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ABSTRACT

AN ANALYIS OF fflGH FREQUENCY METHANE MEASUREMENTS IN CENTRAL
NEW ENGLAND

BY

MARKC. SHIP HAM 
University of New Hampshire, September, 1997

A unique high resolution ambient air methane data set consisting of approximately 

125,000 independently measured data points for the years 1991-1995 has been collected at 

a site in the northeastern United States. This data base is used to examine the long term 

trend, seasonal and diurnal cycles, and the frequent pollution events that affect the site on 

a year round basis.

The annual median mixing ratio of methane for all measurements was 1808 ppbv 

in 1992, increasing at a variable rate to 1837 ppbv in 1995. The lower 10-30% of the data 

from each month was defined as representative of background air and was compared to the 

global CMDL data set. The background data exhibit a variable upward trend of 5.5 ± 2 

ppbv/year during the 4-year time period, with most of the increase observed during 1993 

and 1994.

The seasonal cycle for the background data set is similar to what is observed by 

CMDL stations and varies from 24 to 35 ppbv. The amplitude of the seasonal cycle for the 

full data set was larger, ranging from 35 to 44 ppbv. Differences between the full and 

background mixing ratios vary on a seasonal basis and are largest in the winter and small-

X
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est in the summer. These differences appear to be controlled by changes in atmospheric 

stability and changes in emissions from local and regional sources throughout the year.

Wind roses of chemical species are examined for annual and seasonal time periods 

with enhancements in anthropogenic species corresponding to the location of large cities 

and landfills. Methane is strongly correlated to species that have an anthropogenic compo­

nent, including acetylene, propane, ethane, and hexane. The southwest quadrant is sub­

jected to the most severe pollution events and is impacted by outflow from large cities in 

that sector, including Northampton and Springfield, MA. Emissions from cities in other 

quadrants, including Boston and Worcester, MA., Providence, RL, and the near by town of 

Petersham, MA. also affect the site, but to a lesser degree.

Case studies are used to identify atmospheric conditions that lead to high concen­

trations of methane and other species. The co-occurrence of a persistent wind direction, 

light wind speed, and stable atmospheric conditions is the ideal scenario in which emis­

sions from nearby cities and landfills are advected to the site. Emissions from local and 

regional, rather than distant sources, are the primary cause of elevated events.

Xi
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CHAPTER I

INTRODUCTION AND GOALS

In 1993 the United States released a climate action plan proposing to return U.S. 

greenhouse gas emissions to the 1990 level by the year 2000. The largest contributor to the 

potential of global warming is carbon dioxide (COj), followed by methane (CH4). Stabi­

lizing the atmospheric burden of C 02 will require a reduction in emissions of 60-80%. 

This is unlikely in the near future given industrial societies strong dependence on fuels 

coupled with the 200 year life time of C 02. In comparison, CH4 emissions need to be 

reduced only 10 to 15% to stabilize its global concentration and the 11 year life time of 

CH4 means the affects of mitigation strategies may be observed within several decades.

A critical factor in determining if mitigation strategies are working is the paucity 

of quantitative measurements of CH4 at local to regional scales in which changes in emis­

sions over long time periods may be verified. To address this problem automated high-fre­

quency (8-11 minute) CH4 measurements have been made by Dr. Patrick M. Crill from the 

University of New Hampshire at the Harvard forest (HF) research site since 1992. The 

proximity of this site to numerous industrial/urban areas presents the opportunity to sam­

ple from known CH4 sources on a regular and repeatable basis and to characterize the 

chemical signature of the sampling location and assess its sensitivity to both local and 

regional sources.

The first section of this dissertation examines the long-term trend and seasonal and 

diurnal cycles of CH4 at the HF research site. Key questions that are addressed include:

page I
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How does the long term trend at this site, which is located in an heavily industrialized 

region, compare to the observed trends for clean air sites in the Northern hemisphere? 

How is the timing and amplitude of the seasonal cycle altered by air pollution events? 

What is the amplitude and timing of the daily cycle and how does it relate to changes in 

local sources of CH4, atmospheric stability, and solar input.

The second section characterizes the effects of air pollution in the HF region 

through the use of additional chemical species and meteorological parameters. Key ques­

tions that are examined include: Can the effects of local, regional, and distant CH4 sources 

be quantified? Can annual and seasonal enhancements of chemical species be related to 

emissions from sources in particular wind sectors? Are the frequency and severity of pol­

lution events changing over time? Can individual sources of pollutants be identified on a 

regular basis?

Over a longer time frame this data set will be used to determine if the mitigation 

strategies for CH4 are working. This first four years of data provides an invaluable bench 

mark in understanding the regional behavior of CH4 and will become part of a much larger 

multi-year data set that will hopefully one day reveal that regional CH4 concentrations are 

stabilizing or even declining as the effects of reduction strategies take hold.

page 2
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CHAPTER n

BACKGROUND

A series of reports by the Intergovernmental Panel on Climate Change [IPCC, 

1990,1992, 1995] provides a comprehensive assessment of global sources and sinks of 

atmospheric CH4. Individual articles and references contained in the IPCC documents 

suggest that human activities are now responsible for approximately 70% of the global 

CH4 sources. Anthropogenic inputs of CH4 are associated with energy production and use, 

landfills, domestic sewage, rice agriculture, domestic ruminants, and animal wastes. Natu­

ral sources include wetlands, termites, lakes, and coastal waters.

Future growth in CH4 sources has been estimated by the IPCC, with the largest 

growth expected to occur in emissions from landfills, energy production and use, and from 

animal production/waste systems. Sources with modest expected growth are biomass 

burning and rice agriculture. In the United States the largest anthropogenic sources of CH4 

are from landfills which account for about 25% of total emissions [EPA, 1994].

While the yearly rate of increase in the mixing ratios of CH4 is variable [Steele et 

al., 1992; Harris et al., 1992; Khalil et al., 1993A; Conway et al., 1994; Dlugokencky et 

al., 1994A; and Keeling et al., 1995], over the past two centuries they have approximately 

doubled [Etheridge et al., 1992; Thompson et al., 1993; and Khalil et al., 1994]. On a geo­

logic time scale ice-core records show the current mixing ratios of CH4 to be two to three 

times higher than has been observed during the past one hundred and sixty thousand years 

[Chappellaz et al., 1990], with the doubling over the past two centuries representing an

page 3
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unprecedented rise of CH4.

Since 1983, CH4 measurements have been made at approximately weekly time 

intervals at an increasing number of stations around the globe by the National Oceanic and 

Atmospheric Administrations’s Climate Monitoring and Diagnostic Laboratory (NOAA/ 

CMDL) [Lang et al., 1990A, 1990B; Steele et al., 1992]. This extensive world wide net­

work collects background, clean air measurements of CH4 which provide insight into the 

complex temporal cycles that compose the changing global CH4 signal [Steele et al., 

1987; Blake etal., 1988; Conway etal., 1994; Dlugokencky et al., 1994A].

The Harvard Forest data set is the first multi-year high frequency data collected in 

a densely populated, heavily industrialized region and will be utilized to examine complex 

interactions between natural and man made sources and sinks of CH4.

page 4
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CHAPTER HI

SITE DESCRIPTION AND INSTRUMENT METHODOLOGY

The 1200 ha HF research site is located in Petersham, MA. (42.48° N, -72.18° W; 

elevation 340 m) is ideally located to sample air from numerous anthropogenic CH4 

sources and is subjected to pollution events on a year round basis.The micrometeorologi- 

cal tower from which the samples are taken is 30 m high and is situated within a 60-year 

old mixed hardwood forest typical of the transition hardwood-white pine-hemlock forests 

in much of the region. There is a highway approximately 5 km to the north and a second­

ary road 2 km to the west. A dirt road leads to the site and has very limited vehicular traf­

fic. Depending on the prevailing wind speed and direction, the instruments on the tower 

generally sample air with trajectories from industrial/urban environments to the south and 

southwest and from rural landscapes to the west and north.

The automatic CH4 analysis system was designed and is maintained by Dr. Patrick 

M. Crill from the University of New Hampshire and is built around a Shimadzu Mini-2 

gas chromatograph equipped with a flame ionization detector. Ambient air is continuously 

sampled from an inlet 20 m above the ground surface (a few meters above the forest can­

opy) through 1/4” o.d. plastic coated aluminum tubing (Dekoron 041943-1 tubing) with an 

electric diaphragm pump at a rate of 25 1/min. This flow is sampled every 8-11 minutes 

with a Valeo stream select valve, dried across a i m  Perma Pure nafion drier and, after 

sample loop pressure is allowed to relax to atmospheric pressure, 1 ml is injected into the 

carrier gas stream of the chromatograph by another Valeo electrically-actuated valve. The

page 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



sampling procedure yields an independent measurement of ambient CH4 every 8- 11 min­

utes. CH4 is separated on a 2 m by 3.2 mm o.d. stainless steel column packed with 

HayeSep Q at 40° C. Detector temperature is 125° C. Valve timing, analog to digital con­

version of the detector output, and signal integration is controlled by a Hewlett-Packard 

HP3395A series II integrator with an HP19405A event controller. Raw data and integra­

tion reports are transferred to and stored on a personal computer until the data are trans­

ferred to the University of New Hampshire in Durham, NH via modem every three days.

During operation a field calibration sample is processed with each ambient air 

sample. The field standard are cylinders of breathing air containing near-ambient mixing 

ratios of CH4 that have been calibrated with Niwot Ridge air standards prepared by 

NOAA/CMDL in Boulder, CO. Over the course of a day, the standard response of the gas 

chromatograph varies about 1% due to diel heating and cooling since the standard is kept 

in an unheated pump room in order to mimic the temperature of the outside air sample. 

Therefore, to evaluate the precision of the CH4 measurements, the responses of an individ­

ual analysis of the standard is compared to the 24-minute running average of the standard 

response. The coefficient of variation (c.v.; the standard deviation/mean) expressed as the 

percent variation from the 24-minute running mean ranged annually from 0.18 to 0.29%. 

If this c.v. represents the sum of errors in the system measurement (an assumption not 

entirely true since the standard does not flow through the sampling pump) then the preci­

sion of the analysis would be considered to 3.6 ±  0.4 ppbv CH4.

Additionally, all data points were filtered for instrument response by calculating 

the difference between each standard response and its average with the two points on 

either side. This difference was then divided by the sample standard deviation for these

page 6
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same 5 points. The resulting number was then compared to the mixing ratios obtained by 

the Grubbs test for outliers at a significance level of 95% [Sokal and Rohlf, 1981] and 

removed if it exceeded that value. No data were removed in 1992 and 1993,1.4% were 

removed in 1994, and 1.55% were removed in 1995. Appendix A contains an extended 

discussion of sources of errors in the data bases.

In addition to CH4 measurements of many other chemical constituents and meteo­

rological parameters are currently being made at the tower by other researchers [Munger 

et al., 1996; Goldstein et al., 1995A]. Measurements of fluxes of C 02 0 3, H20 , and NOy 

and ambient concentrations of CO, C 02, 0 3, H20 , NOx, and NOy are described by Wofsy 

et al. 1993 and Munger et al., 1996 respectively, and for C2-C6 by Goldstein et al. 

[1995BJ.

page 7
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CHAPTER IV

DATA ANALYSIS METHODS

Analysis of the time series for these data present challenging problems. First, the 

data must be considered non-uniformly sampled due to variable length data gaps, some of 

which are several weeks in duration. This precludes standard time series analysis tech­

niques which assume evenly spaced data. Second, the series is a non-stationary process in 

that the underlying global and regional sources and sinks of CH4 are changing and chang­

ing at different rates over time. As a consequence, robust statistical techniques resistant to 

outliers are used in the analysis of the full data set [Meeker et al., 1995;Khalil et al., 

I993C; McRae etal., 1979J.

A sub-set of these data is used to examine the long term trend and seasonal cycle in 

background, clean air conditions comparable to those observed by the global CMDL net­

work. Following work by Goldstein et al., 1995, the lower 10-30% of CH4 mixing ratios 

from each month are considered to be representative of a background air mass. While the 

full data set is skewed by pollution events and is non-normally distributed, the lower 10- 

30% of the data has a near normal frequency distribution as would be expected when 

extreme values are removed [Gaines et al., 1993]. Elimination of the lowest 10% of CH4 

mixing ratios removes low values that may associated with either diluted stratospheric or 

aged tropical air which is not representative of surface background conditions at the HF 

site.

The frequency distribution of mixing ratios for January and June, 1993 is shown in

page 8
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January 1993
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Figure 1: Frequency distribution of methane mixing ratios for (a) January and (b) 
July 1993. Solid lines bracket the lower 10 to 30% of the data range. Both high and 
occasional low events are separated from the background data.

Figures la and b. In January, the lower 10-30% of mixing ratios range from 1796 to 1810 

ppbv, eliminating several severe pollution events that occurred during the month. Like­

wise, the data envelope for June bounds mixing ratios from 1775 to 1786 ppbv, again 

eliminating high episodes of CH4 associated with pollution and/or stagnation events.

The mixing ratio for the HF background data for 1993 is compared to the CMDL 

data network in Figure 2. The background annual average mixing ratio of 1796 ppbv at HF 

is similar to CMDL sites near this same latitude. The mean HF mixing ratio using the full 

database is 1828 ppbv, an enhancement of 32 ppbv. For the remainder of this discussion
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1993 Mean Mixing Ratios for CMDL stations and HF
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Figure 2: Concentrations of methane for the global CMDL network and Harvard 
Forest. X’s are the mean with bar length being ±1 standard deviation.

the terms “full” will refer to the entire database, while “background” will refer to the sub­

set of the monthly data that uses the lower 10-30% of the data.

The background data were adjusted in order to derive the long term trend and 

yearly seasonal cycles. The data were detrended by subtracting a 12-month running mean 

from the original data, leaving cycles of 12-months or less. The data were then deseasonal- 

ized by subtracting the mean seasonal cycle of the 4-year time period from the original 

data, leaving the long term trend. Finally, the background data were analyzed by a least- 

squares algorithm to see if expected yearly and seasonal cycles existed as well as to deter-
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Least-Squares Frequency Analysis of Methane Data

Yearly Period = 364 Days

Seasonal Cycle = 191 Days

0 50 100 150 200 300250 350 400
Days

Figure 3: Least-squares frequency analysis of methane mixing ratios at Harvard 
Forest for 1992-1995.

mine if other unknown cycles were present [Lomb, 1976; Meeker et al., 1995J. Figure 3 is 

the spectrum from the Lomb analysis which shows a yearly cycle of 364 days and a sea­

sonal periodicity of 191 days. Other weak signals, especially the one centered around 260 

days, appear to be the result of inter-annual variability as time of maximum and minimum 

CH4 mixing ratios varies by several months from year to year.

The diumal cycles were obtained by taking the mean of all recorded data values 

centered at ±  30 minutes of each hour for each day in the 4 year time period. The resulting 

monthly figures of the daily cycle are a composite of the four years of data and represent
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highly averaged conditions.

Wind roses of selected chemical species for annual and seasonal time periods are 

calculated by taking the mean of all values available for the appropriate time period cen­

tered ±5° on 10° increments. For each time period the long term trend is removed and the 

values normalized by subtracting the average minimum value which results in a spatial 

distribution of enhanced concentration levels.
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CHAPTER V

LONG TERM TREND, SEASONAL, AND DIURNAL CYCLES

For the 4-year time period from 1992-1995 approximately 125,000 individual CH4 

samples have been collected. Raw CH4 mixing ratios are shown in Figure 4 while Tables 

1-4 present monthly and seasonal summary statistics. The data shown in the figure and 

associated tables depict a variety of trends and systematic variations including: a variable 

upward long term trend; interannual variability; seasonal cycles; and a daily cycle which 

are all discussed below. In addition and perhaps most noticeable are the numerous elevated 

CH4 episodes which will be discussed in a later section of this text.

5.1 Long term trend

The long term trend of CH4 was calculated using the background data and is due 

to changes in global sources and sinks. The monthly median and median absolute devia­

tion (MAD) for the full and background CH4 mixing ratios are shown in Figure 5. From 

1992 through 1995 a variable, upward trend of 5.5 ± 2 ppbv/year is observed. However, 

from 1992 to mid-1993 the growth of CH4 was slightly negative, with a decrease of -1 ± .3 

ppbv/year for 1992. This corresponds to a time period when Dlugokencky et al. [1994BJ 

also noted a sharp decrease in the growth rate of the global mixing ratios of CH4. During 

the summer of 1993 the variable upward trend again resumed. On an annual basis, 

increases of 8 ± 2 ppbv/year, 9 ± 3 ppbv/year, and 3 ±  1 ppbv/year were observed for the 

years 1993, 1994, and 1995 respectively.

In the full data set, the annual median increased from 1808 to 1837 ppbv, an
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Table 1: Monthly and Seasonal Summary Statistics of Methane for 1992
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Jan. 1830 30 1870 84 2084 1752 1186

Feb. 1827 11 1834 27 1979 1767 934

March 1823 13 1828 23 1916 1784 260

April 1813 11 1817 20 1938 1779 1001

May 1803 12 1812 32 1993 1738 4994

June 1806 23 1823 45 1978 1750 2881

July 1797 14 1804 30 1951 1743 2835

Aug. 1817 29 1838 60 2015 1755 2194

Sep. 1801 18 1816 43 1985 1729 5076

Oct. 1812 25 1834 60 2094 1743 3915

Nov. 1821 28 1838 55 2324 1761 2808

Dec. 1812 24 1845 77 2278 1760 3484

Winter 1826 46 1851 65 2084 1752 2380

Spring 1805 26 1816 36 1993 1738 8876

Summer 1802 34 1817 46 2015 1729 10105

Fall 1815 47 1839 65 2324 1743 10207

Annual 1808 38 1826 54 2324 1729 31568

increase of 29 ppbv. The annual mean increased from 1826 to 1845 ppbv, increasing 19 

ppbv. Differences between the mean and median values reflect the skewed distributions in 

the full data set. For the background data, the median increased from 1791 to 1811 ppbv, a 

difference of 20 ppbv, while the mean increased from 1790 to 1811 ppbv, a difference of
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Table 2: Monthly and Seasonal Summary Statistics of Methane for 1993

1993
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Jan. 1823 22 1840 51 2275 1764 3121

Feb. 1817 15 1825 30 2025 1772 3531

March 1814 16 1826 34 1947 1762 3487

April 1804 12 1808 23 1908 1737 3469

May 1800 14 1805 26 1973 1741 2124

June 1796 16 1805 32 1957 1753 2407

July 1788 16 1797 31 1924 1743 2226

Aug. 1815 24 1831 50 2034 1759 1682

Sep. 1825 26 1838 50 2060 1742 2261

Oct. 1818 18 1839 53 2165 1766 3659

Nov. 1837 33 1857 62 2148 1754 2959

Dec. 1838 18 1850 41 2127 1786 2360

Winter 1818 29 1830 39 2275 1762 10139

Spring 1801 20 1806 27 1973 1737 8000

Summer 1809 36 1822 48 2060 1742 6169

Fall 1829 41 1848 54 2165 1754 8978

Annual 1815 33 1828 46 2275 1737 33286

21 ppbv. Mean annual differences between the full and background data sets for each year 

are about 36,30,40 and 34 ppbv. Any significant increase or decrease in these values over 

time could indicate changes in the nature of pollution events reaching the site. Within this 

current four year time frame, no discernible trend was evident.
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Table 3: Monthly and Seasonal Summary Statistics of Methane for 1994

1994
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Jan. 1838 25 1861 61 2134 1778 3887

Feb. 1840 24 1867 75 2471 1772 3206

March 1835 18 1848 38 2028 1782 3471

April 1823 18 1831 32 2007 1764 3699

May 1802 10 1812 32 1987 1763 1957

June 1811 20 1820 33 1945 1749 3041

July 1832 24 1836 39 1986 1709 2930

Aug. 1859 37 1873 59 2083 1787 842

Sep. 1811 13 1819 30 1948 1764 1426

Oct. 1850 35 1859 56 2058 1721 3097

Nov. 1843 28 1859 60 2098 1741 2799

Dec. I860 29 1888 79 2320 1752 1736

Winter 1837 43 1858 60 2471 1772 10564

Spring 1813 26 1823 33 2007 1749 8697

Summer r 1827 33 1837 45 2083 1709 5198

Fall  ̂ 1850 48 1866 64 2320 1721 7632

Annual 1832 40 1847 56 2471 1709 32091

5.2 Seasonal cycles

In the northern hemisphere seasonal differences of CH4 of 25-30 ppbv are related 

to changes in the oxidizing capacity of the atmosphere [Khalil et al,. I993BJ. On a 

regional scale, seasonal differences at HF are enhanced due to a complex interaction
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Table 4: Monthly and Seasonal Summary Statistics of Methane for 1995

1995
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Jan. 1841 22 1864 86 2467 1709 1682

Feb. 1863 22 1873 40 2097 1772 2466

March 1860 18 1873 44 2079 1783 2281

April 1845 18 1845 27 1970 1776 2184

May 1810 15 1820 32 2050 1761 2468

June 1810 18 1817 33 1941 1732 2860

July 1824 17 1830 31 2044 1755 3137

Aug. 1825 21 1833 35 1995 1761 2505

Sep. 1843 21 1852 38 2013 1793 509

Oct. 1846 20 1864 52 2142 1788 1694

Nov. 1838 19 1854 51 2072 1768 2474

Dec. 1833 17 1840 30 1985 1783 2833

Winter 1857 37 1870 57 2467 1709 6429

Spring 1820 27 1826 33 2050 1732 7512

Summer 1826 26 1833 34 2044 1755 6151

Fall 1838 31 1851 45 2142 1768 7001

Annual 1837 32 1845 46 2467 1709 27525

between local sources and sinks, as well as meteorological patterns that advect CH4 to the 

site from regional urban sources. Using monthly mean background data (with trend 

removed) a seasonal amplitude of about 26, 24, 26, and 36 ppbv/year for the years 1992- 

1995 is observed (Figure 6). The seasonal cycles for the full data set have amplitudes of
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Figure 4: The atmospheric mixing ratios of methane at Harvard Forest between 
1992 and 1995. These data show a variable upward trend, seasonal cycles, and the 
many pollution events that affect the site.

about 39, 36,36, and 44 ppbv/year for the same time period (Figure 7). In both cases, the 

maximum mixing ratios occur near mid-winter and minimum ratios around mid-summer, 

differing by up to several months from year to year.

Subtracting the background values (as shown in Figure 6) from the full data values 

(as shown in Figure 7) leaves a seasonally varying residual which is shown in Figure 8. 

This residual between the full and background data is largest during the winter (15-21 

ppbv) and smallest during the summer (11-13 ppbv) season. This pattern indicates that the 

effects of pollution are more pronounced in the winter than the summer. This is significant
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Monthly Median and MAD for Full and Background Data Sets
1920
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Figure 5: Monthly median and median absolute deviation of mixing ratios of meth­
ane for 1992-1995. The X’s (all data) and O’s (background data) represent the 
median mixing ratios overlaid by an error bar of ±1 median absolute deviation. The 
curves are generated by robust spline fitting algorithm using the monthly data.

as the contribution by natural local sources (wetlands) is lowest in the winter, suggesting 

that boundary layer dynamics are the dominant controlling process over the seasons. 

Changes in the seasonal differences between the full and background data over a longer 

time frame could be an indication of changes in CH4 emissions.

5.3 Diurnal cycles

The mean diurnal cycle during the four year time period for each month is shown 

in Figures 9 A-L. Although the samples were taken during all meteorological conditions
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Background Seasonal Cycle of Methane
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Figure 6: Background data seasonal cycles for 1992 - 1995. Symbols for each year 
are the monthly mean mixing ratios. Curves are generated by a robust spline fit 
algorithm.

and represent highly averaged CH4 mixing ratios, the figures show cycles that change in 

timing and magnitude through the year. The daily maximum and minimum mixing ratios 

of CH4 and differences between them (both magnitude and time) are controlled by a num­

ber of factors which vary in importance on a seasonal basis. The most important factors 

include changes in oxidation rates, changes in the amount of emissions from sources, the 

amount of solar radiation, and the extent of atmospheric stability and mixing.

From December through February (Figures 9A-C) limited vertical mixing and 

inputs from local sources appear to be the most important factors. Minimum values occur
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Full Seasonal Cycle of Methane
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Figure 7: Full data set seasonal cycles for 1992-1995.

around 3 PM (all times local), with a gradual build up until around midnight, when values 

begin to decrease again. Approximately six hours elapse between the minimum concentra­

tion and the over night maximum. The average amplitude of the daily cycle for these 

months is about 17 ppbv. Sources of CH4 during the winter would be primarily from local 

and regional landfills whose emissions continue on a year round basis [Czepiel et al., 

I996A, 1996BJ. Although considered a small source, localized emissions from wood 

burning in association with home heating could also contribute to CH4 build up during the 

overnight hours [Piccot et al., 1996; Blaha et al., in pressJ. With the ground frozen and 

generally snow covered, emissions from local wetlands are negligible during the winter
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Residual of the Full Minus the Background Data
2 2
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Figure 8: Residuals representing the monthly means of the full minus monthly 
means of the background data. The residuals are largest in the winter and smallest 
in the summer.

season [Melloh et al., 1996J.

March and April (Figures 9 D-E) are a time of transition as solar radiation 

increases, temperatures begin to warm, the winter snow pack melts, and the frequency of 

strong night time temperature inversions decrease [Holzyvorth, 1967J. Inputs from nearby 

natural sources, mainly wetlands, however remain low and wood burning for home heat­

ing decreases. The resulting diurnal signal is very weak, with April amplitudes being the 

smallest during the year, around 6 ppbv.

From May through July (Figures 9 F-H) a pronounced diurnal cycle is observed.
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Mean Diurnal Cycle for December
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Figure 9: Mean diurnal cycle observed for each month, December-November 
(a-1). Number in the lower left hand comer is maximum-minimum hourly mix­
ing ratio.
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Mean Diurnal Cycle for June
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Figure 9: Mean diurnal cycle observed for each month, December-Novem- 
ber (a-l). Number in the lower left hand comer is maximum-minimum mix­
ing ratio.
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Increasing oxidation of species by OH and emissions from nearby local sources, wetlands 

and landfills, become the most important factors. Minimum concentrations occur around 5 

PM and begin increasing prior to sunset with the collapse of the turbulent mixed layer and 

continue to increase through the night reaching a maximum near sunrise at 6 AM. The 

period between maximum and minimum is about 12 hours, twice the winter time length. 

Minimum values occur during the late afternoon when the strongest vertical mixing occurs 

and the OH sink is large. July and August have the largest differences between maximum 

and minimum values of about 23 ppbv. The overnight increase in mixing ratios suggests 

that local sources, perhaps the nearby wetlands, are contributing to the increase.

August and September (Figures 91-J) represent a second transitional time period 

when the amount of solar input is decreasing and vertical mixing is becoming less vigor­

ous. For both months the minimum values occur around 3 PM. During August, values 

increase until about midnight when they begin to fall. The amplitude of the diurnal change 

decreases by about half (from 25 to 12 ppbv) from August to September suggesting 

decreasing inputs from nearby wetlands. Finally, cycles in October and November (Fig­

ures 9K-L) reflect the shorter day length and reduced local inputs from wetlands as a weak 

diurnal signal is observed. At this time of year the ground is still relatively warm and 

unfrozen, but the emissions from wetlands are decreasing and emissions from wood stoves 

are just beginning.

On a yearly basis the change in the diurnal cycle from month to month is for the 

most part gradual. However, a relatively large decrease in CH4 is observed from March to 

April each year and may be due to increased oxidation by OH as longer days ensue and 

temperatures increase (Figure 10). By April, on average, the snow has melted and the
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Diurnal Cycle for March, April, and May 1993
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Figure 10: The mean diurnal cycle for March, April, and May, 1993.

waterlogged ground is drying allowing inputs from local wetlands to contribute to the 

strong diurnal cycle discussed above. Emissions from local wetlands are acting to increase 

the amount of CH4 in the atmosphere at a time when removal by OH is increasing.

Opposite the spring effect, a large increase in CH4 occurs between July and August 

(Figure 11) which is linked to decreasing OH oxidation. In August the diurnal cycle 

including over night build up continues, but by September the emissions from nearby wet­

lands have diminished. Similar patterns were observed for the other years.
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Diurnal Cycle for July, August, and September 1993
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Figure 11: The mean diurnal cycle for July, August, and September, 1993.
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CHAPTER VI

POLLUTION EPISODES AT THE HARVARD FOREST SITE

6.1 Location of Sources

The region surrounding the HF area is clustered with metropolitan areas. Larger 

cities and major highways within 250 km of the site are depicted in Figure 12, while Table

Njretav' 
,—

Brunswick-
fadleburu

ijJPortlandutland

Cldfcemon£jl
^  ^  aCoficorS

Heine Wandiest*

ddefordM
GlensIFTal

rgtoga Springs

Benninqto

-v-r - •
f  Cobleskil!

) 1
"W^afldws (SbelA

mmQrr^dnta 'rctsfield
orthanptonHudson gsmgg&PK&jT-.

Brockton
-^>**31..'-*-^ 

zir-****.-.—ii

pjmgsto 

'~o(JgMeepsie

. k t  '’ DanbDr

Provrdehc
EBedfdrd

erburu Non ion VNrddlet andem
Bradqepo

w -
utnold

onatconq
albRod

Copyright 4b 1993-96 GeoSystems Global Corp iSKsyp. .SEfcĈSS..

Figure 12: Regional cities and major highways surrounding Harvard Forest (X). Note 
the location of Springfield, MA. and New York, NY. to the southwest, Boston, MA. to 
the east, and Providence, RI. to the southeast.
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Table 5: Heading, Distance, and Populations of Selected Cities in the Region.

City Heading from HF to 
cities Distance Population

degrees direction km Est. 1990

Nashua, NH. 62 NE 67 80,000

Boston, MA. 99 E 94 574,000

Worcester, MA. 129 SE 41 170,000

Providence, RI. 138 SE 98 160,000

Petersham, MA. 183 S 6 1,200

Ware, MA. 190 S 26 10,000

New York, NY. 218 s w 249 7,320,000

Springfield, MA. 218 s w 54 156,000

Chicopee, MA. 223 s w 51 57,000

Granby, MA. 227 s w 37 6,000

Northampton, MA. 244 w s w 42 30,000

Amherst, MA. 245 w s w 30 35,000

Athol, MA. 329 NW 7 11,000

5 presents the heading, distance, and estimated 1990 population for selected localities. The 

location and estimated source strengths of known active landfills surrounding HF is shown 

in Figure 13, with Table 6 listing their heading and distance from the site.

The largest sources of CH4 in the Northeastern U.S. are wetlands and landfills 

which contribute 46% and 39% of the regions total respectively [Blaha et al., in press; 

EPA, 1993J. However, these two dominant sources are in distinctly different locations. In 

Maine 89% of emissions are estimated to come from wetlands, primarily in the late spring 

and summer. In Massachusetts, where HF is located, 82% of emissions are estimated to be
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Figure 13: Landfills surrounding Harvard Forest (*). The strongest sources closest to 
HF are located at Peabody, MA. to the east and East Bridgewater and Plainville, MA. 
to the southeast. Note the nearby cluster of landfills to the southwest of the site. (Fig­
ure courtesy Blaha et al., in press.)
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Table 6: Heading and Distance to Regional Landfills.

Landfill Name Heading from HF to 
landfill Distance Transport 

Time at 2 m/s

degrees direction km hours

Merrimack, NH. 53 NE 71 10

Nashua, NH. 62 NE 67 9

Westminster, MA. 74 ENE 24 3

Peabody, MA. 87 E 104 15

E. Bridgewater, MA. 116 SE 113 17

Plainville, MA. 127 SE 89 12

Barre, NH. 137 SE 10 1

Johnston, RI. 138 SE 98 14

Southbridge, MA. 165 SSE 48 7

Ware, MA. 190 S 26 4

Chicopee, MA. 223 SW 51 7

Granby, MA. 227 SW 37 5

Northampton, MA. 244 WSW 42 6

Amherst, MA. 245 WSW 30 4

from landfills on a year round basis. As a consequence of the climate action plan, a nation­

wide strategy to regionalize landfills which have CH4 gas collection systems is well under­

way. In the New England region the number of operating landfills has decreased from 507 

in 1990 to 151 in 1995, with six of them having CH4 recovery systems [Blaha et al., in 

press; Bogner et al., 1995]. While a small component of the total U.S. emissions, wood 

burning may be a significant source of CH4 and other combustion by-products in rural 

areas such as HF during the winter heating season. Other sources such as cars and trucks,
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ruminants, and natural gas leakage are believed to be a very minor part of the total mea­

sured CH4 emissions in the HF region [Piccot et al., 1996; Blaha et al., in press].

6.2 Characterizing the Harvard Forest flow regime

In addition to CH4, other chemical species including acetylene (C2H2), propane 

(C3H8), ethane (C2H4), hexane (C6Hi4), and 1,3-butadiene (C2H6) are plotted as a func­

tion of wind direction on annual and seasonal time periods in order to discriminate 

between man made and natural sources and to quantify the varying effects of local, 

regional, and distant transport to the site. A clean air quadrant to the northeast is also 

examined and compared to the other anthropogenicially influenced sectors. Detailed case 

studies are used to identify possible sources and identify the atmospheric conditions and 

transport pathways which lead to the most severe pollution events.

Based on the observed enhancements found in the wind roses, specific quadrants 

influenced by pollutants are examined in more detail through the use of additional species 

with differing sources and lifetimes. Approximately 20 species are measured at HF and 

table 7 gives a partial listing of them along with their primary sources and estimated sum­

mer and winter lifetimes. C2H2 is solely from combustion and is used as a tracer for an 

anthropogenic signature. A strong correlation between CH4 and C2H2 would indicate that 

anthropogenic sources are the dominant component of the total measured signal. A strong 

correlation between CH4 and short lived species such as C6H t4, 1,3-butadiene, or t-2-pen- 

tane (C5Hl0), implies transport from nearby sources in which the short lived species have 

had insufficient time to be oxidized. The ratio of C3H8 and C2H4 is used to discriminate 

between wood burning or liquefied natural gas (LNG). Lower ratios of 0.3-0.5 are associ­

ated with wood burning, while ratios approaching I are associated with LNG [D. R. Blake
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Table 7: Primary Sources and Estimated Lifetimes* for Selected
NMHC’s

Species Primary
Source

Summer
Lifetime

Winter
Lifetime

Days Days

Acetylene C2H2 Combustion 7 116

Ethane c 2h 4 Natural Gas 38 450

Propane c 3h 6 Natural Gas/
Petrochemical
Industries

8 87

Butane C4Hto Auto Exhaust 3.4 36

Pentane C5H l2 Auto Exhaust 2.2 23

Hexane c 6h 14 Combustion 1.5 15

1,3-Butadiene c 2h 6 Combustion 0.125 2

t-2-pentene c 5h 10 Combustion 0.125 2

♦Lifetimes are based on a rate constant as used by Goldstein et al., 1995

et al.,1996; N. J. Blake et al., 1996].

Detailed case studies are used to examine the most severe pollution events and uti­

lize daily streamline maps at various pressure levels and backward air mass trajectories to 

examine probable transport pathways. The isentropic trajectory package was originally 

received from the National Center for Atmospheric Research and has been modified 

extensively since [Danielson, 1961; Haagenson e ta i, 1979; Shipham et al., 1994]. Prod­

ucts from the National Climate Data Center were to used determine regional snow depth, 

percent of possible sunlight, maximum and minimum temperature, and precipitation type 

and amount.
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6.3 Wind Direction and Speed

Wind frequencies for the four year time period, the four winter seasons (January- 

March), and the four summer seasons (July-September), are shown in Figures 14 a-c. The 

prevalent wind direction during the winter is from the northwest (NW), which generally 

transports cleaner air from Canada. The prevalent summer wind is from the southwest 

(SW), which transports air across many potential anthropogenic sources and can be asso­

ciated with periods of stagnation and corresponding pollution events. While a westerly 

component dominates the mean flow, transport from other quadrants does occur and mari­

time air on occasion reaches the site whenever there is a persistent wind flow from a south­

erly or easterly direction.

As with wind direction, wind speed varies seasonally as shown in Figures 3 d-f. On 

an annual basis, the fastest winds (2.5-3 m/s) are from the west and north and also from a 

small area to the east. The lightest winds (2 m/s) are from the NE and the south. Winter 

winds are stronger than the annual average and are strongest (3-3.5 m/s) from the west and 

NW and also to the east. The lightest winter winds (2 m/s) are from the southeast (SE) to 

the SW. Summer winds are greatest (2.5 m/s) from the NW to north and to the east, while 

the lightest winds (1.5 m/s) are from the south and SW and the NE.

Knowledge of the wind flow patterns combined with locations of potential sources 

provides an indication of which quadrants will likely be effected by anthropogenic by­

products. Large cities are located to the east, south, and west of the site, while the three 

largest landfills are located to the east and SE. Anthropogenic influences should be the 

strongest in the quadrants where these sources are located. Conversely, the lowest popula­

tions and fewer landfills are to the north and NE of the site in which cleaner air should be
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Figure 14: Wind direction (%), (a-c) and speed (m/s) (d-f) at the Harvard Forest lower for annual, winter, and summer time 
periods.



expected.

Particular wind flow patterns can be linked to recurring synoptic conditions [Brook 

et al., 1994, 1995; Holzworth, 1967]. The prevalent SW summer flow is often associated 

with the circulation around the “Bermuda” high which is associated with warm and humid 

conditions and very light winds. Stronger winds associated with Nor’easters moving up 

the East coast are seen when the flow is from the east and SE and are associated with 

stormy conditions. A NW flow is often associated with cold unstable air moving in from 

Canada and signals fair weather conditions. Understanding the character of these major 

wind flow regimes provides additional insight about atmospheric conditions, which in turn 

can be related to the complex chemical signal observed at the site. Additional factors 

besides prevailing seasonal winds make any simple link between the location of sources 

and corresponding enhancements in chemical species difficult. They include terrain effects 

that may channel pollutants, seasonal variations in source emissions, and yearly variability 

in wind patterns.

6.4 Methane Enhancements

CH4 enhancements for the annual, winter, summer, and winter minus summer time 

periods are shown in Figures 15 a-d. For the four year period, enhancements of about 60 

ppbv are observed in the heavily industrialized SW high emissions sector (HES) centered 

on 250°. The smallest enhancements (0-10 ppbv) are in a clean air sector (CAS) to the NE 

centered on 40°. Other enhancements are to the east and south of the site and exceed 30 

ppbv at 90°, 120°, 150° and 170°.

Winter enhancements are larger than those observed in the summer due to a com­

bination of the reduced oxidation of species and more frequent pollution events. During

page 36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



27 0

270

A nnual M e th a n e  E n h a n c e m e n ts  (ppbv) 

%0
3 3 0

Winter Methane Enhancements (ppbv)

t8 0

S u m m e r M e th a n e  E n h a n c e m e n ts  (ppbv) 

0̂
33 0

3 3 0

30 0 6 0

90 2 7 0

2 4 0 120

210 150

(B) 180

90

W in ter M inus S u m m er E n h a n c e m e n ts  (ppbv) 

°60

9 0  270

(D)

3 3 0 ^ - ^ ^ 3 0
*5

3° y S .  \
3 0 ° /  /  V " --------- \  \ 60

15 / N .

3 ■ /  \  '

2 4 0 \ — ^  \  /  /  120

2 1 0 ^ * - - ^ 5 0

90

180

Figure 15: Enhanced methane mixing ratios for (a) annual, (b) winter, (c) summer 
and, (d) winter-summer time periods.

the winter seasons, the HES enhancement is 75 ppbv as compared to 45 ppbv during the 

summers. Variable enhancements occur east and south of the tower, with values exceeding 

30 ppbv at 90°, 120°, 140 to 200°, including a large enhancement of 73 ppbv at 170°. In 

the summers, enhancements to the east and south exceed 30 ppbv only at 90 and 100°, and 

the large winter time enhancement at 170° is not observed.

Seasonal enhancement differences are largest in the more polluted sectors and
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ratios for (a) annual, (b) winter, and (c) 
summer time periods.

smallest in the CAS. In the HES, the 35 ppbv difference is similar to the seasonal cycle 

that was found for the full HF data set which includes pollution events. The greater differ­

ences between seasons at 140°, 190°, and especially 170° appear to be due to winter time 

pollution.

6.5 Acetylene Enhancements

C2H2 is solely derived from combustion and enhancements of it are compared to 

those that are observed for CH4 in Figures 16 a-c. On an annual basis the largest C2H2
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enhancements of about 500 pptv occur in the HES. Other enhancements are found to the 

south and east with values exceeding 300 pptv at 100 and 140°. Enhancements are again 

lowest in the CAS. In the winters, the HES enhancements reach a maximum of 900 pptv. 

A second area of values greater than 300 pptv is observed SE of the site, with enhance­

ments exceeding 600 pptv at 140° and 170°. In the summers, enhancements of 450 pptv, 

about half the winter value, are observed in the HES. Other enhancements exist NE to east 

to south of the site, with values exceeding 300 pptv at 100°, and 160-170°.

The similarities in enhancement patterns between CH4 and C2H2 reinforces the 

hypothesis that CH4 mixing ratios are linked to anthropogenic sources due to the co-Ioca- 

tion of landfills and cities. This appears to be the case in the HES where numerous cities 

and landfills are co-located about 40-50 km from the site. In some wind sectors, differ­

ences in the relative enhancements of CH4 and C2H2 are due in part to differing locations 

of strong sources. For instance, the relative enhancement of C2H2 at 60° in the summer 

and winter is stronger than is observed for CH4. In this case the combustion source may be 

the city of Nashua, NH., 62 km distant, which has only small known landfills in its vicin­

ity.

6.6 Summer Hexane and 1.3-Butadlene Enhancements

The short summer life time of C6Hi4 (-1.5 days) and C4Cg (-  3 hours) can be used 

as a proxy to infer the age of chemical species measured at HF (Figures 17 a-b). These life 

times assume sunny conditions and must be adjusted upward to account for night time 

periods and the percent of possible sunshine, which increases the estimated lifetime to 2 - 

3 days for C6H I4 and 3-8 hours for C6Hl4.

C6Hj4 enhancement patterns are similar to those that are observed in CH4. The
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Figure 17: Summer enhanced (a) hexane and (b) 1,3-butadiene mixing ratios.

largest enhancements ( -  50 pptv) occur in the HES. Large enhancements in the 100-110° 

wind quadrant reflect a combination of a fast mean wind speed (see Figure 3F) and gener­

ally cloudy conditions which limits mixing and oxidation of species. Other enhancements 

exceeding 30 pptv are seen at 60° and 130 -140°. Lower enhancements, such as are found 

in the CAS, reflect a chemically aged air mass that has not been in contact with anthropo­

genic sources for at least several days.

Enhancements in C4H6 are largest to the SE instead of the SW HES as has been 

found for other longer lived species. The lower values in the HES implies pollutants in that 

sector may be older than those in the SE quadrant. However, this could be a function of 

stagnant conditions and light winds that are common in the summer SW flow. The shift in 

enhancements implies that the age of the species in the HES is somewhere between 8 

hours and 2.5 days old. Large enhancements at 170-180° must be of local origin and 

appear to be from the near by town of Petersham. Enhancements at 100-110° may be
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time periods.

linked to the small town of Barre, 10 km distant, while enhancements at 60° are likely 

from Nashua, NH. The change in enhancement patterns between these two short lived spe­

cies shows the utility of using them as a proxy to infer the age of pollution. The use of 

other short lived species with intermediate life times could further help define the age of 

the sources.

6.7 Correlations between Methane and Acetylene

Correlation coefficients for CH4 and C2H2 as a function of wind direction for the 

annual and seasonal time periods are shown in Figures 18 a-c. The annual correlations are
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high and fairly uniform to the south and west with values generally exceeding 0.75. The 

strong correlations, especially in the HES, reflect fresh emissions that have not had time to 

be mixed or diluted. This is an indication that the anthropogenic signal HF receives from 

these populated areas persists on a year round basis. Correlations are lower and more vari­

able (.25-.70) east and south which may be due to better mixing and incursions of mari­

time air. In the CAS, the low correlations (.25-.40) are due to a well mixed, aged air mass 

with out any significant anthropogenic inputs.

Seasonal correlations between CH4 and C2H2 remain high especially in the winter 

when transport to the site is faster and atmospheric mixing is reduced. During the winter 

seasons correlations exceed .75 from the SE to the south and to the west reaching a maxi­

mum of .95 in the HES. Correlations in the CAS are lower and quite variable ranging from 

. 10 to .60. During the summers correlations remain high in a large area from east to south 

to west to north of the site. In the HES, correlations are again around .95. Such tight corre­

lations in light of slower summer winds and increased mixing implies nearby sources.

Low correlations in the CAS imply an aged air mass in which mixing ratios of C2H2 have 

been depleted.

6.8 Summer Correlations between Methane and Short Lived Species

Summer correlations between CH4 and two short lived species, C6H14 and C4Cg, 

can be used to infer the age of chemical species reaching the site (Figures 19 a-b). Correla­

tions between CH4 and C6Hi4 are around .75 in the HES, similar to what is observed 

between CH4 and other longer lived species. The age of the species measured is less than 

the age of C6H4 since its high correlations with CH4 implies there has not been time for 

much mixing. Correlations range from .5 to .75 in other sectors, excluding the CAS where
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and 1,3-butadiene.

they are less than 0.5.

Correlations between CH4 and C4C6 are much lower than was found between CH4 

and C6HI4 and have a different pattern. The lower correlations in the HES infer that C2H6 

is being oxidized prior to the time it would take for it to reach the tower. Using mean sum­

mer winds of 1.5 m/s in this quadrant converts to a mean transport time of about 8 hours. 

This is greater than the 6 hours estimated life time of the species and is consistent with its 

partial depletion. Higher correlations to the SE may be due to faster wind speeds and more 

cloud cover as compared to the SW sector. Correlations around zero in the CAS indicate 

C2H6 has been depleted in this sector prior to reaching the site which is consistent with an 

aged air mass.
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CHAPTER VII

THE CHEMICAL SIGNATURE OF THE HF REGION

The chemical composition of four quadrants most impacted by anthropogenic pol­

lutants is examined in detail to quantify how CH4 and other combustion sources at varying 

distances and strengths impact the site. The HES includes the combined emissions from 

Springfield, Northampton, and Amherst, MA. The city of Boston impacts the 90-100° 

wind quadrant, Providence, EH. and Worcester, MA. (PW) the 120-140° wind quadrant, 

and the nearby town of Petersham the 170° wind sector. In contrast to the polluted quad­

rants, the composition of the CAS is also examined. Table 8 presents summary statistics 

for selected chemical species in each sector.

7.1 The High Emissions Sector

The HES enhancements are the largest observed and are a result of the combined 

outflow of cities clustered in that sector. CH4 is plotted against C2H2, C6H14, C3Hg, and 

C2H4 in Figures 20a-d. Mean winter minus summer mixing ratio differences are 55 ppbv 

for CH4, 1.04 ppbv for C2H2, 0.04 ppbv for C6H14, 1.42 ppbv for C3Hg, and 2.21 ppbv for 

C2H4. These seasonal differences are larger than would be expected due to oxidation of 

species alone [Khalil et al„ 1993BJ. Extreme mixing ratios of all species are observed in 

both seasons with a maximum mixing ratio of 2471 ppbv of CH4 during the winter. Such 

high mixing ratios represent fresh emissions and must be from a nearby source. Correla­

tions between CH4 and the other plotted species are consistently high in both seasons, 

exceeding 0.90 in the winter and 0.75 in the summer and implies that a well mixed local
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Table 8: Mean and Standard Deviation for Selected Wind Quadrants

HES CAS Providence, RI7 
Worcester, MA. Boston, MA. Petersham. MA.

V i
(250°) (40°) (120-140°) (90-100°) (170°)

U W W W W im W W
LU Si u 3 Si Si •Si
a.
V I

e s
3

c e
3

C
$ B

3
c

£ 5
c

3
V i CO CO CO CO

Mean Mean Mean Mean Mean Mean Mean Mean Mean Mean
(SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD)

c h 4 1899 1844 1824 1803 1858 1821 1846 1837 1884 1824
(ppbv) (89) (44) (22) (22) (54) (34) (31) (26) (71) (36)

C ,H , 1.69 .65 1.02 2 6 I.4I .47 1.01 3 8 136 .43
(ppbv) (1-04) (37 ) (.25) (.12) (31) (-24) (.29) (-42) (.79) (.21)

C6H I4 .10 .06 .04 .02 .09 .05 .06 .05 .13 .04
(ppbv) (.09) (-04) (-01) (-01) (.06) (.04) (.02) (.04) (-12) (-03)

c 3h 8 2.29 .87 135 .43 1.81 .63 1.47 .87 2.00 .64
(ppbv) (1.09) (.41) (.31) (-21) (.49) (.27) (-37) (-45) (-85) (.24)

c -,h 4 3.98 1.77 2.84 1.29 3.18 1.47 2.63 1.70 3.63 1.49
(ppbv) (1.46) (35 ) (-43) (.25) (.61) (-38) (-41) (.61) (1.25) (-34)

source of pollutants is observed on a year round basis. Terrain affects of the near North to 

South alignment of the valley that these cities are located in coupled the prevailing SW 

flow may channel pollutants to the HF location and enhance the possibility for severe pol­

lution events to occur.

7.2 The Clean Air Sector

The chemical composition of the CAS (Figures 21 a-d) is dominated by chemi­

cally aged air masses that have not had contact with anthropogenic sources for at least sev­

eral days, likely considerably longer. Mean winter minus summer differences are 21 ppbv 

for CH4 (as compared to 55 ppbv in the HES), 0.76 ppbv for C2H2, 0.02 ppbv for C6H l4, 

1.12 ppbv for C3Hg, and 1.07 ppbv for C2H4. The CH4 seasonal difference of 21 ppbv
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Figure 20: Methane plotted as a function of (a) acetylene, (b) hexane, (c) propane, 
and (d) ethane for the HES. Correlations between species are shown in the upper left 
of each figure. Data is fit by a least-squares algorithm.

compares to the background seasonal cycle that was found at the site when the lower 10- 

30% of each months data were used. Maximum mixing ratios for each species, especially 

in the winter, are much less than was observed in HES. For CH4 the maximum winter mix­

ing ratio is 1921 ppbv, about 550 ppbv lower than is observed in the HES. Correlations 

between species are much lower and indicate only a weak linkage between CH4 and other
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Figure 21: Methane plotted as a function of (a) acetylene, (b) hexane, (c) propane, 
and (d) ethane for the CAS.

species. The correlation between CH4 and C2H2 is higher in the summer than the winter, 

0.52 as compared to 0.31. This is opposite to the HES as the summer correlation is 0.85 

and increases to 0.93 in the winter. CH4 to C3H6 and C2H4 correlations behave in the same 

manner, decreasing from summer to winter in the CAS as compared to increases between 

seasons in the HES.

The differences in correlations between species in the CAS (weak) and HES

page 47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(strong) appear to be caused by a combination of distance from the site and emissions 

from different types of sources. The air originating from the CAS originates mostly from 

Canada or Maine, where wetlands are the dominant CH4 source in the summer. During the 

winters, the primary source of CH4 is from long range transport. Although wetlands are 

the strongest source in the New England region, their distance from the site and very infre­

quent winds from the CAS minimizes this strong seasonal source. In contrast, the HES is 

dominated by emissions from landfills year round, which are often advected to the site in 

association with the frequently occurring SW flow.

7.3 Worcester. MA. and Providence. RI.

The cities of Worcester, MA and Providence, RI. and two large landfills (Plainville 

and East Bridgewater) appear to be the sources of enhancements in chemical constituents 

at 120-140° (Figures 22 a-d). The mean winter minus summer mixing ratio is 37 ppbv for 

CH4, 0.94 ppbv for C2H2, 0.04 ppbv for C6Hl4, 1.18 ppbv for C3H8, and 1.71 ppbv for 

C2H4.

The winter season correlations between CH4 and other species is only slightly 

lower that is observed in the HES ranging from 0.78 between CH4 and C2H4 to 0.89 

between CH4 and CgH14. Summer correlations ranging from 0.43 between CH4 and 

C6H 14 and 0.76 between CH4 and C3H8 also lower as compared to the HES. Maximum 

CH4 mixing ratios are also lower (2049 as compared to 2471 ppbv) indicting this sector is 

not subjected to as severe pollution events as those observed in the HES. Despite cities 

with similar populations and distances from the site, as well as large landfills in this quad­

rant, it appears that infrequent winds from the SE reduces the potential influences of these 

sources as compared to the HES.
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Figure 22: Methane plotted as a function of (a) acetylene, (b) hexane, (c) propane, 
and (d) ethane for Worcester, MA and Providence, RI.

7.4 Boston. MA.

The city of Boston, MA. appears to be the primary source of enhancements seen at 

90 and 100° and includes emissions from one o f three largest landfills in the region (Fig­

ures 23a-d). Mean winter minus summer differences are lower than the other quadrants 

being only 9 ppbv for CH4, 0.43 ppbv for C2H2, 0.01 ppbv for C6H14, 0.60 ppbv for CjHg,
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Figure 23: Methane plotted as a function of (a) acetylene, (b) hexane, (c) propane, 
and (d) ethane for Boston, MA.

and 0.93 ppbv for C2H4. Summer means of species are higher than for PW and Petersham 

and are similar but still less than mean mixing ratios in the HES. Winter means are lower 

than PW and Petersham. The highest mixing ratios of species is much less as compared to 

the HES and similar to the PW quadrant.

The correlation between species is less than is observed for the HES, being around 

0.40 in the summer and 0.55 in the winter. The longer distance from Boston to the site as
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Figure 24: Methane plotted as a function of (a) acetylene, (b) hexane, (c) propane, 
and (d) ethane for Petersham, MA.

compared to the HES allows for more dilution of pollutants. Also, a persistent easterly 

flow advecting pollution to the site occurs less frequently than the dominant SW flow 

observed in the summer and at times in the winter.

7.5 Petersham. MA.

The small town of Petersham, MA., 6 km distant, appears to be the source of 

higher mixing ratios of CH4 and other anthropogenic by-products at 170° (Figures 24 a-d).
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The winter minus summer mixing ratio is largest in the Petersham sector including the 

HES and is 60 ppbv for CH4, 1.13 ppbv forC2H2, 0.09 ppbv for C6H14, 1.36 ppbv for 

C3Hg, and 2.14 ppbv for C2H4. Summer mixing ratios are similar to PW and winter values 

are close to those observed in the HES.

The correlation between species is high in the winter with values around 0.9, simi­

lar to the HES. However summer values are lower, around 0.5, which is less than the HES 

and is similar to PW. Higher maximum mixing ratios of species are seen in this quadrant 

than as compared to Boston or Providence.

The ratio of C3Hg and C2H4 can be used to discriminate between wood burning or 

LPG as the likely source for the local enhancements. A C3Hg to C2H4 ratio of .3-.5 implies 

wood burning, while values closer to 1 are related to sources of LPG. Ratios range from .4 

to .6, so wood burning for home heating appears to be causing these rather large winter 

time enhancements. Terrain effects may be enhancing the effects of Petersham pollutants 

in the measurements by channeling emissions from close by sources to the tower.

7.6 Site Sensitivities

The critical factors influencing the magnitude of chemical enhancements at the site 

are: Proximity of sources, predominant wind direction, source strengths/population size, 

and terrain effects. The effects of wood burning in Petersham show up very strongly due to 

the close proximity of the town, perhaps enhanced by terrain effects. Conversely, the 

larger town of Athol (7 km distant at 329°) with a population of 11 thousand does not 

show up as a strong source even though it is as close and winds are from 330° as often as 

they are from 170°. Perhaps the increased mixing associated with gusty NW winter winds 

in combination with terrain effects is mixing or channeling pollution around or over top of
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the sam pling  location .

The strongest known anthropogenic CH4 sources are not causing the largest 

enhancements because their emissions reach the site infrequently. The three largest land­

fills closest to HF are located in the 90 and 120-130° wind quadrants at distances of 89- 

113 km. While enhancements in those quadrants are at least in part due to these landfills it 

appears that their distance from the site in combination with an infrequent wind flow from 

those directions minimizes their impact as compared to multiple smaller sources in the 

HES that are closer to the site.

In the CAS, emissions from wetlands that are known to be the dominant source in 

the summer are only very weakly seen at the site if at all. This would be do to a combina­

tion of distance and very limited wind flow from that quadrant.

7.7 Yearly Changes in the HES and CAS

Examining the chemical composition of the HES and CAS year by year provides 

additional insight as to how the composition of the air sampled may be changing over 

time. Extreme values of both CH4 and C2H2 are seen in all years, especially 1994 and 

1995. Year to year variability is quite pronounced and additional years of data will be 

needed to determine any definitive trends. Table 9 provides summary statistics on a yearly 

basis for a CH4 and C2H2.

Winter CH4 and C2H2 mixing ratios for the HES and CAS are plotted in Figures 

25 a-d. The mean value of CH4 in the HES increases from 1866 to 1913 ppbv, while the 

mean value of C2H2 increases from 1.43 to 1.62. Correlations between CH4 and C2H2 in 

the HES are consistently high increasing from .89 in 1993 to .98 in 1995. The mean value 

of CH4 in the CAS increases from 1818 to 1847 ppbv. Correlations between CH4 and
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Table 9: Yearly Summary Statistics for the CAS and HES

Year Winter Summer

CAS HES CAS HES

mean std mean std mean 

Methane (ppbv)

std mean std

1992 1818 10 1866 67 1784 12 1853 53

1993 1814 17 1843 42 1779 12 1827 37

1994 1820 11 1910 73 1803 18 1860 53

1995 1847 24 1913 114 1807 

Acetylene (ppbv)

23 1836 35

1992 no data no data no data no data .26 .16 .85 .52

1993 1.16 0.25 1.43 .52 .24 .76 .66 .36

1994 0.89 0.13 1.84 .88 .25 .13 .78 .45

1995 0.91 0.22 1.62 1.38 .27 .11 .55 .27

C2H2 in the CAS are more variable and lower than those in the HES being .76, .39, and .91 

for 1993-1995 respectively. The larger variability in correlations is due to longer range 

transport and may be due to yearly emission changes from wetlands due to temperature 

and precipitation changes from year to year.

Summer CH4 and C2H2 mixing ratios for the HES and CAS for CH4 are shown in 

Figures 26 a-d. The mean values of CH4 and C2H2 in the HES are variable from year to 

year, ranging from 1827-1860 ppbv for CH4 and .55 to .85 for C2H2. Correlations between 

CH4 and C2H2 in the HES remain uniformly high being .97, .88, .83, and .83 for 1992- 

1995 respectively. The mean value of CH4 in the CAS increases from 1784 in 1992 to
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Figure 25: Winter methane and acetylene for the HES and CAS for years 1993 - 
1995 (a-d). The cross bars are the mean and ±1 standard deviation for each species as 
a function of season.

1807 ppbv in 1995. Correlations between CH4 and C2H2 in the CAS are .46, .80, and .41 

for the years 1993-1995.

Differences between the CAS and HES in the first and last year of the study may 

be used to examine the trend. From 1992 to 1995, CH4 increases 29 ppbv in the winter 

CAS and 23 ppbv in the summer CAS. This compares favorably to the 5.5 ± 2 ppbv that
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Figure 26: Summer methane and acetylene for the HES and CAS for years 1992 - 
1995 (a-d).

was found in a subset of the full data set that was considered background air. CH4 mixing 

ratios increase from 1866 to 1913 in the winter HES, while the summer HES declined 17 

ppbv from 1853 to 1836 ppbv.
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CHAPTER Vm

CASE STUDIES

Three case studies demonstrate how enhancements in particular transport path­

ways described above in the mean yearly and seasonal flow regimes occur. Of particular 

interested is to determine if emissions from strong sources reach the site on a regular and 

repeatable basis.

8.1 Criteria /  Grouping

The beginning of a high CH4 event is defined when mixing ratios exceed the 

monthly median + MAD for a time period greater than 2.4 hours. The events, numbering 

377 for the 4 year time period, can be broken into three broad categories: the first is a build 

up of CH4 during the overnight hours, due mostly to nocturnal temperature inversions. 

These events are relatively short lived (12 hours or less) and make up 49,58,47,46%  of 

the cases. The second category is caused by the advection of pollution by regional/local 

transport in which a rapid increase (> 200 ppbv/hr) of CH4 mixing ratios is observed. 

These events are closely linked to a persistent wind flow from strong source regions, pri­

marily large landfills in the case of CH4 and cites for other anthropogenic species. The 

third category is the combination of types 1 and 2, where pollution from local and regional 

sources is advected to the site while being trapped at the surface for an extended period of 

time by a strong temperature inversion which can persist for days.

There is no trend in the number of events observed during the four year time 

period. Overall, 1993 had the most total events with 123, 1992 the lowest with 79 (due in
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part to limited data for the winter time period). For events lasting more than one day, 1993 

had the most with 24 and 1994 the least with 15. The number of total events between sea­

sons on a year to year basis also varies considerably. The season with the highest number 

of total events was different for each of the four years. However, for events <  I day, the 

spring and summer seasons have the most, while for events > 1 day, the winter and fall 

seasons have consistently more episodes than the spring and summer seasons.

The case studies, when grouped by the prevailing wind direction, are found to fall 

into wind quadrants similar to sectors previously described by enhancements in the mean 

flow fields. The largest number of pollution events (42%) occurred in the SW quadrant, 

primarily during the winter seasons. This is linked to the prevalent synoptic pattern in 

which warmer air is transported over the colder ground surface trapping pollutants near 

the surface. Other cases occurred much less frequently with flow from the SE (10%) and 

east (7%) being the second and third category of grouped events. A persistent flow with 

enhancements of CH4 from other directions was rare. Some of the cases could not be clas­

sified due to a complex or changing wind regime in which the path of the air mass was not 

evident (22%) and an additional category for summer time stagnation events was also 

included when winds remained light and variable for more than a day (12%).

8.2 Case study 1; 17- 20 February. 1994

This case examines polluted SW flow and contains the highest mixing ratios of 

CH4 recorded during the study period. Figures 27 (a-f) depict CH4, C2H2, C6H 14, ratio of 

C3H8 and C2H4, wind direction, and wind speed for the three day period 17-20 February 

1994. Two significant peaks in CH4 are observed near 8 PM on 17 and 19 February, with 

values falling thereafter through the night and reaching a minimum during the late after-
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Figure 27: Methane, acetylene, hexane, ratio of pentane and ethane, wind direc­
tion, and speed for 17-20 February, 1994.
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noon. The maximum mixing ratio is 2471 ppbv, with a median value of 1949 ppbv for the 

three day period, an enhancement of 109 ppbv over the monthly median. For the data that 

was available, the correlation between CH4 and C2H2 is .96, CH4 and is .92, CH4 

and C2H4 is .81.

The critical circumstances leading to this event are a persistent SW flow advecting 

pollution from nearby sources to the site. The wind direction is from the SW for over 48- 

hours, with a brief shift to the west/NW at the beginning of the event, while the wind 

speed is 2-3 m/s during the day and nearly calm at night. The nearby Worcester, MA. 

sounding depicted a strong temperature inversion at 500 m which would further limit mix­

ing. As warmer air associated with the SW flow moved over the snow covered ground it is 

likely shallow stable layers trapped pollutants, including smoke from fires, close to the 

ground. Two landfills, Chicopee (51 km distant) and Granby (37 km distant) are most 

likely the source of these CH4 emissions. The cities of Springfield and Northampton, MA. 

are the probable source of the other anthropogenic pollutants. Trajectories at six hour 

intervals track the tower winds and show the air passing near the city of Springfield about 

six hours prior to reaching the site. As important is that the trajectories do not show trans­

port from any other metropolitan areas, especially New York as the trajectory paths pass 

inland in a more westerly direction by several hundred miles.

8.3 Case study 2:13-14 January 1995

This case is similar to the one above as SW flow again advects pollution from 

regional sources to the site (Figures 28 a-f). The maximum CH4 mixing ratio of 2.467 

ppmv, the highest observed in 1995, was observed between 9 PM and I AM overnight on 

13-14 January, 1995. The median mixing ratio for the event was 2031 ppbv, which repre­
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Figure 28: Methane, acetylene, hexane, ratio of pentane and ethane, wind direc­
tion, and speed for 13-14 January, 1995.
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sents a 190 ppbv increase over the background levels. Correlations between species are 

again very high being .99 for CH4 and C2H2, .99 for CH4 and C6H 14, and .98 between 

CH4 and C2H4.

Similar circumstances of a persistent SW wind advecting pollution from strong 

regional sources combined with limited vertical mixing traps pollutants near the surface, 

especially during the over night hours. The wind direction is from the SW, while the wind 

speed is generally less than 2 m/s until near the end of the event. Trajectories show the 

path of the air parcels backing over time with air initially surging northward across Long 

Island, then across New York City and then passing Springfield before reaching the site. 

Due to the freshness of the signature and an estimated transport time in excess of two days 

from the New York metropolitan area to the site it appears that similar to the case above 

that it is strong local emissions rather than the more distant sources that are causing these 

severe pollution events at the site.

8.4 Case study 3; 6 August 1992

This case examines a south-to SE flow which appears to be maritime air that 

picked up CH4 prior to reaching to site from strong regional sources (Figures 29 a-f). The 

maximum mixing ratio of CH4 was 1866 ppbv, the median mixing ratio for the event was 

1830 ppbv, which represents a 29 ppbv increase over the monthly median. Unlike the pre­

vious two case studies, the species are anti-correlated with CH4 and have correlations of 

-0.46 between CH4 and C2H2, -0.41 for CH4 and C6Hl4, and .13 between CH4 and C2H4. 

The wind speed averages 1.3 m/s for the twenty-four hour period. Trajectories move the 

air parcels in a near northerly direction off the Atlantic across the lightly populated inte-
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Figure 29: Methane, acetylene, hexane, ratio of pentane and ethane, wind direc­
tion, and speed for 6 August 1992.
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rior sections of Rhode Island. Just prior to reaching the site the air passes over a nearby 

landfill in Barre 10 km distant.
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CHAPTER IX

CONCLUSIONS

For the years 1992-1995 approximately 125,000 individually measured CH4 mix­

ing ratios were obtained at the HF research site. Over the 4-year period a variable upward 

trend of 5.5 ± 2 ppbv/year was observed in the background data. Comparison of changes 

in the hill and background data sets suggest that there has been little change in anthropo­

genic CH4 inputs at the sampling site during the 4-year time period.

The trend and seasonal cycle were found to be similar to the global data set when 

the effects of pollution were minimized by analyzing a subset of the data. This is signifi­

cant as the global behavior of CH4 is based on data that has been collected in remote 

regions carefully chosen to avoid the effects of pollution. Future sites could be located in 

more accessible and cost effective locations and can serve a dual purpose in characterizing 

both changes in the composition of clean, background air and changes in the number and 

severity of pollution events on a regional scale.

The seasonal cycle reaches a maximum in mid-winter and minimum in early sum­

mer. In the background data seasonal differences are around 25 ppbv, similar to that found 

for the global data set. Pollution events exaggerate the full data seasonal cycle, especially 

during the winter when stable atmospheric conditions appear to contribute to longer and 

more severe pollution events.

A daily cycle is observed in which maximum mixing ratios are observed just prior 

to sunrise and minimum mixing ratios in the afternoon near the time of maximum atmo-

page 65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



spheric mixing. Cycles vary between seasons, having the largest amplitudes in late spring 

and early summer when local wetlands may contribute to the signal and again in the win­

ter when emissions from wood burning for home heating may impact the site. Smallest 

changes are in the spring and fall from inputs from both wetlands and wood burning are 

low.

The HF research site sampled air flow from a variety of source regions. The prox­

imity of cities allowed the chemical signature of the tower to be examined and the effect of 

pollution evaluated on time scales ranging from years to hours. The influence of pollution 

is particularly strong in the SW wind quadrant which encompasses an area that includes 

the combined inputs from Springfield, Northampton, and Amherst, MA. Pollution from 

other cities including Boston, MA. and Providence., RI also impacts the site. The near by 

town of Petersham south of the site leaves a strong signature in the winters which appears 

to be due to wood burning. Local sources are found to be the primary cause of the highest 

CH4 events, with regional and perhaps more distant sources elevating the background 

mixing ratios, especially in the heavily populated SW wind quadrant.

CH4 is strongly correlated to C2H2, C6H l4, and C2H4 in most cases and reflects the 

co-location of landfills and cities. On a seasonal basis correlation coefficients are generally 

greatest in the winters when the combination of increased wind speed and more prevalent 

temperature inversions reduces atmospheric mixing. Conversely in the summer seasons 

more vigorous vertical mixing and weaker and less frequent temperature inversions allow 

for better mixing of constituents. As a function of wind direction correlations between 

CH4 and C2H2 are tightest in the HES where a fresh signal from the many near by sources 

is observed and are the lowest in the CAS where generally clean, aged air is sampled.
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Case studies show that strong regional sources can be related to the most severe 

pollution events. Critical to these high episodes is the combination of a light and persistent 

wind and stable atmospheric conditions which then allows pollution to be advected to the 

site with very little mixing. Landfills in the SW quadrant are thought to contribute to high­

est recorded values at the site.

Future work will incorporate additional years of data that are still being collected 

and will analyze in more detail other case studies and additional chemical species to fur­

ther understand and partition local, regional, and distant transport to the site.
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APPENDIX A: POSSIBLE SOURCES OF ERROR

Table 10 attempts to capture the major sources of error / variation that I have 

encountered in this research effort. Error as defined in Websters Dictionary is the “differ­

ence between an observed or calculated value and a true value; variation in measurements, 

calculations, or observations of a quantity due to mistakes or to uncontrollable factors”. 

The table contains three columns with the first column listing the source of the error. Col­

umn 2 is the potential severity of the error where 1 is minor and 5 is major. Column 3 is 

my ability to reduce or eliminate the source of error in column 2. Values again range from 

I (I can virtually eliminate the error) to 5 (I can do nothing about the error).

Quality assurance and quality control (QA/QC) are an important part of any scien­

tific understanding. This research effort used data from differing temporal and spacial res­

olutions in an attempt to identify CH4 cycles and trends in the Northeastern part of the 

United States. At each step along the way possible sources of errors were identified and if 

possible reduced.

ANALYTICAL SYSTEMS:

Details for the CH4 system are given in the body of the dissertation. Other chemi­

cal and meteorological data that I used are also collected at the same site, but by different 

research groups and at differing time resolutions. I was given hourly averaged values for 

all species that I used and had to create hourly mean mixing ratios for the CH4 data in 

order to be able to compare them.

Instrument failures occur for a variety of reasons (lightening strikes, wind damage, 

mechanical failure) and tend to last for extended time periods when they do occur. These
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data gaps propagate down as significant potential source of error when data merging and 

analysis steps begin.

HUMAN INTERACTIONS

Once the raw data are collected the “human” factor comes into play allowing the 

potential of a variety of errors of differing severity to be introduced. I (and others) spent 

extensive amounts of time in QA/QC for the CH4 data set. Different kinds of screening 

were used to check for simple things such as incorrect times or values that were out of 

range. Data shifts which occurred when gas standards were changed were easily detected 

and corrected. More sophisticated checking involved looking at how fast the data changed 

over differing time periods and flagging suspicious data. Unfortunately this is somewhat 

of a subjective type process as what constitutes “bad” data is not explicitly defined.

RELATING POINT AND SPATIAL DATA

Thus far all the data sets I have mentioned have been collected at one site repre­

senting a single point in central Massachusetts. I also used other data including locations 

and estimates of CH4 emissions from landfills and wet lands, use of meteorological data 

from surrounding locations, use of National Meteorological Center grided data, and the 

use of air mass backward trajectory analysis. Similar to the point data, spacial data errors 

occur in many forms and are summarized below.

(1) Estimation errors: The data from meteorological grids had to be horizontally 

and vertically interpolated to the point site.

(2) Variability/changes in sources over time: Wet lands are a source of CH4 prima­

rily in the last spring and early summer. Wood burning for home heating is a minor but 

important source only in the winter and early spring.
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(3) Assumption of straight line winds: Enhancements in chemical species are 

related to cities in the same wind sector. This would not be the case for long range trans­

port, but is a reasonable assumption for the mean flow.

(4) Estimation of species lifetimes: This is a very rough estimate. Unfortunately it 

is not possible to know cloud conditions along the path of the air parcel. This is further 

complicated by the errors in wind speed, direction, and back trajectory paths. However 

using species with different lifetimes to put upper and lower bounds on the age of the air. 

combined with trajectories is a powerful method to define the age of the pollutants being 

sampled.

(5) Site sensitivities: With a single point one can account for the effects of terrain 

which may lead to some source being either over or under represented as seem to be the 

case for Petersham (over) and Athol (under). Also one cannot determine the effects of 

multiple sources that may stack up pollutants prior to the time they reach the site.

SUMMARY

I have tried to identify and account for as many sources of error as possible. Exten­

sive time was spent on QA/QC on the raw CH4 data set and that was the emphasis of this 

research. Appropriate statistical techniques were used to analyze this data set which was 

non-normally distributed and contained large data gaps.
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Table 10: Sources of Potential Error

Error Source
Error

Contribution
Potential

Correctable

I=LOW 1=YES
5=HIGH 5=NO

Analytical Systems

Measurement uncertainties of CH4 instrument I 2

Measurement uncertainties in other data 2 4

Data gaps 3 5

Human Interactions

QA/QC of the CH4 data 2 2

QA/QC of other data 4 3

Obvious errors/inconsistencies 5 1

Data processing and merging

Interpolation of raw CH4 data to other time periods 2 2

Determination of use of proper time length 3 3

Use of other averaged data sets 4 4

Proper choice of mathematical/statistical techniques 3 1

Relating point and spatial data

Variability of sources 3 5

Assumption of straight line winds 3 5

Calculation of species life times 2 3

Site Sensitivities 5 5
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