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ABSTRACT

ADAPTIVE MULTIRESOLUTION VISUALIZATION OF LARGE 

MULTIDIMENSIONAL MULTIVARIATE SCIENTIFIC DATASETS

by

Pak Chung Wong 
University of New Hampshire, May, 1997

The sizes of today’s scientific datasets range from megabytes to terabytes, making it impossible 

to directly browse the raw datasets visually. This presents significant challenges for visualization 

scientists who are interested in supporting these datasets. In this thesis, we present an adaptive data 

representation model which can be utilized with many of the commonly employed visualization 

techniques when dealing with large amounts of data. Our hierarchical design also alleviates the long 

standing visualization problem due to limited display space. The idea is based on using compactly 

supported orthogonal wavelets and additional downsizing techniques to generate a hierarchy of fine 

to coarse approximations of a very large dataset for visualization.

An adaptive data hierarchy, which contains authentic multiresolution approximations and the 

corresponding error, has many advantages over the original data. First, it allows scientists to vi­

sualize the overall structure of a dataset by browsing its coarse approximations. Second, the fine 

approximations of the hierarchy provide local details of the interesting data subsets. Third, the er­

ror of the data representation can provide the scientist with information about the authenticity of 

the data approximation. Finally, in a client-server network environment, a coarse representation 

can increase the efficiency of a visualization process by quickly giving users a rough idea of the 

dataset before they decide whether to continue the transmission or to abort it. For datasets which 

require long rendering time, an authentic approximation of a very large dataset can speed up the 

visualization process greatly.

Variations on the main wavelet-based multiresolution hierarchy described in this thesis also lead 

to other multiresolution representation mechanisms. For example, we investigate the uses of norm

xxi
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xxii

projections and principal components to build multiresolution data hierarchies of large multivari­

ate datasets. This leads to the development o f a more flexible dual multiresolution visualization 

environment for large data exploration.

We present the results of experimental studies of our adaptive multiresolution representation 

using wavelets. Utilizing a multiresolution data hierarchy, we illustrate that information access 

from a dataset with tens of millions of data values can be achieved in real time. Based on these 

results, we propose procedures to assist in generating a multiresolution hierarchy o f a large dataset. 

For example, the findings indicate that an ordinary computed tomography volume dataset can be 

represented effectively for some tasks by an adaptive data hierarchy with less than 1.5% of its 

original size.
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Chapter 1

Introduction

As a tool for applying computers to science, visualization offers a way to see the un­
seen. As a technology, Visualization in Scientific Computing promises radical improve­
ments in the human/computer interface and may make human-in-the-loop problems 
approachable.

-  NSF Executive Summary on Visualization in Scientific Computing, 
Computer Graphics, Vol. 21, No. 6 , Nov 1987, p. vii

The role of visualization in scientific research is well documented [MDB87, REE+94, Gal95, 

NMH97]. Our research focuses on one of the visualization sub-fields, known as multidimensional 

multivariate (mdmv) visualization [WB97a]. Mdmv visualization research is rich in concepts and 

practical applications. Previous research, unfortunately, suffers from the general shortcomings of 

all scientific visualization research: it cannot handle a massive volume of data.

It is often the case that scientists are primarily interested in analyzing only small subsets of 

a larger dataset at the highest resolution obtained. The sheer quantity of data, however, makes it 

infeasible for them to explore the data in its highest resolution. Very large scientific data needs to be 

reduced to a meaningful size to make it useful to the scientist. An important requirement, therefore, 

is to efficiently survey the full dataset at a lower resolution and then be able to identify and analyze 

interesting subsets of the data in greater detail.

The primary goal of our research is to develop an adaptive data representation that allows rapid 

analysis of vast amounts of scientific data in a progressive refinement environment. The goal has led 

to the development of a hierarchy of data processing stages, each of which is a coarse approximation 

of the data at the previous level of the hierarchy.

1
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1.1 Hierarchical Multiresolution Data A ccess

A key point of hierarchical multiresolution data access is that data analysis must ultimately be done 

at the highest available spatial and temporal resolution, yet there is far too much data for all of it to 

be analyzed at this level. Therefore, the analysis process often requires a number of intermediate 

stages which contain smaller coarser representations of the data. Figure 1-1 depicts an adaptive

Figure 1-1: A zooming hierarchy of a one dimensional data stream.

zooming hierarchy of one dimensional scientific data. In this example, two intermediate stages are 

created in the hierarchy, and the second stage quickly shrinks to a relatively small size compared 

to the original. The irregular zooming ranges in intermediate stages allow scientists to emphasize 

important features and de-emphasize the less interesting areas.

1.2 Definition of Multiresolution Hierarchy

Our goal is to define operations or functions that accurately reduce the size of a very large segment 

of data into multiple sub-levels. For example, by continuously applying a pairwise average function 

to one dimensional data, we generate a multiresolution hierarchy with a compression ratio (i.e., the 

size of output divided by the size of input) of 0.5 at each level. The same idea can be applied to 

higher dimensioned data. In each resolution, we take averages of each item’s closest neighbors. In 

Figure 1-2 one dimensional data of four items is zoomed down to two by taking the average of 

every two items. In two dimensional data, four items are averaged in each resolution. Similarly, 

eight items are combined during each step in decomposing three dimensional data. Note that with 

n-dimensional data, each average operation uses 2n data items. This implies a decomposition ratio
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Figure 1-2: A pairwise averaging of one, two, and three dimensional scientific data.

of 2 “ n.

In our multiresolution representation, new approximations are generated during the zooming 

process. Each o f the sub-levels contains most, if not all, of the major characteristics of its next 

higher resolution. Although this new lower resolution representation may be useful for improving 

the performance o f analysis, we are actually increasing total memory requirements by generating 

it. We improve memory utilization only if the new representation allows us to discard the higher 

resolution representation. If we need to revisit the higher resolution data later, we must be able to 

either recreate it or restore it. This dilemma occurs at every level of resolution. Fortunately, wavelets 

provide us with opportunities for building multiresolution hierarchies such that the intermediate 

levels of the hierarchy can be reconstructed from lower levels.

1.3 Hierarchical Representation Using Wavelets

The wavelet transform is a mathematical tool that can be utilized to extract or encode information. 

Given a one dimensional dataset with n  items, an application of an orthogonal wavelet transform 

generates \  coefficients of approximations, and § coefficients of details, as shown in Figure 1- 

3. The operation can be applied iteratively to the approximation part to get increasingly coarse 

zooming data. The number of data values of each level is reduced by 2~n where n is the number of 

dimensions.

Wavelet transforms are invertible. The magic lies in the wavelet details of each resolution. If 

both the approximations and details of any one stage are available, it is possible to have a lossless 

reconstruction of the approximation part of the next higher resolution. For example, if both the 

approximations and details of stage i + 3 are available, the approximation of stage i + 2 can be

IB
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Figure 1-3: Wavelet transforms on one dimensional data stream.

reconstructed without loss. In fact, the whole hierarchy can be rebuilt in this manner provided that 

the details are available in all resolutions.

The pairwise average operation discussed in the Section 1.2 is, in fact, the approximation part 

of a Haar wavelet [Dau92]. In wavelet terminology, this pairwise average operation is only part of 

the decomposition of a wavelet transform. The simple pairwise average operation does not by itself 

allow reconstruction. The detail part of the Haar wavelet is computed from multiples of pairwise 

differences of the input dataset.

1.4 Overview of Contents

We begin in Chapter 2 with a detailed discussion of compactly supported orthogonal wavelets. In 

Chapter 3, we present the basic concepts o f multidimensional multivariate visualization, and some 

of the most commonly used visualization techniques.

In Chapter 4, we introduce the concepts and design approaches of an adaptive multiresolution 

hierarchy. We then show how we can benefit from using wavelets to generate a multiresolution 

data representation of a very large dataset. Chapter 5 discusses the issues of data authenticity using 

wavelets. Chapter 6  presents a system prototype which illustrates the importance of tracking the 

error data.

In Chapters 7 and 8 we describe how these techniques can be used to support very large data 

visualization, and in Chapter 9, we show how a data hierarchy representation can be generated by 

norm projections.

Chapter 10 turns to a new perspective of data hierarchy based on multidimensional scaling.
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We describe the process of metric scaling and compare it to other visualization techniques. We 

investigate how the results can be used to enhance previously described visualization techniques.

Chapter 11 presents the experimental results of our study on multiresolution data hierarchy. 

Real life high dimensional datasets are used to demonstrate the performance of our design. Lastly 

Chapter 12 contains some concluding thoughts about the techniques presented in this thesis, and 

lists some problems that remain unresolved.

In addition to some basic knowledge of vector spaces, we assume some background in Hilbert 

spaces and eigenvectors, particularly in Chapters 2 and 10. We refer the reader unfamiliar with these 

topics to a basic text on linear spaces, such as [DM90]. Most of the work in this thesis originally 

appeared in a sequence of eleven papers: [WB97b, WB97d, WB96a, WCB96, WB96b, WB95a, 

WB94, WB97a, WB97c, WB95b, WB93].
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Chapter 2

A Child’s Garden of Wavelet

Transforms

Nothing to do with sea or anything else. Over and over it vanishes with the wave.

-  Shinkichi Takahashi

In this chapter, we establish some facts about scaling functions and wavelets that are used later 

in the thesis. See Appendix A for definitions of symbols used and Appendix B for mathematical 

definitions on vector spaces, normed linear spaces, Hilbert spaces, and other definitions needed 

for a good understanding of wavelets. The properties and characteristics of compactly supported 

orthogonal wavelets are further discussed in Chapter 5.

2.1 Dilation and Translation

Wavelet transforms involve two primary operations applied to time/space functions: dilation by 2

f ( x )  /(2 s ) ,

and translation

/ ( z )  -* f ( x  +  c)

where c is a constant 6 N. In the following discussion, the term function is often interchanged with 

the term vector (see Definition 2 in Appendix B).
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2.2 Haar Basis a s  an Example

Before we move on to the discussion of general wavelets, we introduce a simple example to illustrate 

some of the basic concepts. Here we consider a function <p where

1, 0 < z < l

0, otherwise.
4>{x) = I (2.1)

and a function ip where

1, 0 <  x  < £

(2.2)T p { x )  =  -1 . I  < x  <  i

0, otherwise.

The function <p is the scaling function and ip is the mother wavelet of the Haar wavelet trans­

form [Dau92, Dau93]. Both can be constructed by a linear combination of dilations and translations 

of <p, as depicted in Figure 2-1. The function ip{x) shown in Figure 2-1 is piecewise constant over

<t>(x>

VM

:------------------- : <t>(2x)--------- ; 4»(2X-1) ;---------- :

+

0 05 t 0.5 1

(b) ip(x) = <f>(2x)  -  <j>(2x -  1)

Figure 2-1: The constructions of a) <p and b) ip.

0 1 0 05 1 0 0.5 1

(a) 0(x) = 0(2x)  +  <t>(2x  -  1)

<|»(2x)

0 0.5 1

one-half of the unit interval. Finer resolution wavelets can be generated by a combination of dila­

tions and translations of ip{x). In Figure 2-2, the function ip(2x), which is piecewise constant over
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OM v(i)-

0 1 0 05 1

v(2x):----: V(2*-1) :---- :

05 1 0 0.5

V(4x) ~

0.5 1 0 OS 1

V(4x-2).-

0 0.5;

V(4 x -3 ) -

0 03

Figure 2-2: Left to right, top to bottom: <p(x), ip(x), ij>{2x), ip (2 x - l) , ip(4x), ip (4 x - l ) ,  if>(4x-2), 
and ip(4x — 3) of a Haar wavelet.

one-fourth of the unit interval, is generated by a dilation of ip(x). The function %p(2x — 1) is gener­

ated by a translation of ip(2x). Similarly, finer resolution wavelets ip(4x), ip(4x — 1), ip(4x — 2), 

and ip(4x -  3), which are piecewise constant over one-eighth of the unit interval, are generated in 

the same fashion. These functions can be represented by vectors, each entry of which represents 

one-eighth of the unit interval as follows:

1 1 1 0

1 1 1 0

1 1 - 1 0

1 1 - 1 0
, Ip{2 x) = ,if>{2 x  -  1) =

1 - 1 0 1

1 - 1 0 1

1 - 1 0 - 1

1 _ _ - 1 0 _ - 1
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tp(4x) =

1 0 0 0

- 1 0 0 0

0 1 0 0

0
, ipi/ix — l) =

- 1
,ip{4x — 2) =

0
,ip(4x - 3 )  =

0

0 0 1 0

0 0 - 1 0

0 0 0 1

0 0 0 - 1

/  = (2.3)

The next step is to show how to represent an equally spaced function f { x )  on the unit interval 

with the functions <f> and ip of different resolutions. Suppose we have an equally spaced step function 

f ( x )  on the unit interval defined by

F 12 

6 

3 

- 1  

5 

- 1  

1 

-1

The entries in f ( x )  represent the value of the function over one-eighth of the unit interval. Our goal 

is to find constants {«i, 0 <  i <  7} such that

/  =  cto(p(x) + aiip(x) +  a 2 ip(2 x) +  ot$ip(2x — 1) +  a^ip{4x) +  a^ip{4x — 1) 

+a6ip(4x — 2) + ajip{4x — 3).

The process starts with the calculations of the averages (given by 11 ̂ Xi) and one half of the dif­

ferences (given by between consecutive pairs of entries of the function / .  In Figure 2-3,

function f \ ,  which is piecewise constant over one-fourth of the unit interval, is generated by apply­

ing average operations to consecutive pairs of entries of / .  The function / i  is also known as the
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112

d3

-5-3 ±-.1 -1±-1

12

13

d1

3 2 _3_

<a

o

d3

1 0

Figure 2-3: Multiresolution Haar decomposition of a piecewise constant function over the unit 

interval.

wavelet approximation of / .  The differences between consecutive pairs of entries of / ,  which are 

represented by the function d\ in Figure 2-3, are called wavelet coefficients of the decomposition. 

They are also referred to as the wavelet details of the decomposition. A lossless reconstruction of /  

is possible if both f \  and d\ are available.

By applying another decomposition to the approximation function f \ ,  we have two new func­

tions, /2  and <22» which represent the wavelet approximation and the details of the decomposition 

of / i .  To complete the Haar transform for this function, another decomposition is applied to the 

approximation function / 2. The resultant functions, f z  and dz, are now piecewise constant over the 

unit interval. The only entry of function fz  is indeed the average of all the entries in / .

This decomposition procedure is sometimes called a pyramidal algorithm [MaI89]. The func­

tions / ,  / i ,  fz , and fz ,  which are depicted in shaded rectangles in Figure 2-3, represent a multires­

olution approximation hierarchy of the function / ,  with /  being the finest and fz  the coarsest.

The entries in functions fz ,  dz, dz, and d\ (i.e., {3 ,2 ,4 ,1 ,3 ,2 ,3 ,1 } ) are indeed the constants
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{ai, 0 <  i <  7} described in Equation 2.4. So the decomposition o f the function /(x )  is given by

12 1 1 1 0

6 1 1 1 0

3 1 1 - 1 0

- 1
=  3

1
+  2

1
+  4

- 1
+  1

0

5 1 -1 0 1

- 1 1 -1 0 1

1 1 -1 0 - 1

- 1 1 -1 0 - 1

1 0 0 0

- 1 0 0 0

0 -1 0 0

0
+  2

-1
+  3

0
+ 1

0

0 0 1 0

0 0 - 1 0

0 0 0 1

0 0 0 - 1

2.3 Multiresolution Transform and Scaling Function

In this section, we present the definition of a multiresolution approximation of L 2 (R). The definition 

and properties of the scaling function, (j>, which was introduced in Section 2.2, are discussed. The 

implementation of a hierarchical multiresolution transform is also described.

2.3.1 Multiresolution Approximation of Z,2(r)

We briefly describe the vector space, V# C L2(IR) for j  £ Z, which we called a multiresolution 

approximation of L2(R). The vector space Vy can be interpreted as the set of all approximations 

at the resolution 2J of functions in L2(R). Any vector space that satisfies the properties described 

below is a multiresolution approximation of L2(R). In our discussion, we often use the term to
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describe an arbitrary resolution. This is because in an orthogonal wavelet, the size of the function 

f [x)  is always an integer power of two. Before we move on, we need to define a new approximation 

operator and its projection characteristics.

Let A y  be a linear operator which approximates a function f ( x )  G L2(R). We call the approx­

imation a projection since

A y f { x )  = A y { A y f ( x ) )  = A y f { x ) .  (2.5)

The operator, A y , is a projection operator on a particular vector space C L2(R). This space, 

V y , has the following properties:

1. For functions f ( x ) , g ( x )  6 V y  C L 2 (R), ||g(x)  -  f ( x )|| >  \ \ Ay f (x )  — f (x) \ \ .  This means 

that other function g(x) G V y  has a larger difference with function f ( x )  than A y  f .  In 

other words, A y  is the best approximation to /  among all functions in V y .  This is shown in 

Figure 2-4. The shadow area is the span (see Definition 5 in Appendix B) of approximations

V,i

Figure 2-4: Projection of f ( x )  onto space V y.

which defines V y .  The difference f ( x )  — A y f ( x )  is indicated by the dotted vector. By 

definition, A y  is an orthogonal projection of f ( x )  onto vector space V y .

2. The approximated function A y+ i f  contains all the information to compute A y  f .  This can 

be explained visually with a simple example based on the Haar functions. For simplicity, let 

j  =  0. Let / (x) G Vi, and g(x), h(x) G V y  Since function f ( x )  is piecewise constant on the 

unit interval, it can be represented by functions such as g(x)  which is piecewise constant on 

a half unit interval, as depicted in Figure 2-5. This is interpreted as
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9(x) h(x)

0 1 0 0.5 1 0 0.5 1

Figure 2-5: Given f ( x )  G Vj, and g(x),  h(x)  G V2, then V\ C V2 but Vi £  Vi.

V y  C Vy+i

for j  G Z. However, function h(x) G Vi cannot be represented by f {x )  G Vi. Thus

Vy+i Vij .

3. Since the projection operator, A y , is used in all resolutions, the approximated function space 

can be derived from one resolution to another according to their resolution values. This can 

be written as

f ( x )  G V y  <=> / ( 2x) G Vy+i 

for j  G Z. Again we use a box function with j  =  0 to show the idea. In Figure 2-6, / ( i )  G Vlt

9(x)

0 1 0 0.5 1

Figure 2-6: Given f { x )  G Vj, and g(x)  G V2, then f { x )  C Vi g{x) C V2.

and g(x) is a dilated f ( x ) ,  i.e., g(x) =  / ( 2x). And g(x)  is piecewise constant on half unit 

intervals, i.e., g(x)  G V2.

4. When f ( x )  is translated by 2~j n for n  G Z, A y  f ( x )  is translated by the same amount. That 

is to say,

A y  ( f ( x  -  2- J n)) =  ( A y f ) ( x  -  2~J'n)for n G Z.
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5. Since A y f ( x )  is obtained by a projection from /(x ) ,  by definition, A y f ( x )  C /(x ) .  As j  

decreases, the approximated function contains less and less information. On the other hand, 

as j  increases, the approximated function converges to / ( x )  eventually. By Definition 29 in 

Appendix B, these can be described as

.lim  V y  =  [ \ V y  
^ +co jZz

which is dense (see Definition 11 in Appendix B) in L2(R), and

.lim V* = p | V y  ={0}. 
j e z

Theorem 1 For j  e  Z, let be a multiresolution approximation of L2(R). There exists a 

unique scaling function <f>(x) G L2(R) such that if we set <t>y(x) = 2J(j)(2Jx )  for j  G Z, then 

\/2~i faj {x — y /2 ~ i  n), is an orthonormal basis (see Definition 28 in Appendix B) o f V y .

The proof of this theorem can be found in [Mal89]. The Fourier Transform of <f>(x) shows that 

most energy is concentrated on [ - tt/2, tt/2] [Dau92]. In signal processing terms, it has the shape 

of a low-pass filter. A low-pass filter filters out the high frequency component, and passes the low 

frequency range without attenuation.

From Definition 28 in Appendix B, for all f ( x )  G Z-2(R), the orthogonal projection of f ( x )  

onto Vy can be represented as:

+oo
A v f i x )  =  £  (/(« ), (y/2 =J <t>y ( u - 2 - J 'n ) ) )  f a  ( x - 2 - i n ) )

n=—oo
+oo

=  2~3 £  ( / ( “ )> <p2i i u -  2~Jn )) (py ( x  -  2-Jn)
n=-oo

+00

=  2 - i  £  (Ady f ) ^ ( x - 2 ^ n )  (2.6)
n=-oo

where

A i  f  =  </(«), (u  -  2-J 'n )). (2.7)

We call the set of inner products, A ^ f ,  the discrete approximation at the resolution 2J . The infinite 

sum results from the infinite number of vectors in the orthonormal basis in V y . If we consider a 

finite orthonormal basis with vectors xi and X2 , Equation 2.7 can be depicted in Figure 2-7. In an
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f(x)eV,i*i

V, = span(x1,x2)

Figure 2-7: Discrete approximation of f { x )  at the resolution 1? ..

infinite dimensional space, the shaded region represents s p a n { V 2 ~ i  4>y ( z  — 'S%~] n)). But our 

finite example only shows s p a n ( x i, 12).

2.3.2 Implementation of a  Multiresolution Transform

We describe an iterative algorithm to calculate the approximations. For n g Z ,  4>y{x — 2- -'n) £ 

V y  C V y+ i. (py (,x — 2“ J’n ) can be expanded in Vy+i as

4*00

<pv ( x - 2 j n) = ifhf (« ~ 2 - jn) ,V2 - j - l<t>y+i(u -  2 ~j ~lk)) y/2 ~ i- l 4>2J+i(x -  2 ~j ~lk}
Jt=-CO

-l-oo
= 2' j ~l 5 1  <*>(« -  2 ~j n), fos+i (« -  2 ~J~lk)) (x -  2 ~j~1k). (2.8)

A:=—00

By dilating the scaling functions and changing variables, the inner product integral can be written 

as:

2-J_1 (,<t>y (u -  2 'Jn), fo + i (u -  2 ^ ' l fc))

• 1 f +°°
= 2 ~3~ /  ( p y { u - 2 ' ]n)(j)y+i { u - 2 - ^ xk)

J —OO

r+oo 
-00

■ , r+oo
=  2 - J - 1 /  2J0 (2 - '(u -2 -- 'n ) )2 ''+V (2i+1( u - 2 _J' " lA :))^J -OO

r+°°
du

-00

r+00

-00 r+00
dry

-00

-OO 
i-4-oo

dw

/ + O C

4>{2 Ju - n )  <f>{2 j+lu - k )
•OO

/H-OO

0(2“ 1u») 0(2>+ l( 2 " '( 2 - l u; +  n)) -  A) 2 " ^
-OO

/ + O O

0(2“ l ti;) 0(2(2- l tu + n ) - k )  2 ~j ~ l
-OO

/ + 0 0

2" <p(2 ~ lw) <p(w + 2 n — k)
-00

/ + 00
4>2-1  (to) <£(«; -  (A: -  2n ))

-OC
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Substituting Equation 2.9 into Equation 2.8, we get

+00
<j>v {x — 23n) = ^ 2  {(f>2-y.{u), 4>{u — { k — 2n))) <f>y+i{x— (2.10)

fc= —OO

Substituting Equation 2.10 into Equation 2.7, we have

A ^ f  =  {f{u), <j>2i( u - 2 ~ 3n))

=  ^ / (« ) ,  ^  ( k - 2 n ) ) )  <f>2j+i ( u - 2 ~ J~ lk)^^l

+00

S  { 0 2 -* M ,0 (u - (A :-2 n ) ) ) )  {f{u),<p2j+i { u - 2 3 l k)).  (2.11)
kfc=-00

Let H  be the discrete filter with impulse response h(n)  such that for n e  Z,

h{n) =  {<t>2 -i{u),  4>(u-n) ) , (2 . 12)

and let H  be the symmetric filter such that h(n) = h{—n). By substituting Equation 2.12 into 

Equation 2.11, we have

+00
A & f  =  (/(«)» <fo (« -  2_ jn)) =  £  h(2n  -  k) </(«), (« -  2 ^ - ^ ) ) .  (2.13)

k=—00
Mallat [Mal89] describes Equation 2.13 with a tree hierarchy. The approximation, A ^ f ,  can be 

calculated by convolving A ^ +1f  with H  and keeping every other sample of output. This is illus­

trated in Figure 2-8 which can be explained by the Haar example in Section 2.2. The convolution of

-A y /G 4 0

— -A^j+i f H I E

I E

1 0

: keep even sample 

: keep odd sample

- * 4 / —

: convolve with filter X

Figure 2-8: A^+i /  is decomposed into a coarser approximation Ai, f  and detail jD2j /
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H  with function /  of Equation 2.3 is given by

A d2f  = H f  =

1 i
2 2

1 1 
2 2

1 1
2 2

1 1
2 2

12

6

3 (0
 

__
_

1

- 1 1

5 to

- 1

-----1
o

1

1

-1

By repeating the same process as described in Figure 2-8, we have

A di f  = H  A d2f  =
1 i
2 2

1 I
2 2

1
o

1

1
1

Ol
 

— 
1

.. . 
. 2

----11

1--
--- o 1

and
r -] 5 r -|

II in to 
B II 1 1 

2 2

II 3
1

which is the last and the only high frequency (ao in Equation 2.4) left in the vector.

(2.14)

(2.15)

2.4 The Wavelet Representation

2.4.1 The Detail Signal

The second part of a wavelet transform involves the extraction of the difference, known as the 

detail, between A y + i f i x )  and A y f i x ) .  By applying Theorem 5 and Definition 29 in Appendix B, 

the detail at resolution 2J , O y , is given by the orthogonal projection of f ( x )  onto the orthogonal 

complement of

O*  = ( ^ ) x ,
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and

Ofy © Vjy =  V2J+1. (2.16)

To calculate the projection on O y, we need to define its orthonormal basis.

Theorem 2 For j  6  Z, let (Vj,) j€z be a multiresolution vector space sequence, <p{x) the scaling 

function, and H  the corresponding conjugate filter. Let ^(a;) be a function whose Fourier transform 

is given by tp(u>) =  G (^ )0 (^ )  with G(w) =  e _twff(a; +  it) where <j> is the Fourier Transform of 

<(>. Let ipy (z) =  2^ip(23 x) denote the dilation of rf>(x) by 2J . Then (y/2~^'tp2j (x  ~  2Jn ))nez is an 

orthonormal basis of O y  and (y/2 ~^tpv (x  ~  ^ n ))neZ2 's an orthonormal basis of L 2(R). tp(x) is 

called an orthogonal wavelet.

The proof of this theorem can be found in [Mal89]. According to Definition 28 in Appendix B and 

Theorem 2, the orthogonal projection onto space Ov , Po^ f(%), can be represented as:

+00
P o y f i x )  =  ( / ( “ )» V»2i i u ~  2_Jn))) ( V ^ 7  i fo fa  -  2~Jn))n=—00

+00
=  2~J 5T ^ ( u ) ’ (u -  2“ J‘n )) (tp2j(x-2~Jn)). (2.17)n=-oo

We call the set of inner products,

D2>f = ( / ( “ ), ^ 2>(u ~  2~Jn)), 

the discrete detail at resolution 2J. It contains the difference of information between A!^+lf  and

2.4.2 Implementation of an Orthogonal Wavelet

The implementation of an orthogonal wavelet is very similar to the previous discussion of a mul­

tiresolution transformation. For n 6 Z, ipv  (x  ~  2~-7n) €  O y  C V2J+i. So ip# (x  ~  2~Jn) can be 

expanded in V^+i as

OO
ip2i( x - 2 j n) = (ip2> (u ~  2~j n),  (u -  2~j ~lk)) y /2 - i - l <t>2,+i (x  -  2~j ~ l k)

fc=—00
00

= 2_j-1 5Z d>21+i ( u - 2 - i - l k)) <t>2l+x { x - 2 ~ j ' l k).  (2.18)
k= — cc
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Much like Equations 2.8 to 2.11, we have

19

D v f  =  (/(«)> 2 j n))
+oo

=  Y  ('ip2 - i ( u ) , 4 > { u - { k - 2 n ) ) )  ( / (u ) ,  <j)2j + i { u - 2 ~ j ' l k)).  (2.19)
k~—oo

Let G be the discrete filter with impulse response

g(n) = {ip2 - i (u) ,  <t>(u~n)), (2.20)

and let G  be the symmetric filter such that g(n) =  <?(—n). By substituting Equation 2.20 into 

Equation 2.19, we have

+00

( /(« ) ,  {u — 2  Jn)) =  Y i  Q & n - k )  ( f (u) ,  <$>■»+i ( u - 2  j  l k)).
k=—oo

This process can be described by the tree hierarchy depicted in Figure 2-8 of the previous section. 

The detail Dv  f  can be obtained by convolving A ^ + i f  with G  and retaining every other sample of 

the output. A more detailed explanation of the implementation can be found in [Mal89].

Once again, we use the Haar example in Section 2.2 to explain the process. The convolution of 

/  in Equation 2.3 with G  is given by

D 2 2 f  = G f  =

12

6

3 3

-1

CM

5 3

-1 1

1

-1

By repeating the same process, we have

D 2i f  =  G A d2i f  =

i

0
5

I

1

1------------

i

2 1•

r

O

i
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and
r i 5 r 1

f  = G A y  f  — 1 1 
2 2

=r to

1

20

(2-21)

This completes a Haar wavelet decomposition.

G is the mirror filter of H.  While H  is a low-pass filter, G  is a high-pass filter [Mal89]. A ^ f  

gives the approximation of function / ,  while Dv f  gives a measure of irregularity of the infor­

mation between consecutive resolutions. Whenever the difference between A ^ +lf  and A ^ f  are 

significant, D& f  has high values.

2.4.3 Signal Reconstruction

We now show that the original vector /  can be reconstructed by reversing the previous process of 

decomposition. By Equation 2.16, Theorem 1, and Theorem 2, the function f a+i  (x -  2- J - l n) can 

be decomposed into

(p 2j+ i( x  — 2~J~1n)
+00

=  5 3  (u — ^ + l(« — 2_J~ 1n)) V 2 — 2 ~Jk) +
k——oo 

+oo
5 3  (u — \ / 2 ~i(f)v +i (u — 2 - J - l n)) y/2 ~jip2i (x — 2 ~^k)

k=—oo
+oo

=  2-J ^  (u — 2 ~j k), 02J+1 (« -  2_J-1n)) ^  (x — 2~Jfc) -p
fc=—oo 

+oo
2' J 5 3  W v  ~  f e +1 (u -  2_J_1n)) -  2- J fc). (2.22)

k=—oo
If we take the inner product of f{ x )  with both sides of Equation 2.22, we have

(/(«)> 0 2 >+i ( u - 2 " J’~ 1n))
+00

=  2~J 5 3  (0 2/( u - 2 - ^ ) 1 02 i + i ( « - 2 - J‘- 1n)) ( /(u ) , 02 , ( x - 2 ^'A;)) +
k=—oo

+oo
2_; 5 3  ( 0 ^ ( u “  2"-7A:), <f>2J+i(u -  2~j ~ ln)) (f{u), ip^ (x -  2~j k)) 

fc=—oo
+oo

=  2 5 3  4> {u -{k -  2n))) ( / (u ) ,  <f>2}{x ~ 2 ~ j k)) -p
oo

+oo
2 £  (V>2- :  (u), 0(« -  (* -  2n))) </(«), 0 2 , (x -  2~>fc)). (2.23)

k——oo

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21

Substituting Equation 2.12 and Equation 2.20 into Equation 2.23 yields

(/(« ) , (x  — 2 ~J~ ln))
+00  +00

=  2 £  h ( n - 2 k) ( f (u) ,  < f a ( x - 2 ' ’ k ) ) + 2  £  g{n -  2 k) (f(u),  f a  (x -  2 ~’ k)).
fc=—OO f c = —oo

Mallat [Mal89] uses another tree hierarchy to explain the data reconstruction process. Approxima­

tion A%+lf  is reconstructed by putting one zero between each sample of A y  f  and D& / ,  and then 

convolving the resulting data with filter H  and G, as shown in Figure 2-9.

: multiplication by 2: convolve with filter X  

: put one zero before each sample 

: put one zero after each sample

t  B

t  A

Figure 2-9: Reconstruction of A y +lf  from a coarser resolution A ^  f  and detail Z)2. / .

For example, we have A \0f  =  [3] from Equation 2.15, and D 2o f  = [2] from Equation 2.21. After 

inserting zeros, [3] becomes 

before the reconstruction filter is applied, i.e.,

A d2lf  =

3 0 3
and [2] becomes . They are then put together as

0 2 2

1 i
2 2 3 5

2
1 1 2 1

. 2  2 . . 2 .

After the operation, we have

A d22f  =

as shown in Equation 2.14.
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2.5 Multidimensional Orthogonal Wavelet Representation

We extend our discussion of wavelet representation from one dimensional to multidimensional func­

tions. Mallat gives the first implementation of an orthogonal wavelet representation of a two dimen­

sional function / ( x ,  y) G L 2 {R2) in [MaI89]. It is proved that each two dimensional vector space 

can be decomposed as a tensor product of two identical subspaces of L2(R),

(2.24)

and the scaling function <$(x, y) can be described as

$ (x ,y ) =  <£(x) 0(y),

where 4>(x) is the one dimensional scaling function of the multiresolution approximation V y . Let 

$ 2j (x, y) =  22J <&(2j x , 23 y). The orthogonal basis of V y  can be written as

2~J $ y  (x — 2~3 n, y — 2~Jm)

for (n, m) G Z. The approximation of function / (x ,y )  at resolution 2J , A y f { x , y ), can then be 

described by the inner products

A y f ( x , y )  = (f ( x , y ), <f>y{x -  2 ~3 n) <f>y(y -  2~j n)).

Mallat [Mal89] states that by extending Theorem 1, we can build an orthonormal basis of Ov  by 

scaling and translating three wavelet functions '51(x,y), '52(x, y), and '53(x, y).

Theorem 3 For j  G Z, let be a separable multiresolution approximation of L2(R.2). Let

$(x, y) =  <p(x) <j>(y) be the associated two dimensional scaling function. Let ip(x) be the one 

dimensional wavelet associated with the scaling function 4>(x). Then, the three wavelets

y l {x,y) =  <t>{x) ip(y),

y 2 (x,y)  =  tp{x) 4>{y),

^ 3(x,y) =  ip(x) il>(y). (2.25)

are such that

{2 ~3 ^ { x - 2 ~3 n, y —2 ~Jm ) , 2 ~J'S'ly(x-2 ~3 n, y - 2 ~3 m ) , 2 ~3 < by(x-2 ~j n. y - 2 ~j m ) ) {n,m )6 Z 2
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is an orthonormal basis of Oy  and

(2 "J$ ^ ( x - 2 ~j n, y - 2 ~ j m),2~j ^ l j (x -2~:in1 y - 2 -:,m ) ,2 - J ^ | , ( x - 2 _Jn, y - 2 ~ j m ) ) ^ m)€Z3 

is an orthonormal basis of L2(R.2).

The proof of this theorem can be found in [Mal89]. The difference of information between A ^ +lf  

and A%j f  is given by three details

D & f  = ((f (x ,y) ,  - 2 ~ Jn, y - 2 ~ j Tn))),

D y f  =  ( ( f ( x , y ) ,  ^ l j ( x - 2 ~ Jn ,  y - 2 ~ j m) ) ) ,

D \ i f  =  i ( f ( x , y ) ,  ^ l i ( x - 2 ~ 3n, y ~ 2 ~ j m))),  (2.26)

for (n, m) £  Z2.

An example of a two dimensional wavelet transform is depicted in Figure 2-10. The function

1 ; ; ; ;

1 
1 

1 
1 

< 
( 

( 
1 ; ; ; ;

r  i  r  i
! ! 1 !

Adf PS*

<4*

-a*

i it iT-T  I t

|  if If H if If if if

Figure 2-10: Wavelet transform on two dimensional function/(x, y ).

f ( x , y) in the upper left comer is a discrete 8x8 array. Since the three wavelet ('J'Uzi y), ^ 2(x, y), 

and ^ 3(x,y)) are given by separable products of the functions <f> and tp, the approximations and 

details can be computed by separable filters. In this example, one dimensional wavelets are applied
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to each row of function f ( x , y ) ,  followed by an application of a one dimensional wavelet to the 

columns of the result. The resultant approximated functions and details are shown at the bottom 

half of Figure 2-10.

Muraki [Mur92, Mur93] further expands this two dimensional wavelet transform into three di­

mensions. Much like Equation 2.24, the vector space Vv  is now decomposed as a tensor product of 

three identical subspaces of L2(R),

V# =  0 ^ ,

and one can construct an orthonormal basis L2(R?) by the following seven wavelets:

V l (x,V,z ) =  4>(x) <t>(y) 1p(z)

V 2 ( x , y , z ) = <£(x) ■<P(y) <f){z)

$ 3 {x,y , z) = i>{y) 1 >(z)

$ 4 {x,y, z) = 1p(x) <t>{y) <t>{z)

^ 5 (x,y,  z) =  1 >(x) <t>{y) 1 >(z)

V 6(x , y , z ) =  i>(x) i>(y) <f>(z)

y 7 (x , y , z ) = i>(x) 1 >(v) 1p(z)

In fact, this process can be expanded to any dimension [Dau92], When the dimensionality grows, 

the number of equations gets larger, and each of the equations gets longer. It is computationally 

expensive to apply wavelets to high dimensional data.
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Chapter 3

Multidimensional Multivariate 

Visualization

In this chapter, we describe the concepts and applications of the field of multidimensional multivari­

ate (mdmv) visualization. We begin in Section 3.1 with a historical overview. We then introduce the 

terminology of mdmv in Section 3.2. Finally, Section 3.3 highlights some of the most commonly 

used mdmv visualization techniques.

3.1 Background

The last three decades of mdmv visualization development can be roughly characterized into four 

phases. The classic exploratory data analysis (EDA) book by Tukey [Tuk77], the 1987 NSF work­

shop on Visualization in Scientific Computing [MDB87], and the IEEE Visualization ’91 confer­

ence [NR91] are the watersheds defining these phases. The first phase was primarily concerned 

with the graphical presentation of either one or two variate data. The second phase was dominated 

by Tukey’s exploratory data analysis. Scientists started looking at graphical data with a different 

perspective. Although most of the graphics was still two dimensional, scientists were able to en­

code data with multiple parameters, i.e., multivariate, into meaningful two dimensional plots. The 

momentum of this work carried on through the next phase when NSF recognized the importance 

of mdmv data visualization. The involvement of computer scientists accelerated the growth of the 

research by computerizing many of the old ideas and developing many new ones. The mission was 

formally defined and many promising concepts were developed during the following few years. The

25
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final (current) phase is concerned with the elaboration and assessment of mdmv visualization tech­

niques. It remains to be seen whether the existing mdmv visualization concepts can lead to better 

visualization of a problem and better understanding of the underlying science.

3.2 Terminology

Unfortunately, the mdmv literature suffers from ill-defined and inconsistent terminology. The term 

dimensionality is especially overloaded. Some people consider dimension as the number of inde­

pendent variables in an algebraic equation [MGTS90]. Others take dimension as measurements of 

any sort (breadth, length, height, and thickness). Even the prefix multi is frequently interchanged 

with another prefix hyper. In statistics literatures, the prefix multi means two or more, indicating 

a natural breakpoint between one and two dimensions in probabilistic methods. For the breakpoint 

between three and four (or beyond), the prefix hyper is used [Cle93]. We use the prefix multi to 

refer to dimensionality of two or more.

Beddow [Bed92] points out the difference between multidimensional objects and multidimen­

sional data. Multidimensional objects are spatial objects, and the goal is to understand their geom­

etry. The most common forms are two dimensional images and three dimensional volumes. They 

can best be described as compact subsets of n  dimensional Euclidean spaces R " . Multidimensional 

data, on the other hand, represents sparse sets of n  dimensional points which represent multiple 

parameters. Mathematically these parameters can be classified into two categories: dependent and 

independent [KK93]. Some statisticians prefer the terms factor and response [Cle93], A variable is 

said to be dependent if it is a function of another variable, the independent variable. The relationship 

of an independent variable x  and a dependent variable y  can best be described by the mathematical 

equation y  =  f ( x ) .  We adopt the convention that the term multidimensional refers to the dimen­

sionality of the independent variables, while the term multivariate refers to the dimensionality of 

the dependent variables [BCH+95]. This is the most popular way to describe the dimensionality of 

mdmv data sets in scientific visualization literature. For example, a three dimensional volume space 

in which both temperature and pressure are observed and recorded in various locations produces 

3d2v data. Beddow [Bed92] argues that analytic methods used to explore n-dimensional Euclidean
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spaces R" are not appropriate for general multivariate analysis. In mdmv visualization research, the 

emphasis shifts away from the strong mathematical definition of dependent and independent vari- 

ates towards the broader definition of multiple variables or factors. This happens not only in mdmv 

scientific visualization research but also in statistical studies. The tools are different, but the goal is 

the same: to find the hidden relationships between the variables (also known as fitting in statistics).

In general, raw scientific data can be categorized into a hierarchy of data types. The most 

general and the lowest of the hierarchy is nominal data, whose values have no inherent ordering. 

For example, the names of the fifty states are nominal data. The next higher type of the hierarchy 

is ordinal data, whose values are ordered, but for which no meaningful distance metric exists. The 

seven rainbow colors (i.e., red, orange, . . . )  belong to this category. The highest of the hierarchy is 

metric data, which has a meaningful distance metric between any two values. Times, distances, and 

temperatures are examples. If we bin metric data into ranges, it becomes ordinal data. If we further 

remove the ordering constraints, the data is nominal.

The above 3d2v temperature/pressure example more or less implies that each 3 dimensional 

coordinate contains simple (i.e., neither a set nor an interval) and atomic (i.e., not composite) val­

ues of pressure and temperature. This is different from the case when we measure, for example, 

the chemical contents of a volume. Each coordinate now has a set (instead of a simple value) of 

composite data (e.g., chemical elements). The varying numbers of values of a  variate plotted in any 

single dimensional point is known as the density of that coordinate.

3.3 Visualization Techniques

This section summarizes the general concepts of some of the most commonly used mdmv techniques 

including scatterplot matrix, HyperSlice, parallel coordinates, and brushing. These techniques are 

used in the examples and illustrations throughout the thesis.

3.3.1 Scatterplot Matrix

The traditional two dimensional point and line plots are among the most popular visualization tech­

niques for data with a small number of variates. This technique can be enhanced by putting an array
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of plots into one display, so as to add another variate to the visual presentation.

One of the more popular statistics mdmv visualization techniques is the scatterplot matrix which 

presents multiple adjacent scatterplots. Each display panel in a scatterplot matrix is identified by 

its row and column numbers in the matrix. For example, the identity of the lower left panel of the 

matrix in Figure 3-1 is (1, I), and the upper left panel is (3, I). The empty diagonal panels denote

1 1 1 
— - i O i

i W i

i i i
O u- j - - lÔ  o  1I W i i 

, .<)• Z
■ O' : ; o

o o o  o o '  o  6
‘fV ‘* W 1 1---,--r - T---i © i Y A 1I W r r--1----,--,---

i © i
: o  : : o

X
i i i
ig i  

— r “ t  “ r©’

i i i
—1 _ - ~ ig i
o C o f f -' ” T  "© ~ *1--t 1 1

Figure 3-1: A scatterplot matrix display of data with three variates X ,  Y ,  and Z.

the variable names. Panel (1, 2) is a scatterplot of parameter X  against Y  while panel (2, 1) is 

the reverse, i.e., Y  versus X .  In a scatterplot matrix, every variate is treated identically. The basic 

idea is to visually link features in one panel with features in others. The redundancy is designed to 

improve the effect of visual linking. The technique is further enhanced with the help of reference 

grids. The pattern can be detected in both horizontal and vertical directions. The concept of linking 

is also discussed in [BMMS91].

Despite the popularity of scatterplot matrices in mdmv visualization applications, nobody knows 

the identity of the original inventor [Cle93], The technique was first presented in [CCKT83]. A 

variety of powerful tools using this kind of multi-panel display are presented in [Cle93],
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3.3.2 HyperSlice

Like the scatterplot matrix, HyperSlice [vWvL93] has a matrix of panels, although each individual 

scatterplot is replaced with color or grey shaded graphics representing a scalar function of the vari- 

ates. Furthermore, panels along the diagonal show the scalar function in terms of a single variate.

HyperSlice defines a focal point of interest c =  (ci, C2 , • • •, Cp) and a set of scalar widths Wk, 

where k  =  1, • • •, n. Only data within the range R k  =  [c* — tu*/2, Ck +  iOfc/2] for each k  are 

displayed in the panel matrix. Other data only appears if the user steers the focal point near it. Like 

the coordinate system used in the scatterplot matrix, a  HyperSlice panel is identified by a horizontal 

and a vertical coordinate. For an off-diagonal panel (z, j )  such that i ^  j, the color shows the value 

of the scalar function that results from fixing the values of all variates except i and j  to the values of 

the focal point, while varying i and j  over their ranges in R i and R j  respectively. The (*, i) diagonal 

panel shows a graph of the scalar function versus one variate which changes over its range in Ri, 

with all other variate values fixed at c* for k  ^  i.

The most important improvement of HyperSlice over the traditional scatterplot matrix is the 

idea of interactively navigating in the data around a user defined focal point. The user changes the 

focal point by interacting with any of the panels, as shown in Figure 3-2. The user moves the mouse

X5 - — M
X4 t / t HI t
X3 - ■
X2 t t * ♦
X1 P -

X1 X2 X3 X4 X5

Figure 3-2: Navigate a five variate HyperSlice by dragging panel (2, 4).
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into any panel and defines a direction by button down, move, and up. For example, the boldface 

arrow in panel (2, 4) (using the coordinate system described previously in Section 3.3.1) represents 

such an interaction. The direction of each arrow shows the motion of the focal point when the focal 

point is dragged in panel (2, 4). Notice that the length (magnitude) of the vertical arrows across 

the X i  row, is the same as the vertical component of the arrow in (2,4). Similarly, each horizontal 

arrow in column X \  has the same length as the horizontal component of the arrow in panel (2, 4). 

Panels solely related to X \ ,  X$, and X 5 move perpendicular to the image plane. Since the matrix is 

somewhat similar to an orthogonal matrix (along the grey diagonal panel), the motion in the upper 

left half is the mirror projection of the lower right.

Interactive data navigation is a welcome addition to direct manipulation graphics. Changing the 

focal point in one panel affects two variates which in turn results in simultaneous visual changes in 

displays of these variates with others. HyperSlice is an example of a successful elaboration which 

builds on another successful tool.

The basic ideas of HyperSlice can be extended to discrete datasets using data projection in a 

technique called prosection [STDS95, TSDS96]. Chapter 9 presents a dual multiresolution Hy­

perSlice which allows a user to control the physical data resolution using orthogonal wavelets, as 

well as the logical display resolution using norm projections. The system provides a progressive 

refinement environment to support very large data visualization.

3.3.3 Parallel Coordinates

All techniques we have discussed so far are designed to do data analysis on multidimensional data. 

They are not really aimed at studying the geometry of multidimensional objects. Parallel coordi­

nates [IRC87, ID87, ID90], on the other hand, can do both.

In a parallel coordinate system, the axes of a multidimensional space are defined as parallel 

vertical lines separated by a distance d. A point in Cartesian coordinates corresponds to a polyline 

in parallel coordinates. To avoid confusion, we use lower case letters for lines, and upper case letters 

for points in Cartesian spaces. In parallel coordinates, we use similar conventions except we put a 

bar superscript on all letters.
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To see how a multidimensional object is represented in parallel coordinates, consider a simple 

two dimensional straight line

I : x 2 =  m x  i +  6

where m  < oo. In Figure 3-3, the continuous straight line in Cartesian coordinates is sampled,

X2

Figure 3-3: Left: Two dimensional Cartesian coordinates. Right: Parallel coordinates.

and the values are plotted on corresponding axes in parallel coordinates. A collection of points, A, 

sampled from a straight line in Cartesian coordinates, corresponds to a set of lines A  in parallel 

coordinates that intersect at the point 7,

-  ‘ )
\1  — m 1 —m j

for m  ■£ 1. For example, given a straight line s i /2  — x2 -t- 1 =  0, and d = 5, we get m  =  

1/2 and 6 =  1. When the sampled points are plotted in parallel coordinates, all lines intersect at 

( 1- 1/ 2 ’ i~- i / 2 ) =  (10’ 2), as shown in Figure 3-4. Notice that the location of the intersection point 

shows an important property of the data. In Figure 3-3 where two variates x \ and x2 are inversely 

proportional to each other, i.e., x i oc l / x 2, the intersection point is between the two parallel axes. 

In Figure 3-4, where variate x \  is directly proportional to x2, i.e. oc x2, the intersection point is 

located outside the two parallel axes.

Parallel coordinates allow humans to visualize three dimensional time series data as a single 

static display. A simple application is aircraft collision checking [ID90]. In Figure 3-5, the loca-
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X2

X1

X2

Figure 3-4: Left: The straight line, ari/2 — X2 +  1 = 0 ,  is plotted in Cartesian coordinates. Right: 
the same line is plotted in parallel coordinates. The intersection point, (10,2), is located outside the 
two axes.

z

2 . —

1 ■ r '- - > '"•
0 •  ------

A ........

^ ------

Figure 3-5: Left: Locations of two aircraft in three dimensional Cartesian coordinates at time 0. 
Right: The trajectory is plotted with time axis, T, in parallel coordinates.

tions of two aircraft are displayed in one frame using Cartesian coordinates and parallel coordinates 

showing all frames simultaneously. It is almost impossible to confirm a collision solely by judging 

the locations of two aircraft in any one single view of a three dimensional Cartesian plot. For exam­

ple, suppose we have an isometric projection [FvDFH90] with three aircraft located at coordinates 

(0 ,0 ,0), (1 ,1 ,1), and (2,2,2) at time t. They are all displayed at the same spot, yet no collision 

occurs. On the other hand, a parallel coordinate plot including time t, and the coordinates x, y, z  is 

shown on the right hand side of Figure 3-5. Two aircraft collide if and only if they are in the same 

location at the same time. That means there will be a collision in location (2,2,1) at T  =  2. A 

four dimensional intersection can be detected by searching for any overlapping dashed lines. In our 

example, an overlap is detected at (2 ,2 ,2 ,1 ) of the parallel coordinate plot.

To help avoid collision, parallelograms can be defined along with the trajectory of the aircraft. 

The number, size, and shape of the parallelograms are computed according to each plane’s relative
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velocity and locations with respect to others, as shown in Figure 3-6. If the two aircraft are flying at

z

<$>
A

Figure 3-6: Left: Conflict parallelogram. Right: At time t, the graph shows the location of one 
aircraft is not entirely inside the grey area of the others, so no collision occurs.

the same velocity, the lower right hand aircraft must avoid any contact with the parallelogram of the 

upper left hand aircraft. In Figure 3-6, the safety zone is indicated in grey in the parallel coordinate 

plot. There is a conflict at any time if the plotting of location/time of one aircraft is entirely inside 

the grey area of another. Like our previous example, it is almost impossible to spot the conflict in a 

single three dimensional Cartesian plot.

Parallel coordinates can also be used to study correlations among variates in mdmv data anal­

ysis. By spotting the locations of the intersection points (see Figures 3-3 and 3-4), we can have a 

rough idea about the relationships between each pair of variates. This is one of the more promising 

applications of parallel coordinates in mdmv visualization. The problem with this technique is the 

limited space available for each parallel axis. The display can rapidly darken with even a modest 

amount of data.

3.3.4 Brushing

Brushing was first presented in [BC87] and is included as one of the many direct manipulation tech­

niques in [Cle93]. Buja et al. [BMMS91] used the terms focusing and linking to describe various 

brushing techniques. Focusing involves data selection, dimension reduction, and data layout manip­

ulation such as zooming. A sequence of focusing views are linked together so that the information 

of individual views can be integrated into a coherent image.
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Cleveland [Cle93] describes two kinds of brushing for a scatterplot matrix: labeling and en­

hanced Unking. Labeling involves an interactive brush (e.g., a mouse pointer) that causes informa­

tion label(s) to pop-up for particular display item(s). In enhanced linking, the brush is an adjustable 

rectangle. It is used to cover a set of points in one of the panels. Figure 3-7 shows a rectangle brush

Z
0+0 oJ  I. _  J  _

Y
+' 9 O

:+ I •I I
i 'O'
<i : o

X
Figure 3-7: Enhanced brushing with the square brush located on panel (3,2).

in panel (3,2). Data inside the rectangle is displayed with a “+” instead of a “o.” The same changes 

are applied to the corresponding data points in the other panels. By looking at different panels and 

comparing the vertical and horizontal extent of the brush, this enhanced linking technique provides 

a powerful direct manipulation tool for visual analysis. The effect of brushing is more intense in a 

dynamic interactive display. More applications can be found in [Cle93],

3.3.5 XmdvTool

Cleveland begins and ends his book [Cle93] with the same quote, ‘Tools matter”. The idea is that 

you have to pick the right technique to visualize mdmv data. The implication is that no technique 

alone is powerful and flexible enough to handle all mdmv scientific data. Ward [War94, MW95] 

integrates four popular static mdmv visualization techniques into a single analysis system, Xmdv­

Tool. The four techniques included are: scatterplot (panel matrix), dimension stacking (hierarchical 

display), star glyph (iconography), and parallel coordinates. The original brushing [BC87], which
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relies heavily on mouse clicking interaction, is modified into a more complicated tool with user- 

controlled parameters. A user can control the shape, size, boundary, position, motion, and orien­

tation of the ra-dimensional brush. Some of these parameters are customized while the others can 

be controlled with slider widgets. The original brushing was implemented on the scatterplot matrix 

only. Brushing in XmdvTool is implemented on all four options. One of the major differences com­

pared to the original version is that the brush itself is also displayed with the brushed data as shown 

in Figure 3-8.

Figure 3-8: A high dimensional data brushing is applied to a four variate dataset. The grey area 
indicates the data brush.
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Chapter 4

Issues of Multiresolution Data 

Representation

In Chapter 1 we briefly describe the concepts of a multiresolution data hierarchy. This chapter 

presents the design and implementation issues of an effective data hierarchy. In particular, we 

discuss important issues of building data hierarchies according to resources and requirements.

4.1 Multiresolution Visualization

We begin with an adaptive multiresolution data analysis example of a real-life scientific dataset. The 

dataset contains concentrations of seven chemical elements provided by the Greenland Ice Sheet 

Project Two (GISP2) [MMM+93] from the Institute for the Study of Earth, Oceans and Space of 

the University of New Hampshire. The GISP2 project recovered a two mile long ice core from the 

central plateau of the Greenland ice sheet. The resultant record covers a period of 20,000 years, 

and provides a multivariate time-series record documenting climatic and atmospheric change and 

forcing.

The multivariate dataset used in this example covers the past 13,000 years. The data has seven 

variates. We extract one o f them (8,192 records of calcium concentration) to illustrate a complete 

multiresolution hierarchy of one dimensional one variate data. The data is first decomposed by a 

Haar wavelet to form a fine to coarse hierarchy. A partial reconstruction is then presented to simulate 

a multiresolution analysis process. Some of the characteristics of this process are highlighted.

36
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4.1.1 Wavelet Decomposition

In Figure 4-1, the graph at the top is the original data, and the rest are approximations at various res-

Figure 4-1: Wavelet decomposition of GISP2 calcium data. The top graph is the original data; the 
rest are approximations with 4,096, 2,048, 1,024 and 512 data values.

olutions. Polylines are used to plot the approximation data. Lower calcium concentrations indicate 

conditions similar to today’s warm climate and higher concentrations indicate colder and glacial 

conditions. For example, the first peaks moving from left to right of these graphs are identified 

as the Younger Dryas Events, a 1,300 year period of cold and glacial conditions that ended about 

11,000 years ago. The peaks on the right are the Last Ice Age which ended about 15,000 years ago.

These five graphs illustrate a fine to coarse decompositions of 8,192 data items. The top graph 

was generated from the entire dataset. The rest of the graphs have 4,096, 2,048, 1,024, and 512 

data values. While megabyte sized data is not considered very large data, this example shows the 

zooming capability of an orthogonal wavelet. Bear in mind that some of the fine details are invisible 

in the higher resolution graphs because the data has higher resolution than the laser printer output.
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Figure 4-2: Wavelet decomposition of GISP2 calcium data with 256, 128, 64, 32, and 16 data 
values.

Figure 4-2 shows the next five resolutions with 256, 128, 64, 32, and 16 data values. After five 

resolutions of decomposition with 256 approximations left, the graph at the top of Figure 4-2 still 

retains an excellent approximation of the original data. Even in the bottom graph of Figure 4-2, we 

can still see the peak of the Last Ice Age with only 16 data values left.

4.1.2 Wavelet Reconstructions

Figure 4-3 depicts a hierarchical partial reconstruction of wavelet coefficients from the previous 

decomposition. In this example, we start with a very coarse resolution with only 32 coefficients. 

After the interesting area (the dotted rectangle on the right side) is identified, we study the marked 

data at a resolution that is three levels up in the hierarchy using 256 coefficients (23 x 32 =  23 x 25 =  

28 =  256). The zooming to finer resolutions (i.e., more coefficients) of the marked data continues 

until it reaches a resolution defined by 4,096 coefficients. At this point we are positioned to study 

the true original data of the first major peak of the Young Dryas Events (the dotted rectangle on the
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Figure 4-3: A partial reconstruction hierarchy. Dotted rectangles mark the zooming windows. 
Double-head arrows indicate the same time frame, which is the Younger Dryas, in every resolu­
tion.

left side). This subset of the original data is presented in the bottom graph.

One of the important points illustrated with this example is the power of multiresolution hier­

archy generated by orthogonal wavelets. In this case, we identify the interesting spots from a very 

fast but somewhat less accurate display of 32 data items. Even though the original data is a rela­

tively small dataset, the important idea is the number of resolutions in the hierarchy. Theoretically, 

for data with 8,192 items, a total of 10 resolutions can be generated with a compactly supported 

orthogonal wavelet. Terabyte sized data, however, can be scaled down to gigabyte sized data, also
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in the same number of resolutions with the same wavelet. Larger sized data can be considered as a 

longer version of this example.

Another point we wish to illustrate here is the ability to access any subset of the data in any 

resolution. Instead of saturating available resources on sending/receiving huge amounts of data, 

only a subset of data (small enough to be displayed on screen) is transported at a time.

4.2 Adaptive Resolution

As shown in Figure 1-3 of Chapter 1, the wavelet decomposition generates more data to build the 

multiresolution hierarchy. For one dimensional data with N  data items, the first decomposition 

generates N /2  approximations and N /2  details. The remainder of the hierarchy (including approx­

imations and details of every stage) occupies

N  N  N  N
¥  +  T  +  T  +  l 6 + ' " i N

units of memory. Thus an upper bound on memory is iV/2 +  N /2  +  N  =  2N  units. In this example, 

we also assume the original input is destructable, otherwise another N  memory units are required 

to keep it. This scenario supports the fastest data access, but also requires the largest amount of 

memory.

We can still achieve lossless reconstruction with only AT memory units at the expense of addi­

tional computation. In this design, we only store the details of each stage except the lowest resolu­

tion, for which we store both the approximation and the detail. The maximum memory required is 

N  units. Since none of the approximations are kept, extra calculations are required to reconstruct 

them sequentially (from coarse to fine.) An effective design of a hierarchical representation is a 

combination of data truncation, intermediate stage elimination, and quiescent state elimination.

4.2.1 Data Truncation

One of the most important properties of a wavelet transform is that it produces highly localized 

coefficients in the space domain. Many small coefficients can be discarded with only minimal 

effect, yielding lossy representations at significantly reduced storage costs. We demonstrate test
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results of an extreme case in [WB94]. A reconstruction of three-dimensional isosurface data from 

only three percent of the wavelet coefficients has a correlation ~  0.74 compared to the original data. 

When we are dealing with terabyte sized data, data truncation may be the most important part of the 

hierarchical representation design.

A major issue for data truncation is the determination of a threshold value. One approach 

is to allow users to decide that the largest n  wavelet coefficients should be retained. Each value 

must be examined for this purpose. Because today’s scientific data almost always comes with a 

minimum amount of metadata such as minimum/maximum values, an alternative is to keep only 

those coefficients within certain magnitudes.

4.2.2 Intermediate Stage Elimination

It is also possible to only keep some intermediate stages of the hierarchy. Since a scientist may 

not need all intermediate stages for data analysis, some of them can be eliminated in order to save 

memory, as long as enough information is retained to rebuild the eliminated stages. For example, 

in Figure 1-3 of Chapter 1, stage j  + 2 can be eliminated as its approximation can always be 

reconstructed on the fly from stage j  -I- 3. In case the detail of j  -I- 2 is needed, it can be decomposed 

from stage j  -F 1.

4.2.3 Quiescent State Elimination

We observed that during wavelet decompositions, there are times when a majority of data features 

stay intact within resolutions [WB95a]. We describe this phenomenon as the quiescence of a data 

hierarchy, which is defined as follows

In a progressive refinement environment, quiescence is a state of inactivity in which 

most of the distinctiveness of the refining target stays.

Only the lowest resolution representation needs to be maintained from a set of resolutions that are 

part of a single quiescent state. More details and examples are presented in Chapters 5 and 11 .
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4.3 Authenticity Analysis

There are two major sources of information loss: loss due to wavelet space projection (i.e., de­

composition) and that due to partial data eliminations as described in Section 4.2. To measure the 

quality of the data approximations, we define a common evaluation and representation of the accu­

racy of a coarse resolution based on the loss of information between the coarse resolution and the 

fine resolution representations. We call this the authenticity of the representation [WB95a].

The greatest advantage of this method is that it does not require any post-transformation compu­

tation. An alternative is to use conventional error measures such as the correlation and root-mean- 

square-error. A comparison between the data before and after the truncation process indicates the 

error of the approximation at that resolution.

4.4 Partitioned Wavelet Transforms

Analogous to any other matrix-oriented computation, efficient wavelet algorithms require that the 

target data reside in a random access memory. The problem is lack of space: we do not have terabyte 

sized memory. In such a case, the data has to be stored on some external medium, such as CD-ROM.

External storage matrix computation has been studied for decades, more with tapes than with 

disks as the external device. The Fast Fourier Transform (FFT), was studied as early as 1967 for 

cases in which the data did not fit in fast memory and had to be stored on a single disk. Using 

eight disk files, Singleton [Sin67] describes how to compute the FFT for an N  element vector in 

(lg N ) I/O passes. Brenner [Bre69] presents two external FFT algorithms. One makes @(N/M)  

I/O passes, for N  > M\  the other makes Q(lg M )  I/O passes for N  2 > M , where M  is the memory 

size. Floyd [Flo72] shows that general permutations on external storage require f1{{N lg B ) / M )  

I/O passes, where B  is the block size. The similarity in computation between FFT and wavelet 

transforms makes us believe that our design approach is a realistic one. We apply some of these 

theories in our model. The hard part is determining the best sequence of merges. Knuth [Knu73, 

Section 5.4.9] contains a study for disks. The following is an unjustly simplified example of what 

we called a partitioned wavelet transform.
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We note that each wavelet decomposition of each resolution can be done in non-sequential fash­

ion. Very large data can first be separated into smaller units before wavelet operations are applied. 

Memory size as well as data size constraints of an orthogonal wavelet have to be considered. We as­

sume that the size of the transformed data is always an integer power o f two. (Not all wavelets have 

this restriction [Dau92], but the algorithms can be generalized.) In Figure 4-4, one-dimensional

Very Large Data

XX XX XX

/ \  / \

Divide

Wavelet

|  Merge

Wavelet

Merge

Wavelet

Figure 4-4: Partition wavelet transform.

very large data is divided into four units small enough to apply a wavelet transform efficiently. The 

approximations as well as the details of all wavelet applications are then merged in order. After the 

merge, we have two partitions of approximations and two partitions of details. More applications of 

wavelet decomposition followed by merges eventually complete the process.

As with other kinds o f convolution processes, wavelet transforms have end-effects caused by 

the boundary conditions on the data vector. The wavelet filter uses 2p  data values at resolution k  to 

produce each data value at resolution k + 1. In order to avoid data shifting, most implementations 

use a centered filter. In other words, item j  at resolution fc +  1 is generated from items 2j  -  p to 

2j +  p -  1. This creates a problem at both ends. For example, for D4 (p =  2) the first data item 

must be generated from data items -2 , -1 ,  0, which do not exist. We must eliminate these end- 

effects between partitions by supplying a few more data items at the end of each data partition to
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complete a regular matrix multiplication. Figure 4-5 shows our design. This example of partitioning 

a one-dimensional wavelet transform can also be applied to multidimensional data. The number of 

duplications depends on the number of vanishing moments of the wavelet. The size of the partitions 

depends on the size of the data, N ,  the block size, B,  and the memory size, M .

Very Large Data

Divide

Wavelet

Figure 4-5: The extra data indicates the redundancy required to complete a regular matrix multipli­
cation of each data partition.
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Chapter 5

Authenticity Analysis

In the next few chapters, we turn from the high level outlines of the multiresolution data representa­

tion to the details of how a multiresolution hierarchy is built and used. In this chapter, we investigate 

the properties and characteristics of compactly supported orthogonal wavelets and their impact on 

the authenticity issues of one dimensional data hierarchies. We also establish measures to track 

error information due to data reductions. Finally, we present a real-life two-dimensional visualiza­

tion example to show the advantages of wavelets over two of the very commonly used sampling 

functions. This chapters is based on [WB95a].

5.1 General Error M easure

For many applications a close approximation to the original can be tolerated. Often there are many 

detail coefficients of a wavelet transform that have a small enough magnitude that they can be 

ignored. The process is usually followed by a reverse transform operation, which produces a lossy 

reconstruction. This is by far the most popular application of wavelets.

A common way to measure the effectiveness of a lossy operation is by visual comparison based 

on feature classification by a human being on a small number of features such as the peak value and 

fundamental frequency. This subjective method assumes medium-sized data which can be displayed 

in a single picture.

Traditionally, applications which require higher error accuracy might use more objective (quan­

titative) measures such as the root-mean-square error, given by

\
1 N  
v  -  A' ) 2
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where / ,  and /• are the original and the reconstructed data respectively. Another function which 

describes the closeness o f fa and / '  is the linear correlation given by

JZiUi-TVZiWi-Ti)2'
Unfortunately, these methods require both functions to be the same size. That means we have to 

reconstruct the data to the original size before we can figure out the error. Instead of computing an 

error measure based on comparing the approximation coefficients to the input data, we compute one 

based on the detail coefficients.

5.2 Wavelet Authenticity

We would like to have some mechanism for validating that a lower resolution representation of a 

dataset is an authentic approximation. Fortunately, by using a wavelet representation, the energy 

loss due to orthogonal projection can be obtained from the wavelet details of each resolution. Once 

we define a measure of the energy loss, we can use that measure for both analysis and visualization 

of the error. Defining an error measure that is consistent throughout the wavelet coefficient hierarchy 

is complicated by the change in coefficient scale and the different numbers of coefficients at each 

level of the hierarchy. Suppose Wjk is the wavelet detail at resolution j .  Two of the commonly used 

error metrics are the L l and L 2 norms, in which the error due to projection from spaces Vj+1 to Vj 

are given by

k V k
respectively.

It is known that some wavelets lose more energy than others during decomposition. This brings 

us to the discussion of vanishing moments.

5.3 Vanishing Moments

Our discussion is restricted to compactly supported orthogonal wavelets. Others such as the Mor- 

let wavelet and the Meyer wavelet have infinite support on the whole real line because they use
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sinusoids as the building blocks. They are C°°.

The accuracy of a piecewise wavelet approximation can be characterized by the number of 

vanishing moments p  of the wavelet. Strang [Str89] describes this as how well the polynomials 1, 

x, x 2, ■ ■ •, x p~ 1 are reproduced by the approximation. For a wavelet ij) with p  vanishing moments,

J  ip(x)xmdx =  0 (5.1)

where m  =  0, • • • ,p  — 1. In wavelet literature, the value of 2p is usually used as a subscript to 

identify a wavelet. This comes from the fact that the number of coefficients of a wavelet filter with 

p vanishing moments is equal to 2p. Figure 5-1 shows H2 (Haar wavelet with p =  1), D4 , D 12, and

H2 D4

(a) H2 (b) D4

D12

V-

D20

(c) Di2 (d) D20

Figure 5-1: Four compactly supported orthogonal wavelets.

D20 (Daubechies wavelets with p =  2, 6 , and 10.) It is also true that a compactly supported wavelet 

with p vanishing moments is p times continuously differentiable, i.e., Cp.
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5.4 Function Pattern

The pattern of a function is loosely defined by its shape or look rather than its mathematical def­

inition. Since most graphic displays are normalized in our application, the number of a function’s 

extreme values (i.e., local maximum and minimum) and their relative locations are far more im­

portant than the absolute values. Following the same philosophy, we pay more attention to the 

frequency or the period o f a periodic function than its amplitude.

5.5 Approximation Characteristics

In this section, compactly supported orthogonal wavelets with p =  1 to 10 are applied to sinusoid- 

based test data with different patterns. We only plot the results generated by wavelets H2 and D20, 

which represent the lowest and the highest number of vanishing moments in our discussion. These 

examples are used to clarify the approximation characteristics of orthogonal wavelets. Note that in 

order to normalize the wavelets at every resolution, a normalizing factor is introduced in the 

orthogonal matrix [Str89j. The same factor is applied to all other wavelet operations presented in 

this thesis.

5.5.1 Effect of Vanishing Moment on Merging of Data

A higher number of vanishing moments implies more coefficients in a wavelet filter matrix, which 

means that the implementation requires that more numbers be multiplied and added (merged) to­

gether during decomposition. However, the features in the data are not necessarily merged any 

faster. This is illustrated by a sinusoid with 29 =  512 discrete samples shown in Figure 5-2a. 

Figure 5-2b depicts the first resolution of the decomposition. The left half is the approximation and 

the right is the detail. The tiny wavelet detail indicates good approximation for both wavelets.

Figure 5-2c shows the same dataset represented with 28 =  256 wavelet coefficients. Both 

wavelets show strong approximations and weak details, with D20 having smaller details. After two 

more resolutions, the size of the wavelet coefficients is down to 26 =  64, as shown in Figure 5-2d. 

H2 continues to lose more energy that D20. Both wavelets, however, manage to maintain the basic
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(a) Data: 512

(b) Approximation: 256, detail: 256

(c) Approximation: 128, detail: 128

o

(d) Approximation: 32, detail: 32 

Figure 5-2: a) Dataset #1 with 512 items. Wavelet coefficients with b) 512, c) 256, and d) 64 items.
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pattern (four peaks) of the original function.

Although more numbers are multiplied with higher p values during decomposition, the merging 

process is dominated by the number of data values produced.

5.5.2 Energy Loss versus Resolution

Each wavelet decomposition introduces energy loss (error) into the approximation. By examining 

Figures 5-2b -  5-2d, we see that H2 has significantly larger energy loss at each resolution. However, 

the amount of energy loss depends not only on the wavelet itself, but also on the smoothness of the 

data, which may change during each resolution. This is discussed in the following section.

5.5.3 Energy Loss versus Data Frequency

We use a higher frequency sinusoid to demonstrate the effects of energy loss versus data frequency. 

The discrete function has the same resolution (29 =  512) as the previous one. There are a total of 

21 peaks as depicted in Figure 5-3a.

The rate of decay of wavelei decomposition is governed by the number of vanishing moments 

of the wavelet. In general, as illustrated in Figure 5-2, smooth functions like D2o approximate 

functions better than H2. However, this is not always true.

Figure 5-3b shows the wavelet coefficients after two resolutions with 256 discrete items. Be­

cause of the smoothness of the data, the very small energy loss of D2o hardly shows up in the figure. 

Both H2 and D2o retain all 21 peaks even though H2 produces larger details. The next resolution is 

depicted in Figure 5-3c. It has 128 discrete wavelet coefficients: 64 approximations and 64 details. 

All 21 spikes stay in the approximation, which is rather non-smooth by now.

Disaster hits when the length of the dataset reaches 26 =  64. The Nyquist limit (the lower bound 

to retain all the spikes) is passed. As a result, features merge and large details are created. For the 

first time in our examples, D2o has larger details than H2 as shown in Figure 5-3d.

H2 does not approximate functions accurately because it only has one vanishing moment. How­

ever, it does not tend rapidly to zero at finer levels, and the accuracy also depends on the smoothness 

of the function. When the function is smooth, more vanishing moments lead to smaller wavelet de-
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(a) Data: 512

(b) Approximation: 128, detail: 128

(c) Approximation: 64, detail: 64

(d) Approximation: 32, detail: 32

5-3: a, D a.ase,«  wiIh 5I2 iIem,  ^  ^  ^  ^  ^  ^  ^  ^  ^

Reproduced with permission of the copyright
owner. Further reproduction prohibited without permission.



52

tails. On the other hand, more vanishing moments also lead to more large wavelet details when the 

function is non-smooth, so D20 is not always a better choice over H2 .

The phenomenon shown in Figures 5-3b -  5-3d is repeated for the rest of the resolutions. The 

first three resolutions of this example are marked by their inactivity or repose. Most o f the major 

features of the approximations stay the same, i.e., the details are very small. That creates a state 

of quiescence. It also, however, establishes a horizon beyond which disaster lurks. In Figure 5-3c, 

half of the spikes in the approximation are gone, and the details (the energy loss) are actually much 

larger than the approximations.

5.5.4 Energy Loss versus Data Value

Energy loss o f a wavelet decomposition depends on the data values. Higher data values imply more 

energy loss, and vice versa. This is illustrated by a sinusoid whose amplitude decreases continuously 

as depicted in Figure 5-4a.

(a) Data: 512

(b) Approximation: 128. detail: 128 

Figure 5-4: a) Dataset #3 with 512 items, b) Wavelet coefficients with 256 items.
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After two resolutions, the wavelet coefficients (with 256 discrete values) of dataset #3 is shown 

in Figure 5-4b. The values of the details increase as the data values increase.

5.5.5 Compression Pitfall

We would expect that the wavelet decomposition of a dataset (with floating point computations) will 

continue until the size of the approximation reaches 2p. However, certain patterns, even with high 

energy content, can vanish suddenly and prematurely.

The sinusoid in Figure 5-5a is created with an integer value of cycles within the 512 discrete 

values. After three resolutions of decomposition, both H2 and D20 shown in Figure 5-5b have perfect 

zigzag patterns. In fact, the pattern interleaves high-low discrete values with the same amount of 

energy but reversed directions. Then the energy vanishes suddenly as shown in Figure 5-5c when 

a high energy spike zeros out its neighbor, a low energy data item with exactly the same absolute 

value.

5.6 Error Tracking

We do not claim that our sinusoid-based examples simulate real life scientific data. They are 

presented because they show the special characteristics of orthogonal wavelets. Now we present 

results of non-sinusoid functions. Since wavelet transforms are well adapted to respond locally 

to rapid changes in function values [Dau92], orthogonal wavelets are often used as edge detec­

tors [Mal89, MZ92]. Energy loss during wavelet decomposition usually implies edge (i.e., pattern) 

changes of the approximations. Small changes produce little wavelet details, which can largely 

be ignored. Large changes, however, produce significant wavelet details. These details are good 

indicators of the quality of the wavelet approximation of each resolution.

A function with 512 discrete values demonstrates the idea of using wavelet details to measure the 

authenticity of wavelet approximations, as described at the beginning of section 5.2. The function 

has seven special features including: 1) two discrete steps, 2 ) a portion of a sinusoid, 3) two steep 

slopes (f { x ) = x 3 and its mirror image), 4) a sharp spike, 5) some fluctuating signals, 6 ) a large 

flat block, and 7) a small block. Each of them is identified with its feature number as depicted in
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(a) Data: 512

(b) Approximation: 32, detail: 32

(c) Approximation: 16, detail: 16 

Figure 5-5: a) Dataset #5 with 512 items. Wavelet coefficients with b) 64 and c) 32 items.
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Figure 5-6a.

When D4 is applied to this function, it produces 256 discrete approximations followed by 256 

details, as shown in Figure 5-6b. In the graph, the wavelet details corresponding to the original 

features are marked with the same numbers. Starting from the left of the details, we see two sharp 

spikes which indicate the two sudden slope changes of feature 1 . The energy loss is due to the 

fact that these two sharp edges are smoothed out. The details of feature 2 are almost invisible, 

reflecting the high approximation power of D4 on sinusoids. The two steep slopes of feature 3 

create only small spikes, which also indicate good approximations. The isolated spike of feature 4 

is preserved with some loss. The fluctuating signals of feature 5 produce the largest amount of 

loss, indicating major pattern changes. Each of the following two blocks (features 6 and 7) produce 

two consecutive spikes, indicating the two sharp edges of the blocks. The next two resolutions are 

shown in Figures 5-6c and 5-6d.

The maxima and the sums of the absolute values of wavelet details of the first four resolutions 

are listed in Table 5.1. The summation of wavelet details shows the overall approximation quality,

N max\wi\ E K I
256 0.9124 6.2810
128 1.5074 10.7591
64 1.1257 9.1903
32 1.2708 8.8527

Table 5.1: A summary of D4 on dataset #6 .

while the maximum indicates the largest local error. We notice from the graphs that D4 keeps the 

function pattern intact. This is largely reflected by the correlated numbers in the table.

These numbers, however, fail to show the energy loss of a particular feature such as the fluctu­

ating signals, which produce the largest details. Table 5.2 is a summary of wavelet details based on 

the different features. In general, the fluctuating signals (feature 5) have the biggest pattern changes, 

which explains why they have the largest details. Feature 1 has one of the larger losses. The two 

steps are totally smoothed out after the second resolution.
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E>

(a) Data: 512

(b) Approximation: 256. detail: 256

(c) Approximation: 128, detail: 128

(d) Approximation: 64, detail: 64 

Figure 5-6: a) Dataset # 6  with 512 items. Wavelet coefficients with b) 512, c) 256, and d) 128 items.
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E feature 1̂ *1
N 1 2 3 4 5 6 7

256 0.708 0.014 0 .4 7 7 0.177 3.763 0.966 0.177
128 1.557 0.081 0 .7 5 4 0.225 6.177 1.641 0.325
64 ~2.560 1.432 0.099 3.790 0.813 0.498
32 ~7.177 ~  1.676

Table 5.2: A summary (by feature) of D4 on dataset #6 .

Table 5.3 lists the results of D20 applied to dataset #2 as presented in Section 5.5. The resolution

N maa;|iUt| E K I
256 0.3718 0.9792
128 0.4690 1.3124
64 1.2059 13.2433
32 3.8953 72.6761
16 2.1756 8.5699
8 0.7576 1.6806

Table 5.3: A summary of D20 on dataset #2.

printed in bold shows the occurrence of aliasing as well as the end of the first quiescence covering 

the previous three resolutions. A second quiescence starts right after this resolution.

5.7 The Advantages of Wavelets

A bivariate time series data set with 8192 data points is used to demonstrate the advantages of 

wavelets in supporting scientific visualization. The dataset is fed into a random sampling function, 

a uniform sampling function, and a Haar wavelet to generate three data hierarchies with the size 

of each resolution equal to 2n, n  €  N. In the random sampling function, data points are selected 

randomly for display according to the indices generated by the Unix function lrand48(). In pixel- 

based graphics, a common belief is that both the random and the uniform sampling functions are 

convenient but not very effective, particularly when the sampling rate is low [GW87], In this ex-
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ample, we pick the resolution with only 128 (less than 1.6%) data points to study. The results of 

the three functions are shown in Figure 5-7. The backgrounds of these graphs are scatterplots of the

R a n d o m  . 1 2  8  
O r i g i n a l . 8 1 9 2

(a) Random

U n ±  f o r m . 1 2 8  
O r i g i n a l . 8 1 9 2

(b) Uniform

V J s l - v &  l e t  .  1 2 8  
O r i g i n a l . 8 1 9 2

(c) Wavelet

Figure 5-7: The scatterplots in the background are the original data. The polylines in the foreground 
are generated by (a) a random sampling function, (b) a uniform sampling function, and (c) a Haar 
wavelet.
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input data. Notice the data density is higher (as it is darker) on the left hand side of the graphs. The 

selected data is plotted on top of the scatterplots using polylines. Although all three functions show 

fairly good approximations at a very superficial level, there are a number of discrepancies among 

them (such as the magnitude and the spread of the data) that deserve further attention.

Each of the approximation points is required to represent well over 60 neighboring data points. 

We notice that the sampling rate of the random function (Figure 5-la) is very irregular. Some of the 

steps are much larger than the others, even among consecutive points. These are very undesirable 

effects as our goal is to clear up a dense data plot. Any uneven sampling area may imply that 

further approximations are needed. Although this problem does not show up in the approximations 

generated by the uniform sampling function and the wavelet (Figures 5-7b and c), there are still 

visual differences (such as magnitude fluctuations) between them. We cannot decide the better 

approximation solely by judging the shapes of the polylines. As a result, we turn our attention to 

more objective measures.

Given the n-dimensional Euclidean space Rn containing m  scatter points, Xij where i G [1, n] 

and j  G [1, m], the center o f mass, M , of the data is defined as

Statistically, this represents the first moment of the scatter points. The Euclidean distance between 

M  and the corresponding approximation point is a measure of the quality of the approximation. 

Figure 5-8 re-plots the same approximation data described in Figure 5-7 using error-bars. The 

length of each bar reflects the difference between the approximation point and its corresponding M. 

The problems of the random sampling and the uniform sampling (Figures 5-8a and b) show very 

clearly. Not only are the magnitudes of the differences very large, they also vary inconsistently. 

On the other hand, the error-bars of the wavelet approximation (Figure 5-8c) show no difference 

at all. In other words, the low frequency data points generated by the wavelet are consistent and 

very accurate approximations to represent their neighboring data values. For operations with high 

frequency requirements such as outlier detection, wavelets also provide the wavelet details to filter 

out the high frequency outliers.
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(a) Random

U n i  f o r m .  1 2 8

«»» r  t, j i j
i 1 1 hi

(b) Uniform

WeL-velet .12 8

(c) Wavelet

Figure 5-8: The approximations plotted with error-bars are generated from (a) a random sampling 
function, (b) a uniform sampling function, and (c) a Haar wavelet.
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Chapter 6

Visualization of Error

We show how the error metrics described in Chapter 5 can be used to support multiresolution data 

exploration. A simple multiresolution visualization tool is presented to illustrate the importance of 

error information of a one-dimensional data hierarchy. The display of data along with the represen­

tation error is a critical component of effective interactive exploration of large data sets.

6.1 Visualizing One Dimensional Data

We describe a wavelet-based multiresolution visualization system and use it to display approxima­

tions of scientific data and its corresponding error. The system, as depicted in Figure 6-1, supports

a rra n t  w tv tfrt has t viMMng momtnts. 
a r ra n t  w w lr t  t m  S imanantt .
Data (0 It ISTP34.
D t t t t t l  anwnHontl(l31B72).wtth1 vwtatat.

Figure 6-1: The system displays a coarse approximation of a one-dimensional dataset with 131,072 
items.
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progressive refinement data analysis with resolution as fine as one data item per pixel.

6.1.1 User Interface Overview

The system front-end is divided into eight window panes. The first pane contains five command 

buttons, as shown in Figure 6-2. The first button is the data bank command, which initiates all

Figure 6-2: System command buttons.

the system I/O operations. The next one is the wavelet command button. It looks up the wavelet 

selection table and generates the multiresolution wavelet approximations accordingly. The middle 

button allows scientists to select colormaps. It is followed by a context-sensitive help command 

button, and the exit button.

The colormap window pane in the upper right of Figure 6-1 displays all the colors currently 

available for data mapping. Figure 6-3 depicts five pre-defined colormaps described by Levkowitz

Figure 6-3: From top to bottom: the rainbow scale, the heated-object scale, the magenta scale, the 
blue scale, and the linearized optimal color scale. See also Color Plate 1 in Appendix D.

and Herman [LH92] for visualization. They are the rainbow scale, the heated-object scale, the 

magenta scale, the blue scale, and the linearized optimal color scale.

The resolution selection buttons pane is shown in Figure 6-4. In this example, the one-dimensional
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r  T r - ‘' jT r • r r7
Figure 6-4: Multiresolution buttons.

input data has a total of 131,072 items. The coarsest resolution supported by the system is 1,024. 

That means there are a total of 7 resolutions available, with resolution 0 being the coarsest.

Figure 6-5 depicts a portion of the data range selection pane. The background of the slider 

is the coarsest approximation of the original data. It serves as a rough guideline for navigating 

through very large scientific data. The rectangular shaped rubberband marks the range of data being 

selected. The position of the rubberband is controlled by the mouse. The box size depends on the 

display resolution and the size of the original data.

Wirfrft ■n«rwta^g aa teB tee i«u-ii»i.Lmlamij&Q

Figure 6-5: Data range selection slider.

We skip the main data display window pane for now, and move on to the next control slider. The 

index reflected by the slider is used to map data to color. The current prototype only allows very 

simple color mapping.

The system provides a scrollable message box, which is depicted in Figure 6 -6 . It is used to 

display system status including data ID, metadata, colormap, wavelet, as well as error messages.

The wavelet window pane displays the wavelet currently being used. Figure 6-7 depicts a 

Daubechies wavelet [Dau92] with five vanishing moments.

The wavelet selection pane contains ten selection buttons, as shown in Figure 6 -8 . The system 

currently provides compactly supported orthogonal wavelets with vanishing moments from 1 to 10 . 

This includes the Haar wavelet, and the nine wavelets of the Daubechies family.

The main window pane in Figure 6-1 is the data visualization area of the system. Since one­

dimensional time-varying data is the primary target of this prototype, we limit the visualization
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Current wavelet has 1 vanishing moments.
Data ID is ISTP.94.
Data is 1 dimensional (131072), with 1 variates. 
Wavelet transform of variate 0 is done. 
Resolution 3 is selected.

ic£

Figure 6 -6 : System message display.

J r
Figure 6-7: Wavelet display.

Figure 6 -8 : Wavelet selection buttons.

options to simple polyline plots. This basic technique, although very simple, is a powerful tool to 

convey information and characteristics of time-varying data [Cle93].

6.1.2 Visualization of One Dimensional Error

Figure 6-9 shows a one dimensional dataset extracted from the CD-ROM1 recorded from the space­

craft GEOTAIL o f the ISTP [God92] project. The dataset contains electron average energy data 

recorded every 64 seconds around the earth for the first three months of 1994. It has a total of 

217 =  131,072 integers.

Z?4 is used to generate a total of 7 resolutions, from the 0f/l resolution with 210 =  1,024 to 

the 6th resolution with 216 =  65,536 items. The display is a one-dimensional line plot with colors

1 US A _NAS A .D D FJSTP JCP.0003
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(C)

(e)
Figure 6-9: a) Rainbow colormap. b) The coarsest approximation of the ISTP average energy data 
is displayed at the 0tfl resolution. Interesting features are identified with numbers. Dotted rectangles 
are zooming windows. The color indicates the accumulated approximation error, c) Feature 1 at the 
3rd resolution, d) Feature 2 at the 4th resolution, e) Feature 3 at the 4th resolution. See also Color 
Plate 2 in Appendix D.
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indicating the accumulated data loss (error) of each item. A rainbow colormap shown in Figure 6-9a 

is used for the display.

We start from the coarsest (0th) resolution with 1,024 items, an approximation of the original 

131,072 items. From Section 5.5, we know that the energy loss of a wavelet transform depends on a 

number of factors including the data values and the smoothness of the data. Six features are chosen 

from the data, as indicated in Figure 6-9b, to illustrate these ideas as well as the importance of the 

approximation error display.

Feature 1 contains highly fluctuating data with some of the highest data values. Both of them 

contribute to the very high energy loss of the approximation. This is reflected by the darker colors 

(green/blue) of the error display in Figures 6-9b and 6-9c.

In terms of data values, features 4, 5 and 6  are more or less close to each other. However, when 

we look at the smoothness of the data, we notice that feature 6  is smoother than the other two. It 

implies that feature 6  has the lowest energy loss. This is accurately reflected by the color of the error 

displayed in Figures 6-9b. Both features 4 and 5 have green spikes while feature 6 is light orange.

The value of the error representation is particularly evident when looking at features 2 and 3. 

They have very similar values, spreads, and shapes. Feature 3, however, has more green (higher 

value) spikes than feature 2. These two features (marked by the dotted rectangles) are zoomed 

to a finer {4th) resolution, as shown in Figures 6-9d and 6-9e. This finer resolution reveals that 

feature 2 is indeed very smooth data, while feature 3 is relatively non-smooth. Figure 6-9e shows 

that feature 3 has multiple spikes spread across the area. These narrow spikes fade away during the 

downsampling process because the Nyquist limit (to hold all the spikes) is reached. Their errors are 

clearly reflected in our display. By using the color to represent accumulated error, we are able to 

identify areas of the coarsest resolution representation that warrant investigation at finer resolutions.
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Chapter 7

Multiresolution Techniques for 

Multivariate Data

In the past few chapters, we have discussed the concept and implementation issues of multires­

olution data hierarchies based on wavelets, and have shown the importance of error information 

to data exploration. In the next two chapters, we turn to the applications of the techniques un­

derlying the concept. In this chapter, we introduce the notion of multiresolution approximation 

into a previously described multidimensional multivariate visualization technique known as brush­

ing [BC87, War94, MW95] (see Chapter 3), and we discuss how wavelets fit in with previous work 

on high dimensional brushing. This chapter is based on [WB96a].

7.1 Data Brushing

Becker and Cleveland [BC87] introduced the notion of brushing as an interactive data exploration 

process in which a user visually highlights or deletes subsets of displayed data. This process pro­

vides the user an extra dimension of information as well as insight from an otherwise static dis­

play (See Chapter 3). A variety of two-dimensional brushing techniques are described by Cleve­

land [Cle93]. Ward expanded the direct manipulation concept and created multidimensional brush­

ing in XmdvTool [MW95, War94]. The system is a collection o f four multivariate visualization tech­

niques: scatterplot matrix [Cle93], star glyphs [SFGF72], parallel coordinates [IRC87, ID87, ID90], 

and dimension stacking [LWW90], These tools, although powerful, suffer from the size limitation 

of a display. Loss of information during very large data visualization is seemingly unavoidable.
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In this chapter, we incorporate the concept of brushing into our visualization model. One of the 

distinctive features of wavelet brushing is that the brushed data is displayed at a different resolution, 

usually higher, than the non-brushed data. Figure 7-1 shows a simplified example of wavelet brush-

(a) (b)

Figure 7-1: a) The brush area is defined, b) Fine brushed data is painted over a coarse data back­
ground.

ing on a bivariate scatterplot. As we can see, the coarse background outside the brush gives the 

overall structure of the context surrounding the brushed area while the fine brushed data provides 

the local structure inside the brushed area. The approach relies on the notion of visual inspection of 

the data approximation.

We implemented multiresolution brushing in an enhanced version of XmdvTool [MW95, War94]. 

The applications to scatterplot matrix and parallel coordinates are emphasized, although the concept 

is applicable to any multivariate visualization of very large data.

7.2 General Approach and Problems

A significant characteristic of any data visualization technique is the relationship between the num­

ber of available display pixels, P , and the number of data values to be displayed, D. For a single 

static image the best we can expect to achieve is (£> =  P ) . 1 In fact, Keim et al. [KK94, KKS93]

‘Note that the effectiveness of any visualization technique cannot be measured solely by the number of values dis­
played. but is a very complicated evaluation based on ill-defined perceptual and technical issues.
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have developed such a visualization technique in the domain of database visualization.

For very large data visualization, however, D  is much larger than P , so we cannot rely on any 

simple static image technique. Instead, we must develop mechanisms that allow us to present au­

thentic abstractions of the data and use time as a presentation parameter to increase the effective 

number of pixels used to complete a visualization task. The goal of our research is to support 

scientific data visualization with (D  > P ). The prevailing techniques which support large data vi­

sualization can generally be characterized as hierarchical visualization in which multivariate data is 

represented as a visualization hierarchy. A user needs to click the display and follow the hierarchi­

cal path to browse the data one projection view at a time. An example of this class of visualization 

techniques is worlds within worlds [FB90]. These techniques require not only extra screen space to 

browse the data, but also the user’s ability to mentally integrate different views over time.

Problems with visualization of very large data are easily shown when considering the scatterplot 

matrix and the parallel coordinate representations of large multivariate datasets. Figure 7-2 depicts

(a) Scatterplot matrix (b) Parallel coordinates

Figure 7-2: Problems of very large multivariate data visualization using a) the scatterplot matrix 
and b) the parallel coordinates representations.
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two multivariate plots of a nine-variate time series dataset using scatterplot matrix and parallel 

coordinates. Although the scatterplot matrix shows the overall structure of the data, it fails to 

show its local structure as neighboring data points (over 6 6 0 #  scatterdots) are packed together into 

display pixels. Problems with the parallel coordinate plot are even more severe: we cannot see 

anything in the lower half of the plot. The data size has to be reduced before we can apply these two 

techniques effectively. In the following discussion, we present results of wavelet approximations 

being applied to these techniques, and explain why it is desirable to have wavelet support in high 

dimensional brushing.

7.3 Multivariate Visualization Examples

In our data approximation hierarchy, the coarse resolutions highlight the overall structure of the 

original data while the fine resolutions provide the local structure. This works nicely with most, if 

not all, of the multivariate visualization techniques. Figure 7-3 shows a series of parallel coordinate 

plots of a five-variate dataset. The data resolution starts from 8192 and ends at 1024. The termina­

tion point of this resolution reduction process is very data dependent: the goal is to reach the lowest 

resolution that is still an authentic representation of the original data.

Figure 7-4 shows scatterplot matrices of a fine to coarse data hierarchy of the same five-variate 

dataset. Since each scatterplot displays 8192 data points, there are over 200#  scatterdots displayed 

in Figure 7-4a. As we can see, the visual improvement of the lower resolution scatterplot matrix 

plots is not as dramatic as with parallel coordinates. This is largely due to the fact that each data 

point is represented by only a scatterdot compared to a polyline in parallel coordinates. The highly 

localized time-series data used in this example also plays an important role for this phenomenon. 

In Figure 7-4, many neighboring points are quietly packed together into display pixels instead of 

creating chaotic patterns. A more dramatic result of using the scatterplot matrix to display multidi­

mensional data is presented in Section 7.5.4.
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Figure 7-3: Parallel coordinate plots from fine resolution with 8192 data points to coarse resolution 
with 1024 points.
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Figure 7-4: Scatterplot matrices from fine resolution with 8192 data points to coarse resolution with 
1024 points.
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7.4 XmdvToo!

Ward [MW95, War94] gives many compelling arguments for the use of high dimensional brushing 

in exploratory data analysis. The essence of Ward’s design is the concept of providing a  visual 

representation of multidimensional database queries as well as their results. With the addition of 

wavelet transforms, we argue that the operations of multidimensional brushing can be improved to 

support very large data visualization.

7.4.1 Wavelet Support

Our work follows the system design of XmdvTool. The new functions are written in C using 

X/Athena Widgets. The system currently supports orthogonal wavelets with up to ten vanishing 

moments. When a data set is transformed, a fine to coarse hierarchy is generated according to 

the number of vanishing moments selected. Once the data brush is defined, the user is allowed to 

independently control the display resolutions of the brushed data and the non-brushed data.

7.4.2 Brushing with Wavelets

The process of browsing multiresolution data suffers from the same problem as hierarchical vi­

sualization, both of them need multiple displays to browse the data. This requires not only extra 

screen swapping, but also the user’s ability to mentally integrate different views during the process. 

We argue that if we allow users to control the data resolutions of the brushed and the non-brushed 

data, they can physically merge multiple views into one display for data exploration. Our notion of 

multidimensional brushing extends Ward’s design to include multiresolution support.

7.4.3 Implementation Strategies

Two implementation strategies can be used to construct wavelet brushing. The first one contains 

multiple layers of approximations with the resolution decreasing (or increasing) according to its 

distance from the brush. Given a two-dimensional display with a square brush defined near the 

lower right comer of Figure 7-5a, the system creates multiple layers of display data surrounding 

the brushed area using the wavelet approximations (as shown in Figure 7-5b.) This design gives
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(a)

Figure 7-5: (a) A two-dimensional display with a square brush, (b) Brushing with multiple layers 
of approximations, (c) Brushing with two layers of approximations.

users a smoother view of brushing. However, it also creates confusion for users to distinguish the 

brushed multivariate data points from the non-brushed ones. The problem is even worse for parallel 

coordinates as the polylines of brushed data almost always overlap with those of non-brushed data. 

We have not yet found an effective way to clearly display data with multiple data resolutions in one 

display.

The second implementation, as shown in Figure 7-5c, contains only two layers of approxima­

tions. Once the brushing values are decided, both the brushed and the non-brushed data resolutions 

can be controlled independently. The user can increase or decrease the resolution of each area by 

clicking the corresponding button. Not only is this approach simpler to implement, it is easier to use 

and it responds faster compared to the previous implementation. In our experiments, we achieve 

real-time responses on a DECstation 5000 for data with up to about 700K data items. The time 

to paint a scatterplot matrix is usually longer than for parallel coordinates. The current version of 

wavelet brushing supports operations of a single data brush at a time.

7.5 Applications

Four applications of wavelet brushing stand out in our experiments. Three of them (resolution 

magnification, authenticity analysis, and outlying data identification) are multivariate visualizations

Brush
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while the fourth one involves high dimensional data. All of them take advantage of the multiresolu­

tion property, which may otherwise be very difficult to carry out because of the large amount of data 

that must be visualized. In the following discussion, the color plates which describe the applications 

are painted in three basic colors: red for the brushed data, blue for the non-brushed data, and light 

blue for the data brush. The non-brushed data (in blue) is always painted ahead of the brushed data 

(in red). Their resolutions are displayed in the wavelet toolbox window.

7.5.1 Resolution Magnification

The first application is to use the multiresolution brush as a magnifying glass to increase the res­

olution of a subset of the data. Figure 7-6 depicts a series of parallel coordinate plots of the same 

time-series dataset at different resolutions. The first one is the original data. Obviously there is no 

visible pattern to be seen. So, the user reduces the overall display resolution gradually until the 

individual line patterns can barely be seen (Figure 7-6b.) From this resolution, the user finds out 

that the concentration of the potassium ion (the second axis on the left) drops sharply in recent times 

(the upper portion of the first axis on the left.) In order to study the local details of this time period, 

the user brushes all the data connected to this time period. The brushed data (in red), the non- 

brushed data (in blue), and the brush itself are shown in Figure 7-6c. Since the interesting spots are 

identified, there is no need to study the details of the non-brushed data. The user can then increase 

the resolution of the brushed data gradually to study the local details, as depicted in Figure 7-6d. 

With only a few simple mouse movements, the user is able to establish evidence to show that the 

overall sea salt concentration (mainly potassium chloride and sodium chloride) of modem times is 

indeed lower than before. In addition, the last axis on the right hand side indicates a minor reduc­

tion of the overall ammonium concentration during the same time period. This can be explained by 

the diminishing of major volcanic eruptions recorded in modem history. This information, which is 

hidden behind a massive number of polylines in Figure 7-6a, can easily be revealed with our wavelet 

brushing.
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Figure 7-6: An example of resolution magnification, (a) The original data, (b) A coarse approxi­
mation. (c) A brush is defined, (d) Fine data is painted inside the brush. See also Color Plate 3 in 
Appendix D.
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7.5.2 Authenticity Analysis

The second application involves the authenticity study of the wavelet approximation itself. When 

the data size of a very large dataset is reduced by a wavelet transform, there is always the question 

whether the approximation is a faithful representation of the original. In Section 5, we propose 

the use of color to display the error information generated by wavelet transforms. With the use of 

multiresolution brushing, we present a short-cut to interactively verify the accuracy of the wavelet 

approximation during data analysis.

During any course of analysis using wavelet brushing, the user can always lock the brushed 

data and bring back the high resolution non-brushed data to the same display. For example, in 

Figure 7-7, the user wants to compare the current display with the higher resolution data. This 

can be achieved by creating a brush which just encloses all the low resolution data as depicted in 

Figure 7-7a. The rest of the high resolution data is then brought back by increasing the resolution of 

the non-brushed data for comparison. In our example, only a few non-brushed data items (in blue) 

show up (Figure 7-7b) when the resolution of the non-brushed data increases from 512 to 2048. 

This provides a measure of the quality of the low resolution representation in terms o f how well it 

encloses the data values of the higher resolution representation. The small number of discrepancies 

between these two resolutions also indicates that further reduction may be permissible.

The same process is then applied to lower resolution data with 256 items (as shown in Figure 7- 

7c.) When the resolution of the non-brushed data is brought back to 2048, more blue lines appear 

in Figure 7-7d. By counting the number of the high resolution non-brushed data items (the blue 

lines) in Figures 7-7b and d, we conclude that the approximation shown in Figure 7-7a is a better 

representation than the one in Figure 7-7c.

7.5.3 Outlying Data Identification

It is often desirable for a scientist to identify outlying data, that is, data whose location in Rn is 

outside that of the majority of the population. In a conventional parallel coordinate plot, locating 

this kind of data is not always possible. Our multiresolution brushing design, however, enables the 

user to display the differences between two data resolutions. These differences, in the context of
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(a) (b)

Figure 7-7: An example of authenticity analysis, (a) A coarse approximation with 512 data points, 
(b) Finer non-brushed data is painted over (a), (c) A coarser approximation with 256 data points, 
(d) Finer non-brushed data is painted over (b). See also Color Plate 4 in Appendix D.
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orthogonal wavelet transforms, can be interpreted as the outlying data of the high resolution data. In 

Figure 1-lb, the blue lines are the outlying data of the high resolution data which do not show up in 

the low resolution data (in red). When the resolution of the brushed data decreases, more blue lines 

show up in Figure 7-7d. Our multiresolution wavelet brushing offers another means of providing 

control over outlyingness [RL87] for data analysis. A possible weakness of this approach is that 

some of the painted outlying data, which is part of the non-brushed data, can be over-painted by the 

brushed data. The impact of this problem, however, is much less with the scatterplot matrix display.

7.5.4 High Dimensional Data

In scientific visualization, multivariate visualization techniques are seldom applied to high dimen­

sional data With the support of wavelet brushing, we present such an example to study two- 

dimensional satellite images. The idea can be extended to three-dimensional volume data without 

any system modification.

For high dimensional data defined on Cartesian grids, even small dimension sizes can be mul­

tiplied into a large amount of data. For example, remotely sensed satellite data usually comes with 

a set of measurement taken from the same location. Extracting small pieces of information from 

multiple variates becomes a very challenging task. A multivariate display with wavelet brushing 

provides a coarse overview of a  series of data, and allows the user to brush slices of multivariate 

data for further investigation.

The XmdvTool distribution includes two sets of remotely sensed images in the file outmt.okc. 

This file contains four variates: x  and y  coordinates (in y-major order), the magnetics and the accu­

mulated radiometrics channels o f an area in Australia. The original data and its wavelet approxima­

tions are plotted by scatterplot matrix in Figure 7-8. With 16384 data points in the multidimensional 

multivariate dataset, the scatterplot matrix in Figure 7-8a displays over 260K  scatterdots. Together 

with the x  and y  coordinates, the first image (i.e., the magnetics channel) occupies nine tiles in the 

upper left comer of the matrix. A three dimensional plot of the magnetics image is depicted in 

Figure 7-9. Obviously, the display in Figure 7-8 gets simpler as the data resolution decreases. The 

hard part is to figure out the meaning of the approximations.
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Figure 7-8: (a) The original data with 16384 data points. Wavelet approximations with (b) 4096, (c) 
1024, and (d) 512 data points.
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Figure 7-9: A 3-dimensional plot of the magnetics data with shading.

To understand these approximations, we need to go back to the implementation of the approxi­

mation process. In this example, the wavelet transform is applied to the y-magnetics slices as shown 

in the (3,2) tiles of Figure 7-8. Note the XmdvTool implementation of scatterplot matrix reverses 

the pattern described in Chapter 3. In this case the upper left plot is labelled (1,1) and the lower 

right is (4,4) as shown in Figure 7-12. Among them, the two which contain 1024 and 512 data 

points are enlarged in Figure 7-10. If we carefully trace the scatterdots, there are exactly eight

(b) 512(a) 1024

Figure 7-10: Zoomed displays of the y-magnetics view with a) 1024 and b) 512 data points.

curves in Figure 7-10a and four in Figure 7-10b. These are the approximations of the y-magnetics 

slices of the same data depicted in Figure 7-9. Figure 7-11 displays these approximation lines with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) 1024 (b) 512

Figure 7-11: The scatterdot background is the original data with 16384 data points. The dark lines 
are the approximation of the surface with a) 1024 and b) 512 data points.

three-dimensional scatterplots of the original data with 16384 data points. The dark lines are the 

approximations of the surface with 1024 and 512 data points.

The scatterplot matrix provides a very efficient layout for the user to select data from multi­

dimensional multivariate datasets. In Figure 7-12, the data brush covers a subset of the x  variate 

as shown in tile (1 ,1), the whole y variate in (2,2), the whole magnetics variate in (3,3), and the 

whole radiometrics variate in (4,4). At this resolution there are four scatterdots in (1,1). A brush 

movement from one dot to the others implies horizontal brush movements in (2,1), (3,1), and 

(4,1). These movements result in simultaneous selections of the y-magnetics view in (3,2), the 

y-radiometrics view in (4,2), and the magnetics-radiometrics view in (4,3). The combination of 

wavelet brushing and scatterplot matrix allows the user to study slices of the coarse approximations 

of the magnetics image in (3,2) and the radiometrics image in (4,2) and compare their relationships 

in (4,3). In our example, the brushed data in (4,3) (in red) clearly indicates that the magnetics data 

value is not directly dependent on the accumulated radiometrics data value.

Bivariate comparison is the strength of the scatterplot matrix technique, and wavelet brushing 

makes it possible to apply this visualization technique to very large multidimensional data. It is 

easier, especially for novices, to understand the three dimensional plots in Figures 7-9 and 7-11, but 

each of these displays only shows one variate. For scientists who do exploratory data analysis with 

very large multidimensional multivariate data, the wavelet supported scatterplot matrix provides a
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Figure 7-12: An example of multidimensional data visualization. See also Color Plate 5 in Ap­
pendix D.

unique and powerful mechanism to highlight the data from multiple variates and investigate the 

relationships among them.
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Chapter 8

Brushing Techniques for 

Multidimensional Data

We introduced the notion of multiresolution brushing to browse very large one dimensional multi­

variate data in Chapter 7. The idea is to query interesting portions of a very large dataset by brushing 

a coarse but authentic approximation of the data before the fine resolution data is retrieved. Tradi­

tionally, volume visualization faces greater difficulty and requires more computation resources than 

its lower dimension counterparts. This chapter studies several visualization techniques specially de­

signed to tackle some of these problems. We have implemented a set of volume visualization tools 

using the vtk library [SML96] running on a 133 MHz Linux machine with 32MB of memory. These 

tools show that very large scientific volume datasets can be accessed and utilized without expensive 

hardware.

8.1 Introduction

Scientific volume visualization is currently gaining popularity but the cost of rendering has hin­

dered the development of general applications for widespread use. Although visualization re­

searchers have developed new techniques to improve the performance of the underlying hard­

ware [PK96, YRL+ 96] and software [BPS96, SMK96], more powerful machines with ever im­

proving calibrations are producing larger and larger volume datasets everyday. For example, the 

Visible Woman dataset produced by the Visible Human Project1 occupies over 480MB of memory

‘http://www.nlm.nih.gov/research/visible
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in compressed format. We believe that the best way to make this precious information available 

to the research community at large is to provide low cost versions of the technology so that more 

researchers can use it.

8.2 Problem and  Solutions

Scientific volume data is large. An ordinary computed tomography (CT) dataset, which contains 128 

slice images at 2562 resolution, occupies more than 16MB of memory (if 16-bit format is used). Two 

other medical imaging procedures which require similar memory are Magnetic Resonance Imaging 

(MRI) and ultrasound scanning. Figure 8-1 depicts four isosurface renderings of two CT datasets2 

using the marching cubes algorithm [LC87], Unfortunately, large amounts of data usually implies 

high computational costs. Table 8.1 provides characteristics of our test datasets and statistics of

Dataset Resolution Isovalue II 0/  A Times(s) Figure
Head 256 x 256 x 128 500 482302 278.08 8-la

1500 575272 435.82 8-lb
Engine 256 x 256 x 128 50.5 622196 534.55 8-lc

200.5 144716 36.92 8-ld

Table 8 .1: Characteristics of the datasets and statistics of their isosurface renderings.

the isosurface renderings shown in Figure 8-1. The Time(s) column specifies the CPU time of the 

rendering process including input, marching, and isosurfacing. It is important to realize that the 

time data presented in this paper is not meant to measure the performance of the rendering process 

as implemented in the vtk library. Rather it is used to reflect the differences in performance between 

using the original large datasets and their coarse approximations.

Figures 8 -lc  and 8 - Id are two isosurface renderings (with different isovalues) of the same 

dataset. From Table 8.1, we see that the processing time of Figure 8 - Id is much shorter than that of

2The CT head dataset is courtesy of Will Schroeder, Ken Martin, and Bill Lorensen of General Electric Corporate 
R&D Center. The CT engine dataset was obtained by anonymous FTP from Stanford University.
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(a) Head (isovalue 500) (b) Head (isovalue 1500)

(c) Engine (isovalue 50.5) (d) Engine (isovalue 200.5)

Figure 8- 1: Isosurface renderings o f the head dataset and the engine dataset.
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Figure 8-lc  because fewer isosurface triangles are generated using isovalue 200.5. This implies that 

we may substantially speed up the rendering process if we can reduce the number of data points. 

The idea was explored by Muraki [Mur92, Mur93] who introduced the use of wavelets to compress 

three dimensional volume datasets. This approach helps to improve the performance of many three 

dimensional rendering techniques including the marching cubes algorithm [LC87].

8.2.1 Three Dimensional Brushing

As with other kinds of very large datasets, scientists dealing with volume datasets are often only 

interested in analyzing subsets of the data. For example, a heart surgeon is more interested in the 

heart and the blood vessels than the bones and joints of a human body. If we only bring out the 

most important portions of a large dataset at the highest possible resolution and fill in the rest with 

coarser data, we can cut down the costs of data rendering substantially and still provide accurate 

visualization of the important information. This kind of data extraction process can be considered 

as a form of database query, which we call data brushing.

In the heart surgeon example, we in fact identified two important types of three dimensional 

data extractions: qualitative (X-ray density corresponding to the blood vessels) and spatial (the 

heart region). The latter can further be categorized into planar and volume. Simplified examples of 

these brushes are depicted in Figure 8-2. Since data brushing is an interactive process, we need to 

actually see the display of the dataset before we can brush it. Our next step is to provide a coarse 

but authentic approximation of the very large dataset to guide brushing.

8.2.2 Authenticity of Wavelet Approximations

Muraki [Mur92, Mur93] used Mallat’s multiresolution wavelet algorithm [Mal89] to generate a 

series of fine to coarse approximations of a large volume dataset for rendering. Our goal is to find 

the coarsest authentic approximation within the series to support brushing. The prevailing method 

to determine the accuracy of a volume approximation is the human visual test. In the case of a large 

approximation hierarchy, this means a lengthy rendering of many volume approximations. Because 

of the potential hardware requirements, this procedure may not be possible for every scientist who
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(a) Qualitative (b) Planar (c) Volume

Figure 8-2: Three dimensional brushing of a volume dataset.

wants to use the data. We describe an objective authenticity evaluation mechanism in Chapter 1 1 

which bypasses the requirements of volume rendering and visual comparison, and is still able to 

identify authentic approximations of a hierarchy.

8.2.3 Translucent Coarse Data

After the interesting data subset of the approximation is identified, our next step is to put both the 

fine and the coarse data portions together into one visualization. An obvious option to combine 

two separate data subsets into one display is to make one of them translucent. This can be done 

by reducing the alpha values of the grey level density. Since a translucent body carries less visible 

information, it is a logical choice to apply the reduction to the coarser representation instead of the 

finer one. This translucent display gives a quick but less accurate overview of the data. It helps the 

viewer to understand the overall structure before finer (but much slower) local detail is brought to 

the display.
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8.3 Examples

We present realistic examples of 3D brushing using the CT head dataset depicted in Figure 8-1. 

All the following illustrations are rendered using the marching cubes algorithm. Because of heavy 

memory paging, the full resolution head dataset (256 x 256 x 128) takes up to four hours of clock 

time to render on a 133 MHz Linux machine with 32MB of memory. By brushing only a partial 

subset of either the original data or a close approximation, we achieve near real-time responses in 

almost all cases on the same platform.

8.3.1 Qualitative Brushing

A qualitative brushing process highlights interesting areas according to the values of the data. For 

example, if the most important part of the figure is the skull, only the data values corresponding to 

bones and joints are used to generate the isosurfaces. The rest of the data, mainly flesh and skin, 

can be obtained from a coarser version of the data. Examples of composite displays at different 

resolutions are shown in Figure 8-3. The translucent regions of these figures show the flesh and 

skin portion of the body. Figure 8-3a shows the skin and bone structures at original resolutions. 

Our investigation in Chapter 11 indicates that a Daubechies wavelet with two vanishing moments 

(i.e., D4 ) is a good wavelet candidate to decompose this volume dataset. The translucent skin 

regions of Figures 8-3b -  8-3d are generated by a D4 wavelet at 323 resolution. For the bone 

display in Figure 8-3b we apply D4 to the x  and y dimensions of each image plane. The same 

wavelet decomposition is applied to the dataset twice in Figure 8-3c for the bone display. And in 

Figure 8-3d, we apply decomposition to the x  and y  dimensions twice, and to the z dimension once. 

Table 8.2 gives the characteristics of the datasets (including approximations) and the statistics of 

their renderings. The contribution of wavelets to the brushing process is obvious: Figure 8-3c takes 

less than 1 % of the CPU time required to process Figure 8-3a. This time difference is translated to 

over six hours of clock time when using a 133MHz Linux machine with 32MB of memory. The 

notion of qualitative brushing allows scientists to study particular isovalues of a volume dataset. It 

is, however, not the end of the story. The front side of the skull blocks all the internal structure 

behind it. We need more spatially oriented data brushes such as the ones described in the following
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(c) Skin: 32x32x32 , bone: 64x 64x 128 (d) Skin: 32x32x32, bone: 64 x64 x64

Figure 8-3: Qualitative brushing with multiple resolutions.
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Skin Resolution Bone Resolution l o f  A Time(s) Figure
256 x 256 x 128 256 x 256 x 128 1057559 845.20 8-3a

32 x 32 x 32 128 x 128 x 128 215584 54.18 8-3b
64 x 64 x 128 82580 8.42 8-3c
64 x 64 x 64 51016 3.54 8-3d

Table 8.2: Statistics of the isosurface renderings with qualitative brushing.

sections to further study the local structure of the human skull.

8.3.2 Planar Brushing

A planar brushing process highlights cross sections of a volume dataset. There are three kinds of 

planar brushing: axial, sagittal, and coronal. Each of them indicates a different orientation of a 

plane through a volume dataset. Figure 8-4 shows examples of the three planar brushings using the 

head dataset. Like the previous brushing examples, the translucent skin portion is generated by a 

D4 wavelet at 323 resolution. Since the data brush is only a slice of the dataset, we can afford to 

use the finer (Figures 8-4b, 8-4d, and 8-4f) or even the finest (Figures 8-4a, 8-4c, and 8-4e) data 

to show the local details of the human head. Since we have already shown the effects of reducing 

the skin resolution in Figure 8-3, we do not display the full resolution rendering here. However, the 

processing time of using full resolution skin data are included in Table 8.3 for comparison purposes. 

The results show that all renderings depicted in Figure 8-4, even with the finest data brushes, can be 

processed in real-time using a 133MHz Linux machine.

8.3.3 Volume Brushing

A volume brush is a high resolution sub-volume within a coarse volume dataset. Its goal is to brush 

smaller regions of data values which cannot be achieved solely by a  qualitative or a planar brush. 

For example, the jaw bone area of the skull, which is totally blocked by the forehead in Figure 8-3, 

can easily be seen in Figure 8-5. Once again, D4 is used to decompose the dataset in these figures. 

From Table 8.2 in Section 8.3.1 we realize that it is still too expensive to render the brushed bone 

structure at full resolution. We can, however, render a coarse resolution bone structure and then
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(a) Skin: 323, bone: 2562 x 128 (b) Skin: 323, bone: 2562 x 128 (c) Skin: 323, bone: 2562 x 128

(d) Skin: 323, bone: 1282 x 128 (e) Skin: 323, bone: I282x 128 (0  Skin: 323, bone: I282 x 128

Figure 8-4: Planar brushing with multiple brush resolutions.

Skin Resolution Brush Resolution Brush Size Time(s) Figure
256 x 256 x 128 256 x 256 x 128 55696 555.22 N/A

22134 548.96 N/A
15908 540.94 N/A

32 x 32 x 32 256 x 256 x 128 55696 2.06 8-4a
22134 1.84 8-4b
15908 1.57 8-4c

128 x 128 x 128 13924 0.83 8-4d
11067 0.75 8-4e
7954 0.72 8-4f

Table 8.3: Statistics of the isosurface renderings with planar brushing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

(a) Skin: 256 x 256x 128. bone: 256 x 256x 128 (b) Skin: 32x32x32, bone: 256 x  256x 128

(c) Skin: 32x32x32, bone: 128x 128x 128 (d) Skin: 32x32x32, bone: 64x 64x 128

Figure 8-5: Volume brushing of the jaw bone area.

retrieve portions of the finest data using a volume brush. The results in Table 8.4 show that it is 

possible to access the head data at its finest resolution in near real-time. The rendering as well as 

brushing together may take minutes, but we can access any portion of the very large head dataset at 

its finest resolution using only an ordinary desktop computer.
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Skin Resolution Bone Resolution tt of A Tinte(s) Figure
256 x 256 x 128 256 x 256 x 128 734606 555.02 8-5a

32 x 32 x 32 256 x 256 x 128 123520 27.32 8-5b
128 x 128 x 128 50160 5.78 8-5c
64 x 64 x 128 23404 1.75 8-5d

Table 8.4: Statistics of the isosurface renderings with volume brushing.

8.4 Discussion

The field of volume visualization research will benefit greatly from putting the data into as many re­

searchers’ hands as possible. The rendering hardware previously described in the literature [BPS96, 

PK96, SMK96, YRL+96] costs more than many scientists can afford. We have shown that with an 

average-equipped Linux machine, scientists can obtain precious information from the same large 

datasets described in visualization literature with near real-time response. Many of the brushing 

ideas presented in this paper are conceptually simple and easy to implement. Our software imple­

mentation is based on a public domain visualization library, vtk, which is compiled using the public 

domain version of OpenGL. Based on experience with our experiments, we believe the notion of 

brushing will play an important role in making very large scientific datasets available to the research 

community at large.
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Chapter 9

Dual Multiresolution Extension

In this chapter, we consider how a wavelet based data hierarchy can further be enhanced to include 

a second data reduction algorithm. This extension results in a new multiresolution visualization 

design which allows a user to control the physical data resolution as well as the logical display res­

olution of multivariate data. Perhaps more importantly, this chapter shows that the multiresolution 

visualization technique developed in this thesis is very versatile and robust. This chapter is based 

on [WCB96],

9.1 Dual Multiresolution Exploration

Two data reduction approaches are applied to reduce the size of the data and create a fine to coarse 

data hierarchy. They are norm-based projection and wavelet transform. Our system, which is based 

on HyperSlice [vWvL93], combines these two processes and provides a dual multiresolution visu­

alization environment to improve browsing and navigation capabilities [Cra96, WCB96].

9.1.1 Display Resolution Through Norm Projection

Norm projections are based on {Km —> Rn : m  > n}. The goal is to represent a high dimen­

sional dataset by a lower dimensional display. Our definition of norm projection is stronger and 

more powerful than the similar term which simply describes the view point projections of different 

dimensions in the scatterplot matrix and prosection matrix [STDS95] techniques. In our design, 

data from higher rank spaces are projected by different norms into data of lower rank spaces. By 

applying the projection to the data repeatedly, we generate a data hierarchy with multiple display 

resolutions. In Figure 9-la, there are 72 grid points in R3 ; suppose that each of the grid points rep-
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Figure 9-1: a) 72 sampling points in R3. b) Norm projection along the z  direction, c) The projected 

data in R2 with 9 data points.

resented by a circle has the value 1 and all others grid points have the value 0. A norm projection, 

R3 -» R2, is applied to the data along the 2 -direction in Figure 9 -lb. A traditional view projection 

simply maps data points on top of each other if they project to the same display point, resulting in 

the loss of valuable information. In our approach, we can apply any desired summarizing operation 

to the data points that map to the same display location. Figure 9-lc shows the result of applying 

the L 1 norm to the projected data. Depending on the nature and characteristics of the data as well 

as the usage of the projection, the L x norm can be substituted with the L 2 norm or other aggregate 

functions such as the maximum, the minimum, the sum or the average.

In a way, the definition of our norm projection shares similarities with the definition of the 

attribute projection, it, in relational databases. By manipulating different norms, we can quickly 

obtain some basic facts about the data. Figure 9-2 shows bivariate scatterplots in three consecutive 

display resolutions (8192 initially) using the maximum aggregate function at the top (Figures 9-2a 

-  9-2c), and the average aggregate function at the bottom (Figures 9-2d -  9-2f). The upper left 

quadrants of all six plots contain relatively high intensity spots, indicating either a sparse or highly 

centralized population with higher values. The lower left quadrant of Figure 9-2b shows similar 

bright spots but the intensity fades away in Figure 9-2e, indicating a high population with evenly 

distributed data values. The cloud patterns between the two right plots further indicate that the lower
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Figure 9-2: Top: Three consecutive display resolutions of a bivariate scatterplot using the maximum 
aggregate function. Bottom: The same three plots using the average aggregate function.

right quadrant has relatively sparse population with relatively low data values.

A standard scatterplot does not show data density within a pixel and for this data we can gain 

only limited insight -  the two variates do not seem dependent. The use of norm projection allows 

a user to gain more insight such as data locality and demography quickly and accurately. However, 

when data size grows, conventional aggregate functions eventually fail to show the locality of the 

data trends. We need scaling functions which are localized in space and frequency -  wavelets satisfy 

these characteristics.

9.1.2 Data Resolution Through Wavelet Decomposition

We show an example of combining wavelet decomposition and norm projection using the same 

dataset. Figure 9-3 depicts bivariate scatterplots of five resolutions of a dataset with 16384 points. 

The original data is plotted, together with four coarser resolutions (8192, 4096, 2048, and 1024) 

generated by a Haar wavelet. The aggregate function used is count, which means that a high display 

intensity implies a high population density. The wavelet approximations visually reflect the trend of 

the data distribution. More importantly, we can now navigate through a dataset that is only ^  (or
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(a) 16384 (b) 8192 (c)4096 (d) 2048 (e) 1024

Figure 9-3: Scatterplots of the original data with a) 16384 points, wavelet approximations with b) 
8192, c) 4096, d) 2048 and e)1024 points. The count aggregate function is applied in all graphs to 
show the data distribution.

even smaller) of the original size. For pixel-based graphics applications, this results in a substantial 

speed-up in terms of computation time and memory.

9.1.3 Display Resolution versus Data Resolution

A major drawback of orthogonal wavelets is that the reduction rate is fixed at 2~n where n  is the 

number of data dimensions. Conventional aggregate functions, however, can generate more flexible 

resolutions. Data exploration using wavelet approximations depends upon (both objectively and 

subjectively) the shapes and the trends being preserved in the coarse approximations. For data 

mining, conventional aggregate functions are more natural and easier to understand and manipulate. 

We do not change the physical contents of the data during norm projections, only the visualization. 

Wavelets, on the other hand, physically replace the data with smoother values.

Our system puts these two mechanisms into one powerful data visualization tool. As depicted 

in Figure 9-4, a data hierarchy with multiple data resolutions is first generated by wavelet decompo­

sitions. For data mining, norm projections are applied to the data of the selected data resolution and 

data with multiple display resolutions are generated. Wavelet approximations provide a coarse view 

of a large dataset, which may not otherwise be able to be displayed on screen. Once the interesting 

patterns are located from this resolution of the data, the user can go to a higher data resolution to do 

the data mining using norm projections.
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Figure 9-4: Two hierarchies are generated from a very large data through norm projections and 
wavelet decompositions.

9.2 HyperSlice Enhancem ents

Nearly all matrix-based visualization representations, including HyperSlice, duplicate mirror im­

ages (and/or movements) of the upper left half to the lower right half of the matrix. We, however, 

believe that this precious space (almost one half of the display area) can be used to provide an­

other dimension of information. In additional to all the standard features to define a HyperSlice 

representation, our system also provides the error information generated by the wavelet decompo­

sitions. The approach of using wavelet details as a means of data authenticity analysis is discussed 

in Chapter 5 and [WB95a],

In Figure 9-5, a 9-variate time-series dataset with 16384 data points is plotted with our system. 

The multivariate data comes from the GISP2 [MMM+93] project which investigates the timing and 

forcing of climate changes of the atmosphere over the last 200,000 years. A wavelet transform is 

applied to the data and the finest wavelet approximation is depicted in Figure 9-5. Since each data
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Figure 9-5: A multivariate data in HyperSlice representation.

point consists of 9 variates (Time, NO3, SO4, Cl, Na, K, Ca, Mg, and NH4), Figure 9-5 represents 

well over one million data values. The upper left half of the matrix uses the aggregate function 

count as the norm projection norm. A pixel block with high intensity implies a dense population 

of data points. In the lower right half of the matrix where the maximum aggregate function is used, 

a pixel block with high intensity means at least one of the approximation values in that block has 

large error, which may need further investigation at finer resolutions.

We argue that the error information is crucial for data exploration, especially in a multiresolution 

environment. It is a fact that data loss is unavoidable during wavelet decomposition. These losses, 

however, can be presented together with the approximations. Figure 9-6a shows a standard bivariate 

scatterplot (NH4 versus Cl) without applying the norm projection; a coarse wavelet approximation
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(a) Standard (b) Approximation (c) Error

Figure 9-6: a) A bivariate scatterplot without norm projection, b) A coarse wavelet approximation, 
c) The error information of the corresponding approximation.

is shown in Figure 9-6b and the error information is shown in Figure 9-6c. The intensity variations 

in the lower left portion of Figure 9-6b provide distribution information that is entirely lost in the 

standard scatterplot in Figure 9-6a. Figure 9-6b also clearly shows that the wavelet smoothes away 

most of the isolated points in the upper left quadrant. These data losses, however, are reflected 

accurately in Figure 9-6c, which is displayed in the corresponding tile at the lower right half of the 

HyperSlice. The error display reveals information which does not show up in the approximation 

plot.

9.3 A Simple Application

In this section, we present an application using a publicly accessible non-scientific dataset1 contain­

ing information about faculty at U.S. universities. We have selected six variates from this dataset -  

the number of faculty at each faculty rank (i.e., full, associate, and assistant) and the average salaries 

at each rank. The data is displayed in Figure 9-7 with 1024 (322) pixel blocks used in each display 

tile. The display data, which is the second approximation generated from the wavelet transforms, 

represents well over 36K data values. The points of interest and the ranges of the display of the tiles 

are indicated in the corresponding diagonal tiles. We use the matrix coordinate system defined for 

HyperSlice in Section 3.3.2. The diagonal tiles have the coordinates {(z, z), i e  Z +} with the lower 

left tile as the origin, i.e., ( 1, 1).

1 http://lib.stat.cmu.edu/datasets/colleges/aaup.data
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Figure 9-7: A fine projection of a coarse approximation of the faculty salary dataset.

We notice that the overall pixel intensity of the (1, 2), (1, 3), and (2, 3) tiles generated by the 

average norm in Figure 9-7 are much lower than the rest of the tiles in the lower right half of the 

matrix. This indicates that the approximations depicted in the (2,1), (3,1), and (3,2) tiles (which are 

the pairwise scatterplots of the salary figures of full, associate, and assistant professors) are more 

accurate representations than the rest of the approximations in the upper left half of the matrix. 

Suppose we want to see the distribution of the error in order to show that all (i.e., not just some of) 

the error values in the mentioned tiles are small. We decrease the display resolution and apply the 

maximum norm projection. As we can see in Figure 9-8, the pixel intensity of the (1, 2), (1, 3), and 

(2, 3) tiles stays almost the same as in Figure 9-7. This shows that all the error data values of the 

three tiles are indeed very low.
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Figure 9-8: A coarse projection of a coarse approximation of the faculty salary dataset.

We now turn our attention to study the relationship between the number of full professors versus 

their average salaries shown in the (4, 1) tile in Figure 9-8. We can see a group of very high intensity 

pixel blocks around the lower left comer. This indicates that a substantial number of universities 

employ a very small number o f full professors with relatively low salaries. Since most of the data 

pixels stay in the lower left comer of the display tile, we redefine the display window of the first 

variate (average salaries of full professors) to cover the first half, as shown in the ( 1, 1) tile of 

Figure 9-9. We also increase the data resolution to 1024 data points in each display tile to obtain finer 

details of the data. From the (4, 1) tile of Figure 9-9, we can get a better view of the phenomenon. 

This is indicated by the horizontal white pixel blocivS at the bottom of the (4, 1) tile. This is further 

evident in the (4, 1) tile of Figure 9-10, which shows the data at fine data and display resolutions.
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Figure 9-9: A coarse projection of a fine approximation of the faculty salary dataset.
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Figure 9-10: A fine projection of a fine approximation of the faculty salary dataset.
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Chapter 10

Multidimensional Scaling

The multiresolution techniques described so far are sufficiently general that they can be applied 

to a variety of multidimensional data. However, these techniques do not address the high variate 

problem of many multivariate datasets. In this chapter, we suggest another solution designed to 

reduce the number of variates of a multivariate dataset in a multiresolution fashion.

10.1 Low Dimensional Data Overview

We present an efficient visualization approach to support multivariate data exploration through a 

simple but effective low dimensional data overview based on metric scaling [CC94, Dav83]. This 

overview can be used to enhance multidimensional data brushing, or arrange the layout of other 

conventional multivariate visualization techniques. Some of the underlying design concepts have 

been applied in various visualization tools. Keim et al. [KK94, KKS93] define a distance function 

as a metric to show the relevance factor of individual variates of a dataset in VIsDB. Ward and Bent­

ley [BW96] use multidimensional scaling to animate multidimensional datasets in Mavis. Hurley 

et al. use principal components to analyze data with motion graphics in Data Viewer [HB90] and 

XCobi [CCH95].

We demonstrate our approach using a publicly accessible automobile dataset1, which contains 

information about thirty-eight 1978-79 model automobiles including miles per gallon, weight, drive 

ratio, horsepower, displacement, and number of cylinders. An example using a larger dataset with 

329 records is described in Section 10.3.2. Suppose the data has dissimilarities, Srs, measured

1 http://lib.stat.cmu.edu/DASL/Stories/ClusteringCars.html
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between all pairs of automobiles in the 6 dimensional variate space. The dissimilarity between two 

station wagons is expected to be much smaller than the one between a compact and a full size sedan. 

A graph configuration of 38 vertices, in which the r th vertex represents the r th automobile, is sought 

in a d dimensional display space such that the distances, drS, between all pairs of vertices match the 

corresponding dissimilarities, 5rs, in variate space. This configuration is called a low dimensional 

data overview. Figure 10-1 shows an example of such a graph configuration of the automobile
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Peugeot 694 SL

S*ab99GLE Volvo 240 GL

BMWMOi Datsun810

Datsun510

Oatsun 210 
Mazda GLC

Mustang Ghia 

Zephyr
Aspef0"00"1

Estate Wagon

Omni Mustang 4
SpiritCorona

Horizon

Accord LX

Century Special

Omega

Citation

*■» w w - * ,  a S F " w*8"
SrKga Couner Squin Wagon 

Grand Marquis
LTD

S’r*<̂ 011 Skylark 
Phoenix

Figure 10-1: A two dimensional display of the six variate automobile dataset.

dataset in a two dimensional space. A quick look at the figure reveals that the full size sedans and 

wagons are located at the right hand side, the compacts and subcompacts are at the left hand side, 

the upscale medium size sedans are at the top, and the rest are scattered around the middle of the 

display. The graph successfully highlights all the major clusters, which reflect the dissimilarities 

among the six variates of the data.

This example is effective partly because common knowledge is sufficient to identify the nature 

of the clusters. When there is no obvious meaning coming out of the data overview, further analysis 

of the original data through other means is necessary. The data overview can then be used to guide
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the exploration o f  the local details.

This chapter describes the construction of such a low dimensional display of multivariate data 

through the use o f principal components [Jac91]. The strengths and weaknesses of the approach as 

compared to other multivariate visualization techniques such as scatterplot matrix are also investi­

gated. An effective visualization environment can be achieved by combining different techniques.

ratio data. Suppose we have a set of n  records with v  variates and dissimilarities, STS, measured 

between all pairs of records in a v dimensional space. We want to configure a graph of n vertices 

in a d dimensional display space such that each vertex represents one record and the distances, drs, 

measured between all pairs of vertices in display space match Srs in variate space as closely as pos­

sible. This graph configuration problem falls into the broad research area of metric scaling studied 

mostly by mathematical psychologists. The goal is to determine the dissimilarities between all pairs 

of records by Euclidean distances in v space, and then use them to compute the Euclidean coordi­

nates of the n vertices in the d dimensional display space. Figure 10-1 shows a low dimensional 

data overview of the 38 automobiles in two dimensional Euclidean space.

10.2.1 Data Dissimilarity Measurement

The first step is to determine the dissimilarities between all pairs of input records, using the Eu­

clidean distance in v  space. The dissimilarity, 6rs, between records r  and s is given by

A dataset with n  records generates an n  x n real symmetric dissimilarity matrix. Each element of 

this matrix contains the dissimilarity, 6rs, between records r  and s of the original data. For example, 

given a dataset with five variates and six records as shown in Figure 10-2a, the Euclidean metric is 

applied to the data and the result is a 6 x 6  dissimilarity table, such as shown in Figure 10-2b.

10.2 Metric Scaling

In our discussion, we narrow our data choices to quantitative data which includes both interval and

V
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V1 V2 V3 V4 VS X1 X2 X3 X4 X5 X6
X1 X1 0 812 813 814 515 516

X2 X2 8 1 2 0 823 824 525 826

X3 X3 813 823 0 834 535 836

X4 X4 814 824 834 0 845 546

X5 X5 815 825 835 545 0 856

X6 X6 8 1 6 826 836 546 856 0

(a) (b)

Figure 10-2: a) A dataset with five variates and six records, b) A dissimilarity matrix of the dataset.

10.2.2 Recovery of Coordinates

Using the approach of principal components, we can represent the data as points in a p  dimensional 

space where p  < n . We create an inner product matrix from the dissimilarities Srs in variate 

space, and find its eigenvalues Ai, . . .  Ap and the corresponding eigenvectors to yield the Euclidean 

coordinates of the n  vertices in the p  dimensional space2 (See Appendix C for more details.)

If the eigenvalues are sorted in descending order, i.e., Ai >  A2 >  . . .  > Ap, the first principal 

component associated with Ai is more important than the second component, which in turn is more 

important than the third and so on. (See [Jac91] for details.) The distance, A rs, between vertices 

r  and s is given by
p

&rs =  ^  I ^ i(x ri ~  ^si) 
i= l

where x  is defined in Appendix C. A smaller eigenvalue contributes much less weight to the distance 

drs, so these smaller eigenvalues can be truncated with less error. In most cases, the first two to 

three components can approximate the data very well. Suppose we select the d most significant 

eigenvalues to display the data overview, the degree of accuracy of the approximation can then be

2 It is important to realize that the eigenvalue-based principal components are not the only approach to do scaling. 
Other popular methods include Monte Carlo scaling and Least Squares scaling [CC94],
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measured by
EfclAi
SUV

The two dimensional graph of the automobile dataset depicted in Figure 10-1 has a degree of accu­

racy of 94.61%. It reaches 97.37% if the third principal component is included.

10.3 Strengths and W eaknesses

We investigate the strengths and weaknesses of the low dimensional data overview, and compare it 

to other multivariate visualization techniques including scatterplot matrix and parallel coordinates. 

AH the figures of scatterplot matrix and parallel coordinates were generated by an enhanced version 

of XmdvTool [MW95, War94, WB96a],

10.3.1 Data Clustering

Both scatterplot matrix and parallel coordinates are very flexible multivariate visualization tech­

niques which perform well in a wide variety of visualization situations [WB97a]. With the addition 

of high dimensional brushing [War94, MW95, WB96a], both techniques enable clustering analysis 

in a limited form. Figure 10-3 depicts the same automobile dataset shown in Figure 10-1 using 

the low dimensional data overview, scatterplot matrix, and parallel coordinates. The data in red 

represents the information for the six upscale medium size cars. We notice that the red dots in 

Figure 10-3a are all by themselves without any blue dots close by. The same data cluster is not so 

obvious in Figure 10-3c where the red polylines are embedded among the blue polylines. It is very 

difficult to spot the data cluster without brushing, and it is not clear how easy it would be to figure 

out how to determine the right brush to use. The situation is worse in Figure 10-3b, where the red 

dots are scattered all over most of the display tiles.

10.3.2 Display Density

A second advantage of the low dimensional data overview is its relatively low display density. 

Because of the data reduction during the scaling process, the low dimensional data overview handles

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I l l

(a)

*fC /* 
M /
P '
G,'
/

V 
• *

Dctbcjiat
' * . t

• Worsepowe *• fcsplece* 
Ir

\ Cylinders
i :

: i

e •
1 *  . 

' v •
✓✓

✓

; j

•«* * •" * <:**i 
«*» •

:*

Ci*t

i

i * i 
i

.T .
H .
r -  ,
*v ; *

L. . (

* r

*
/ ! :

r .*• .
V y

•’t.

!. t
* . i

i
i
t*:

• •• f .

*

*
/

<
i . •I 

I  
: 

!
1 

CJ 
>1 — ------

>lu«JU t!o

(b) (c)

Figure 10-3: The cluster of the upscale medium size cars is displayed in red in the graphs. See also 
Color Plate 6  in Appendix D.
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larger datasets (especially with a high number of variates) much better than the other two techniques. 

Figure 10-4 depicts a dataset3 of US cities with 329 records and 10 variates that measure various

(a)

(b) (c)

Figure 10-4: A 10 variate dataset with data records of 329 US cites.
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quality of living parameters. As we can see, the scatterplot matrix in Figure 10-4b suffers from 

the high number of data variates, which requires 81 display tiles to cover the data completely. The 

problem is even more obvious with the parallel coordinate display in Figure 10-4c in which valuable 

information and data clusters are mostly hidden behind the polylines.

The large number of data points in Figures 10-4b and 10-4c also makes it very difficult to brush 

the data accurately. That is because a majority of data points are plotted very close to each other 

while some of the others simply vanish due to overlappings. It is also important to realize that even 

though two data points are displayed in the same neighborhood in certain tiles in Figure 10-4b (or 

some axes in Figure 10-4c), the two data records may still be very far away when all variates are 

considered.

The data points in the low dimensional overview in Figure 10-4a have a significantly lower 

density than those in Figure 10-4b and there is much less overlap. This makes it much easier to 

brush neighboring sets of data values than is possible with either of the other displays. In addition, 

proximity in Figure 10-4a is a measure of the similarity between data records (i.e., cities) whereas 

proximity in Figure 10-4b and 10-4c only indicate similarity of variate values.

10.3.3 Outlier Detection

The document which comes with the automobile dataset indicates that the Buick Estate Wagon 

record is an outlier. This is because the data was collected on a test track and the car was operated 

with a higher than recommended tire inflation pressure, while the rest of the data were collected by 

EPA under standard test conditions. Since the track condition and the tire pressure are not included 

in the dataset, the miles per gallon value of the Buick is unexpectedly better than the other cars in 

the same category. The outlier shows up in the data overview in Figure 10-1 as the Estate Wagon is 

located away from the full size sedan/wagon cluster. However, the other six variates of the Buick 

record keep the car fairly close to its peers. Once again, it is much easier to spot the outlying 

data (shown in red in Figure 10-5) in the low dimensional data overview than in the other two 

visualization techniques depicted in Figures 10-5b and l0-5c.

3http://lib.stat.cmu.edu/datasets/places.data
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(a)
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Figure 10-5: The Buick Estate Wagon (an outlier) is displayed in red in the graphs. See also Color 
Plate 7 in Appendix D.
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10.3.4 Multiresolution Visualization

The visualization of large multivariate datasets continues to be one of the major challenges of visu­

alization research. We suggest another progressive refinement solution to visualize datasets with a 

high number of variates.

As we mentioned in Section 10.2.2, the low dimensional data overview based on principal com­

ponents is only an approximation of the data. Its degree of accuracy is determined by the number 

of principal components used for display. In most cases, the first two to three principal components 

of the data overview convey most of the important information of the data. Nonetheless, there are 

times when a higher number of dimensions is needed.

As an example, we use a 10-variate dataset4 which contains information about protein con­

sumption in Europe during the 70’s. The first five data overviews, which use eigenvectors from the 

first one, two, three, four, and five principal components, achieve degrees of accuracy of 45.57%, 

63.15%, 76.02%, 86.04%, and 91.26% respectively. After the first component, every unit increase in 

dimension improves the degree of accuracy by about 5-10%. If we consider the 80% size reduction 

rate, the two dimensional data overview (63.15%) is indeed a very practical result. Nevertheless, 

error information is always welcome for data visualization which involves data reduction.

We use the glyph [PG8 8 ] technique to demonstrate the idea of multiresolution visualization. 

Bear in mind that our goal is to reduce the number of data dimensions, not the size of the data. 

Figure 10-6 depicts three coarse-to-fine data overviews of the protein data in two, three, and four 

dimensional spaces using the glyph representation, followed by an annotated graph to show the 

identities of the data points. The first two principal components are mapped to the two axes in all 

three overviews. In Figure 10-6b and Figure 10-6c, the third principal component is mapped to the 

rainbow colormap with red being the highest. In Figure 10-6c, the fourth component is mapped to 

the diameter of the glyph, which is a circle. The multiresolution display is particularly important in 

this dataset because the first two principal components do not reflect a very high degree of accuracy, 

i.e., 63.15%. This shows up when we look at the data points at the lower left side of Figure 10-6c,

4http://lib.stat.cmu.edu/DASL/Datafiles/Protein.htmI
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(c) (d)

Figure 10-6: The glyph representation of three coarse-to-fine data overviews of the protein data in 
a) two, b) three, and c) four dimensional spaces, d) An annotated graph to show the identity of the 
data. See also Color Plate 8 in Appendix D.

where the glyphs include both color and size parameters whose values come from the third and 

fourth components respectively. Even though the first two major components put these data points 

close to each other, there are still differences among the neighbors which deserve attention.

From Figure 10-6d, we see that the spatial locations of the glyphs resemble the geographical 

locations of the corresponding countries. The interpretation is that people who live in neighboring 

countries share similar diets, which determine the way they consume protein. By looking at the de­

grees of accuracy achieved by the additions of the third and fourth principal components, the colors 

and the sizes of the glyphs are expected to play important roles in the interpretations. The display 

proximity and the similarity of the color of the two data vertices representing the two Germanys is
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strong evidence that they share very similar cultures, even though they belong to two different data 

groups, i.e., Eastern and Western Europe.

10.3.5 Shortcomings

It is not entirely fair to compare the effectiveness of visualization tools when we only look at one 

aspect of the results. The metric scaling technique is good at representing clusters of data points 

but the individual variate values are lost. For example, a car with more cylinders does not always 

imply more horsepower than one with less. This can be spotted easily in Figure 10-3c, but not in 

Figure 10-3a. In the following section, we describe how to integrate the metric scaling technique 

with techniques that maintain more of the variate value information.

10.4 Integration of Techniques

From the previous examples, we have learned that the low dimensional data overview cannot be 

used to replace the other visualization tools for effective multivariate visualization. The goal is to 

combine these tools together easily and productively.

10.4.1 View Linking

Since the size of each principal component of the data overview is the same as the number of 

records of the data, we can simply treat the components of the data overview as part of the data 

for visualization. This approach is demonstrated in Figure 10-7 using the same automobile dataset 

presented in Section 10.1. The first two variates in the upper left comer of Figure 10-7a are the 

principal components of the data overview. With the use of high dimensional data brushing, we can 

mark the overview tiles and study the responses in the other display tiles at the same time. As we 

can see, the brushed data (in red) in the two data overview tiles are spread out in the rest of the 

scatterplot matrix in Figure 10-7a. In Figure 10-7b, the first two axes effectively pull all the data 

clusters together. Brushing these clusters is difficult without the support of the data overview.

The idea of linking a data overview to a visualization technique seems simple, but the impli­

cations reach far beyond just the point-and-click operations. By applying the Euclidean metric

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) (b)

Figure 10-7: Multidimensional brushing with a low dimensional data overview. See also Color 
Plate 9 in Appendix D.

to different subsets of variates, we provide a very realistic overview which we can use to query 

the data with a far more powerful and flexible language than the conventional database query lan­

guages using aggregate functions. The data overview presents a graphic summary with reduced 

data dimensions, reduced data size, additional data semantics, and most important of all, better 

user-friendliness for the underlying visualization technique.

10.4.2 Display Merging

The second strategy is to merge the Euclidean coordinates of the data overview and the data into one 

visualization display. Conventional glyph representations such as the stick figure icon [PG8 8 ] can be 

useful only when the icons are arranged in certain dimensions. The patterns may vanish altogether 

with even a slight change of the plotting axes. This limits the flexibility and functionality of the 

technique. The low dimensional data overview, however, brings new perspective to conventional 

icon visualization. Our approach is to arrange the icons according to the Euclidean coordinates of 

the data overview determined by the principal components of the data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



119

An arbitrary glyph, which is defined in Figure 10-8, is used to visualize the protein data de-

Red
Meat

White
Meat

Eggs Milk

Fish Fruits
Vegetables

Starch Nuts Cereals

Figure 10-8: The definition of a nine variate glyph.

scribed in Section 10.3.4 using the same colormap as in Figures 10-6b and 10-6c. The glyph con­

tains four layers and nine blocks. Each layer approximately represents one food category and each 

block represents one kind of food. The result is shown in Figure 10-9. As we can see, the glyphs

£

*

&

Figure 10-9: The nine variate protein consumption data represented by the glyph representation. 
See also Color Plate 10 in Appendix D.
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representing the Balkans indicate that the countries including Yugoslavia, Romania, Bulgaria, and 

Albania consume a relatively small amount of meat, milk, fruits, vegetables, and fish, but a large 

amount of starch and cereals. Scandinavian countries such as Sweden and Finland consume much 

more meat, milk, and vegetables than starch and cereals. The Iberian countries including Spain 

and Portugal consume a lot of fruits, vegetables, and fish, and only a small amount of meat and 

milk. And the Mediterranean countries including Greece and Italy have relatively balanced diets. 

All this information, however, can also be revealed by the icons themselves. However, if we look 

closely at the spatial locality of the glyphs, countries with higher meat, egg, and milk consumptions 

(the top two layers) tend to be located at the lower left hand side; countries with higher starch and 

cereals consumptions (the bottom layer) tend to be located at the lower right hand side; countries 

with higher fruits, vegetables, and fish consumptions (the third layer) are at the top; and finally, 

countries with relatively balanced diets are around the middle of Figure 10-9. These explain why 

the Balkans are at the lower right hand side, Scandinavian and Western Europe countries are at the 

lower left hand side, Iberian countries are at the top, and Mediterranean countries are in the middle 

of Figure 10-9.

The visualization of the data and its principal components together offers a lot more than just 

the data itself. The principal coordinates of the data also provide new opportunities to create new 

shape and texture patterns with the conventional iconographic technology.
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Chapter 11

Experimental Results

The goal of this chapter is to evaluate the performance of our multiresolution data hierarchy model. 

We describe a computational study that examines the multiresolution data representation of real 

life high dimensional datasets. The test datasets are fully public domains. They are often used for 

performance evaluation within the volume visualization community. The experimental tests were 

conducted on a 133 MHz Linux box with 32MB of real memory and 256MB of virtual memory.

The remainder of the chapter is divided into four sections. Section 11.1 briefly describes a 

function library we developed to conduct our experiments. Section 11.2 describes the test data and 

procedures of our investigation. Section 11.3 gives the results of our study. We conclude with a 

discussion of the results in Section 1 1.5.

11.1 Function Library

In the course of running our experiments, it was beneficial to develop a C++ function library that 

supports wavelet transforms of very large datasets. The library

•  provides orthogonal wavelet transforms with up to ten vanishing moments;

•  supports wavelet transforms on high dimensional datasets;

•  supports progressive refinement data analysis;

•  keeps track of the accumulated data loss as well as data loss from individual resolutions during 

wavelet transforms;

• provides over a dozen statistical functions for data analysis;

121
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•  supports numerical analysis functions such as root-mean-square error and norms.

In addition to a complete implementation o f wavelet transforms, the heart of the library is a group of 

multidimensional refinement procedures built on recursive subspace projections. Assume we have a 

three dimensional volume dataset which contains an approximation subvolume (in grey) and a detail 

subvolume (in white) as shown in Figure 11-1. The library supports the following n-dimensional

Figure 11-1: The approximation subvolume (in grey) and detail subvolume (white) are extracted 
from a volume dataset created from one wavelet decomposition.

operations:

•  extracts the data approximation of an rc-dimensional dataset;

•  extracts the wavelet detail of an /t-dimensional dataset;

•  calculates the error norm of an individual approximation point by combining the error values 

of the corresponding details in all dimensions;

• calculates the overall error norm of an approximation volume.
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11.2 Test D atasets and Procedures

Given a very large multidimensional dataset, our goal is to find highly authentic approximations 

whose sizes are substantially smaller than the original in a hierarchical fashion. Since the data 

size and data authenticity are usually two conflicting goals, the qualities of our results can only be 

judged by the outcomes of the applications which use the data In our case, the target application is 

isosurface rendering of three dimensional volume data

11.2.1 Datasets

Our test data consists of three volume datasets which include CT scans of a lobster, 1 a partial 

human head,2 and an engine block.3 The lobster dataset has 64 slice images at 1282 resolution 

each. The human head dataset contains 128 slice images at the same resolution. The engine dataset 

consists of 256 slice images at 2562 resolution. More information about the datasets is listed in 

Table 11.1. Figure 11-2 shows the isosurface renderings of the three datasets using the marching

Dataset
Data

Dimensions
Data
Size

Min
Value

Max
Value

Mean
Value

Standard
Deviation

Lobster 128 x 128 x 64 1048576 0 255 8.19 35.97
Head 128 x 128 x 128 2097152 0 4095 370.52 547.92
Engine 256 x 256 x 128 8388608 0 255 21.87 49.28

Table 11.1: A summary of important information about the test datasets.

cubes algorithm [LC87, NH90] as implemented in the vtk library [SML96]. The isovalues and the 

number of generated triangles of the renderings are listed in Table 11.2.

'Courtesy o f Advanced Visual Systems, Inc.

2Courtesy o f Will Schroeder, Ken Martin, and Bill Lorensen of General Electric Corporate R & D Center.

3Obtained by anonymous FTP from Stanford University.
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(a) Lobster (isovalue 25.5) (b) Head (isovalue 500.0)

(c) Engine (isovalue 50.5)

Figure 11-2: Isosurface renderings of the a) lobster (isovalue 25.5), b) head (isovalue 500.0), and c) 
engine (isovalue 50.5) datasets.
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Dataset Isovalue Number o f  A  s Time (s)
Lobster 25.5 93252 22.70
Head 500.0 171180 278.08
Engine 50.5 622196 534.55

Table 11.2: Statistics of the isosurface renderings.

11.2.2 Procedures

Each test dataset is first decomposed into a multiresolution data hierarchy using wavelet transforms. 

For each data resolution of the hierarchy, both the L l and L 2 norms of the wavelet details are cal­

culated. These norm values are used to decide the better resolutions (in terms of data size and 

authenticity) of the approximations in the hierarchy. To reduce the storage space of the hierarchy, a 

substantial number of less significant wavelet coefficients are removed from these selected approx­

imations. Datasets with different degrees of truncation are then reconstructed to their original sizes 

for comparison. These procedures are repeated for different wavelets. Due to the relatively small 

dimension sizes (64, 128, 256) of our test datasets, only orthogonal wavelets with less than three 

vanishing moments are used.

11.3 Results and Evaluations

This section describes the experiments and evaluates the results of our study in detail. We start 

with the head dataset because it is twice as large as the lobster dataset and its data content is more 

heterogeneous than the metallic based engine block.

11.3.1 Human Head Dataset

We summarize our main experimental results of the head dataset in a sequence of tables and 

graphs followed by explanations and discussions. Table 11.3 contains the information about the 

running time required by different wavelets to fully decompose the human head volume dataset. 

The columns Wavelet and Vanishing moments identify the wavelets and their number of vanishing 

moments used to generate the hierarchy. The Time column specifies the running time of the data
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Wavelet Vanishing Moments Time (s)
h 2 1 12.70
d 4 2 18.30
d 6 3 24.23

Table 11.3: CPU seconds to fully decompose the head dataset using different wavelets.

decomposition. All running times are measured in CPU seconds on a 5133 Linux Box with 32MB 

of memory. A plot of the CPU seconds needed to decompose the dataset versus different wavelets 

is shown in Figure 11-3. Since more vanishing moments imply more computational steps during 

decompositions, the wavelet which has the smallest filter size (i.e., H2) has the shortest CPU time.

<uB

Oa,o

26
24 CPU seconds — —
22

20

18
16
14
12

1 2 
Number of vanishing moments

3

Figure 11-3: CPU times versus number of vanishing moments of the wavelet decompositions of the 
human head dataset.

Error Estimation

We now turn our attention to the qualities of the wavelet approximations. As in Chapter 5, we use 

a norm to measure the information loss due to wavelet decomposition. In our investigation, two 

norms (Ll and L2) are applied to the wavelet details of each resolution to study the errors of the 

corresponding approximations.

Let X  — {ij}  for i =  1 , . . . ,  N  where x,- C R  The L l norm of X  is defined as L l (X )  =  

52 |xz| while the L 2 norm is given by L 2(X ) =  y52z?. Since the information loss due to data
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decomposition is recorded only in the wavelet details, we do not include the approximations in the 

norm calculations. For the rest o f the discussion, we use L l to represent the L l error of the wavelet 

decomposition W (n) -> W (^ ) ,  i.e., L l =  L l (D etails(W )). Similarly, the L 2 error is given by 

L 2 =  L 2(D etails{W )).

An average L l generated from a single decomposition is defined as L l =  Q  where n is the data 

size before the decomposition. Similarly, L 2 =  Since a wavelet approximation inherits all the 

errors generated from previous (i.e., finer) decompositions, an accumulated L 1 (L2) norm, Y  L l 

( Y  L 2), is defined as the sum of all the L 1 (L2) norms of the finer resolutions in the multiresolution

hierarchy. To compute the percentage error E  of an individual approximation point, we define
y ' j r  _

E  = î ~- where X  is the mean of the set X .A

The norm values and the percentage errors of the wavelet details generated from the human head 

dataset are listed in Table 11.4. These norm values are plotted against the size of the approximations 

in Figure 11-4.

w Data Size L l L l E ^ 1 E{%) L2 L2 E  l 2
h 2 64x64x64 1.32e+07 6.29 6.29 1.70 9.01e+09 4295.48 4295.48

32x32x32 1.80e+06 6.87 13.17 3.55 8.03e+08 3061.89 7357.38
16x 16x 16 3.04e+05 9.29 22.45 6.06 1.29e+08 3946.56 11303.94

8 x 8 x 8 8.35e+04 20.38 42.83 11.56 4.74e+07 11562.01 22865.95
4x4x4 1.75e+04 34.12 76.95 20.77 7.30e+06 14251.07 37117.02

d 4 64 x 64 x 64 1.15e+07 5.49 5.49 1.48 5.44e+09 2593.26 2593.26
32x32x32 1.79e+06 6.82 12.31 3.32 7.02e+08 2679.41 5272.66
16x 16x 16 3.36e+05 10.25 22.56 6.09 1.32e+08 4036.19 9308.86

8 x 8 x 8 7.17e+04 17.52 40.08 10.81 3.22e+07 7871.46 17180.32
4x4x4 1.34e+04 26.25 66.33 17.90 5.76e+06 11243.05 28423.36

d 6 64x 64 x 64 1.21e+07 5.76 5.76 1.56 5.79e+09 2706.76 2760.76
32x32x32 1.84e+06 7.03 12.79 3.45 6.89+08 2628.78 5389.54
16x 16x 16 3.68e+05 11.22 24.01 6.48 1.41+08 4292.21 9781.75

8 x 8 x 8 4.73e+04 11.54 35.56 11.04 1.36+07 3325.81 13007.56
4x4x4 9.68e+03 18.92 54.47 19.09 3.76e+06 7338.07 20345.62

Table 11.4: The norms, average norms, accumulated average norms, and percentage errors of the 
wavelet details generated from the head volume dataset by different wavelets in multiple resolutions.

As one might suspect, the values of L 1 and L2 are largely dependent upon the sizes of the data 

approximations, i.e., more data values imply a larger norm. This shows up in Figures 1 l-4a and 11-
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Figure 11-4: The a) L l , b) L 2, c) average L 1, d) average L 2, e) accumulated average L 1, and f) 
accumulated average L 2 of the wavelet details generated from the human head dataset are plotted 
against the size of the approximations
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4b where the norm values drop sharply after the first decomposition. If we look at Figures 1 l-4c 

and 1 l-4d, the average norms are actually lower at finer (higher) resolutions near the origins of the 

graphs. From these figures, we conclude that the average information loss of the head dataset is 

lower when the data resolution is finer.

We also notice that the rates of information loss in Figures 1 l-4c and 1 l-4d are very steady in 

the first few resolutions. This can be detected by looking at the slopes of the data lines in Figures 11- 

4e and 1 l-4f. The line slopes become steeper after the third decomposition. This suggests the end 

of a quiescent state in which major features of the approximations are roughly the same. Ideally, 

only a few of the lower resolution representations need to be maintained from a set of resolutions 

that are part of a single quiescent state.

An important observation we made during our investigation is that many wavelet generated vol­

ume data approximations with percentage errors E  < 5% visually resemble the original datasets 

very well. However, we will show later in this chapter that if datasets have very homogeneous 

contents (such as the engine block depicted in Figure 1 l-2c), the acceptable percentage error can be 

increased somewhat to about 8 %. This observation agrees with our previous suggestion that a quies­

cent state ends at the second decomposition because the percentage error of the third decomposition 

is over 5%.

Since the error norms of D4 are the smallest in most cases (as shown in Table 11.4), the 

Daubechies wavelet with two vanishing moments may probably be the best candidate to decom­

pose the human head dataset. However, the differences among the norm values within the same 

resolution are so small that we believe the overall qualities of the final renderings are very close to 

each other. If processing time is critical to an application, H2 has the upper hand over the other two.

To verify the results, we use both a quantitative (objective) test and a visual (subjective) test 

to evaluate the performance of our error measure mechanism. First, we created a dataset whose 

size matched the original data from the approximation using zero values for all detail coefficients. 

We compared this reconstruction to the original data using a root-mean-square error function. The 

results are listed in Table 11.5. Our second test uses a marching cubes program to render the 

approximations. In addition to the visual effects, the number of triangles generated by the rendering

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



130

w Data Size RMSE Number o f  As
h 2 64x64x64 149.72 39568

32x32x32 156.51 8 6 8 8
16x16x16 177.69 2944

8 x 8 x 8 304.13 0
4 x 4 x 4 337.65 0

d 4 64x64x64 116.33 39592
32x32x32 146.41 8644
16x16x16 179.69 3024

8 x 8 x 8 250.94 0
4 x 4 x 4 299.91 0

d 6 64x64x64 120.02 39376
32x32x32 145.02 8958
16x l6x  16 185.31 3116

8 x 8 x 8 163.12 0
4 x 4 x 4 242.29 0

Table 11.5: The RMSEs between the original and the reconstructed datasets, and the number of 
triangles required to render the approximations using the marching cubes algorithm.

process more or less reflects the quality of an approximation because more triangles usually give a 

better surface representation.

The results in Table 11.5 clearly indicate that major data losses exist after the third wavelet 

decomposition. Our implementation of the marching cubes algorithm actually cannot generate any 

isosurface triangles at 8 x 8 x 8 resolution (see Table 11.5). These figures coincide with our previous 

suggestion that a quiescent state ends at the 16x16x16 resolution. To perform the visual test, nine 

isosurface renderings of the approximations generated by H2 , D4, and D6 are shown in Figure 11-5. 

The results are clear. The qualities of the isosurface renderings at 16x 16x 16 resolution (Figure 11- 

5c, 1 l-5f, and 1 l-5i) are poor because their percentage errors E  are all within the 5% to 10% ranges. 

It is also true that the qualities of the approximations generated by different wavelets are visually 

very close to each other. However, the processing time of H 2 is only one third of that of D6 (see 

Table 11.3). At this point, it is reasonable to consider the approximations of H2 and D4 at both 

64x 64 x 64 and 32x32x32 resolutions.
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(a) H2,6 4 3 (b) H2,323 (c) H2, I63

(g) D6,643 (h) D6,323 (i) D6,163

Figure 11-5: The wavelets used to decompose the data, resolutions of the approximations, and the 
number of isosurface triangles generated during the renderings are listed in order: a) H2, 643, 39568 
triangles, b) H2 , 323 , 8 6 8 8  triangles, c) H2, 163, 2944 triangles, d) D4, 643, 39592 triangles, e) 
D4, 323, 8644 triangles, f) D4, 163, 3024 triangles, g) D6, 643, 39376 triangles, h) D6, 323, 8958 
triangles, i) Dg, 163, 3116 triangles.
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Wavelet Coefficient Truncation

Our next step is to study the effect of data truncations on wavelet approximations. The approxima­

tion data values are first sorted according to their absolute values. We then remove 98%, 95%, 90%, 

85%, 80%, and 75% of the less significant (i.e., smaller) data values and reconstruct the datasets 

with the remaining 2%, 5%, 10%, 15%, 20%, and 25% of the data at every resolution. A root-mean- 

square error (RMSE) function is then used to compare the original datasets with the reconstructed 

ones and the results are listed in Table 11.6. The RMSE values of different degrees of truncation are

Wavelet Data Size 2% 5% 10% 15% 2 0% 25%
h 2 64x 64x64 347.27 115.37 66.34 40.14 25.57 16.91

32x32x32 355.91 151.72 92.70 65.81 48.56 36.60
16x16x16 374.43 190.65 132.39 102.03 81.88 67.03

8 x 8 x 8 332.39 219.69 166.92 134.81 110.551 92.27
d 4 64x 64x 64 355.29 107.60 53.65 27.22 14.53 7.95

32x32x32 360.65 141.14 74.44 47.30 30.38 20.17
16x16x16 366.71 185.39 106.58 75.98 54.96 40.71

8 x 8 x 8 402.07 265.19 176.57 130.30 105.86 84.87
d 6 64x 64 x 64 354.39 110.47 55.27 29.52 16.11 9.22

32x32x32 354.78 148.60 80.06 52.22 34.75 23.50
16x16x16 365.28 192.86 120.07 88.40 66.72 51.12

8 x 8 x 8 384.14 176.48 114.36 85.70 68.54 57.05

Table 11.6: The RMSEs between the original approximations and the reconstructions of the trun­
cated approximations.

plotted against the size of the approximations in Figure 11-6. The results are very consistent with 

our expectation -  more data points give smaller RMSEs. However, the advantages of keeping more 

data values becomes smaller after the retention percentage reaches 10%. This suggests that at least 

a 10% retaining rate of the most significant values is desirable in the head dataset hierarchy.

We would also like to see the impact of data truncation on a particular density of the dataset, 

especially when we only render the skin surface of the human head. We recompute the RMSEs 

and this time we only use the isovalue 500, which is the density value of the skin. The results 

are listed in Table 11.7. These RMSEs of different wavelets are plotted against the size of the
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Figure 11-6: The RMSEs between the original approximations and the reconstructions of the trun­
cated approximations are plotted against the size of the approximations.
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Wavelet Data Size 2 % 5% 10% 15% 2 0 % 25%
h 2 64x64x64 150.79 127.65 75.64 36.45 17.15 8.30

32x32x32 149.61 140.29 97.12 60.95 36.68 2 1 .11
16x16x16 154.85 152.51 114.81 84.01 60.88 42.10

8 x 8 x 8 153.57 172.09 161.26 139.23 122.03 101.83
d 4 64x64x64 154.55 119.65 64.19 31.42 16.06 9.02

32x32x32 154.17 133.44 79.25 51.06 32.02 2 2 .11
16x16x16 160.66 151.84 109.06 78.36 56.77 41.84

8 x 8 x 8 187.47 205.73 170.11 143.47 110.48 90.86
d 6 64x 64x64 156.21 118.01 61.08 31.84 17.02 9.92

32x32x32 165.39 139.18 80.92 52.43 35.85 24.14
16x16x16 197.62 167.33 116.77 86.72 66.32 51.25

8 x 8 x 8 223.22 167.74 116.48 87.35 69.48 60.10

Table 11.7: The RMSE between the skin portion of the original approximations and the correspond­
ing reconstructions of the truncated approximations.

approximations in Figure 11-7. There are still clear differences between the RMSEs of the 5% and 

10% reconstructions. This is consistent with our previous guideline of at least 10% retention of the 

coefficients.

Finally, we use a visual test to verify our estimation. All six truncated approximations at both 

the 32x32x32 and 64x64x64 levels are rendered using the marching cubes algorithm from vtk. 

The results are shown in Figures 11-8, Figures 11-9, 11-10, and 11-11. These figures show that 

retention rates of 10% (or higher) of the most significant data values (Figures 1 l-8a -  1 l - 8e, 1 l-9a 

-  ll-9e, ll-10a -  ll-10e, 11-lla -  11-1 le) are enough to capture many of the important features 

of the original data in Figures 1 l-8f, 1 l-9f, 11-1 Of, and 11-1 If.
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Figure 11-7: The RMSEs between the skin portion of the original approximations and the recon­
structions of the truncated approximations are plotted against the size of the approximations.
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(a) H2,5 % o f3 2 3 (b) H2. 10% of 323 (c) H2, 15% of 323

(d) H2, 20% of 323 (e) H2, 25% of 323 (0  H2, 100% of 323

Figure 11-8: Data approximations of the head dataset generated by H2 at a) 1635 (5% of 
32x32x32), b) 3277 (10% of 32x32x32), c) 4915 (15% of 32x32x32), d) 6554 (20% of 
32x32x32), e) 8192 (25% of 32x32x32), f) 32x32x32 resolutions.
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Figure 11-9: Data approximations of the head dataset generated by H2 at a) 13107 (5 % of 
64x 64x 64), b) 26215 (10% of 64x64x64), c) 39322 (15% of 64x64x64), d) 52428 (20% of 
64 x 64x64), e) 65536 (25% of 64x 64x 64), and f) 64x 64 x 64 resolutions.
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(a) D4, 5% of 323 (b) D4, 10% of 323 (c) D4, 15% of 323

(d) D4. 20% of 323 (e) D4, 25% of 323 (0 D4, 100% of 323

Figure 11-10: Data approximations of the head dataset generated by D4 at a) 1635 (5% of 
32x32x32), b) 3277 (10% of 32x32x32), c) 4915 (15% of 32x32x32), d) 6554 (20% of 
32x32x32), e) 8192 (25% of 32x32x32), f) 32x32x32 (100% of 32x32x32) resolutions.
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(a) D4, 5% of 643 (b) D4, 10% of 643 (c) D4, 15% o f 643

(d) D4, 20% of 643 (e) D4, 25% of 643 (0  D4, 100% o f 643

Figure 11-11: Data approximations of the head dataset generated by D4 at a) 13107 (5% of 
64x 64x 64), b) 26215 (10% of 64x 64x 64), c) 39322 (15% of 64 x 64x 64), d) 52428 (20% of 
64x 64x 64), e) 65536 (25% of 64x 64x 64), and f) 64x64x64 (100% of 64 x 64x 64) resolutions.
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11.3.2 CT Lobster Volume Dataset

The second dataset of our study is a CT scan of a lobster as shown in Figure 1 l-2c. Although it is 

the smallest (128 x 128 x 64) among the three, its small fine details such as the lobster legs make 

the approximation process more challenging than the previous head dataset.

Error Estimation

After applying the same decomposition process (as the head dataset) to the data, we compute the 

norm values and the percentage error of the wavelet details. The results are listed in Table 11.8. 

Different norms are also plotted individually against the size of the approximations in Figure 11- 

12. It is unrealistic to try to seek a quiescent state when there are only four resolutions available

w Data Size L l L l E * 1 E(%) L2 L2 E ^ 2 As
H2 64x 64 x 32 434969.0 0.41 0.41 5.06 31465200 30.00 30.00 18476

32x32x16 59748.9 0.46 0.87 10.63 3307170 25.23 55.24 3756
16x16x8 9886.6 0.60 1.47 18.00 522895 31.91 87.15 744
8x8x4 5424.3 2.65 4.12 50.33 434919 212.36 299.52 92

d 4 64x 64 x 32 410542.0 0.39 0.39 4.78 22358100 21.32 21.32 18464
32x32x16 59782.5 0.46 0.85 10.3 2439650 18.61 39.94 3932
16x16x8 12987.5 0.79 1.64 20.02 635417 33.78 78.72 776
8x8x4 5795.3 2.83 4.47 54.58 396956 _ 193.83 272.54 148

d 6 64 x 64 x 32 412489.0 0.39 0.39 4.8 21057700 20.08 20.08 18816
32x32x16 62741.9 0.48 0.87 10.6 2366610 18.06 38.14 3978
16x16x8 15310.9 0.93 1.81 22.06 623179 38.04 76.17 792
8x8x4 4544.25 2.22 4.03 49.20 238943 116.67 192.85 154

Table 11.8: The norms, average norms, accumulated average norms, and the percentage errors 
of the wavelet details generated from the lobster volume dataset by different wavelets in multiple 
resolutions.

in the hierarchy. However, we can still estimate the quality of an approximation by looking at 

the percentage error, E , of the corresponding resolution. As we can see, only approximations at 

the 64 x 64x 32 resolution have percentage error E  < 5%. From our previous experience, only 

approximations of this resolution should be retained in the hierarchy. Among the three wavelets at 

64x64 x 32 resolution, D4 has the lowest percentage error and H2 has the highest. So it is a logical
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Figure 11-12: The a) L 1, b) L 2, c) average L l , d) average L2, e) accumulated average L 1, and f) 
accumulated average L2 of the wavelet details generated from the lobster dataset are plotted against 
the sizes of the approximations.
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choice to pick D4 over D6 with H2 being considered for fast computation.

The visual test which includes the marching cubes renderings of the finest two resolutions 

(64x64x32 and 32x32x16) of all three wavelets is shown in Figure 11-13. It is clear that all

(a) H2, 64 x  64 x 32 (b) D„, 64 x 64 x  32 (c) D6,64  x  64 x  32

(d) H2, 32 x 32 x  16 (e) D4, 32 x  32 x 16 (0 D6, 32 x 32 x  16

Figure 11-13: The wavelets used to decompose the data, resolutions of the approximations, and the 
number of isosurface triangles generated during the renderings are listed as follows: a) H2, 64 x 64 
x 32,18476 triangles, b) D4, 64 x 64 x 32, 18464 triangles, c) D6, 64 x 64 x 32,18816 triangles, 
d) H2, 32 x 32 x 16, 3756 triangles, e) D4 , 32 x 32 x 16, 3932 triangles, and f) D6, 32 x 32 x 16, 
3978 triangles.

approximations at the 32x32x 16 resolution (Figures 1 1 - 13d, 11-13e, and 11-13f) are totally unac­

ceptable. It is also true that the visual differences among the three approximations in Figures 11-13a, 

1 l-13b, and 1 l-13c are so minor that D6 becomes the least favorite choice because it requires the
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longest processing time.

Wavelet Coefficient Truncation

The next phase involves data truncations. From Table 11.9 we are almost certain that retaining 25% 

(or even 20%) of the details is not necessary because of the zero RMSEs. We also see the large error 

gaps between retaining 2% and 5% in Figure 11-14. It seems that a retention rate of 5% (or higher) 

is enough to preserve the major features of the data.

Wavelet Data Size 2 % 5% 10% 15% 2 0% 25%
h 2 64x64x 32 8.61 2.94 0.43 0.06 0 .0 0 0 .0 0

32x32x16 11.08 5.12 1.82 0.49 0 .1 0 0.03
16x16x8 13.92 7.35 3.52 1.82 0.71 0.27
8 x8x4 20.39 16.06 12.54 9.19 6.19 4.76

d 4 64 x64x 32 7.89 3.12 0.96 0.29 0 .1 0 0.03
32x32x16 10.39 5.29 2.56 1.28 0.64 0.33
16x16x8 14.25 9.13 5.20 3.39 2.32 1.62
8x8x4 18.62 15.79 11.96 9.66 7.87 6.39

d 6 64x 64x32 7.74 3.23 1.22 0.46 0.19 0.09
32x32x16 10.47 5.52 3.00 1.70 1.00 0.60
16x16x8 15.60 1 1 .1 0 7.18 5.19 3.80 2 .8 6
8x8x4 14.22 12.55 9.14 6.93 5.79 4.72

Table 11.9: The RMSEs between the original lobster approximations and the corresponding recon­
structions of the truncated approximations.

Figures 11-15 and 11-16 show reconstructions o f truncated approximations at the 64 x 64x 32 

resolution. We do not visually detect any major differences between the truncated reconstructions 

(Figure 1 l-1 5 a -  11-15e and 11-16a — 11-16e) and the originals (Figure ll-15f and Figure 1 l-16f). 

Thus the results agree with our previous estimation that 5% of the most significant data values 

are enough to preserve the details of the approximation of the lobster dataset at the 64x64x32 

resolution.
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Figure 11-14: The RMSEs between the original lobster approximations and the reconstructions of 
the truncated approximations are plotted against the size of the approximations.
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(a) H2, 5% of 64x64x  32 (b) H2, 10% o f 64x64x32 (c) H2, 15% of 64x64x32

(d) H2, 20% of 64x 64x32 (e) H2, 25% of 64x 64x32 (f) H2, 100% of 64x 64x 32

Figure 11-15: Data approximations of the lobster dataset generated by H2 at a) 6554 (5% of 
64x64 x 32), b) 13107 (10% of 64x64x 32), c) 19661 (15% of 64x64x32), d) 26214 (20% of 
64x 64 x 32), e) 32768 (25% of 64x64x 32), 0  131072 (100% of 64x64x32) resolutions.
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(a) D4, 5% o f 64x64x32 (b) D4, 10% o f 64x  64x 32 (c) D4, 15% o f 64x 64x  32

(d) D4, 20% of 64x64x 32 (e) D4, 25% of 64x64x  32 (0  D4. 100% of 64x 64x  32

Figure 11-16: Data approximations of the lobster dataset generated by D4 at a) 6554 (5% of 
64x64x 32), b) 13107 (10% of 64x 64x 32), c) 19661 (15% of 64x64x32), d) 26214 (20% of 
64x64x 32), e) 32768 (25% of 64x64x 32), f) 131072 (100% of 64x 64x 32) resolutions.
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11.3.5 CT Engine Volume Dataset

Our third test dataset is a CT scan of an engine block. This dataset is twice the size of the head 

dataset, but the data content is more homogeneous.

Error Estimation

From Figure 11-2 we see that the rendering of the dataset has many straight lines and shapes on its 

surface. This presents a different type of challenge for our error estimation process. Once again, we 

build a multiresolution approximation hierarchy and the corresponding norms and percentage errors 

are listed in Table 11.10. Individual norms are also plotted against the size of the approximations in 

Figure 11-17.

w Data Size L l L l r . v E(% ) l } L2 As
h 2 128x128x64 5615360.0 0.67 0.67 3.06 86405800.0 10.30 10.30 153668

64x64x32 1139840.0 1.09 1.76 8.03 33636300.0 32.08 42.38 38080
32x32x16 219226.0 1.67 3.43 15.68 5024770.0 38.34 80.71 8124
16x16x8 49260.8 3.01 6.44 29.43 1220650.0 74.50 155.22 1590
8 x 8 x 4 7285.9 3.56 9.99 45.70 111764.0 54.57 209.79 208
4 x 4 x 2 970.2 3.79 13.78 63.02 11323.6_j 45.80j 255.58

d 4 128x128 x64 4146780.0 0.49 0.49 2.26 56341500.0 6.72 6.72 155396
64x 64x 32 808520.0 0.77 1.27 5.79 10866800.0 10.36 17.08 37684
32x32x16 232733.0 1.78 3.04 13.90 59513900.0 45.41 62.49 8748
16x16x8 49728.0 3.04 6.08 27.78 1034230.0 63.12 125.61 1666
8 x 8 x 4 7726.2 3.77 9.85 45.03 125754.0 61.40 187.01 184
4 x 4 x 2 905.0 3.53 13.38 61.20 9182.2 L35.87 222.89

D6 128x128x64 3698740.0 0.44 0.44 2.01 57986800.0 6.91 6.91 153920
64x64x 32 871570.0 0.83 1.27 5.82 15969300.0 15.23 22.14 37536
32x32x16 220664.0 1.68 2.96 13.51 4276650.0 32.63 54.77 8796
16x16x8 45699.1 2.79 5.74 26.27 842795.0 51.44 106.21 1610
8 x 8 x 4 8985.8 4.39 10.13 46.33 156529.0 76.43 182.64 260
4 x 4 x 2 1132.1 4.42 14.55 66.55 12621.9 49.30 231.94

Table 11.10: Different norm values of the wavelet details generated from the engine volume dataset 
by different wavelets in multiple resolutions.

Unfortunately we do not see any obvious quiescent state in this hierarchy. The percentage 

errors, however, indicate that the approximations smaller than 64x 64x 32 resolution are probably 

not acceptable. While Dg has the lowest E  and H2 the highest, their values are all within reasonable
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Figure 11-17: The a) L l , b) L 2, c) average L 1, d) average L2, e) accumulated average L 1, and 0 
accumulated average L2 of the wavelet details generated from the engine dataset are plotted against 
the size of the approximations.
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ranges. The finest three approximations of the wavelets are rendered using the marching cubes 

algorithm. The results are depicted in Figure 11-18.

Our visual test indicates that both approximations at 128x128 x 64 (Figures 11 -18a, ll-18d, 

I l - I 8 g) and 64x64x  32 (Figures U -I 8b, I l - I 8e, ll-18f) resolutions are acceptable while the ap­

proximations at 32x32x 16 resolution (Figures 1 l-18c, 1 l-18f, 1 l-18i) are not Since the qualities 

of the renderings are visually very close to each other in Figure 11-18, we choose the two faster 

wavelets (H2 and D4) to continue the truncation process.

Wavelet Coefficient Truncation

After the approximations are truncated, the results are shown in Table 11.11 and Figure 11-19.

Wavelet Data Size 2 % 5% 10% 15% 20% 25%
h 2 128x128x64 15.55 4.57 1.79 0.92 0.56 0.40

64x 64x 32 20.89 8.84 3.55 1.72 0.92 0.52
32x32x16 29.37 18.10 8.92 5.10 3.00 1.77
16x16x8 7.08 5.11 3.42 2.44 1.73 1.25
8 x 8 x 4 27.77 20.05 14.64 10.96 9.1 l j 7.39

d 4 128x128x64 10.70 3.97 1.65 0 .8 8 0.55 0.39
64x64x 32 20.30 8.69 3.92 2.21 1.29 0.77
32x32x16 27.27 16.33 9.38 5.98 3.94 2.62
16x16x8 7.08 5.07 3.26 2.39 1.80 1.37
8 x 8 x 4 25.21 16.83 12.33 9.84 7.84 6.45

d 6 128x128x64 12.60 3.91 1.72 0.93 0.58 0.42
64x64x 32 19.34 8.99 4.38 2.48 1.53 0.94
32x32x16 25.72 15.05 8.71 5.52 3.71 2.57
16x16x8 7.84 5.83 3.84 2.82 2.18 1.69
8 x 8 x 4 28.11 22.16 16.16 12.33 10.13 8.16

Table 11.11: The RMSEs between the original engine approximations and the reconstructions of 
the truncated approximations.

There is an obvious gap between the 5% and 10% truncations at the 128 x 128 x 64 and 64 x 64 x 32 

resolutions. We estimate that a retaining rate of 10% (or above) is sufficient to keep most of the im­

portant details of the corresponding approximations.
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(a) H2, I28x 128 x 6 4  (b) H2, 64x64x32 (c) H2, 32x32x 16

(d)D4, 128x128x64 (e) D4, 64x 64x32 (f) D4, 32x32x16

(g)D6, 128x128x64 (h)D 6, 64x 64x32 (i) De, 32x32x16

Figure 11-18: The wavelets used to decompose the data, resolutions of the approximations, and 
the number of isosurface triangles generated during the renderings are listed in order a) H2, 
128x128 x 64, 153668 triangles, b) H2, 64 x 64x 32, 38080 triangles, c) H2 , 32x32x16, 8124 
triangles, d) D4, 128x128x64, 155396 triangles, e) D4, 64x64x32, 37684 triangles, f) D4, 
32x32x16, 8748 triangles, g) D6, 128x128 x 64, 153920 triangles, h) D6, 64x64x32, 37536 
triangles, i) D6, 32x32x 16, 8796 triangles.
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Figure 11-19: The RMSEs between the original engine approximations and the reconstructions of 
the truncated approximations are plotted against the size of the approximations.
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The visual test shows that most of the renderings in Figures 11-20 -  11-23 resemble the corre­

sponding approximations in Figures 1 l-20f -  1 l-23f, except the 5% truncations in Figures 1 l-20a, 

- 1 l-23a.

(d) H2, 20% of 128x128x64 (e) H2, 25% of 128x 128x64 (0  H2, 100% of 128x 128 x  64

Figure 11-20: Approximations of the engine dataset generated by H2 at a) 5% (52429), b) 10% 
(104858), c) 15% (157286), d) 20% (209715), e) 25% (32768), and f) 100% of 128x128x64 
resolution.
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(a)H 2,5% of 64x64x 32 (b)H2, 10% of 64x64x 32 (c) H2, 15% of 64x64x 32

(d) H2, 20% of 64x 64x 32 (e) H2, 25% of 64x64x  32 (0  H2, 100% of 64x 64x 32

Figure 11-21: Approximations of the engine dataset generated by H2 at a) 5% (6554), b) 10% 
(13107), c) 15% (19661), d) 20% (26214), e) 25% (32768), f) 100% of 64x 64 x 32 resolutions.
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(a) D4, 5% of 128x128 x64  (b) D4, 10% of I28x 128 x 64 (c) D4, 15% of 128x 128x64

(d)D 4, 20% of 128x128 x64  (e) D4, 25% of 128x 128x64 (0 D4, 100% of I28x 128x64

Figure 11-22: Approximations of the engine dataset generated by D4 at a) 5% (52429), b) 10% 
(104858), c) 15% (157286), d) 20% (209715), e) 25% (32768), and f) 100% of 128x128x64 
resolution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a)D 4,5%  of 64x64x  32 (b) D4, 10% of 64x64x32 (c) D4, 15% of 64x 64x 32

(d)D 4, 20% of 64x64x32  (e) D4, 25% of 64x64x32 (0  D4, 100% of 64x64x32

Figure 11-23: Approximations of the engine dataset generated by D4 at a) 5% (6554), b) 10% 
(13107), c) 15% (19661), d) 20% (26214), e) 25% (32x32x32), f) 100% of 64 x 64 x 32 resolutions.
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11.4 Space/Time Trade-off

This section discusses the space/time trade-offs of approximation reconstructions within a multires­

olution hierarchy. Since the wavelet filters used for the transforms are designed to be orthogonal, 

the filter matrix used for reconstruction is simply the transposed version of the one used for de­

composition. Consequently, the time for data decomposition is about the same as the time for data 

reconstruction at the corresponding resolution. In general, however, we consider the time required 

for decomposition to be a pre-processing step whose cost is not significant. On the other hand, we 

can save space by reconstructing the approximation component of intermediate resolutions from the 

lower level details. Since this is needed during interactive exploration, the decision to eliminate 

resolution levels represents a classic time/space trade-off.

Table 11.12 contains the CPU and the real clock times of the data reconstructions of the three

Data
Set

Reconstruction Dimensions 
From —> To h 2

CPU(s
d 4

)
D6 h 2

Real (s)
d 4 d 6

Lobster 3 2x32x16-> 64x64x  32 0.71 0.93 0.93 58.8 62.4 76.8
16x16x8 -> 32x32x16 0.13 0.17 0.17 10.2 10 .8 24.6

Head 32x32x32 -> 64x64x 64 1.42 1.89 2.91 120.0 138.6 213.6
16x 16x 16 -> 32x32x32 0 .2 0 0.25 0.40 16.8 2 2 .2 31.8

8 x 8 x 8 -> 16x16x16 0.07 0.08 0 .1 0 4.2 5.4 6 .0
Engine 64x64x 32 -> 128x128x64 5.74 7.67 9.76 373.2 483.6 712.2

32x32x16-> 64x64x  32 0.77 1.02 1.28 48.0 62.4 121.2
16x16x8 -> 32x32x16 0.13 0.15 0 .2 0 11.4 9.6 15.6

Table 11.12: Data sizes and CPU times of the multiresolution reconstructions of the volume datasets.

volume datasets. Suppose the data is stored in 32-bit floating point format, the largest approximation 

in Table 11.12 (i.e., the engine dataset at 128x128 x 64 resolution) occupies about 4MB of disk 

space. However, the reconstruction of the same dataset requires almost 10s of CPU time and almost 

12 minutes of real clock time on a 133MHz Linux machine with 32MB of memory. This is clearly 

unacceptable to support real time data exploration. Even reconstruction times on the order of 1-2 

minutes (real time) are inadequate for most interactive purposes. On the other hand, we can develop
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heuristics for an adaptive multiresolution hierarchy that supports a variety of storage life times 

for different levels of the hierarchy. For example, at the beginning of an exploration session, we 

could generate more temporary intermediate stages to support smooth interactive transitions of a 

multiresolution hierarchy. These approximations may be discarded, or further compressed, by the 

end of the exploration session.

11.5 Discussion

Empirically our multiresolution data hierarchy approach seems to deliver very good results. The 

sizes of the approximations in Figure 1 l-23b and 1 l-22b are only 0.156% and 1.25% respectively 

of the original dataset in Figure 1 l-2c. Each of these figures is a reasonably good approximation at 

their corresponding resolution levels.

In a client-server network environment, a coarse representation can increase the efficiency of a 

visualization process by giving users at the server ends a rough idea of the dataset very quickly. They 

can then make a decision based on this approximation about whether to continue the transmission 

or to abort it. The data transmission time over the network can further be reduced by truncating the 

coarse approximations. In a stand-alone environment, it is also possible to speed up the modeling 

and rendering time by using a coarse approximation. Even though a truncated approximation will 

eventually increase the processing time by “inflating” the data back to its original size, it does save 

disk space. For example, the storage cost of Figure 11-22b is about the same as Figure ll-23f. 

Although the authenticity of Figure 1 l-22b is better, the cost of rendering is also higher because the 

data must be expanded to 128 x 128 x 64 before rendering.

The use of percentage error to choose approximations out of a multiresolution hierarchy requires 

extensive knowledge of the datasets. In our investigation, we have conducted tests on specific 

datasets with very different characteristics. For example, the lobster dataset has many small and 

fine details such as the lobster legs which can fade away easily. Although the engine dataset has 

a very homogeneous data distribution, it also contains many geometric shapes and lines which can 

easily be distorted. The human head, on the other hand, is very heterogenous and contains many 

fine details. Our results show that approximations of heterogenous datasets can still be useful with
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about 5% error while approximations of more homogeneous datasets can tolerate up to about 8%. 

Since our design performs reasonably well with these datasets, we expect the performance will 

be improved if we apply it to smoother datasets such as those collected from computational fluid 

dynamics (CFD) simulations.
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Chapter 12

Conclusion

Much of the work presented in this thesis centers on interactive visualizations which bring out 

information associated with very large datasets. Our contributions include adaptive representations 

of large datasets, an authenticity measure for data approximation, and interactive techniques to 

visualize large amounts of data. Our methods are especially applicable to the emerging scientific 

data needs of medical, atmospheric, oceanographic, and geographic studies.

12.1 Model Overview

Most of the work to develop a progressive visualization environment involves finding a reasonable 

set of approximations which represent a large dataset at multiple resolutions. After an approxima­

tion data hierarchy is generated, the first step is to reduce the number of resolutions of the hierarchy 

by discarding the unnecessary ones. It starts with the calculations of norm values and percentage 

error of the wavelet details of each resolution. The goal is to find quiescent states of a hierarchy in 

which major features of the approximations are roughly the same. Ideally, we only need to maintain 

a few lower resolution representations from a set of approximations that are part of a single quies­

cence. If such a phenomenon cannot be identified, we can look at the calculated percentage error of 

the approximations and discard the less important resolutions.

The second step is to reduce the size of the selected approximations from the previous step. This 

process retains the most significant data values of the approximations and discards the rest. While 

the first step reduces the application size of a dataset, the second step only reduces the storage size. 

In a client-server visualization environment, they both can speed up the data transmission time and 

improve the efficiency of the visualization process.
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We have seen in Chapter 11 that a remarkable number of data values can be eliminated from a 

volume dataset using our framework. It seems natural to expect that our approach can be extended 

to other types of data defined on non-Cartesian grids. This might happen by an implementation of 

a stronger error estimation mechanism which can handle datasets with contents from very smooth 

to very rough. In any case, we think that this approach will become a useful part of very large data 

management research.

12.2 Contributions

We have applied our concept of multiresolution data representation to many very large data visual­

ization applications. For most cases, we have new, practical results.

After showing that most of the multidimensional multivariate visualization techniques perform 

poorly on large datasets in Chapter 3, we developed a general data representation solution that is 

independent of visualization technique in Chapter 7. Besides the straightforward increases in the 

number of data values being explored, this result addresses a long-standing open problem in which 

the visualization of large datasets is restricted by screen resolution.

In Chapter 8 we have found that many prevailing scientific volume visualization techniques are 

supported by expensive hardware and software. Such a costly requirement has hindered the devel­

opment of general volume visualization applications for widespread use. We have implemented a 

set of visualization tools based on the notion of multiresolution brushing using public domain li­

braries running on an average Linux machine. Empirically, our system allows scientists to obtain 

information from a large dataset with over 8.3 million numbers in real time. These tools show that 

practical volume visualization can be done without expensive software and hardware.

Our research on wavelet based multiresolution visualization has led to some interesting exten­

sions regarding the building of data hierarchies. We developed a second multiresolution hierarchy 

based on norm projections of the data in Chapter 9. We have observed that combining a norm pro­

jection hierarchy with a wavelet hierarchy can improve the exploratory power by providing more 

options for querying the data.

We have also applied the first general formulation of wavelet error estimation to the field of
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multivariate visualization in Chapters 5 and 11. Our algorithm, which requires few extra computa­

tional steps, produces a multiresolution error representation that reflects the information loss due to 

data decomposition at every level. Our solution has numerous applications to many wavelet based 

processes in graphics and visualization because of its general nature and applicability.

We have investigated metric scaling of large multivariate data, where we seek a low dimensional 

data overview with reduced data dimensions, reduced data size, and additional data semantics. We 

have successfully combined this data overview with various multivariate techniques to form a pow­

erful visualization environment guided by the principal coordinates o f the data in Chapter 10. Pre­

liminary results have shown that this data overview also provides new opportunities to create new 

shape and texture patterns for conventional iconographic technology.

12.3 Future Research

Many interesting problems present themselves for future work. Will the quiescence phenomenon 

be repeated regularly within a hierarchy? Is it possible to develop error estimation mechanisms for 

non-orthogonal wavelets? These seem like especially interesting directions to try, given the results 

of this thesis.

Is it possible to apply wavelets to non-Cartesian datasets such as curvilinear data? How does 

the performance of wavelet decomposition compare to other cell decimation techniques applied to 

three dimensionai datasets? Can we use wavelets to improve the performance of data connectivity 

and decimation in isosurface rendering? These would seem to be potential tasks.

Can the multiresolution data representation model be extended to other data types to which it 

is seemingly difficult to apply any scale measures? Can we develop a new distance formulation 

which can be applied to such diverse data types as binary, nominal, and ordinal data to produce 

multiresolution data representation? Multidimensional scaling is definitely a beginning. The theory 

of multiresolution data representation looms large behind the design and analysis presented in this 

thesis, and approximating datasets without explicit connectivity will likely require significantly dif­

ferent techniques. This area of research has tremendous prospects, with potential applications to a 

wide variety of datasets such as text, audio, and video in the age of the information superhighway.
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Appendix A

List of Symbols

Z {• • •, —2, —1,0,1,2, • • •}

N {1, 2 , • • •}

R real numbers

C complex numbers

F field of scalars, R or C

span A  vector subspace spanned by A, where A is a set of vectors

|| • || any norm

cl S  closure of S

Rn  vector space of JV-tuples of real numbers

L 1 (R) space of integrable functions on R

L2 (R) space of square integrable functions on R

L 1 (R ^ ) space of integrable functions on R ^

L2 (R ^ ) space of square integrable functions on R ^

(•, •) inner product

f  * g convolution of /  and g

z  complex conjugate of z

x ± y  x  is orthogonal to y

S L orthogonal complement

H i © # 2  direct sum 

Ps projection onto S
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Appendix B

Mathematical Definitions

This appendix contains mathematical definitions on vector spaces, normed linear spaces, Hilbert 

spaces, and other definitions needed for a good understanding of wavelets. General mathematical 

symbols and notations are defined separately in Appendix A.

Definition 1 (Vector Space) By a vector space we mean a nonempty set E  with two operations:

• a mapping (x, y) - t  x  +  y from E  x E  into E  called addition-,

•  a mapping (A, x) —> Ax from F x £  into E  called multiplication by scalars; 

such that the following conditions are satisfied:

•  x  + y = y + x;

•  {x+  y) + z  = x  + {y + z);

• For every x ,y  € E  there exists a z  € E  such that x  +  z =  y;

• a(f3x) =  (afi)x;

•  (a  +  P)x =  q i  +  fix;

• a (x  -hy) =  a x  +  ay;

• l x  = x;

Definition 2 (Function Spaces) Let X  be an arbitrary nonempty set and let E  be a vector space. 

Denote by F  the space of all functions from X  into E.  Then F  is a vector space if the addition and 

multiplication by scalars are defined in the following way:
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• ( /  + s)(®) = /(®) + g(x)>

•  (A/)(®) =  A /(x ) .

Definition 3 (L inear Combination) Let £  be a vector space and let xi ,  • • • , x* G E.  A vector 

x G E  is called a linear combination of vectors x i , • • • ,  x* if there exist scalars <*1, • • •, ar* such 

that x  =  a i x j  + ----- 1- a kx

Definition 4 (L inear Independence) A finite collection of vectors {xi,  • • • ,Xfc} is called linearly

independent if ol\Xi H F a^ x t =  0  only if a j  =  at2  = • • • =  a* =  0 .

Definition 5 (Span) Let A be a subset of vector space E.  The span A  is the set of all finite linear

combinations of vectors from A, i.e.,

span A  =  {a jx i  H 1- : xi ,  • • • ,x* G G F, fc =  1,2, • • •}.

Definition 6  (Basis) A set of vectors B  C E  is called a basis of £  if £  is linearly independent and 

span B  -  E.

Definition 7 (Norm) A real function || • || on a vector space E  (a function which assigns a real 

number || • || to a vector x G E ) is called a norm if

•  ||x|| =  0 if and only if x =  0 ;

•  ||Ax|| =  |A| ||x || for every x G E  and A G F;

•  II® +  y|| <  ||x || +  ||y|| for every x ,y  € E.

Definition 8  (Normed Space) A vector space with a norm is called a normed space.

Definition 9 (Open and  Closed Sets) A subset S  of a normed space E  is called open if for every 

x G S  there exist an e > 0 such that {y G E  : ||y -  x || < e } c S . A  subset S  is called closed if its 

complement is open, i.e., if E  — S  is open.

Definition 10 (Closure) Let S  be a subset of normed space E. By the closure of S, clS,  we mean 

the intersection of all closed sets containing S.
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Definition 11 (Dense Subsets) A subset S  of a normed space E  is called dense in E  if cl S  = E.

Definition 12 (Cauchy Sequence) A sequence of vectors {xn} in a normed space is called a Cauchy 

sequence if for every e >  0 there exists a number M  such that \\xm — x„|| <  e for all m, n  > M .

Definition 13 (Complete Normed Space) A normed space E  is called complete if every Cauchy 

sequence in E  converges to an element of E.

Definition 14 (Step Functions) A step function on the real line R is a finite linear combination of 

characteristic functions of semi-open intervals [a, 6) C R

Definition 15 (Integrable Function) A real valued function /  defined on R is called integrable if 

there exists a sequence of step functions {/„} and a natural number D  such that the following two 

conditions are satisfied:

Definition 16 (L 1 (R)) The space of till integrable functions defined on R is denoted by L 1 (R). 

Definition 17 (Locally Integrable Functions) A function /  defined on R is called locally inte-

Definition 18 ( |/ |)  If a  complex valued function /  is integrable, the the real valued function | / |  is 

integrable and

Definition 19 (Square Integrable Functions) The space of all complex valued locally integrable 

functions /  such that | / | 2 € L J(R) is denoted by L2 (R). Elements of L2 (R) are called square 

integrable functions.

Definition 20 (Inner Product) Let E  be a complex vector space. A mapping

is called an inner product in E  if for any x, y, z  e  E  and a. (3 €  C the following conditions are 

satisfied:

• E “=i l/n| < £>;

• f ( x ) =  f n ( z )  for every x 6  R such that | / n (x)| <  D.

grable, if for every — oo <  a <  6 <  oo the integral / a6 /  exists.

E  x  E  -¥ C
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•  (x, y) =  (y, x ) (the bar denotes the complex conjugate);

•  (ax  + (3y,z) = a(x , z )  + (3(y,z);

•  (x, x) > 0 , and (x, x) = 0  implies x  =  0 .

Definition 21 (Inner Product Space) A vector space with an inner product is called an inner prod­

uct space or a pre-Hilbert space.

Definition 22 (Norm in an Inner Product Space) By the norm in an inner product space E  we 

mean the functional defined by

11*11 =  \J(x,x) .

Definition 23 (Orthogonal Vectors) Two vectors x  and y  in an inner product space are called or­

thogonal (denoted by x±.y) if (x , y ) =  0 .

Definition 24 (Hilbert Space) A complete inner product space is called a Hilbert space.

Definition 25 (Orthogonal and O rthonorm al Systems) Let E  be an inner product space. A fam­

ily S  of non-zero vectors in E  is called an orthogonal system if xJLy for any two distinct elements 

of S.  If, in addition, ||a:|| =  1 for all x  G S,  S  is called an orthonormal system.

Definition 26 (Orthonormal Sequence) A finite or infinite sequence of vectors which forms an 

orthonormal system is called an orthonormal sequence.

Definition 27 (Orthogonal Complement) Let 5  be a nonempty subspace o f a Hilbert space H . 

An element x  6  H  is said to be orthogonal to S, denoted by x± S ,  if (x, y) = 0 for every y  6  S.  

The set of all elements of H  orthogonal to S,  denoted by S L, is called the orthogonal complement 

of S . More concisely:

Sx =  {* G H  : x  1  S}.

Theorem 4 (Orthogonal Complement) For any subset 5  of a Hilbert space H , the set S x is a 

closed subspace of H.
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Theorem 5 (Orthogonal Projection) If S  is a closed subspace of a Hilbert space H , then every 

element x £ H  has a unique decomposition in the form x  = y  z, where y  6  S  and 2  G S x .

Each element of H  can be uniquely represented as the sum of an element of S  and an element 

of S x . This can be stated symbolically as

H  = S @ S J-.

We say that H  is the directed sum of S  and S L. The union of a basis of S  and a basis of S L is 

a basis of H.

Definition 28 (Separable Spaces) A Hilbert space is called separable if it contains a complete 

orthonormal sequence. Finite dimensional Hilbert spaces are considered separable. Since every 

element a: in a separable Hilbert space H  with a complete orthonormal sequence {a:n} can be 

represented as
OO

X  —  ( X ,  X j j )  X j h

n=  1

the set {x n } is sometimes referred to as an orthonormal basis of a Hilbert space H.

Definition 29 (Projection Operator) Let S  be a closed subspace of a Hilbert space H . The opera­

tor P  on H  defined by P{x)  = y  for x  =  y +z ,  y e S, and z  € S-1-, is called the projection operator 

onto S. The vector y  is called projection o f x  onto S. The projection operator onto a subspace S  is 

often denoted by P5 .

Definition 30 (Inner Product in L 2 (R)) For f (x) ,g{x)  e L2(R), the inner product of / ( 1 ) and 

g{x) is

/+ 0 0

g(u) f (u)  du.
*00

Definition 31 (Norm in L 2 (R)) The norm of f ( x )  in L2 (R) is given by

/ + 0 0

I /M l2 du.
•00

Definition 32 (Convolution in L2 (R)) For f ( x ) , g(x)  e  L2 (R), the convolution of f ( x )  and g(x) 

is

f * g { x )  =  i f {u)*g{u))  (x)

/ + 0 0

f (u)  g(x — u) du.
•00
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Appendix C

Principal Coordinates

This appendix describes the details of generating an inner product matrix from the dissimilarities 

matrix described in Section 10.2.1 of Chapter 10, and solving the Euclidean coordinates of the ver­

tices in n  dimensional space from the inner product matrix by the method of principal components.

Let the Euclidean coordinates of n  vertices in n  dimensional Euclidean space be a matrix X  such 

that each vector x r = [xrl , , x rn}T where r  =  1 , . . . ,  n. The Euclidean distance between vertices 

r  and s is given by

If we standardize the data to have zero mean and unit variance, the center of mass of the vertices is 

the origin. So we have

d rs =  [x r -  ̂ ] r [̂ r -  Xs]

=  x j x r + x j x s —2 x j x s. (C.l)

Hence

(C.2)

Also, since

equation (C.2) becomes

(C.3)

174
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Similarly,

(C.4)

Furthermore, from (C.4),

(C.5)

Defining an inner product matrix B  such that

and substituting (C.3), (C.4), and (C.5) into (C.l) gives the inner product matrix B  in terms of drs,

The next step involves the use of principal components to recover the Euclidean coordinates of 

the n  dimensional space denoted by the matrix X  from B. We seek a different coordinate system in 

the d  dimensional display space such that the distances between points in the display space can be 

approximated by measuring the distances only along some subset of the axes of this new coordinate 

system. By the definition of an inner product matrix, B  can be expressed as

Since B  is symmetric and positive semi-definite (i.e., only some of the eigenvalues are positive), 

it has p positive eigenvalues. Let A be the eigenvalue matrix in which the diagonal is the sorted
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eigenvalues Ax. . . . ,  Ap, . . . ,  A„. Let the corresponding normalized eigenvector of A be V. By the 

definition of eigenvectors, matrix B  can be described as

B  = V A V t .

Since there are only p  positive eigenvalues, B  can be expressed as

B  =  ViAl V1r

=  vxa * a  \ v ?

where Ai is the eigenvalue matrix in which the diagonal is the eigenvalues Ax, .. 

corresponding eigenvector of Ax. From (C.6 ) and (C.7), therefore

X  =  VxA f .

(C.7)

.,  Ap and V\ is the
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Color Plates
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Color Plate 3
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