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ABSTRACT

A B S O R P T IO N  A N D  F L U O R E SC E N C E  S P E C T R A  OF SO D IU M  IN

A N  A R G O N  M A T R IX

by

Alan B. Tutein 
University of New Hampshire, May, 1997

A computer simulation of the formation of trapping sites for sodium atoms trapped in 

a solid argon matrix has been performed, using experimentally determined argon-argon and 

sodium-argon potentials available in the literature. The simulation method is a greatly sim­

plified version of the more time-consuming molecular dynamics approach. Optical absorption 

and emission spectra corresponding to the matrix-perturbed 3s-3p sodium transition were 

calculated for each simulated trapping site, using first-order perturbation theory and the 

available sodium-argon dimer potentials. Two of the three requisite sodium-argon dimer 

potentials, the X2E and the A2 II, have been determined experimentally, but for the B2E 

potential, only a theoretical calculation is available. The computer simulation produced only 

one type of trapping site, and a simple, one-parameter adjustment of the theoretical B2E po­

tential brought the calculated absorption and emission spectra into good agreement with the 

absorption and emission observed for the dominant, thermally stable trapping site produced 

in experiments. This agreement was unique, in the sense that no adjustment of the B2S 

potential could reproduce the observed absorption and emission spectra for the relatively 

unstable or less probable trapping site formed in experiments.

x
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Chapter 1

Introduction

A number of attempts have been made to understand the observed electronic spectra of an 

alkali atom trapped in a rare gas matrix in terms of model sites and known rare gas-rare 

gas and alkali-rare gas dimer potentials [1-7]. The presence of a single valence electron 

makes the alkali atom a good candidate for calculations of electronic structure in clusters 

and rare-gas solids. In addition, a large number of experiments examining the absorption 

and emission spectra of alkali atoms trapped in rare-gas solids have been performed [6,8- 

23]. Most experiments involving a matrix isolated alkali atom have determined absorption 

and emission spectra corresponding to the transitions between the ground and first excited 

electronic states. These are also the states for which experimental dimer potentials are 

available. The purpose of this work was to generate possible matrix trapping sites by creating 

a computer simulation of the site formation. This simulation used existing experimental 

dimer potentials. For these simulated sites we have calculated the absorption and emission 

spectra and compared this with experimental data. We have chosen to simulate sites for 

sodium trapped in an argon matrix because this is the system for which two of the three 

requisite experimental Na-Ar [24-29] dimer potentials are available. Experimental dimer 

potentials are available for the Ar-Ar [30] ground state, the Na-Ar ground state, and one of

1
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Figure 1-1: Experimental absorption and blue site fluorescence of Na in Ar. The left hand 
curve shows the transmitted intensity as a function of wavelength for Na atoms trapped in an 
Ar solid at 10 K [11]. Triplets are labeled A (Red) and B (Blue). Other absorption features 
(C and D) are also seen. The right hand curve shows the fluorescence intensity as a function 
of wavelength with the exciting laser tuned to the region of the B triplet.

the Na*-Ar excited states (A2II). For the other excited state potential (f?2E) we rely on a 

theoretical calculation as our starting point. These dimer potentials will be dealt with further 

in section 2.4.

The results from one of these experiments performed by Balling and Wright [11] are shown 

in figure 1-1. The left hand curve gives the transmitted intensity as a function of wavelength. 

The absorption features are labeled A through D; A and B are more often designated the 

“red triplet” and “blue triplet” respectively. The features labeled C and D represent other 

observed absorptions. More recent experiments by Tam and Fajardo [22] have shown C to 

be a triplet. Numerical values for the absorption peaks of sodium in an argon matrix at 10 

K are given in table 1.1. This triplet structure is observed for both alkali and alkaline earth 

(groups I and II) atoms embedded in rare-gas solids. We note that the A and B triplets 

occur near and slightly blue-shifted respectively from the free sodium D lines (5890 A  and 

5896 A  [31]). For this reason these absorption triplets are associated with transitions from 

the sodium S 1 / 2  to the first excited Pz/2,1/2 states. These free sodium states are perturbed 

by the presence of the argon matrix. The different triplets are believed to correspond to
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absorptions from different sodium trapping sites, or local geometries. As can be seen in the 

right hand column of table 1.1, the B site is more thermally stable than the A site. The

Band
Absorption 

peak (A) [11]
Disappearance 
Temp.(K) [22]

A (Red) 5945 (20) 
5875 (20) 
5775 (20)

20

B (Blue) 5540 (10) 
5450 (10) 
5360 (10)

45

C( Violet) 5145 (15) 35
D 4880 (60) 45

Table 1.1: Experimental absorption peaks of Na atoms trapped in Ar matrices at 10 K [11]. 
The numbers in parentheses are the experimental uncertainties. The right hand column gives 
the temperature above which these triplets are no longer observed [22].

observed absorptions labeled B disappear at 45 K while those labeled A disappear at a much 

lower temperature of 20 K (for reference the melting temperature of an argon matrix is 83.8 

K [32]).

The right hand curve of figure 1-1 shows the fluorescence intensity as a function of 

wavelength after excitation with a iaser tuned to the region of the thermally stable B triplet. 

The fluorescence is strongly red shifted compared with the free sodium lines. The fluorescence 

spectrum also shows a previously unexplained dual peak structure.

The method we used to generate the simulated matrix trapping sites will be dealt with 

in section 2.1. The calculation of the matrix perturbed sodium 3p states will be dealt with 

in section 2.2. The determination of the absorption and emission spectra from the calculated 

matrix trapping sites will be shown in section 2.3. The results of the perturbed 3s-3p absorp­
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tion calculation, including the characterization of the matrix trapping site will be presented 

and discussed in chapter 3. The emission calculation results are also discussed and compared 

with experiment in chapter 3.
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Chapter 2

Method

2.1 Simulating the matrix trapping site

In this section we present the method used to simulate the matrix trapping site with the 

sodium atom in its ground state. The method can be summarized as a greatly simplified semi- 

classical molecular dynamics simulation. In a semi-classical molecular dynamics approach, 

as in our work, the Born-Oppenheimer approximation [33] is used to separate electronic and 

nuclear motion. The nuclear motion is then solved for using classical dynamics. Typically, 

in a semi-classical molecular dynamics simulation, very small time steps are chosen such 

that the distance an individual atom travels in one time step is small. The complete details 

of the trajectory are then obtained by integrating the equations of motion. Since, in this 

work, we believe we do not need the full history of the atoms but only the minimum energy 

configuration, we do not require a full dynamics calculation. Because of the large reduction in 

computational overhead, we are able to deal with much larger clusters than could be treated 

using a full dynamics calculation.

We first address the calculation of the total energy of the sodium-argon cluster with the 

sodium in its ground state. For the alkali in its ground state, both the alkali electronic

o
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Z n

Figure '2-1: NaArn coordinate system used.

state and the rare-gas states have spherical symmetry and their interaction energy can be 

approximated as a pairwise sum over the ground state dimer potentials [34]. That is, with 

the alkali defined as the origin of the system, the total interaction energy is given as

iV jV jV

V'(Ri, R2, ...R jv) =  £  Va'—«c?(|Rfc|) +  1C ^flc-/it?(|Ri -  Rjl) (2.1)
fc=l i- l  j=:+l

where V x - r c  is the A'2E interaction of the ground state alkali atom with the rare-gas atoms, 

Vr g - r g  is the interaction between rare-gas atoms, and R* is the vector to the k th rare gas 

atom (figure 2-1). To determine the potential energy of a single atom we calculate that atom’s 

portion of the total energy. For the sodium atom this is just the first sum in Equation (2.1).
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For the ktfl rare gas atom, the potential energy of that atom, Vjt, is

Vfc =  Vx_HG(|Rjk|) +  53 ^RG-RG(|Rt -  Rfcl) (2.2)
i*k

With this definition of the total interaction energy and the interaction of each atom in 

terms of the available sodium-rare gas and rare gas-rare gas dimer potentials, we can now 

describe our method of generating matrix trapping sites. For the results presented we started 

with a large, amorphous sphere of two hundred argon atoms with randomly chosen coordinates 

surrounding a central ground state sodium atom. This number of argon atoms represents 

between two and three atomic layers surrounding the sodium atom. This cluster size is a 

tradeoff between run time and the number of atomic layers. With this number of argon atoms, 

typical CPU times on an SGI Indigo2 were between 15 and 25 minutes and 1.5 to 2.5 hours 

on a Pentium 100MHz running Linux. The radius of the sphere used was about 15 A .  We 

found that any method which completely surrounded the sodium atom with argon atoms, that 

is, did not allow the sodium atom to be squeezed out, gave essentially the same results as 

our random sphere method. Any method where the sodium was not completely surrounded 

from the outset resulted in the sodium atom being squeezed out of the cluster for almost 

every run. This is because of the relative strengths of the sodium-argon and argon-argon 

interactions (see section 2.4). The sodium-argon interaction is smaller than the argon-argon 

interaction. Requiring the total cluster energy to be a minimum requires the sodium atom to 

be on the surface of the cluster. This will be discussed further in chapter 3 and results for 

the sodium atom on the surface of the cluster will be presented.

Our own simplification of a semi-classical molecular dynamics simulation was used. It can
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also be considered a variation of the steepest descent method [35]. Our method was chosen 

because of its intuitive origin in classical mechanics. We start with the relationship between 

acceleration, a, potential energy, V , and mass m  , a  =  — W /m . Given this relationship, for 

an atom with velocity ro =  0, and initial location To its position some time 8t later is given 

as [36]

r(d£) =  r 0 -  ^  5t2 (2.3)

This is essentially how a semi-classical molecular dynamics simulation would evolve at short 

times. For later times, the velocity would be non-zero and the equations of motion would have 

to be integrated to find the actual trajectory, adding computational complexity and time.

Because we are only interested in the final equilibrium positions and do not need inform­

ation on the full path of the atom, we do not solve the full dynamics problem. Instead, we 

choose a maximum distance 8r an atom is allowed to move. The atom that will move that

distance, dr, in the minimum time is the one with the largest acceleration, |a |max =  

From Equation (2.3), this minimum time satisfies

2 l^ lm o x

Substituting this into Equation (2.3) as our time step, steps are taken according to the 

following

r k{n +  1) =  r k{n) -  -~ r - • (2.4)
l^ lm a x  TTlfc

where Sr is the maximum step size allowed for any single atom, V* and are the potential 

(Equation (2.2)) and mass respectively of the kt/l atom, and n denotes the step number.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Only the atom with the largest acceleration will step 8r, with all others stepping less. The 

determination of |a |max is performed at each step in the program. Thus each step represents 

a different elapsed time. We have denoted the coordinates with a lower case r  to indicate 

that this formula applies equally to sodium and argon atoms; that is, all atoms are allowed 

to move. This is another feature of this work. When generating the ground state cluster, no 

assumptions are made as to which atoms should move.

The maximum step size is started at a few Angstrom and a trial step is taken. A trial 

step consists of moving all atoms, including the sodium atom, simultaneously. Each atom 

moves a distance given by Equation (2.4). If the total energy of the new cluster is lower than 

the previous energy, the step is kept and another step of that size is taken. If the energy 

increases, the step size is reduced by half and the trial step taken again. The procedure 

terminates either when 4000 steps have been taken or the step size is reduced below O.OOlA. 

The typical number of steps needed to find a minimum was 400 to 1600 steps. The minimum 

step size was chosen because it is half of the stated error in the best-known potential [26]. 

Any variation smaller than O.OOlA should affect the results less than errors in the potentials. 

Once a local minimum has been found each argon atom in the cluster is displaced a random 

distance between 0 and lA in a  random direction. The sodium atom is excluded from this 

randomization because it was found that allowing the sodium atom to be randomly displaced 

might allow it to work its way to the surface of the cluster. After this randomization process, 

the minimization process is repeated and if a lower minimum is found it is kept; otherwise 

the randomization is repeated again. If the minimum energy structure does not change after 

three tries, the program is halted.

The program resulted in consistent formation of roughly spherical sites for sodium trapped
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in our computer generated argon cluster. These results will be discussed further in chapter 3.

Before proceeding with any other calculations we needed to verify that our minimization 

procedure described above was giving reasonable results. To do this, several test cases, 

described in the following paragraphs, were run.

The easiest check to perform was to see if the program could correctly generate pure 

rare gas clusters. Several clusters containing only a few argon atoms were calculated. The 

structures associated with the local minima of these clusters followed closest packing, that 

is the atoms pack as spheres that are packed together as densely as possible. The overall 

interaction energies of several pure rare clusters generated by this program are compared with 

published results in table 2.1. The energy is given in normalized units, where all energies are 

divided by the magnitude of the argon-argon dimer potential well depth (99.554 cm-1 [30]). 

As can be seen, the results agree almost exactly. Generation of this table required several 

trials to find the global minimum due to the large number of local minima and the fact that 

our program is not designed to find the global minimum but only low lying local minima. 

The most well known structure consisting of pure argon is the Arm cluster. This icosahedral 

cluster demonstrates what is meant by closest packing. The high symmetry Ari3  cluster 

generated by our program is shown in figure 2-2. This near perfect agreement indicates that 

our program works well for pure argon clusters. The program generates clusters whose shape 

makes sense and whose energies and structures match work done by others.

Next we need to verify that the program works if all atoms are not identical. We expect 

closest packing of any argon atoms with the sodium atom residing on the outside. This 

is because the sodium-argon interaction energy is smaller than the argon-argon interaction 

energy (see section 2.4). Thus to minimize the total energy, the argon atoms will have
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n
Reference

Energy
Program
Energy

8 -19.822 -19.821
9 -24.113 -24.113

10 -28.423 -28.422
11 -32.766 -32.766
12 -37.968 -37.968
13 -44.327 -44.327
14 -47.845 -47.845
15 -52.323 -52.323
16 -56.816 -56.816
17 -61.318 -61.318
18 -66.531 -66.531
19 -72.660 -72.660
20 -77.177 -77.177

Table 2.1: Arn cluster energies for n =  8 .. .20 compared with results from ref. 37. Energy 
is given in normalized units.

Figure 2-2: Ari3  cluster
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the maximum number of argon neighbors-the sodium will be outside a pure argon cluster. 

To check our calculation of a ground state sodium atom with several nearby argon atoms 

we compared the lowest four isomers of NaAr6 to those found in the work of Tsoo et al. 

[3]. There is qualitative structural agreement between our work and that of Tsoo et al.. 

Comparison of energies is not possible as their calculation of the interaction with the sodium 

relies on a different formulation of the interactions between sodium and argon and the argon- 

argon potential used was the Lennard-Jones approximation (we used the more accurate Aziz 

potential for this particular calculation-see section 2.4). We did however obtain energy trends 

that agreed with their results. See figure 2-3 for a summary of our results. These results were 

compared with figure 11 of Tsoo et al.. These results led us to believe that our calculation 

of small clusters consisting of a single ground state sodium atom and multiple argon atoms 

was correct.

2.2 Calculating the Excited State Energies

We wish to calculate the energy levels of an excited state alkali atom interacting with nearby 

rare gas atoms for our computer generated sites. The effect of a collection of rare gas atoms 

in perturbing the free alkali is considered for the sodium atom in its first excited state. The 

simplified dimer case is considered and it is shown how known dimer potentials can be used 

to approximate the solution for a large number of rare gas atoms.

2.2.1 An alkali in a rare gas m atrix

Consider a sodium atom, taken to be at the origin, with a valence electron e located at r and 

N fixed argon atoms at positions R i,R .2 , ...R^v (figure 2-4).
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(c) Ci (-1357 cm - 1 ) (d) di (-1352 cm '

Figure *2-3: Na(3S)Ar6 isomers. Note that the labeling is that of reference 3.
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Figure 2-4: Na'Arn coordinate system used.

We wish to calculate the electronic energy levels of the alkali atom valence electron, 

perturbed by the argon neighbors. We make the approximation that the electronic energy 

levels do not depend on the rare gas-rare gas interactions.

We limit the Hamiltonian of the perturbed alkali valence electron to

H = Ha +  Va - rGs  (r > R-i> R-2* — R-a/')

where Ha is the free alkali Hamiltonian and Va- rg is the interaction of the alkali atom (core 

plus electron) with the rare gas atoms. The spin-orbit correction is often included but for 

sodium in argon is only a few wavenumbers [38]. It has also been assumed that the rare 

gas-rare gas interaction is independent of the valence electron location and that the electronic
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energy levels also do not depend on the rare gas-rare gas interactions. The rare gas-rare gas 

interactions will be added later when calculating the total cluster energy.

We now examine the experimental results to estimate the order of magnitude of the effect 

of the matrix. The free atom transition energy weighted by the transition probability is 

16,968 cm-1 [31]. Of the triplet absorptions (sites A and B in figure 1-1), the transition 

energies observed in matrix isolated sodium vary between 16,821 and 18,657 cm-1 [11]. The 

maximum difference in energy introduced by the matrix is about ten percent of the free 

atom energy. For this reason, the new term in the Hamiltonian can be considered to be a 

perturbation of the free alkali Hamiltonian.

The ground state is non-degenerate and consists only of the alkali ground state wavefunc- 

tion |ns) (|n, I = 0, m =  0)). The expectation value of the energy in this state (ie. (ns|f/|ns)) 

is simply

N
E ( R U R 2, . . .R a t )  =  R * ) |n ,  s)

k= 1

where E™ is the unperturbed ground state energy of the free alkali atom. This is Equa­

tion (2.1) without the rare gas-rare gas interaction. In that equation the unperturbed ground 

state energy, EnJ, is defined to be zero.

For states with I -f 0, following standard degenerate perturbation methods (see for ex­

ample Merzbacher [39]), the first order correction to the energy is the solution of

det\Vlmi,lm} -  =  0
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E ^l  is the first order correction to the free alkali energy, E ^ \  with r an index denoting the 

(possibly) split energies. Vimij mj is defined as

Vv  s  ( * ! 1 , i w ROi*SL)> <2 .5 )

Since this work deals only with transitions which have the same n and are not degenerate 

in 1, a more concise notation is used

det\Vij -  E {l)Sij\ =  0 (2.6)

The solutions to this equation give the first order corrections to the free alkali energies.

We now need to calculate the term in equations 2.5 and 2.6. It is well established that 

the potential energy of an excited alkali atom interacting with many nearby rare gas atoms 

is not simply the sum of the dimer interactions [40]. Baylis [34,41] was the first to present a

theoretical model for the interaction of an alkali atom in both the ground and excited state

with several rare gas atoms. What follows is based on that work.

Consider the interaction of the alkali atom with the kth rare gas atom, V (r, Rfc). The 

potential, F (r, Rfc), can be expanded in Legendre polynomials

VA. RG(r, Rfc) =  £  VL(r, R k)PL(f ■ R k) (2.7)
L

For now, the Vi can be considered coefficients of expansion. They will later be related to the 

experimental dimer potentials found in the literature.
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Using this expansion we get

Vij =  I = 1, m,|UA_RG(r, R fc)|n, / =  1, mj)
k

=  =  ! | / =  1)(/ =  l,m ,|P£,(f- =  l ,m j)  (2.8)
£, k

As shown in Appendix C, the only allowed values of L are 0 and 2. It is shown in 

Appendix C that for the p state alkali, the angular dependent portion of Equation (2.8) 

(L = 2) can be expressed as

5  M = - 2  V 2?r

( \ 
1 2 1

m j  M  —m ,'

Also shown in Appendix C is the calculation of the individual matrix elements V^. The 

final result for the p state alkali is

(2.9)

-(3cos20jt -  1) -ZV2sin9kCos6ke~,<t,k -3 s in 2 9ke~2i<t>k 

-3y/2sin6k cos0ke,,t>k 2(3cos2 -  1) 3\/2sin 9k cos9ke~i(t,k

—3 sin20fce2l̂ fc 3\/2sin 9k cos9kex<t>k - (3  cos2 0k — 1)

where I is the unit matrix and we have defined

Vo{Rk) =  (rc/|Vo(r, Rk)\nl)

V2(Rk) =  (nl\V2(r, R k)\nl )
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We note that in obtaining the matrix in Equation (2.9) the standard ordering for the magnetic 

quantum number has been assumed (1, 0, -1). Thus the upper left element corresponds to 

77i,- =  m ,j = 1, the top row middle column to mt- -  1, rrij — 0, etc.

The relation between the coefficients of expansion, V ^r, R k), and dimer potentials found 

in the experimental and theoretical literature must be established.

Consider a dimer consisting of one alkali atom and one rare gas atom. In Equation (2.9) 

any system of coordinate axes with the alkali defined as the origin can be chosen. A convenient 

choice for the quantization axis (z axis) is the interatomic axis. With this choice 0  ̂=  0 and 

Equation (2.9) becomes

V =

Vo (Rk) - \V 2{Rk) 0 0

0 V'o(flfc) +  \V 2{Rk) 0

0 0 VQ{Rk) -  \V 2(Rk)

(2 . 10)

We note that we end up with three energies, two of which are degenerate (m,- =  mj =  ±  I) . 

Because of this degeneracy the electronic terms of the dimer are classified according to the 

absolute value of the projection of the orbital angular momentum along the quantization axis. 

This quantity is denoted A (= \Ml \) and the terms are labeled according to the scheme 2S+l A. 

Note that the use of capital letters denotes the multiatom system. Because rare gas atoms 

are spherical, Irg =  0. For this reason M l =  mi and A =  |m/|. Following the electronic 

term convention A = 0 is denoted E with the term being B 2T, while A =  1 is labeled .42IL 

A physical picture of the orientation of the atomic alkali orbital is given in figure 2-5.
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B 2£

Na* Ar

A2n

Na*

Figure 2-5: Diagram of S  and II molecular orbitals
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With this labeling in mind we see Equation (2.10) could also be written

V  = (2 . 11 )

Thus

V a 2TI =  ( ^ n l ± l | K 4 - i i G | ^ n l ± l )  =  V0 — - V 2
0

^B2S =  (^ n io i^ l—RGl'PnIo) =  Vo +  ~^20

These two equations can be solved for Vo and V2 in terms of the dimer potentials.

Vo =  g(VB2S +  2V'42n )

V2 = |(Vb2s -  VA2n)

With these two equations and Equation (2.9), we can solve the secular determinant (Equa­

tion (2.6)) for the first order correction to the free sodium energies given the experimental 

A2n  and B 2£  Na*-Ar dimer potentials.

We now have in place the tools to solve the secular determinant (Equation (2.6)) for the 

first order correction to the free alkali atom electronic energy. The three energies obtained give 

three electronic energy levels for the excited sodium atom interacting with the surrounding
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argon atoms. For the excited state sodium atom the interaction energies are

E '(R lt R 2, ...Ryv) = EW +  Ejl)(Ru  R-2, - R n ) (2-12)

where E are the solutions to the secular determinant, with i an index denoting the three 

solutions. For the free sodium atom, the 3s-3p transition energy, E ^ ,  is 16,968 cm-1 [31].

There are several standard methods that can be used to solve for the eigenvectors and 

eigenvalues of this system. One is to write out the cubic equation and solve it directly. The 

resulting cubic is given as Equation (C.10). Another method is to use the Householder- 

Givens [35,42] transform method in which a unitary transform that diagonalizes the matrix 

is calculated. This latter gives both the real roots and the complex coefficients of the corres­

ponding eigenvectors. This is the method used because of the availability of the eigenvectors 

and its expandability if a larger basis set is required. It is also independent of the size of the 

matrix.

2.3 Calculating the Absorption and Em ission spectra

2.3.1 Absorption

We now have in place the method for determining the matrix trapping site, its energy, and 

for calculating the electronic energy levels for the excited state alkali given the rare gas atom 

locations. It is now a simple matter to determine the absorption energies of these calculated 

clusters. We assume that the energies of the photons absorbed are given by the difference
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between the excited state energies and the ground state energy.

AE i = £7”(Rx,B.2i ...Riv) — E{R i,R 2 , ...Rat) (2.13)

where i is an index that denotes the three possible solutions in Equation (2.12). For conveni­

ence we order the energies from lowest to highest with the index, i =  0 .. .2. Since there are 

three excited state levels there will be three (not necessarily unique) absorption energies.

2.3.2 F luorescence

To determine the emission wavelength of the matrix isolated sodium we assume that the ex­

cited state system will relax to an energy minimum. The total interaction energy, V'*(R1, R 2, ...R ;v). 

is now given by the lowest excited state sodium energy obtained from Equation (2.12) plus 

the rare gas-rare gas interaction energy.

N  N
l / ‘ (R 1,R 2, . . .R y v )  = F o(R !,R 2, . . .R a t)  +  £  £  Vfcc-/ic(|Ri -  R;|) (2.14)

;=i j=i+1

We assume that the excited state lifetime is long compared to the relaxation time. This 

is a good assumption as typical excited state lifetimes are around 20ns [11] while molecular 

dynamics simulations indicate typical relaxation times are on the order of tens of picoseconds 

[7]. We have also assumed that following the lowest energy surface is sufficient to give the 

fluorescence. This is an intuitive assumption based on the expected excited state populations 

at thermodynamic equilibrium. Given the energy differences between the three absorption 

peaks, we can estimate the ratio of the populations of the middle state to the lowest state.

Given typical experimental temperatures of 10 -  20 A' and energy differences of the order of
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100 cm~lwe obtain

« io -4 -  k t 7
& lowest

To further check this approach we examined the work of Krylov et al. [7]. They carried out 

a molecular dynamics calculation for barium in argon in which they followed each of the 

adiabatic energy surfaces. They allowed semi-classical “surface hopping” (hopping between 

energy surfaces) using the method of Tully [43], Kuntz [44], and more recently Jungwirth [45]. 

These results were also consistent with the assumption of thermodynamic equilibrium. As 

a check on our method and program we were able to reproduce their results and obtained 

extremely good agreement by only following the lowest energy state when calculating fluor­

escence.

There is one further complication that arises in our simulation. We have a limited cluster 

size. As discussed before, because of computational time considerations, we limit our simula­

tion to 200 argon atoms. This gives us between two and three atomic layers surrounding the 

sodium. Starting with our computer generated matrix trapping sites and allowing the system 

to reach equilibrium with the sodium in the excited state, there is a drastic rearrangement 

of argon atoms in the cluster. In our model every atom in the cluster moved in response to 

the change in potential, corresponding to a liquification of our cluster. This is because there 

is no surrounding matrix to hold the argon atoms fixed. In the matrix environment such 

liquification is not realistic. The energy added during the optical transition should rapidly 

be distributed throughout the matrix. Only local argon atoms should rearrange, with the 

overall matrix remaining intact. To model this we froze every argon atom beyond the first 

set of nearest neighbors. The excited state sodium atom and the nearest argon atoms were
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Figure 2-6: Histogram of the radial distribution of Ar atoms around the Na atom. The Ar 
atom distances from the Na atom are binned by 0.2 A .

still allowed to move. Figure 2-6 shows a histogram of the argon atom locations relative to 

the ground state sodium for one of our computer generated matrix trapping sites. This figure 

shows that the first set of nearest neighbor atoms are spread out between roughly 4.3 A and 

5.5 A  but there is a clear lack of atoms at 6 A .  Thus, when calculating our trapping site with 

the sodium in its excited state we freeze every argon atom beyond 6 A.

With the above limitations the relaxation procedure described in section 2.1 is repeated. 

However, in place of the X 2H NaAr ground state potential used in Equations (2.4) and (2.1), 

the lowest Na*Ar energy surface given by Equation (2.12) is used. To obtain the gradient 

of the excited state surface needed in Equation (2.4) requires knowledge of the derivative of
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the eigenvalues obtained by diagonalizing the matrix given by Equation (2.9). This problem 

is solved by use of the Hellman-Feynman theorem (see for example Merzbacher [39], pg 

442). Given a complex Hermitian matrix V (Equation (2.9) in our case), eigenvalues E -1* 

(i =  0 .. .2), and their corresponding complex eigenvectors z,-, we have the useful result

dE \l) t d V  t
■. T  V  = z • TTt— r  ' z* (2.15)d(xk)j d(xk)j

A short derivation of this equation is given in appendix B. This supports the decision to 

use the Householder-Givens transform which gives eigenvectors as well as eigenvalues. It is 

also possible to implicitly differentiate Equation (C.10) but this is error prone, more difficult 

to implement, and seems to be more subject to numerical roundoff errors. It is, however 

computationally much faster. An alternative method that others have used is to approximate 

the derivatives by moving each atom a small distance in each coordinate direction. This 

is several orders of magnitude slower than calculating the derivatives of the eigenvalues by 

either of the above methods.

No calculations of excited state Na(3P)Arn clusters are available to use as checks on our 

calculation of an excited state sodium interacting with many argon atoms. However, for 

small clusters, we can estimate the results. The special case of Na(3P)Ar2 has been done 

by Baylis [34]. In that work Baylis obtained an expression for the three energy levels as 

a function of the location of the two argon atoms. We found the following three electronic 

energy levels as a function of the Ar-Na-Ar angle, 9

Vq (R) =  2V’,4n(#) (2.16)
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Vi2{R) =  [^5s(i2) + VAn(fl)]±[^s(^)-K4n(/2)]cos(0)

These expressions are identical to those of Baylis with the argon atoms assumed to be the 

same distance, R, from the sodium atom and to the same expression found in reference [46]. 

The expression for unequal NaAr distances is

V0'(R ) = VAn(Ri) + VAn(R2)

where

2

a = £ [ K B S(fl*) +  K4n(/?fc)]
fc=i 

2

b = 12[VBz ( R k ) - V An(Rk)]2
fc=i

+2[V'BE(i?1) -  VAn(#i)][VB£(i22) -  KAn(^2)]cos(0]

This provided a numerical check on the program. Evaluating the above expressions for various 

values of R  and 0 and comparing these to the program results with the same values showed 

the program to be working.

We note that Vq (R) in Equation (2.17) is the lowest electronic energy solution for the 

relaxed atom case. The total energy of the Na*Ar2 system is

Vm in (R i RArAr) =  2VAx\{R) + VArAr(R ArAr) (2.17)
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We would expect that for every argon atom added, the energetically preferred interaction 

is a II type. Only a limited number of argon atoms can be added before we must consider 

the B2£  interaction. Given the A2II minimum location (RNa*Ar =  2.907 A )  and the ArAr 

minimum (RArAr =  3.757 A )  we can easily fit two argon atoms next to the excited state 

sodium. Both of these argon atoms will experience pure A2n interactions. The distance 

between Ari and Ar2 should be the ArAr dimer distance and that between the sodium atom 

and the argon atoms should be the A2II minimum distance. Thus the total energy should be 

twice the NaAr A2II (2 • 563.4 cm-1) energy plus the Ar-Ar interaction (99.6 cm-1 ). This 

is exactly what is observed in the program test results and exactly what is expected from 

Equation (2.17). We expect (based on bond lengths) to be able to fit up to four argon atoms 

before we get non-additive effects. Once again this is observed in the test results. Thus 

for small excited state sodium-argon clusters with up to four argon atoms we obtain cluster 

energies which are the simply the sum of the Na*Ar A2n and the ArAr interactions (purely 

additive) . Figure 2-7 shows these planar Na(3P)Ar„ clusters. The II lobe is perpendicular to 

the plane of each cluster giving the lobe orientation pictured in figure 2-5 for each of the argon 

atoms. The Na(3P) Ar5 cluster is still planar and all atoms experience pure A2II interactions 

but the extra argon is “squeezed” in and no atoms are a t their normal dimer distances: 

the Na*Ar distances are longer than for the Na*Ar dimer case and the ArAr distances are 

compressed compared with their dimer case.

Further checks of the whole system were done by hand calculating several excited state 

configurations. These calculations agreed exactly with the output of the program.

Further calculations of Na(3P)Arn for n = 4.5,6,7 are presented in the preprint in 

appendix D. In all of the tests performed, the results were consistent with what was expected
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(a) Na(3P)Ar2 (b) Na(3P)Ar3

(c) Na(3P)Ar4 (d) Na(3P)Ar5

Figure 2-7: Na(3P)Ar„ small cluster structures
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and the conclusion was reached that the program performed both the ground and excited state 

calculations correctly.

an excited state sodium atom and many argon atoms. We once again assume a vertical 

transition. The fluorescence energy is given by the difference between the lowest excited 

state curve and the ground state as seen in Equation (2.13).

2.4 Potentials

2.4.1 Rare G as-R are Gas Interactions

Several potentials were used as input into the model. A Lennard-Jones approximation to the 

Ar-Ar potential [47] was used. One form of the Lennard-Jones (LJ) potential is

with A =  and B = (where n > m) and e is the well depth at Rm, the well 

minimum. The form used for the Ar-Ar interaction is the LJ(12,6) which is

A more accurate Ar-Ar potential form by Aziz et al. [30] was also used. The well depth of 

this Ar-Ar potential is e =  99.738 cm-1, and the minimum is Rm =  3.7570 A.  It was found 

that both Ar-Ar potentials gave essentially the same results. For the runs presented below 

the computationally simpler Lennard-Jones form was used, saving about a factor of two in

Once the minimization procedure is completed we have a relaxed cluster consisting of

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



30

100

Eo
CE
>

-50

Ar-Ar

-100
3 4 5 6 7 8 9 10

R (Angstrom)

Figure 2-8: Ar-Ar and Na-Ar ground state potentials compared. The solid line represents 
the Na-Ar A 2S  dimer potential from ref. [26]. The dotted line represents the potential from 
ref. [25]. The dot-dash line is the Lennard Jones Ar-Ar dimer potential with parameters 
taken from ref. [30].

run time.

A short summary of the available sodium-argon potentials is given in table 2.2.

The Na-Ar A 2£  and A2fl dimer potentials used were taken from a spectroscopic de­

termination by Tellinghuisen et al. [26]. A graph showing the argon-argon potential and the 

ground state sodium-argon dimer potentials used is given in figure 2-8.

To use the potentials of Tellinghuisen we needed an appropriate B2£  dimer potential. 

Since there is no direct measurement of the shape of the B2£  dimer potential and only a 

single measurement of its well location and depth from the experimental work of Van Den
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Species Source X 2E A5n B2£ Type
Na-Ar 24 V SLB

25 yj V y/ Cl
26 V V LS
27 V V V Cl
28 y/ y/ PS
29 V vA MB

Table 2.2: Sources for available Na-Ar dimer potentials 
Cl: ab initio configuration interaction 
PS: Pseudopotential 
SLB: Spectral Line Broadening 
LS: high resolution laser spectroscopy 
MB: Molecular Beam (f-only sensitive to well)

Berg [29], a Morse fit to the shape given by Saxon [25] was used as a starting point. The 

Morse potential is defined as [48]

VMor3e{R) =  e [e2p(1"Rm> - (2.18)

where e and R m are the well depth and minimum respectively and p is called the Morse 

parameter and determines the shape of the potential. The Morse potential was chosen be­

cause it represents the most well-known three-parameter empirical dimer potential energy 

function [49]. An example of the effect of the Morse parameter is given in figure 2-9. Starting 

with the fit result of p =  4.11, the shape was adjusted until a single run of the program agreed 

with the experimental “Blue site” absorptions to within experimental error. The result was 

p =  4.3. This gives a slightly steeper wall than that of Saxon. The well depth, e, and location, 

Rm, used were those of Saxon.

To see if the depth and minimum of the B 2E potential obtained from Van Den Berg could
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give results as good as the above, using the well depth and minimum of that work the shape 

was varied until once again the results closely match the experimental B site absorptions. It 

was found that for the trapping sites generated (which rely only on the X 2E ground state 

Na-Ar dimer potential), no adjustment of the B 2E potential could give absorptions in good 

agreement with the experimental A site absorptions. In addition, since our program finds 

the more thermally stable cluster formation (a local minimum), we would expect to find the 

thermally stable B site most or all of the time. It was found that with the well minimum at 

6 A  (the upper limit of the error bars of Van Den Berg), the Morse parameter needed was 

p =  5.5, much steeper than that of Saxon. This result will be discussed in greater detail in 

section 3.2.

A convenient summary of the parameters used for the ground (X 2S  ) state Na-Ar dimer 

potential is given in table 2.3 and for the excited state dimer potentials (,42II and B2E ) in 

table 2.4. These potentials are summarized and compared graphically in figure 2-10.

Designation [Source]
X 2E

e (cm~l ) Rm (A)
Best Potential [26] 

Van Den Berg B2E [26]
40.4±1.0 4.991±0.002 
40.4 4.991

Table 2.3: Ground state potential parameters used. Error is shown for information purposes 
only.
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Designation [Source] e (cm l )
a 2 n  
Rm (A) P e (cm

B 2E
Rm (A) P

Saxon [25] 492 2.91 NA 32.3 6.81 4.11f
Best Potential [25,26]ff 563.4±4.8 2.91±.05 5.29 32.3 6.81 4.3

Van Den Berg B 2T, [26,29]t 563.4 2.91 5.29 30.7±4.4 5.50±.53 5.5

Table 2.4: Excited state potential parameters used. Error is shown for information pur­
poses only.
f: Represents a force-fit to data given in [25]
ff: A 2II from [26], B 2S from [25] with p adjusted as described in text.
J: A2II from [26], 5 2S  from [29] with p adjusted as described in text.

1
p=7
p=6
p=5
P=4

0.5

0

-0.5

1
0.5 1 1.5 2 2.5 3

Figure 2-9: Graph of the standard Unit Morse Potential [48,49] showing effect of Morse 
parameter p
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Figure ‘2-10: Graphical summary of all dimer potentials used. The solid line represents the 
Na-Ar A'2E and Na*-Ar .42I1 dimer potentials from ref. [26] with the Na*-Ar B2E dimer 
potential obtained as described in the text. The dotted line represents the set of potentials 
from ref. [25]. The dashed line for the 5 2S  is an alternate version of the potential described 
in the text. The dot-dash line is the Lennard Jones Ar-Ar dimer potential with parameters 
taken from ref. [30].
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Chapter 3

Results and Conclusions

3.1 Characterization of the simulated matrix trapping site

For each of the ground state sodium-argon potentials given previously in section 2.4, one 

hundred different trapping sites were generated. Later, a total of 1000 runs were performed 

using the Tellinghuisen .\ '2S sodium-argon ground state dimer potential. In all runs the 

ground state trapping site was a roughly spherical site. We would expect this closest packing 

structure as both the Ar-Ar and Na-Ar ground state potentials are spherically symmetric. 

Deviations from a perfectly spherical site are due to the softness of the ground state Na-Ar 

potential well. To visually demonstrate the resulting site structure, space filled representa­

tions of the nearest neighbors from the first four runs using the Tellinghuisen AT2E are shown 

in figure 3-1. We define the nearest neighbors as those which satisfy Rk < 6 A .  Figure 2-6 

shows why this cutoff was chosen. It shows that the nearest neighbor atoms are spread out 

between roughly 4.3 A  and 5.5 A  but that there is a clear lack of atoms at 6 A .

The minimum of the ground state Na-Ar potential well is at 5.01 A.  In the matrix the 

nearest neighbor argon atoms are located closer to the sodium atom than S . O lA .  This is 

because the Ar-Ar interaction is stronger and the large number of argon atoms tends to com-

35
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press the sodium-argon distances. These nearest neighbor configurations shown in figure 3-1 

demonstrate what is meant by roughly spherical. A further demonstration of this is shown 

in figure 3-2. In that figure a single computer generated ground state cluster is shown from 

all sides.

3.2 Absorption results

Given the computer simulated ground state trapping sites described in the previous section, 

the absorption of each individual simulated site was calculated. The absorption results are 

binned by wavelength and presented as histograms in figures 3-3, 3-4, 3-5, and 3-6. The 

absorption bin size is chosen to be 20 A  corresponding to the experimental error given by 

Balling et al. [11]. The dashed vertical lines on the left represent the experimental B site 

absorption peaks [11]. Also shown are the free sodium absorption lines (nearly overlapping 

vertical dotted lines) and the A site absorption peaks. The solid boxes are a histogram of 

the absorption wavelengths generated for this work.

Although not believed to be as accurate as experimentally derived potentials, the Saxon [25] 

sodium-argon dimer potentials are used in the literature. The most recent calculation [5] of 

a sodium atom in an argon matrix prior to this work uses the Saxon potential set. These 

potentials are used primarily because of the availability of the potential and the belief 

that because all potentials are from one source they should be self-consistent—eliminating 

errors that potentials coming from several different, uncorrelated sources, might introduce. 

For this reason we also tried the full set of Saxon potentials. The calculated absorption 

results are shown in Figure 3-3. With the Saxon potentials, the largest simulated absorption
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Figure 3-1: Four sample runs showing ground state Na with nearest neighbor Ar atoms
( R k <  6 A).
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(a) Positive x axis (b) Negative x axis

(d) Negative y axis(c) Positive y axis

(e) Positive z axis (f) Negative z axis

Figure 3-2: A single sample run showing ground state Na with nearest neighbor Ar atoms 
[Rk < 6 A) seen from six views along the arbitrary space fixed coordinate system used in 
the program.
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Figure 3-3: Computed absorption spectrum for one hundred runs using Saxon’s [25] Na-Ar 
,Y2E, A2n  and B 2E dimer potentials compared with experiment.
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wavelengths are blue shifted relative to the experimental B site absorptions. Triplet splitting 

is observed, but there is also a fourth, smaller peak at 5550 A .  These theoretical potentials 

are not as accurate as the corresponding experimentally measured potentials. It will be seen 

that using experimentally measured potentials gives better absorption results.

As previously stated in section 2.4, no experimental measurement of shape of the B 2£  

Na*Ar dimer potential has been made. However, experimental Na-Ar .Y2£  and Na*-Ar 

A2n  dimer potentials are available [26]. To use these experimental potentials, the Saxon 

B2E potential was adjusted to give good agreement between the calculated and the exper­

imental matrix absorption results. Figure 3-4 shows the result of using the experimental 

X 2E and A2II dimer potentials together with a Morse fit to the Saxon B2£  dimer poten­

tial. The calculated absorption spectrum shows a triplet structure that is red shifted when 

compared with the experimental B site absorption peaks. A small adjustment of the Morse 

parameter, p, from p =  4.11 to p =  4.3 gives calculated absorptions in better agreement with 

experiment. The absorption spectrum calculated with this “best B2E potential” is shown in 

Figure 3-5. We see a symmetric, triplet absorption spectrum with all three peaks matching 

the experimental peaks well.

Although, as previously stated, there exists no experimental measurement of shape of 

the B2E Na*Ar dimer potential, there is a measurement of its well parameters. Both the 

depth and the location of the well minimum have been measured by Van Den Berg ef al. [29]. 

Initially the exact well location, R m =  5.5 A ,  quoted in that work was used. Since that work 

was not sensitive to the shape of the Na*-Ar B 2E potential, a Morse potential fit to the shape 

derived by Saxon was used as a starting point. To obtain results consistent with the blue site 

a very steep potential had to be used (p ss 7). We found that the best results (ie. those most
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Figure 3-4: Computed absorption spectrum for one thousand runs using Telliughuisen’s [26] 
Na-Ar X 2E and Na*-Ar A2I1 dimer potentials with Saxon’s [25] Na*-Ar B2E dimer potential 
compared with experiment.
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Figure 3-5: Computed absorption spectrum for one thousand runs using Tellinghuisen’s [26] 
Na-Ar „Y2E and Na*-Ar A2IT dimer potentials with the adjusted Na*-Ar 5 2E dimer potential 
derived from Saxon [25] compared with experiment.
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Figure 3-6: Computed absorption spectrum for one hundred runs using Tellinghuisen’s [26] 
Na-Ar and Na*-Ar A 2Tl dimer potentials with the Na*-Ar fJ2£  dimer potential derived 
from Van Den Berg [29] compared with experiment
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consistent with experiment) were obtained by using the upper limit on the experimental well 

minimum location (R m =  6 A ) .  The final Morse parameter used was p =  5.5. These results 

are shown in figure 3-6. We see a triplet in the calculated absorptions but we also see that the 

peaks in the calculated results are quite wide. We also note that the spread in the absorption 

results is quite wide, spanning the wavelength range of 5000 A  to 5800 A .  We were able to 

draw several conclusions from this exercise. First, looking at the locations of the argon atoms 

relative to the sodium atom, we note that we are sampling the wall of the B2E potential (see 

figure 2-6). The larger Morse parameters correspond to steeper walls. It was observed that 

very large Morse parameters caused a more washed out set of absorptions. A very small 

Morse parameter caused the triplet to merge into one unresolved peak. These results are 

consistent with sampling the wall of the potential. A large Morse parameter means a very 

steep wall, therefore a small variation in atomic positions corresponds to a large variation in 

the size of the potential, or a very broad absorption spectrum. A very small Morse parameter 

corresponds to a  shallow wall, a small B2£  potential and therefore a small splitting, giving a 

single broad peak.

Since the A site is closer to the free sodium line(s) we also generated a surface trapping 

site as a possible candidate trapping site (figure 3-7). This was done by generating a large 

unrelaxed random cluster of argon atoms with a  sodium at its surface and relaxing this 

structure. The results, shown in figure 3-7, show that the experimental absorption line that 

was slightly red-shifted compared with the free sodium absorption lines was not generated. It 

is unclear how a surface site can give absorptions that have a component greater than the free 

sodium absorption. This seems to require some sort of compression. The argument for that 

is most easily seen by examining a graph showing the dimer potentials used (figure 2-10). If
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Figure 3-7: One hundred runs with sodium forced to reside on the surface of the simulated 
cluster. Tellinghuisen’s [26] Na-Ar and Na*-Ar A2II dimer potentials with the Na*-Ar 
S 2£  dimer potential derived from Saxon [25] were used.
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we believe that the experimental potentials are essentially correct (there seems no reason to 

argue against this), to get a transition energy that is smaller than the free atom line requires 

that argon atoms be squeezed in closer than the normal sodium-argon dimer distance. If 

this occurs, the ground state sodium-argon potential is higher in energy and one of the dimer 

energies is lower giving us the required smaller transition energy. The surface site also shows 

no triplet absorption structure. The degeneracy is not sufficiently split to produce more than 

two absorption lines. Our computer simulation supports the conclusion that the A site is not 

a surface site.

3.3 Fluorescence results

We discussed the method used to calculate the fluorescence in section 2.3.2. There we stated 

that we only allowed atoms closer than 6 A to move when the sodium was in its excited state. 

Here we will also present results in which we allow all atoms to move (figure 3-11) and in 

which we only allow the sodium atom to move (figure 3-12).

For much of this discussion the reader is referred to the preprint presented in appendix D. 

This paper discusses the discovery of novel structures of Na*-Arn clusters for small n. For 

n =2, 3, 4, and 5 the clusters have a  planar structure. The interaction between the excited 

sodium atom and the argon atoms is simply the sum of the individual Na*-Ar A2II dimer 

potentials. For n >5 the interaction of additional argon atoms is dominated by the argon- 

argon dimer interactions. As additional argon atoms are added beyond n =6, they form argon 

clusters with the Na*-Ar5 cluster on the surface. These cluster results are very important in 

explaining the matrix fluorescence results. The excited state cluster structures for small n
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Figure 3-8: Computed absorption and fluorescence spectra for one thousand runs using 
Tellinghuisen’s [26] Na-Ar A 2S  and Na*-Ar .42II dimer potentials with the adjusted Na*-Ar 
fi2S dimer potential derived from Saxon [25] compared with experiment.

are reproduced in figure 2-7.

We choose to concentrate on the fluorescence results rrorn our “best B 2E ” potential, 

the potential with the adjusted Na*-Ar B2S dimer potential that gave good agreement with 

experimental absorptions. Our computer calculated fluorescence spectrum is presented in 

figures 3-8 and 3-9. We begin by examining both the calculated absorption and fluorescence 

results on one graph (figure 3-8). The first thing that we notice is that the calculated fluores­

cence results are red shifted relative to the absorption lines. We have succeeded in generating 

results which are consistent with experiment when we only consider the amount of the red
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Figure 3-9: Computed fluorescence spectrum for one thousand runs using Tellinghuisen’s [26] 
Na-Ar AT2E and Na*-Ar A2II dimer potentials with the adjusted Na*-Ar £ 2£  dimer potential 
derived from Saxon [25] compared with experiment.

shift. Figure 3-9 examines only the calculated and experimental fluorescence results. These 

calculated emission spectra (figures 3-8 and 3-9) have been corrected for the transition rate 

for spontaneous emission in the dipole approximation (see Bransden [33], Section 4.3). For 

reference the uncorrected calculated emission spectrum is presented in figure 3-10. This 

figure should be compared directly with the corrected figure 3-9.

The first thing that strikes one upon examining the experimental B site emission results 

is the existence of two peaks. There are apparently two distinct structures that exist in the 

excited state matrix. Examining the corrected emission spectrum, figure 3-9, our simulation
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n
Excited 

Energy (cm-1)
Ground 

Energy (cm-1) A (A )
2 15841.2 1919.9 7183
3 15277.8 2892.7 8074
4 14716.4 3964.4 9301
5 14215.8 4023.3 9811

Table 3.1: Free Na*Arn cluster transition wavelengths

also gives two peaks in the correct region with a third smaller peak not seen in experiment. 

The most intense peak in the computational results has a peak wavelength very close to 

that of the experiment, the former appearing around 6800 A and the latter around 6700 

A.  There is also a peak in the calculated results at 6400 A  and another around 7800 A.  

Considering the approximations going into our calculation, particularly the device of freezing 

all atoms beyond the nearest neighbors and the many competing interactions, the fluorescence 

agreement is quite good.

Close examination of the Na*Arn structures that gave rise to these peaks reveals that 

they correspond to the cluster structures formed and detailed in the preprint in appendix D. 

That is, when we examine the argon atoms closest to the sodium atom we find the same 

formations we find in bare clusters. The peak around 6800 A  corresponds to the Na*Ar3  free 

cluster immersed in the matrix. The peak at 7800 A  corresponds to a Na*Ar4 free cluster 

embedded in the matrix. The smaller peak located at 6400 A,  seen in our work but not in 

experiment, corresponds to a Na*Ar2 free cluster embedded in the matrix.

Table 3.1 gives the energies and transition wavelengths associated with free Na*Arn 

clusters.

We note that the emission wavelengths generated in our calculated trapping sites are
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blue shifted compared to those of the free Na*-Ar„ clusters. Much of this blue shift can be 

accounted for by the repulsive B2£  potential. The remainder of it can be accounted for by 

the presence of the additional atoms in the matrix compared with the free cluster case. These 

additional argon atoms cause the ground state energy to be smaller, thus the sodium electronic 

transition energy is larger and the emission wavelengths are blue shifted. To give an example 

of this we randomly choose a cluster from our 1000 runs. The fluorescence wavelength of 

that simulated Na*Ar2oo cluster is 7312 A  (13,675 cm-1). The interior contains a  Na*Ar3 

cluster. That is, there are three nearest neighbors in a planar configuration. If the repulsive 

B 2T, potential is set to zero and the emission recalculated for this particular cluster, we get 

a fluorescence wavelength of 7700 A  (12,978 cm-1). Thus the repulsive 132£  potential is 

blue shifting our emission results by 400 A  (700 cm-1 ). The remainder is accounted for by 

the presence of the additional atoms beyond the three nearest neighbors. The contribution 

of the nearest neighbors is largest but the other atoms cannot be neglected. The simulated 

Na*Ar2oo cluster has a ground state energy of 1,855 cm-1while the Na*Ar3 cluster has an 

energy of 2,893 cm-1. The pure A2IT interaction of the matrix is -2,135 cm-1and that 

of the cluster is -1,690 cm-1 . These differences between the Na*Ar2oo and the Na*Ar3 

clusters are because of the additional argon atoms. The simulated fluorescence spectrum 

in figure 3-9 shows three peaks. Clearly the calculated peak near 6400 A,  corresponding 

to Na*-Ar2, is not visible in the experimental results. Either nature does not form that 

nearest-neighbor configuration for the B site fluorescence or it is shifted toward the red and 

merges with the 6800 A  peak. The 7800 A  calculated emission peak is blue shifted relative 

to the experiment. This discrepancy could be due to errors in our B2£  potential. This is 

the peak with nearest neighbors corresponding to the Na*-Ar4 cluster as discussed above.
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To generate our calculated fluorescence results, we have frozen outer argon atoms in place 

to simulate the argon matrix holding these argon atoms in place. However, we still don’t 

have a mechanism to account for the added potential of the matrix. Perhaps for the sites 

corresponding to this 7800 A  calculated emission, the atoms do not rearrange themselves as 

much as we observe even with our freezing all argon atoms beyond 6 A .  Another argument 

which seems to support this conclusion is the relative peak heights of the calculated emission 

results compared with those of the experiment. The more red shifted experimental emission 

peak is much smaller than the other. Clearly, this formation is much less frequent than our 

crude simulation indicates.

We need to examine our assumption that freezing all argon atoms except the nearest 

neighbors best simulates emission in the matrix environment. To this end, we examine what 

happens when all atoms are allowed to move and when only the sodium atom is allowed 

to move. Using the same set of potentials used in the calculation of the emission results 

shown in figure 3-9, all atoms were allowed to move. The results of one hundred emission 

calculations are presented in figure 3-11. There is a large discrepancy between the calculated 

and experimental B site emission results. The calculation wavelengths are as high as 9000 

A (figure 3-11). The highest wavelength in the experimental B site emission is only about 

7900 A .  Close examination of the nearest neighbor configuration found a Na*Ar5 cluster at 

the center of many (about 60%) of the simulation runs. The same arguments used above to 

explain the blue shift relative to the free cluster apply here. Clearly, allowing every atom to 

move causes compression of the local rare gas atoms and many runs ended up with the Na*Ars 

cluster center. This gives results which, when compared with experiment, are unrealistic and 

no sites generated had fluorescence in the experimentally observed region. One further note
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Figure 3-11: Computed emission spectrum for one hundred runs using the potentials of 
figure 3-9 with all atoms allowed to move when fluorescence is calculated.
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is in order. We note that there are peaks in the calculated emission spectra at around 8000 

A ,  8300 A ,  8500 A ,  and 8700A. These correspond to nearest neighbor configurations that 

look like Na*-Arn for n equals two, three, four, and five respectively.

A further set of trials allowing only the sodium to move were run (figure 3-12). This 

resulted in the nearly spherical cavity of the ground state (no argon atoms were allowed 

to move) with a  sodium on one wall and fluorescence that was too blue relative to the 

experimentally measured B site emission. Clearly the local argon matrix must rearrange in 

order to get calculated red shifts consistent with experiment.

In conclusion, our arbitrary freezing of everything but the nearest neighbor argon atoms 

appears to give results consistent with experiment. If all argon atoms are allowed to re­

arrange, the emission is too red when compared with experiment. If only the sodium is 

allowed to move the results are too blue and many of the runs had emission wavelengths 

around the free sodium atom absorption lines.
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Figure 3-12: Computed emission spectra for one hundred runs using the potentials of figure 
3-9 with only the Na atom allowed to move when fluorescence is calculated.
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Chapter 4

Summary

A computer simulation of the formation of trapping sites for sodium atoms trapped in a solid 

argon matrix was performed. The resulting sites formed were all very similar, showing a 

roughly spherical shape. The method used to generate these sites appears to be capable of 

quantitatively reproducing the experimentally observed B site absorption triplet. A simple, 

one-parameter adjustment of the least well-known B 2T, sodium-argon dimer potential was 

necessary to bring the calculated absorption and emission spectra into good agreement with 

experiment. No adjustment of the B2S dimer potential could reproduce the observed ab­

sorption and emission spectra for other absorption features, making the assignment to the B 

site unique. This leads one to conclude that simulation, combined with experiment, might 

be used as a method to generate the experimentally inaccessible 5 2E dimer potential.

No candidates for the less thermally stable A site were obtained. The possibility of this 

site being a surface site was eliminated and arguments were given that lead one to believe 

it is an internal site with the argon atoms compressing the sodium-argon bond more than 

in the case of the B site. The absence of this A site in our method might be caused by the 

small number of argons in our simulation. This would lead to smaller compression forces and 

might explain the inability to compress the sodium-argon bonds sufficiently.

•56
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Because of the small number of argons used in this simulation, an artificial freezing of all 

but the sodium’s nearest neighbor argons was necessary to simulate the bulk. This prevented 

liquification of our simulated cluster and gave calculated emission results consistent with 

experiment. A peak structure was observed in the calculated results. This structure is 

similar to that observed in experiment. The existence of these peaks was assigned to several 

unique nearest neighbor formations. These nearest neighbor formations matched those of 

free Na*Ar3  and Na*Ar4  clusters trapped in the argon matrix.

Given the simplicity of the simulation and the fact that one of the potentials is poorly 

known the results were surprisingly good. The match between the calculation and experiment 

was quite encouraging. The simulation method used appears to be capable of explaining some 

of the physics of matrix isolated sodium.
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Appendix A 

Useful Formulas
To convert from cm 1 to eV.

he =  197.32705359eF •nm 

so 8067.5cm-1 * he* 2k  = l.OeV

a0 =  0.529177249A

kBoltzman =  0.6950387cm- l /A'

If AE  is given in wavenumbers (cm-1 ) then the wavelength is given by

x ^  _  1.0 x 108A • cm-1 
’ ~  A £(cm -1)

A .l Spherical Harmonics

n .o (fi) =  y j c°s«

V2,o(fi) =  y j ( | c o s ’ («) -  I )

*2.4:1 (ft) =  ^ y ^ s*n(̂ ) cosf^Je*1*

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



59

A .2 Wigner 3-j symbols

For what follows the reader is referred to Zare [50]. The 3j symbol is denoted as

f  li h  k  ^ 
y m i  m 2  m 3  J

In general the 3-j  symbol vanishes unless mj +  7712 +  m3 =  0. The angular momenta must 
also satisfy the triangle condition

\ l i - h \ < k < l i  + h  (A.l)

otherwise the 3j symbol is zero.

A.3 The integral o f three Spherical Harmonics

The following integral is quite useful

JdQYr3m3( m 2m 2

( n m, / (2/1-H )(2 /2+ l) ( 2 /3 -H ) /  h h  k  \ ( h  h  h \
1 ’ V 4?r I mi m2 - m 3 /  I 0 0 0 j 1 }

Special Case:

If £ £ M  (-1)VBcfldifeg p a fcH ^ ,!(34 „ (3. i3„ A +*+*«■
/  1 0 otherwise

(A.3)
where we define 2g =  jx +  j 2 +  J3 .
Another special case:

3 2 3  3 m 2 - j ( j  +  1)_ _ _ _ _ _ _  /A „
“ m 0 ™ 7 t/(2 j -  1) j  (j +  1) (2j +  1) (2j +  3) ’ ]

3 3 2 I _  / 1 \ j - m 1 1 \ / ______ 6(j +  m +  1)(j  77i)______
m  - m - l  l j  } l W  +  3) ( 2j  +  2 ) ( 2 j + l ) ( 2 j ) ( 2 j - l )  (A-5)

™ ) =  ( - l ) J1- J2+mi+m2 (A.6)mi  m2 mi  +  m 2 I K 1

I (2ji)!(2j2)!(ji 4 - j 2 +  m i+  m2)!(ji 4-j 2 -  mt -  m2)! 
(2ji +  2j 2 +  1)!(j i  + m i)!(j! -  mi)l(j2 + m2)!(j2 -  m2)!
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Note also that the 3-j symbols are cyclic so any even permutation of the columns leaves 
the numeric value unchanged

(  3 i  32  J3  \  _  (  h  h  j i  ^ /  J3  j i  j 2
\  m ,  m 2 m3 J y  m2 m3 mi J I m3 m i m2

Any odd permutation introduces a factor of ( —

j l  32 J3  \  _  /  j w ' i  + j 2 - f  J3 f  33 J2 31
m i  m 2 m 3 y  I m 3 m 2 m\

These conditions will help us rapidly calculate states.

(A.7)
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Appendix B

Proof of Hellman-Feynman Theorem

Given a complex Hermitian matrix V we can find the eigenvalues, A,- (i =  and
their corresponding complex eigenvectors z,- satisfying the standard eigenvalue-eigenvector 
problem

V • zt- =  ztA,-.

To use the gradient method we need to know where (zi.)7 represents the j th
cartesian coordinate of the kth RG atom.

Starting with
A,- =  z\ ■ V  • z, 

where z\ is the Hermitian conjugate of z\

dXi dz\  , t d V  * , dzi
  =  — 7YT • V • zt- +  z] • —— — • Zi +  zj • V  • —— —■
d{xk)j d (xk)j ' d(xk)j  * * d{xk)j

dz\  t d V  t 9z i .
=  aT T T  • z« • A« +  z l ■ ' z« +  z i ' n 7 ~ T  * A*°(.xk)j d[xk )j d{xk)j

t d V  (  dz\  t dzi \  4
=  ^  +  +  "-f • 5(STj7j - A- t®-1)

Where we have used the fact that V is Hermitian.
Given the orthonormality of the eigenvectors z\zj  =  StJ , we take the derivative of z\ ■ z,-

d{z Ui) _  9z\  t dzj
d{xk)j d{xk)j Z% Z' d(xk)j

9{xk)j
= 0. (B.2)

Giving the useful result
d \ i  t dV

a ^ k)j ~  z ‘ ’ a t i , ) , ' Zi (B-3>
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Appendix C

Calculating the Perturbation Matrix,

We wish to calculate the angular portion of the matrix element V{j given in Chapter 2 by 
Equation (2.8) reproduced here for reference.

va =  =  l ,m l|Vr(r,R fc)|n ,/=
k

=  = l\VL{r,Rk)\n,l = 1)(/=  1, mt|P£,(r • P fc)|/ =  l,my)
L k

To express the angular portion in terms of the location of the k th RG atom, we use the 
addition theorem for spherical harmonics

47T
p L ( r , R k )  =

M

the angular part of Equation (2.8) can be rewritten

<m,|PL( f .R it)|mi ) =  - ^ ^ YEM ( ^ k) J  dQY’mt(Q)YL M (Q)YUmj(Q) (C.l)

The above integral has a well known solution in terms of 3-j symbols. It is given in 
appendix A as Equation (A.2).

First we will consider the excited state (p state) as results here will be useful in the ground 
state. Using the triangle condition for 3-j symbols (|h -  l2\ < I3 < h  + h)  and identifying 
h  =  ^3 =  1 we see that possible values of l2 are l2 =  0,1,2. Using Equation (A.3) we see 
that since li 12 + 1 3  must be even we can exclude l2 =  1 leaving us with possible l2 values 
of l2 =  0,2. So

N
Vij =  {(nPl^o(c, Pfc)|rap)(mt|Po(r • Pfc)|mj) +  (np\V2(r, P fc)|np)(ml|P2(f • Pfc)|mj)} 

fc=i

Consider the angular part of the first sum

(mt|P0( r - P fc)|mJ) =  <m1-|4T(y0.o(fi)K0-,o(njfc))|mi )
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=  J
=  (0 .2) 

Now consider the angular part of the second sum

2
(m,|P2(r-Pfc)l™i) = (m ,|^ £  Y ^fiJY ^fijO K )

0  M = - 2  

47T 2
=  7  E  Y;M {Qk) /dnY r,m,(n)Y2,M(Q)Ylimj(Q) (C.3)

M = - 2  J

For all Vij we can evaluate ^ ^ ^  ^ using equation A.3. The result is

k  h  h  
0 0 0 =  2\/l

Thus,

/ d n n v ( 0 ) V u f ( n m - >(O) =  ( - i r ^  ^  j  (C4)

Substituting C.4 into C.3 gives

1 2 1 
v M — m,

Or, using the fact that an odd column permutation introduces a factor of (- lp i+ ^ + A  = 
( - ! ) “ =  !

(» .iw • &)K> =  f  £  v w w - i r _ L , £  ^
M = - 2

Using the general condition on the magnetic quantum number for a 3j symbol we know 
TTlj + M — TTli =  0.

For the ground state alkali atom (s state) our basis consists of the single basis function 
(00|. Inserting k  =  /3 =  0 and using the triangle condition -  l2\ < k  < k  +  k )  we see 
that there is only one possible value l2 =  0.

N

£
k = l

We have already determined (mi|P0(f • flk)lmj) = 1 in Equation (C.2). The result is that
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Vij =  HfcLi(rcp|Vo(r, Rk)\np).  Thus the ground state has no angular dependence and is 
simply the sum of the dimer potentials.

C .l Evaluation o f matrix elements

For notational convenience in what follow, we will define

V0(Rk) = {nl\V0(r ,Rk)\nl)

and
V2 (Rk) = (nl\V2(r ,Rk)\nl)

Since V{j =  V-\ we need only calculate the members of the upper triangle of the matrix. 
As a sample let us do Voo- For Voo m, =  rrij =  1 thus M  =  0.

V'oo = E { v'oTO + ̂ (flt)̂ VJo(!Jt)(-l)‘v/X f 11 I jU

Using Equation (A.4)

V - 1 0 1 /  \ / 2  • 3 • 5

Finally

Uoo =  £  -  V2 {Rk) ^ ( 3  cos2 8k -  1)}

For Vji, mi  =  rrij =  0 so M  =  0 we use Equation (A.3)

(  1 2 1 ^ / ^2 /2  -1 * 2 1
{  0 0 0 J _ (  1} V 5! v ^ F 5

Uu =  £  {fo T O  +  V2(Rk) ± { 3 c O* 0 k -  1)} 

For V22 , mi = mj  =  — 1 so M  = 0 we see that V22 =  Voo since

For V0 1 , rrii =  1, rrij =  0 so M  = 1 using Equation (A.5)

( 1 2 l \ -- /m__ /X
^ - 1  1 0 )  V 5! ~  V 10
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Hi = E { v'»(«k)-H(fit)yVV:1(nt)(- l) ‘y j ^ X |

=  E |H ( f l i ) -H ( f l4 )^ c o s « s in O e - '* |

For Vq2 , rrii =  1, mj  =  -1  so M  = 2 using Equation (A.7)

( - . ;  - \ M

vM =  x ; |v b ( R t ) -

For V12, mi = 0, mj  =  -1  so M =  1 we see that V12 =  — Vqi since

( i ! - 0
where the minus sign comes from the (—l)m 

Putting these together the final result is

1 2 1
-1  1 0

(C.5)

(C.6)

V =  £ < K > ( R i k ) > I + ^ £ < K 2( R * ) > x  
k iU k

— (3cos2Ok -  1) — 3 \/2 sin0kcos&ke~ut>k -3 s in 2 ffke~2t<i>k
—3v^sin0fccostfjte‘̂ fc 2(3cos2 0* — 1) 3\/2sin 0* cos Afce-1'**

—3 sin2 Qke2l<t>k 3\/2sin 0fccos 0kex<t>k -(3cos2 0jt — 1)

where I  is the unit matrix.
For computational convenience, the cartesian from of this this equation was used.

(C.7)

(0 .8)

((a^+A *2) *) 
M l ) ’ 
w

o. /n^k(xk-i-yk)
dV2 (P + ?+ ?) 

- 2  • (% )

o xl~ y l - ^ k y k
{x2+y2 +z2 )

- ( V 0' i )

(V0'o)

where V ' has an obvious meaning. This result is identical to that given in the appendix 
of reference [38].

We can solve this using the Householder-Givens-Wilkinson method or by writing out the 
determinant directly and solving the resulting cubic. As a simplification we note that we can
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solve the secular equation for V ' and add the diagonal terms to get the perturbation term. 
That is to say we define E 1 = E  ~ V q — Vrg - Compare

det
a — E' c + i-  d 9 + i ~ f  
c - i - d  —2 - a - E ’ —(c + i -d !) 
g - i - f  —{ c - i - d )  a — E'

=  0 (C.9)

We obtain the cubic...

£ 3- { y 2 +  2(c2 +  d2) +  3a2 +  / 2} E+[2g{c2 -  d2) +  2a [c2 + d 2 -  [ f2 +  g2)\ +  2a3 +  4cdf)  = 0
(C.10)

This can be solved by any standard cubic method to obtain the eigenvalues E (see for example 
[35]).

C.2 D erivatives of the M atrix Elem ents for the P-state

As seen in Equation (2.15) in order to use the gradient method we require the derivatives 
of the matrix given by Equation (2.9). These derivatives are presented below in cartesian 
coordinates.

C.2.1 D erivatives o f V£,

dV'oo
dx

W o
dy

dK>
dz

6 i;
[x2 + y2 +  z2)2

6yz2
(x2 + y2 +  z2)2 
- 6  z (x2 4- y2) 

{x2 + y2 + z2)2 (C .ll)

C .2.2 D erivatives o f VqX

dVA01
dx

9 K i
dy

d V ^
dz

=  z{x2 - y 2 ~ z 2 - i - 2 x y )
(,x2 +  y 2 +  z 2)2

=  ‘i J o  ^ ( 2 g y  +  i - ( i 2 - y 2 +  ^2)) 
(x2 +  y 2 +  z 2)2

= -<\jo  (J ~ * • y ) ( j 2 + y 2 -  *2)
{x2 +  y 2 4- z 2)2 (C. 12)

C.2.3 D erivatives o f Vq2

dV■'02
dx =  - 6

(2y z +  z 2) +  i ■ y ( x  -  y 2 -  z 2) 
(.x2 +  y 2 +  z 2)2
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0^02 _  y[2x2 +  z 2) +  i  - x ( x2 - y 2 +  z2)
d y  (x2 +  y 2 +  z 2)2

dVp2 _  ( i 2 -  y 2) -  i  • 2xy
8 z  02 ‘ (x2 +  y 2 +  z 2)2
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(C.13)
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Structure of Na(3^F)-Arn Clusters using Semiempirical Potentials

A lan B. Tutein3 and Howard R. M ayneb

Departments of Physics and Chemistry 
University of N ew  Hampshire 

Durham, NH  03824

ABSTRACT

We have calculated the minimum energy geom etries of clusters formed by 
electronically-excited sodium  atoms in their (32 P) state w ith  argon atoms. The 
potential energy functions needed to describe interactions w ith an open-shell 
atom are not pairwise additive. Those used here were constructed using a first- 
order perturbation treatment. The semiempirical potentials used as input were 
derived from direct spectroscopic evidence, in the case of the A2n  potential, and 
indirectly from matrix isolation data for the B2! .  We find the clusters to be 
planar for n=2-5. A dditional argon atoms form an argon subcluster, avoiding the 
perpendicular to the Na*-Ars plane. We have investigated the sensitivity of the 
cluster geometry to variations in the potential parameters. We have also 
calculated geometric isom ers for the Na*-Ars case. The significance of these 
findings for fluorescence experiments in cryoscopic rare gas matrices is 
discussed.

a. Department of Physics 
b. Department of Chemistry
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I. In troduction

In recent years there has been considerable interest in the study of 
m icroclusters, as experimental techniques capable o f forming and characterizing 
such species have developed. In addition, there has been considerable theoretical 
and com putational activity. The literature is vast, and w e refer the reader to 
recent review s . 1 ' 5

O ne motivation for such work is to deepen our understanding of the 
m icroscopic details of solvation. There have been a large number of studies 
which have investigated the structure of heterogeneous clusters in which a single 
m olecule or atom is "dissolved" in a cluster o f rare gas atoms.6 - 2 4  An advantage 
of clusters is that such parameters as the size and energy content (or 
temperature) of the cluster can be to som e extent controlled. One area of interest 
has been the investigation of solvation effects as a function of the number of 
atoms in  the solvent cluster. For instance, the infrared spectroscopy of SF6  -Arn
system 7 - 9  has been the object of considerable research. There has also been 
considerable interest recently in the effect on electronic spectra of aromatics in  
rare gas clusters. 11-16,22,23

W hile these systems are relatively anisotropic, m ost m odeling calculations 
have used  pairwise-additive electronically adiabatic potentials between the rare 
gas atom s and the heteroatom or individual atoms o f the m olecule. Relatively 
few  studies have been carried out on clusters in w hich the potential cannot be 
m odeled in this fashion. Effects of the role of three body interactions have been 
investigated .9

For several open shell atoms, how ever, the potential cannot be m odeled 
by a single potential energy curve. For instance, in the recent investigation of Ba 
atoms desorbing from an argon cluster, Jungwirth and Gerber1 8  use a £  and a FI- 
type potential in their m odeling of Ba* desorbing from an Ar cluster. In a recent 
study o f B-Arn cluster geometries, Alexander and coworkers1 9 '2 0  used a similar 
form ulation for the B-Ar potential.

W e have chosen to carry out investigations on the electronically-excited 
Na(32 P)-Arn system . The fact that p orbitals are involved in the bonding means 
that nonadditive effects are extremely important. In addition, the interaction is 
both strong and highly anisotropic. In the study of B-Arn clusters referred to 
above, the B-Ar interaction is comparable in energy to the Ar-Ar energy. For 
excited state sodium , by contrast, the FE potential is much stronger than that 
betw een the rare gas atoms, and this causes the m etal atom to have a profound 
organizing effect on the solvent.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



71

The Na-Arn cluster has been the object of considerable interest as a m odel 
system  in cryogenic matrix studies .1 7 '2 5 *3 1  The sodium  atom acts as a 
chromophore; the 32S -> 32P optical transition lines serve as a probe of the local 
environment of the Na(32S) atom. In addition, fluorescence lines yield  
information on solvent rearrangement after the excitation. There is a profound 
qualitative contrast between the Na-Ar interaction in the electronic ground state, 
and in som e of the excited states. In the groundstate, the interaction is relatively 
weak. In the excited (A2!!) state, however, the excimer potential is strongly 
bound. In addition, if the sym m etry of the system  is lowered (as is the case in a 
cluster) the Na*-Ar interaction is anisotropic. Thus, there is the possibility of 
strong solvent reorganization effects on optical excitation of Na atoms within an 
Arn matrix. In fact, recent w ork on large clusters has shown this to be the case.3 2  

This work3 2  has also yielded m odel Na*-Ar potentials which are in reasonable 
agreement w ith both absorption and em ission spectra for Na in argon matrices.

We use these potentials here to investigate the structure of small 
Na(32 P)-Arn clusters. We find the potential energy global minimum for these 
excited state clusters for n=2 through 17. We comment on the role played by the 
anisotropy of the potential. We discuss possible isomers for the Na*-Ars case, 
and generalize to larger structures. Finally, w e comment on how an 
understanding of the cluster structure for sm all clusters can yield insight into 
details of macroscopic solvent rearrangement and relate our findings to matrix 
fluorescence data.

II. Calculation of Cluster Potential Geom etry

(a) Formalism

To describe the interaction between a P atom and an S atom, potential 
energy curves of both I  and II symm etry must be considered. In order to 
calculate the interaction betw een a P atom and several S atoms, these potentials 
must be combined in a non-pairwise additive manner. We use here the 
perturbation technique proposed by Baylis, 3 3  which w as developed for clusters 
by Balling and Wright (BW) , 3 4  and more recently by Boatz and Fajardo (BF) 31  

We w ill consider here the case of a Na(32P) atom interacting with n argon atoms.

The one-electron Ham iltonian for the sodium atom interacting with n 
argon atoms treated as point perturbers is:
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H = H0(x) + Sin v (x,Ri)

where x denotes the electronic coordinate o f the Na atom, and Ri is the 
displacem ent of the ith argon atom. Ho is the unperturbed one-electron 
Hamiltonian:

Ho | p(x)> = Eo | p(x)>

where Eo is the eigenenergy for the 3p valence orbital. The potential v(x,Rj) is a 
perturbation potential due the interaction betw een the electron and a point 
(argon atom) pertuber at Ri .

Follow ing BW and BF w e carry out a first-order perturbation calculation 
in the m inim al p basis set: {pm} = {pi,po,p-i}- This leads to a 3x3 secular 
determinant, w hose solutions, E, are the electronic Na*-Arn energies:

det | Vmm'CR) - (E -E qJS^  | = 0

where

Vmm'(R) = Si <m | v(x,Ri) | m'>

is a function of the geometry of the n-atom argon subcluster, whose coordinates 
we denote by R = (Rix,-,Rnz)- From this, w e see that E = E(R). We m ust therefore 
solve the secular determinant for each cluster geometry. Putting in the explicit 
functions for the p basis yields for the solutions:

E(R) = S in ( V0(Ri) I + ( i /10) V2 (Ri) M)

where Ri = | Ri | , I is the unit matrix and M  is a matrix containing angle- 
dependent terms given by BF (their treatment corrects a typographical error in 
the BW paper). The Legendre potential terms are related to the S and II atom- 
atom potentials through:

3 V 0 (Ri)= VBz (Rj) + 2 Vah (Ri)

3 V2 (RO = 5 [Vbz (Ri) - Vati (Ri) ]

where w e have used the fact that the S and the P atom-atom interactions 
involved are the B2 2  and the A^n Na*-Ar potential energy functions 
respectively.
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The total energy of the Na*-Arn cluster is given by 

V(R) = E(R) + IZj>k VAr-Ari tjk )

where rjk = |rjk | =  | Rj - Rk | , and VAr-Ar(r) is the (assumed pairwise additive) Ar- 
Ar potential.

In obtaining geometries of the Na*-Arn clusters, the low est electronic 
eigenvalue w as always used.

(b) Diatomic Potentials

The potential energy functions for Ar-Ar has been the subject of 
considerable research. We use the recent accurate fit potential of A ziz .3 5  W ill use 
r for Ar-Ar interaction distances. In particular, the equilibrium distance is re = 
3.757 A, and the equilibrium w ell depth of 99.738 cm*1 w ill be denoted s.

By contrast, the Na*-Ar potentials are less w ell established. There is 
a spectroscopic potential available for the A2n  potential. Tellinghuisen et al 3 6  

extracted a potential curve from laser spectroscopy of the X-A transition. 
However, there is little data on the B2^ potential. Pioneering ab initio studies3 7 '38  

show it is clearly much less strongly bound than is the A state, and also that it is 
much more repulsive at short range. There is also a small body of data from  
scattering experim ents.3 9 '4 0

Several groups2 6 '3 1 '3 2  have used sim plified B state potentials to m odel 
optical absorption of Na atoms in cryoscopic argon matrices. One recent study3 2  

has been relatively successful in predicting the absorption spectrum from a 
limited number of matrix sites. This study fixed the B potential w ithin a fairly 
narrow range of parameters. We use the potential derived from that work here. 
We show later that the cluster structures investigated here are unlikely to be very 
sensitive to the details of the potential used. We therefore use here a set o f Morse 
parameters w hich fit reasonably w ell all experimental data for both absorption 
and em ission spectra of Na in matrices.

Both the Na*-Ar potentials are fit to Morse functions of the form:

V(R) = D X(R) (X(R) - 2)

where X(R) = exp[p (1-R/Re) ]. Parameters are given in Table I, and the 
potential curves show n in Fig. 1 . Also show n in Figure 1 is the VAr.Ar(r) potential.
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(c) Geometry Optimization

The global optim ization w as carried out using chiefly the Space-Fixed 
M odified Genetic Algorithm approach .4 1  This search is relatively fast. It also 
finds m any local minima. In those cases where all local minima were required, 
the optim ization search w as restarted w ith a high penalty on the global 
m inim um  (GM). In addition, sim ulated annealing4 2  and steepest descents4 3  from  
various candidate geometries w ere also employed.

HI. Structure of Na(32Pi/2)-Arn Clusters

(a) Na(2P)-Ar2 Clusters

An a b  i n i t io  study of this system has recently been published .4 4  We 
compare our semiempirical findings w ith these more accurate results here.

W e show in Fig 2 the potential energy as a function of bond angle, 0, for a 
fixed value of R(Na(2P)-Ar) in C2V geometry. There are three solutions to the 
secular determinant. At all angles the Bi state has the low est energy. The crossing 
of the diabatic B2 and Aj states near 0 = 45 degrees is a consequence of the 
planarity of the structure.4 5  The results are in reasonable qualitative agreement 
with those of Langhoff.4 4

In Fig 3 we show the m inim um  energy geom etry for an Na*-Arn cluster 
for the sim plest case, n= 2. The C2V geometry is trivial to predict both Ar atoms 
lie at the equilibrium bond length, RAe = 2.91 A, for the A2!! diatomic potential, 
with en ergy , Da= 563.4 cm-1. The Ar-Ar bond length is re= 3.757 A, with energy 
s = 99.738 cm-1. The binding energy is therefore 2D a + e = 1226.5 cm-1.

(b) Na(2P)-Arn Clusters (n = 2-17)

The minimum energy geometries and energies of Na*-Arn (n=2-l7) 
clusters are shown in figs 3 and 4. In order to facilitate discussion of the structure 
of the clusters and dynamics follow ing excitation, w e introduce here a 
descriptive notation. The notation is adapted from that proposed by Amar and 
Berry, 4 6  who used such a code in their study of Ar7  clusters. As a simple 
exam ple, our notation for the Na*-Ar3 minimum energy cluster is: [0 0 0 1 2 ; 3]. 
The first five integers are used exactly as Amar and Berry use them; they denote
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the number o f argon atoms possessing a given  number of nearest neighbor (NN) 
argon atoms. The number of N N s is listed from right to left, beginning at the 
semicolon. Thus, there are two argon atom s (the outer ones) w ith  just one Ar 
NN, and one Ar atom (the central one) w ith  two Ar NNs. There are no Ar atoms 
with three, four, or five NNs. The integer follow ing the sem icolon denotes the 
number of Ar atoms which are N N  to the Na* atom; here three. Another simple 
case is that for Na*-Ars, which is denoted [0 0 0 5 0; 5]. As a m ore complex 
example, the Na*-Ar6 structure shown in Fig 3 is given the notation: [ 0 0 2 4 0 ;
5]. This indicates that five argon atoms form  the ring, and that the sixth argon 
atom is not part of the ring; furthermore, the sixth argon atom has tw o NNs. 
One useful property of the notation is that it allows a quick estim ate of the total 
pairwise additive binding energy of the cluster. Clearly, each Ar atom  which is 
N N  to the Na* experiences the D a attraction. The total Ar-Ar attraction can be 
found by sum m ing the number of N N  atom s, then dividing by tw o to include 
overcounting, and m ultiplying by s. Thus, the approximate binding energy for 
Na*-Ar6  is (5* D a + (4*2 + 2*3)s/2) = 3512 cm-1. This is in fair agreem ent with 
the calculated value of 3402 cm*1.

The n=3,4,5 clusters dramatically underline the tendency for the excited- 
state m etal atom  to organize the Ar atoms into a planar structure; A ll four argon 
atoms experience the strong n  attraction. The contrast with the Na(2S)-Arn 
clusters1 7  is striking. In the isotropic potential case, the Na-Ar attraction is 
weaker than the Ar-Ar interaction (Dx =40.4 cm'1; e = 99.7 cm4 .) Therefore the 
cluster resem bles Arn clusters, but with the N a atom on the outside of the cluster.

The contributions to the energy are also easily identified. Essentially, for n 
Ar atoms, (w ith n= 2-4) there are n Da  bond energies, plus (n-1) Ar-Ar nearest- 
neighbor interactions, s. For n=2 through 4, all atom-atom distances are at the 
minimum for the pairwise interaction. This is reflected in the approximate 
binding energies. For instance, for n=4, the pairwise additive BE is 2551 cm'1; the 
actual BE is 2604 cm-1. The additional stabilization energy com es from second 
nearest neighbor Ar-Ar attractions.

By n= 5, however, there is some strain; the Na*-Ar pairw ise attraction, 
being considerable stronger than the Ar-Ar attraction, wins out, and the Na-Ar 
bondlengths are the equilibrium distances for the A potential, R ac The Ar-Ar 
bondlengths are slightly greater than re. The geom etry has C5 sym m etry [ 0 0 0 5  
0; 5]. The pairw ise additive binding energy is 3312 cm*1; the actual energy is 3189 
cm*1, show ing the strain.

By n=6 , however, two com peting tendencies are clear. The Ar-Ar 
attraction com petes w ith the A potential's attraction between Na* and the Ar
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atoms. If w e consider the interaction of the sixth Ar atom with the Na*-Ars 
m oeity, this interplay becomes clear. The rare gas-rare-gas attraction is optim ized  
by a perpendicular approach of the atom  to the plane. However, this sixth atom  
w ould feel the strongly repulsive B Na*-Rg potential. The sixth argon atom  thus 
coordinates to tw o of the argon atoms in the ring. If the sixth argon atom  w ere to 
lie in the plane of the ring, the R(Na*-Ar) bondlength w ould be large, and the 
attraction correspondingly small. The attraction of the Na*-Ar potential is 
therefore optim ized by m oving the atom  slightly out of the plane of the ring, 
reducing the R(Na*-Ar), but sim ultaneously minimizing the repulsive B 
interaction.

For n=7, w e might expect there to be two competing isom ers for the 
minimum energy geometry. Starting w ith the geometry for Na*-Ar6, w e can add 
the seventh argon atom either on the sam e side of the ring ("syn") as the sixth Ar 
atom [ 0 1  2 4 0 ; 5], or on the opposite face ("anti"), with code [0 2 2 3 0 ; 5] . It is 
easy to estim ate the binding energy from the code. We find that it is the structure 
with the tetrahedral Ar substructure,[ 0 2 2 3 0 ; 5] which has the lower potential 
energy. Thus, one Ar atom adds above the Ars ring, one below to obtain a C2V 
geometry. As can be seen from Fig. 3, this is, indeed, the global minimum.

For n= 8  through 13, the energetics of adding the nth atom to the (n-1) 
cluster is straightforward: the Ar(n)-Ar(n-1) attraction is optim ized, resulting in 
the local tetrahedral structure so typical of the exterior pure argon clusters. This 
is clearly show n in the addition of the eighth argon atom to the Na*-AJ7 . It is w ell 
known that the typical addition pathway for rare gas clusters is via addition to 
triangular faces. This addition results in an incremental increase in attraction of 
3s for each added argon atom, if only N N  are considered. The optimal triangular 
face to add to is that of a tetrahedron, since the added atom also experiences 
second nearest- neighbor attraction from the argon on the opposite side of the 
face. Thus the GM of Na*-Ar7 is the "seed" from which the larger clusters can be 
constructed .4 7

(c) Effect o f Variation in the B Potential

W hile the Ar-Ar potential is now  fairly w ell known, 3 5  the Na*-Ar pairwise 
potential energy functions used here as input to the secular determinant are not 
as w ell established. As discussed above, there is some experimental information 
on the Na*-Ar (A2I1) potential. Therefore the potential used here is likely to be, at 
worst, semi-quantitative. In any case, there are unlikely to be any qualitative 
differences caused in the structures of the clusters by any reasonable variation in 
either the Ar-Ar or the A2n  potentials. The B2!  potential function, by contrast, 
is very poorly known. We w ill therefore focus on possible qualitative effects on 
cluster geom etry of varying this potential.
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The B potential is "felt" only by Ar atoms both out of the plane of the ring, 
and relatively close to the Na atom. Furthermore, in the larger clusters, such 
extra-annular argon atoms w ill tend to experience strong attraction from the 
argon subcluster. Thus the greatest effect of any change in the potential w ill be 
on those clusters in which there are few  extra-annular argons. In particular, Na*- 
Ar6 and Na*-Ar7  w ill be affected. We therefore restrict discussion to these 
clusters.

In what follow s w e consider the structure of the Na*-Ar6 cluster by 
minimizing the potential energy of an Ar atom free to move in the field of a 
"frozen" Na*-Ars ring as the B potential is varied. Clearly, the minimum energy 
location w ill lie on  a vector w hose projection into the plane of the ring bisects 
two Na*-Ar ring bonds. Thus, the only variables w e need to describe the 
minimum energy location of the sixth argon atom are the polar variables (R,0), 
where w e take 0  to be the angle from the C5 axis of the ring.

There are three parameters for the Morse potential which m odels the B2^ 
interaction: the w ell depth, Db; the location of the w ell minimum, Roe; and the 
Morse parameter, pg. For reasons discussed above, the parameter values chosen 
for the rest of this work are: (32.3 cm-1, 6.81 A, 4.3 ) for (Db/Rbc/Pb)- For a Morse 
potential, varying D changes the w ell depth and the slope of the potential 
everywhere. The parameter, p , governs the curvature at and hence the 
steepness of the repulsive wall, as w ell as the range of the attractive part of the 
potential. Increasing p has the effect of "tightening" the potential w ell. This 
therefore increases the repulsion of the potential at the values of R seen in this 
study.

We consider here the effects of varying each of these parameters in turn. 
Results for a 20% variation in each parameter taken individually for Na*-Ar6 and 
Na*-Ar7  respectively are shown in Figs 5 and 6 .

We consider first Na*-Ar6  [00240;5]. As can be seen from Fig 5(a), both R 
and 0  are relatively insensitive to the w ell depth, Db, increasing by less than 2 % 
for a 40% change in Db- Furthermore, it can be seen that the value of the R is 
considerably less than Rse- In addition, w e find that the distances from the two 
closest Ar atoms in the ring correspond to r^ m axim izing the Rg-Rg attraction. 
The sixth Ar atom  is attempting to m axim ize the Ar-Ar attraction w hile 
minimizing the repulsion due to the B potential. In fact, the R value is close to 
that of the zero o f the Morse potential, Ro, which is given by the solution of X(R) 
= exp(p(l-R /R m))=2. That is,
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R<) = RBe(l"In2/ P B )

It can be seen that R o  is independent of D b ,  which is also the case w ith the R ( D b) 

of Fig 5(a). In addition, the value of 0 is given by elementary trigonometry, 
simply by m aintaining tat-At at its minimum energy value, r^ and holding the 
Na*-Ar distance at Ro-

Variation of R and 0 as the Morse parameter, ps , is varied is show n in Fig 
5(b). The behavior of R w ith p is instructive: It increases rapidly for low  p , but 
less rapidly at large p. This is in keeping w ith the trend w e see in Ro(r). The 
angle, 0, also behaves as expected by constraining the Ar-Ar distance to its 
equilibrium distance, and keeping R at Ro-

From the expression for Ro above w e w ould expect the m ost drastic 
change in the value of R to come with a change in Rse- That this is the case is 
shown in Fig 5(c), where w e see an essentially linear increase in R and 0 w ith Rm 
at first, until R = 5.74 Angstrom. By this value, the sixth argon atom has moved 
into the plane of the ring (as is evidenced by the value of 0 = 90 degrees) and is 
no longer influenced by the B potential.

For the Na*-Ar7  case, the stable structure w ith the unperturbed 
potential is [02230;5], w ith R -5.5 Ang and 0  = 70 degrees. This geom etry is not 
qualitatively affected by changes in the B potential. The structure affords not 
only optimal attraction of the extraannular argon atoms w ith the atoms of the 
ring, but also w ith each other. The argon subcluster is here tetrahedral, yielding 
extra binding energy from the atoms above and below  the plane; the (R,0) values 
correspond to a re value for Ar(6)-Ar(7).

Not surprisingly, then, both R and 0 are extremely insensitive to the 
value of both Db (fig 6 (a)) and p (fig 6 (b)). The greatest sensitivity is to the Rse 
value, as it w as for Na*-Ar6 . The finding here (fig 6 (c)) is qualitatively the same 
as in the Ars case: the extraannular argon atoms are "pushed" out of the ring, to 
some extent. H owever, in order to maintain the Rg-Rg interaction, the cluster 
retains its C2v geom etry, m erely allowing the argon tetrahedron to distort to 
accommodate the repulsion from the B potential.

In conclusion, w e have shown that the structure of the Na*-Ar6 clusters is 
only slightly sensitive to details of the B potential — in particular, to the location 
of the zero of the potential or, equivalently, to the Morse parameter, pB. 
Measurements of rotational constants could, in principle, lead to information on 
this parameter. The Na*-Ar7  clusters are even less sensitive to changes in the B2I
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potential. Both geom etries are dominated by the attractive A2n  and Rg-Rg 
potentials.

(d) Na*-Ar5  G eom etric Isom ers

As w ell as the global minimum of the potential energy, there are also 
several local m inim a — which w e shall refer to as geometric isomers — which 
illustrate the role of the m etal atom in influencing the "solvent" argon atoms. We 
have found that all the possible variations in structure are present in the isomers 
of Na*-Ars. The number of possible isomers grow s very rapidly for the n= 6  and 
7 cases. In order to keep the treatment m anageable, w e focus here on the n=5 
cases.

In w hat follow s, w e restrict ourselves to those isomers of Na*-Ars which 
have at least three argon atoms at NN  distances from the Na(3P) atom. We 
predict several more isom ers w ith fewer "ring" argon atoms. However, these are 
of interest only for the variations in the geom etries of the argon subcluster, and 
add little to the discussion of the effects of the excited state m etal atom on the 
solvent. In any case, such isomers are very energetically unstable compared to 
those with m ore ring atoms.

The geom etries and energies for the seven energetically lowest-lying 
isomers of Na*-Ars w e have located (or predicted) are shown in Fig 7. We have 
already considered the global minimum (GM), I [0 0 0 5 0 ; 5], in some detail 
above.

In isom ers II and HI, four Ar atoms remain in the energetically-favorable 
ring configuration, as in the GM for Na*-Ar4. H ow ever, the fifth atom is now no 
longer N N  to the Na* atom; instead, it is N N  to tw o of the Ar atoms of the ring. 
There are tw o near-degenerate isomers, depending on whether the fifth argon 
bridges the central pair o f argon atoms (resulting in a Cs geometry) or an outer 
pair of atoms (Ci). The energy difference betw een these structures and the GM 
derives from the loss of D a; there are still five Ar-Ar N N  pairs, as there were in 
isomer I.

In isom er IV, the fifth Ar atom sits perpendicular to the plane of the ring 
near the shallow  m inim um  of the B2!  potential; that is, at R^- This minimum is 
"worth" 32.3 cm'1. In order to include such isom ers in our notational scheme, we 
need to am end the scheme. We denote Ar atom s which are attracted to the Na* 
atom by the weak potential in the follow ing way. The number of N N  Ar 
atoms is just as it w as in Na*-Ar4, as is the number of strongly-bound Ar atoms.
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We denote this isom er by [ 0 0 0 2 2 ; 4 + 1 ], where the "+1" indicates an Ar atom  
weakly bound to the Na* (via the B2! ) . The rest of the structure is just as in the 
global m inim um  for Na*-Ars. This is reflected in the notation. The estim ated 
binding energy for IV is 2583 cm'1.

Isomers V,VI, and VII all have three-membered rings. The greatest Ar-Ar 
pairwise attraction is obtained by the tetrahedral disposition of atoms in isom er 
V, [ 0 1 3  01; 3], which has 7s from the rare gas - rare gas interaction. Related, but 
less tightly held structures are the near-degenerate pair which both have code [ 0  

10 4 0; 3]. These both have two argon atoms, each bridging two ring argons. In 
contrast to isom er V, though, the bridges are between different ring atoms. In 
order to distinguish between these tw o, w e note that the slightly more stable 
structure has the two "non-ring" argon atoms on the same side of the plane of 
the ring, generating Cs geometry (or "syn"). The less stable of the structures is of 
C2  geometry (or "anti").

The isom ers for larger clusters share the same features as those explored 
for Na*-Ars. H ow ever, as we m entioned above, the number of them increases 
rapidly.

IV C onclusions

We have calculated the global minimum of Na*(32 P)-Arn clusters using a 
perturbation theory approach with semiem pirical diatomic potentials. For 
clusters up to n=5, the structure is dom inated by the strong A2n  interaction, 
leading to planar ring structures. For larger clusters, the Rg-Rg interaction is the 
dominant contribution, and the nonannular part of the cluster is similar to rare 
gas clusters.

We predict that variation in the relatively unknown B2!  w ill have little 
effect on the geom etry of these clusters. This potential w ill, however, be crucial in 
correctly assigning spectroscopic lines for optical excitations in Na(32S)-Arn —> 
Na*(32P) -Arn clusters. It is through such measurements that the best 
experimental understanding of this com ponent of the potential energy w ill com e.
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TABLE I

Parameters for the Morse potentials used for Na*-Ar interaction. See text.

D [cm*1] Re [Angstrom] p

A2n  563.4 2.91 5.29

B2E 32.3 6.81 4.4
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FIGURE 1

Pair potentials used here. The Ar-Ar pair potential is that of A ziz . 3 5  The 
A2n potential for Na(32 P) - Ar is the Morse fit of Tellinghuisen et al.3 6  The B2Z 
potential for Na(32 P) - Ar is the best fit from a sim ulation of optical absorption 
spectra of sodium  atom s in an argon matrix.3 2
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FIGURE 3

M inimum potential energy geom etries for clusters Na(32P) -Arn for n  = 2 
through 7. In parentheses the binding energy in cm ' 1 is given.
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FIGURE 5
Effect on the geom etry of Na*-Ar6  in Cs geom etry o f variations in the 

parameters of the B potential. Plotted are polar coordinates, (R,0) of the 
minimum position of the sixth argon atom. The angle 0 (dashed line) is measured 
from the C5  sym m etry axis of the Na*-Ar5 ring. At 0 = 90 degrees, the vector to 
the sixth argon atom w ould bisect the angle Ar(4) - Na - Ar(5).
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As in Figure 5 except for Na*-Ar7 in C2 V geometry. The angle, 0 , refers to 
the coordinates of Ar(6 ). Ar(7) is at (180-0).
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