 0000 2128 1418
1730 1623 2528 1417 1113 0000 2123 1414
1733 1219 2128 0000 1121 0716 2123 1214
2130 1216 2532 1218 1721 1616 2424 1414
1331 0716 0000 0000 1731 1619 2424 1214
2133 0812 2325 1214 1427 0716 2829 1618
2133 1216 2023 0116 1731 2020 2424 0000
1717 1216 0121 1214 2130 0819 2029 0000
1621 1219 2129 1414 1717 1216 2324 1214
1421 1616 2628 1220 1721 0712 2425 1420
1617 1219 2329 1416 1717 1619 0123 1214
1111 1919 0121 0116 1021 0911 2128 1625
2127 1825 0123 1216 1721 1219 0129 1214
1721 1616 2124 0000 1721 0716 2124 1214
1121 1218 0125 1229 1621 0712 2324 1730
1717 1919 0000 1616 1617 1616 0121 0112
1517 0716 2828 1229 1317 1819 0128 1414
1721 1219 2323 1214 1717 0719 2325 1430
2121 0719 2324 1214 1619 1919 0101 1212
1114 1819 2628 1420 1116 0000 2324 1214
1721 0712 2829 0114 1721 1418 2128 1214
0000 1219 2829 1414 2121 1619 2424 1414
0000 0707 2429 1416 1121 0816 2329 2630
1723 1619 2428 1414 2121 0000 2424 1317
1719 1618 2323 1420 1121 0716 2829 1216
1617 0000 2123 1417 0116 0707 0121 1220
1117 0707 2323 1230 1516 0000 0000 1214
0000 0719 0101 1416
2121 0719 2428 1214
1721 1619 0123 1414
1717 1216 0128 1414
1621 1619 2128 1420
0000 1219 2125 1414
2127 0719 2129 1416
1717 1616 0000 1414
2121 1616 2323 1214
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Shallow Reef Ilala Gap

Locus UNH- Locus UNH-
001 002 050 231 001 002 050 231
1717 1616 2021 1416 0713 0000 1621 0109
1717 1616 2021 1214 1617 0000 1830 0616
1721 0716 2021 1214 1414 0000 0000 0000
1717 1616 2125 1414 1320 1218 2324 0000
1717 1616 2136 1214 1314 1126 1829 0416
0000 0000 2126 1416 1011 1112 0000 0000
1721 1616 2125 1414 1314 1012 0000 0000
2121 1616 2136 1417 1321 1229 2324 0000
1717 1616 2036 1217 1417 0811 2021 0620
1721 1212 0000 1414 1314 1117 3031 0000
1717 1616 2125 1214 0000 1117 0000 0000
1721 0716 2021 1216 1313 1117 2330 0118
1717 1616 2021 1416 1321 1719 2330 1518
1717 1616 2020 1214 1313 0717 2029 1623
1919 0707 2021 1414 1317 1125 2230 1616
1724 1616 2020 1215 1421 1111 2930 1617
1731 1316 2021 1414 1316 0909 1829 1824
1717 1616 2023 1214 1621 1526 2023 1818
3135 1316 2021 1414 1014 0911 2020 1315
1717 1616 2532 1414 1314 1515 2123 0114
1717 1617 2025 1214 1321 1729 2628 0414
1720 1616 2136 1214 1321 0911 2021 0116
3535 1621 2020 1414 1616 0809 0000 0000
1717 1616 2532 1415 1416 0406 0000 1919
0000 0719 2021 1414 1314 0911 2930 1316
1717 1616 2122 1414 1317 1125 2331 0314
1717 1616 2020 1416 1416 0000 2026 0918
2122 1616 2125 1224 2121 1117 2024 1317
5555 1616 2036 1214 1319 0609 2029 0120
1717 0000 2020 0000 1320 0917 2130 1624
0000 1616 2121 1214 1319 0411 2023 1924
1717 1621 2021 1414 1313 0909 1820 0124
1717 0716 2121 1414 1317 1125 2329 1424
1919 1616 2123 1213 1313 0707 2530 1117
2031 1516 2020 1414 1420 1111 2029 0916

1313 0404 2323 1624
1317 1619 2123 1624
1214 1115 2929 1618
1421 1217 2330 1718
1320 0811 1820 1626
0000 0917 2930 0916
1313 0000 2026 1818
2020 0000 0000 0000
1313 0712 2930 0616
0000 0919 2229 1424
1621 1226 2530 0916
1316 0811 2323 0915
0000 1113 2029 0118
1321 0909 2929 0112
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Ilalla Gap (continued) Mphande Island

Locus UNH-
001 002 050 231
0000 0911 2023 0914
1317 1217 2027 1824
0000 0000 2030 0809
1314 0909 2023 0914
0708 0000 0000 0000
0000 0709 2930 2425

Locus UNH- •
001 002 050 231
1717 1416 2123 1221
1717 0000 2123 2426
0418 1616 2121 1124
0425 1416 2123 1226
1717 0000 0000 0000
0418 1616 2021 1221
1833 1616 2121 2626
0421 1616 2121 1226
1717 0916 2121 2126
0421 1616 2123 1226
1717 1616 2123 1226
1731 1616 2121 1214
1818 1416 2121 1226
1818 0916 2121 1226
1717 1616 2121 1426
1730 1717 2121 1224
1721 1619 2323 1826
2125 0916 2121 1226
1717 1616 2121 2626
1720 1616 2123 1212
1717 1616 2021 1426
1717 0000 2123 0000
1717 1616 2123 1217
1733 1616 2121 1417
2633 1616 2121 1212
0404 1616 2121 1226
1717 1616 2121 2426
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Mazinzi R eef

Locus UNH-
001 002 050 231
00,00 16,16 00,00 00,00
17,17 16,17 23,32 14,14
21,25 14,16 00,00 1212
1721 0716 2123 1415
1722 1616 2020 1214
1717 1616 2228 1414
2131 1616 2021 0000
1717 0000 2022 1414
1818 0714 2021 1224
0000 1616 0000 1212
0000 0000 2026 1414
1818 0716 2020 1214
1721 1416 2021 1414
1717 1314 2536 1416
1722 1316 2021 1212
0000 1417 2020 1214
1731 1616 2123 1214
1722 0716 2020 1414
1722 0716 2020 1414
1717 1617 2023 1414
1717 1617 2020 1414
1717 1316 2020 1214
1722 1616 2020 1414
1717 1616 2326 1214
1731 1616 2326 1214
1717 1617 2326 0312
1319 0708 2122 0416
1717 1616 2022 1214
1414 0707 2026 2022
1014 0708 2030 2323
1717 1616 2026 1214
1727 1616 2122 1214
1717 1616 2020 1416
1717 0000 2020 1214
2022 1316 2323 1414
1721 1616 2021 1415
1721 1616 0000 1415
1721 1616 2022 0000

Mumbo Island

Locus UNH-
001 002 050 231
1010 1313 2929 1717
0000 1010 2929 1824
1621 0913 2829 1820
0812 1315 2930 1724
1021 0913 2929 1420
1010 0915 2933 1421
1621 1515 2833 1417
0000 0913 2929 1722
1016 1313 2929 1717
1213 1515 2933 1717
1216 1313 2728 1824
1016 0909 2829 1725
1010 0913 2929 1424
1316 0913 2729 1724
1010 0909 3033 1724
2124 1313 2929 1617
0816 0913 2729 1824
1616 1313 2033 1724
1013 0909 2829 1617
1417 1414 2829 1424
1313 0913 2829 1724
1621 1315 2729 1424
1316 1313 2829 1720
1322 1414 2729 2024
0816 1414 2929 2424
1216 1515 2729 1722
1324 1416 2933 1718
1016 0913 2829 2025
1013 1014 2929 1417
1016 0915 2829 2022
1621 0909 2829 1722
1621 1315 2829 1620
1321 1315 2933 2021
1121 0913 2833 1718
1016 1414 2829 1422
1022 1014 2729 1622
1013 1315 2831 1617
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M vunguti E ast Nkhudzi Point

Locus UNH- Locus UNH-
001 002 050 231 001 002 050 231
0814 1219 2121 1616 0000 0916 2123 0000
1116 1112 2125 1416 1725 1618 2121 1826
0000 1515 2028 0101 1725 1616 2121 1218
1414 0712 2021 1414 1730 1616 2123 1221
1419 1215 2029 0101 0421 1616 2121 2526
1417 1826 2124 1418 1721 1616 2121 1418
1313 0911 2324 1819 0000 0917 2121 1726
1414 0718 2428 0112 1720 1617 2123 1718
1414 1819 2430 1116 1717 1616 2123 1824
1416 0811 2125 1416 1717 1616 0000 1212
1127 1921 2828 1616 1717 0916 2123 1717
1416 1919 2224 1616 1721 1616 2121 1214

1717 1616 2121 1226
1921 1717 2124 1226
2121 1616 2123 1418
1725 0000 2424 0000
1725 1717 2121 1726
1717 1618 2123 1617
1717 1616 2021 0000
0000 0000 1321 1426
1517 1616 1323 1818
0000 1616 2121 1718
0000 0000 2122 1426
0000 1416 2121 1224
1717 1616 2121 1821
1723 1616 2121 1726
1725 1717 2123 1417
1617 1616 2121 1226
2130 1616 0000 1215
0000 1616 2121 1226
1317 1616 2121 2526
0000 0916 2121 1418
1721 1616 2121 1224
0000 0000 0000 0820
2331 1616 0000 1226
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Tsano Rock Tsano Rock (continued)

Locus UNH-
001 002 050 231
1414 0406 2127 0111
1322 1121 2327 1212
1314 1919 2124 1116
0000 0000 2426 1416
0000 0000 2021 1418
1421 0715 2021 1618
1416 0916 2229 1414
1616 1818 2022 1418
1316 1921 2930 0112
0000 0000 2829 1214
0000 0000 2730 0000
1316 0709 2425 1416
1330 0000 2324 0101
1316 0809 2129 1416
1416 1619 2028 0112
0000 0911 2023 0000
0000 0000 2228 1114
0913 0000 2229 0000
1317 0708 2024 0114
1617 1316 2429 1720
1319 0707 2428 1416
1616 1111 2025 1216
1313 0000 2324 0112
1416 0711 2430 0000
1322 0919 2930 0000
1720 0000 0000 0000
1316 1818 2125 1516
1017 1111 2024 1114

Locus UNH-
001 002 050 231
1416 1417 1824 1416
1417 1214 0000 1417
1416 1121 2930 1617
1621 0719 2129 1619
0816 0718 2429 1719
1414 0716 2129 1218
1617 0915 2121 0119
1930 0923 2323 0111
1013 1213 2930 1417
1517 0919 2426 1119
1021 0919 2123 1620
1417 1415 0000 0114
1415 1111 2429 1414
1720 1821 2127 1416
1113 1215 2020 1221
1717 0918 2029 1116
1317 1119 0000 0101
1017 0707 2425 1416
1416 1221 2626 1114
1416 0709 2020 0101
1416 1526 2429 0202
1313 0713 0000 1820
1621 0719 2128 0118
1621 1319 2331 1418
1416 0719 0000 0114
1628 1219 2125 0116
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